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Abstract. We provide new examples of K-unstable polarized smooth del Pezzo surfaces
using a flopped version first used by Cheltsov and Rubinstein of the test configurations
introduced by Ross and Thomas. As an application, we provide new obstructions for
the existence of constant scalar curvature Kähler metrics on polarized smooth del Pezzo
surfaces.

All varieties are assumed to be algebraic, projective and defined over C.

1. Introduction

K-stability is an algebraic notion of polarized varieties which has been of great im-
portance in the study of the existence of canonical metrics on complex varieties. This is
mainly because of the following

Conjecture (Yau–Tian–Donaldson). Let X be a smooth variety, and let L be an ample
line bundle on it. Then X admits a constant scalar curvature Kähler (cscK) metric in
c1(L) if and only if the pair (X,L) is K-polystable.

It is known in different degrees of generality thatK-polystability is a necessary condition
for the existence of a cscK metric, with the most general result due to Berman, Darvas and
Lu [4] following work of Darvas and Rubinstein [9]. For smooth Fano varieties polarized
by anticanonical line bundles, Conjecture 1 was recently proved by Chen, Donaldson and
Sun in [8].

In spite of the above (conjectural) characterizations, deciding whether a given polarized
variety is K-stable is a problem of considerable difficulty. In this paper, we study this
problem for del Pezzo surfaces polarized by ample Q-divisors. Using Q-divisors does not
affect the original problem, since K-stability is preserved when we scale the polarization
positively.

Let S be a smooth del Pezzo surface, and let L be an ample Q-divisor on it. Recall
that S is toric if and only if K2

S > 6. In this case, the problem we plan to consider is
completely solved. In the non-toric case, few results in this direction are known. For
instance, if S is not toric, then it admits a Kähler–Einstein metric by Tian’s theorem [25],
so that (S,−KS) is K-stable. Moreover, a result of LeBrun and Simanca [16] implies that
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the same holds for every divisor L that is close enough to −KS. On the other hand, many
K-unstable pairs (S, L) have been constructed by Ross and Thomas in [22, 23].

In the prequel to this article [5], we gave a simple condition on L that guarantees
that (S, L) is K-stable. The goal of this article is to obtain new simple conditions on L
that guarantee that (S, L) is K-unstable. In addition our technique recovers all previous
obstructions to K-stability on polarized del Pezzo surfaces (S, L) found in the literature.

To present our results, it is convenient to split ample Q-divisors on S into three major
types: P2-type, F1-type, and P1 × P1-type. To be precise, up to a positive scaling of L,
one always has

L ∼Q −KS + bB +
r∑
i=1

aiFi,

where F1, . . . Fr are disjoint (−1)-curves, B is a smooth rational curve such that B2 = 0,
and b, a1, . . . , ar are some non-negative rational numbers such that 1 > ar > · · · > a1 > 0.
Moreover, if b 6= 0, then the curve B is disjoint from the (−1)-curves F1, . . . , Fr. Since

the (−1)-curves are disjoint, their contraction gives a birational morphism φ : S → Ŝ. We

say that L is of P2-type, F1-type or P1 × P1-type in the case when Ŝ = P2, Ŝ = F1 or

Ŝ = P1 × P1, respectively. In particular, if L is of P2-type, then r = 9−K2
S. Similarly, if

L is F1-type or P1×P1-type, then r = 8−K2
S. It is easy to see that every ample Q-divisor

on S is of one of these three types. To make the types mutually exclusive, we also require
b > 0 and a1 > 0 in the F1-case, and we ask that b > 0 or a1 > 0 in the P1 × P1-case.

We believe that our newly introduced language may shed a new light on this problem.
The indication of this can be seen from the K-polystability criterion in the case K2

S = 6.
Translating it into our language we recover a result originally due to Donaldson and
Wang–Zhou:

Theorem 1.1 ([11, 28]). Suppose that K2
S = 6. Then (S, L) is K-polystable and it accepts

a cscK metric in c1(L) if and only if either L is of P2-type and a1 = a2 = a3, or L is of
P1 × P1-type and a1 = a2.

The above result was originally proven using properties of toric geometry. In Exam-
ple 4.5, we used our technique of flop slope test configurations, which have a non-toric
nature, to prove K-instability.

In particular, if K2
S = 6 and L is of F1-type, then (S, L) is always K-unstable. By the

aforementioned result of LeBrun–Simanca [16], this is no longer true in the non-toric case.
Nevertheless, in this case we prove a somewhat similar result:

Theorem 1.2. Suppose that K2
S 6 5, the divisor L is of F1-type or P1 × P1-type, and

a2
1 + 6−K2

S <

r∑
i=2

a2
i .

Then (S, L) is K-unstable for b� 0 and S does not accept a cscK metric in c1(L).

In their seminal works [22, 23], Ross and Thomas introduced the notion of slope stability
as an obstruction to K-stability. In particular, their [22, Example 5.30] implies
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Theorem 1.3. Suppose that K2
S 6 6. If L is of P2-type and a2 � a1, then (S, L) is

K-unstable and S does not accept a cscK metric in c1(L). Similarly, if L is of F1-type
and a1 � 0, then (S, L) is K-unstable and S does not accept a metric in c1(L).

In [7], Cheltsov and Rubinstein considered a modification of Ross and Thomas con-
struction using flops. In this article, we adapt their method to obtain several criteria for
K-instability of the pair (S, L). In particular, we prove that (S, L) is K-unstable for every
ample Q-divisor L in the case when K2

S = 7, and we give a short proof of the only if part
of Theorem 1.1. Moreover, we improve Ross–Thomas result by obtaining the following

Theorem 1.4. Suppose that K2
S 6 5. If L is of P2-type and a4 � a3 > a1, then (S, L)

is K-unstable and S does not accept a metric in c1(L). Similarly, if L is of P1 × P1-type
and a3 � a2 > a1, then (S, L) is K-unstable and S does not accept a metric in c1(L).
Finally, if L is of F1-type and a3 � a2, then (S, L) is K-unstable and S does not accept
a metric in c1(L).

We use the same approach to prove the following quantitative result.

Theorem 1.5. Suppose that K2
S 6 5. If L is of P2-type and

(1.1) a2 − a1 >



0.8717 if K2
S = 1,

0.8469 if K2
S = 2,

0.8099 if K2
S = 3,

0.7488 if K2
S = 4,

0.6248 if K2
S = 5,

then (S, L) is K-unstable and S does not accept a metric in c1(L). Similarly, if L is of
P2-type and

(1.2) a3 − a1 >



0.9347 if K2
S = 1,

0.9206 if K2
S = 2,

0.8985 if K2
S = 3,

0.8595 if K2
S = 4,

0.6798 if K2
S = 5,

then (S, L) is K-unstable and S does not accept a metric in c1(L). Likewise, if L is of
P1 × P1-type and

(1.3) a2 − a1 >



0.9305 if K2
S = 1,

0.9150 if K2
S = 2,

0.8911 if K2
S = 3,

0.8480 if K2
S = 4,

0.7452 if K2
S = 5,
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then (S, L) is K-unstable and S does not accept a metric in c1(L). Finally, (S, L) is
K-unstable and S does not accept a metric in c1(L) if L is of F1-type and

(1.4) a2 − a1 >



0.9347 if K2
S = 1,

0.9206 if K2
S = 2,

0.8985 if K2
S = 3,

0.8595 if K2
S = 4,

0.7701 if K2
S = 5.

Observe that only the differences a3 − a1 and a2 − a1 are considered in Theorem 1.5.
There is a good reason for this. For example, if L is of P2-type, K2

S 6 5 and a1 = a2 = a3,
then S admits a cscK metric in c1(L) for 1 > a4 � a3, so that (S, L) is K-stable. Similarly,
if L is of P1×P1-type, K2

S 6 5 and a1 = a2, then (S, L) is K-stable for 1 > a3 � a2. This
follows from the lifting results of Arezzo, Pacard, Rollin and Singer (see [1, 2, 3, 20]). A
related non-exhaustive list of lifting results for cscK metrics in non-del Pezzo situations
includes LeBrun–Singer [17], Kim–Pontecorvo [14], and Kim–LeBrun–Pontecorvo [12].

At this point, it is probably a good idea to have some critical commentary of our results,
reflecting on our contribution to the problem and the relation of our work to that of the
aforementioned authors. Ideally, a complete solution to the problem of the existence of
cscK on a del Pezzo surface S would consist of having some parametrization of the ample
cone Amp(S), so that one could tell for each ample line bundle L ∈ Amp(S) if a cscK
metric exists in c1(L) or not. This viewpoint is informed by the case of toric del Pezzo
surfaces (i.e. when K2

S > 6), where the problem is completely solved (see theorems 1.1
and 1.3). Aside of the toric case, the aforementioned existence results [1, 2, 3, 20] are
qualititative, and follow the following lifting strategy: it is assumed that a cscK metric
ωS,L is known to exist in c1(L), where L is and ample line bundle of a del Pezzo surface
S. Another del Pezzo surface S ′ is obtained as the blow-up π : S ′ → S of S and the
metric ωS,L is lifted to a cscK metric ωS′,L′ ∈ c1(L′) where L′ is an ample line bundle
of S ′. However, it does not seem to be possible to say much about where L′ lies with
respect to π∗(L) even assuming that a parametrization of Amp(S ′) is available. In [5],
we gave existence results where, if desired, coordinates for L in Amp(S) would be easy
to obtain. In the current article, we have taken a complementary approach, providing
results on non-existence of cscK metrics in c1(L) for L ∈ Amp(S).

The first task we undertake is to give an effective parametrization of the ample cone
Amp(S). Then, we construct test configurations that obstruct the K-stability of (S, L)
for L in a precise region of Amp(S), described using the parametrization. The test config-
urations constructed generalize slope test configurations introduced by Ross–Thomas and
Ross–Panov [22, 23, 21] using deformations to the normal cone by performing flops on
the slope test configurations. Ross–Thomas’s test configurations are limiting, in the sense
that they do not detect K-instability for many ample line bundles, even in the toric case,
for instance in the setting in Theorem 1.1. The approach we follow was first pioneered by
the first author and Rubinstein in [7] in a very special case, where L ∼ −KS − (1− β)C
for C a curve and β a small parameter. Their motivation was studying asymptotical
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K-stability of asymptotically log Fano pairs (S,C). We generalize their work to any po-
larization L. Once it has been established that a pair (S, L) is not K-semistable, one can
use the fact that K-stability is an obstruction to the existence of cscK metrics [9, 4] to
determine that there is no cscK metric in c1(L).

While a complete characterization of the ample cone according to K-stability is the
main motivation for this article and [5], it is probably an unattainable goal. This is due
to two reasons: firstly, the ample cone becomes very complicated when K2

S is small and
detecting obstructions to K-stability using our method eventually boils down to describing
the negative locus of many polynomials of degree 4 in 9 − K2

S variables. As a result, a
simple description of such loci is not expected. The second complication has to do with the
intrinsic limitations of the method. As it happened with the slope test configurations of
Ross–Thomas, it is expected that some polarizations are not obstructed by our flop slope
test configurations. While we have not found any method in the literature which obstructs
a polarization that we fail to obstruct, this is no reason to believe better methods will be
develop in the future to obstruct polarizations that we are unable to tackle. Nevertheless,
our article recovers all currently known obstructions to the existence of cscK metrics on
polarized del Pezzo surfaces, including Theorem 1.1 and Ross–Thomas’s obstructions, and
provides many new ones (see theorems 1.2, 1.4 and 1.5).

Let us outline the structure of this article. In sections 2 and 3, we recall the K-stability
setting, including the flopped version of slope stability. In Section 4, we study ample
divisors on del Pezzo surfaces, giving coordinates to elements of the ample cone, and
prove Theorem 1.4. In Section 5, we prove technical results on ample divisors on del
Pezzo surfaces. In Section 6, we prove Theorems 1.2 and 1.5. The proof of Theorem 1.5
relies on symbolic computations presented in Appendix A.

2. What is K-polystability?

Let X be an n-dimensional smooth projective variety, and let L be an ample line bundle
on it. In this section we will remind the reader of the notion of K-stability of the pair
(X,L), which was originally defined by Tian in [26]. A more refined, algebro-geometric
definition was introduced by Donaldson in [10], which eventually led to Conjecture 1.

First we need to define the notion of test configuration. We will always assume that
the total space of the test configuration is normal (see [18] for an explanation).

Definition 2.1. A test configuration of (X,L) consists of

• a normal variety U with a Gm-action,
• a flat Gm-equivariant map pU : U → A1, where Gm acts on A1 naturally,
• a Gm-equivariant pU -ample line bundle LU → U such that there exists a positive

integer r, called exponent, and a Gm-equivariant isomorphism

(2.1)
(
U \ p−1

U (0),LU
∣∣∣
U\p−1
U (0)

)
∼=
(
X ×

(
A1 \ {0}

)
, p∗1(L⊗r)

)
,

with the natural action of the group Gm on A1 \ {0} and the trivial action on X,
where p1 : X × (A1 \ {0})→ X is the projection to the first factor.

We also say that (U ,LU , pU) a product test configuration if U ∼= X×A1 and LU = p∗1(L⊗r).
A product test configuration is trivial if Gm acts trivially on the left factor of X × A1.
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Given an arbitrary test configuration (U ,LU , pU) of the pair (X,L) with exponent r,
one can naturally compactify it by gluing (U ,LU) with (X×(P1\{0}), p∗1(L⊗r)) as follows.
In the Gm-equivariant isomorphism (2.1), each t ∈ Gm acts on its right hand side by

t ◦
(
{p} × {a}, s

)
=
(
{p} × {ta}, s

)
for any p ∈ X, a ∈ A1 and s ∈ (LU)p. So, we can define the gluing map using the diagram(

U ,LU
) (

X × P1 \ {0}, p∗1(L⊗r)
)

(
U \ p−1

U (0),LU
∣∣∣
U\p−1
U (0)

)
φ //

?�

OO

(
X ×

(
A1 \ {0}

)
, p∗1(L⊗r)

)
,

?�

OO

where the map φ is given by

φ :
(
p, a, s

)
7−→

(
{a−1 ◦ p} × {a}, a−1 ◦ s

)
,

where Gm only acts by multiplication on the factor P1 \ {0} of (X × P1 \ {0}, p∗1(L⊗r)).
Using this gluing map, we obtain a triple (X ,L, p) consisting of

• a normal projective variety X with a Gm-action,
• a flat Gm-equivariant map p : X → P1 such that p−1

U (t) ∼= X for every t ∈ P1 \{0},
• a Gm-equivariant p-ample line bundle L → X , such that

L
∣∣∣
p−1(t)

∼= L⊗r

for every t ∈ P1 \ {0}, where we identify p−1
U (t) with X.

For further details and examples, see [18, Section 8.1].

Remark 2.2. In [18], the triple (X ,L, p) is called ∞-trivial compactification of the test
configuration (U ,LU , pU). Since we will always work with compactified test configurations
in this article, we will simply call the triple (X ,L, p) a test configuration of the pair (X,L).
Moreover, if the original test configuration (U ,LU , pU) is trivial, then we say that the test
configuration (X ,L, p) is trivial. In this case, X ∼= X × P1 and L = p∗1(L⊗r). Similarly,
if (U ,LU , pU) is a product test configuration, then we say that (X ,L, p) is a product test
configuration. In this case, we have p−1(0) ∼= X, so that p is an isotrivial fibration.

Using the compactified test configuration (X ,L, p), Li and Xu gave an intersection
formula for the Donaldson–Futaki invariant of the original test configuration. This formula
first appeared in work of Odaka [19] and Wang [27], c.f. [18, Proposition 6] for a new
proof. We will use this formula as a definition of the Donaldson–Futaki invariant. The
slope of the pair (X,L) is

ν(L) =
−KX · Ln−1

Ln
.

The (normalized) Donaldson-Futaki invariant of the (compactified) test configuration
(X ,L, p) with exponent r is the number

(2.2) DF
(
X ,L, p

)
=

1

rn

(
n

n+ 1

1

r
ν(L)Ln+1 + Ln ·

(
KX − p∗

(
KP1

)))
,
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where n is the dimension of the variety X. Observe that the number DF(X ,L, p) does
not change if we replace L by L + p∗(D) for any line bundle D on P1. Moreover, if the
test configuration (X ,L, p) is trivial, then the formula (2.2) gives DF(X ,L, p) = 0.

Definition 2.3. The pair (X,L) is said to be K-polystable if DF(X ,L, p) > 0 for every
non-trivial test configuration (X ,L, p), and DF(X ,L, p) = 0 only if (X ,L, p) is a product
test configuration . Similarly, the pair (X,L) is said to be K-stable if DF

(
X ,L, p

)
> 0

for every non-trivial test configuration (X ,L, p). Finally, if DF(X ,L, p) > 0 for every test
configuration (X ,L, p), then (X,L) is said to be K-semistable.

If the pair (X,L) is not K-semistable, then DF(X ,L, p) < 0 for some test configuration
(X ,L, p) of the pair (X,L). In this case, we say that (X,L) is K-unstable, and (X ,L, p)
is a destabilizing test configuration.

Remark 2.4. The K-polystability of the pair (X,L) implies its K-semistability. Similarly,
the K-stability of the pair (X,L) implies its K-polystability. Moreover, if the group
Aut(X,L) is finite, then all product test configurations of the pair (X,L) are trivial, so
that (X,L) is K-stable if and only if it is K-polystable.

The pair (X,L) is K-polystable (respectively, K-stable or K-semistable) if and only
if the pair (X,L⊗k) is K-polystable (respectively, K-stable or K-semistable) for some
positive integer k. Thus, we can adapt both Definitions 2.1 and 2.3 to the case when L is
an ample Q-divisor on the variety X. This gives us notions of K-polystability, K-stability,
K-semistability and K-instability for varieties polarized by ample Q-divisors. Similarly,
we can assume that L in the test configuration (X ,L, p) is a p-ample Q-divisor on X .
Because of this, we can assume that r = 1 in the formula (2.2) for the Donaldson-Futaki
invariant.

3. Slope stability and Atiyah flops

Let S be a smooth projective surface, and let L be an ample Q-divisor on the surface
S. In this section, we will compute the Donaldson–Futaki invariant of some explicit test
configurations of the pair (S, L). One of them is a very special case of a much more general
construction studied by Ross and Thomas in [22, 23]. Namely, fix a smooth irreducible
curve Z in the surface S. By a slight abuse of notation, let us identify the curve Z with
the curve Z × {0} in the product S × P1. Let πZ : X → S × P1 be the blow-up of the
curve Z. Denote the exceptional divisor of πZ by EZ , let p = pP1 ◦ πZ , and let

Lλ =
(
pS ◦ πZ

)∗
(L)− λEZ ,

where λ is a positive rational number. Denote by σ(S, L, Z) the Seshadri constant of the
pair (S, L) along Z. Recall that σ(S, L, Z) is usually very easy to compute, since

σ(S, L, Z) = sup
{
µ ∈ Q>0

∣∣∣ the divisor L− µZ is nef
}
.

By [23, Proposition 4.1], if λ < σ(S, L, Z), then Lλ is p-ample (see also [7, Lemma 2.2]),
so that (X ,Lλ, p) is a (compactified) test configuration of the pair (S, L). This test
configuration is often called a slope test configuration centred at Z. If DF(X ,Lλ, p) < 0
for some λ < σ(S, L, Z), then (S, L) is said to be slope unstable. This implies, in particular,
that (S, L) is K-unstable.



8 IVAN CHELTSOV AND JESUS MARTINEZ-GARCIA

One good thing about the test configuration (X ,Lλ, p) is that its Donaldson–Futaki
invariant is very easy to compute. Namely, let g(Z) be the genus of the curve Z, and let

(3.1) DF(λ) =
2

3
ν(L)

(
λ3Z2 − 3λ2L · Z

)
+ λ2

(
2− 2g(Z)

)
+ 2λL · Z.

Recall from Section 2 that ν(L) = −KS ·L
L2 is the slope of the pair (S, L).

Lemma 3.1 ([22, 23]). If λ < σ(S, L, Z), then DF(X ,Lλ, p) = DF(λ).

Proof. Since −E3
Z is the degree of the normal bundle of Z in S × P1, we get

L3
λ = 3λ2

(
(pP1 ◦ πZ)∗

(
L
))
· E2

Z − λ3E3
Z = −3λ2L · Z + λ3Z2.

Moreover, we have

L2
λ ·
(
KX − p∗

(
KP1

))
=
(

(pP1 ◦ πZ)∗
(
KS

)
+ EZ

)
·
(

(pX ◦ πZ)∗
(
L
)
− λEZ

)2

=

= −2λ (pX ◦ πZ)∗ (L) · E2
Z + λ2 (pP1 ◦ πZ)∗ (KS) · E2

Z + λ2E3
Z =

= 2λL · Z − λ2KS · Z − λ2Z2.

Now the result follows from substituting in (2.2) the above identities. �

If λ < σ(S, L, Z) and Z2 > 0, then DF(X ,Lλ, p) > 0 by [21, Theorem 1.3]. Thus, if
we want (X ,Lλ, p) to be a destabilizing test configuration, then Z2 must be negative. In
particular, if S is a del Pezzo surface, then Z must be a (−1)-curve. In this case, we have
finitely many choices for the curve Z.

Example 3.2 ([22, Example 5.27]). Suppose that S ∼= F1, and Z is the (−1)-curve. Then
DF(X ,Lλ, p) < 0 for some λ < σ(S, L, Z). Indeed, denote by f the fiber of the natural
projection F1 → P1. Up to positive scaling, either L ∼Q −KS +aZ for some non-negative
rational number a < 1, or L ∼Q −KS + bf for some positive rational number b. In the
former case, we have ν(L) = 8+a

8+2a−a2 and σ(S, L, Z) = 2 + a, so that Lemma 3.1 implies
that DF(X ,Lλ, p) < 0 for some λ < 2 + a, because

lim
λ→1+a

DF(λ) = lim
λ→1+a

2

3
· 8 + a

8 + 2a− a2

(
−3λ2(1− a)− λ3

)
+ 2λ2 + 2λ(1− a) =

=
4

3
· a

3 + 3a2 − 4

4− a
< 0,

for all a ∈ [0, 1). Similarly, in the latter case, we have ν(L) = 4+b
4+2b

and σ(S, L, e) = 2, so
that

lim
λ→2

DF(λ) = lim
λ→2

2

3
· 4 + b

4 + 2b

(
−3λ2(1 + b)− λ3

)
+ 2λ2 + 2λ(1 + b) = −8

3

1 + b

2 + b
< 0,

which implies that DF(X ,Lλ, p) < 0 for some λ < 2.

The leading term of the cubic polynomial DF(λ) defined in (3.1) is 2
3
ν(L)Z2. Thus, if

Z2 < 0 and S is del Pezzo surface, then DF(λ) < 0 for λ � 0. Unfortunately, in this
case DF(λ) is usually positive for λ < σ(S, L, Z), simply because the Seshadri constant
σ(S, L, Z) is often too small. In particular, this happens in the case when S is a blow-up
of P2 in two distinct points and L = −KS (see [21, Example 7.6]). On the other hand,
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if S is a blow-up of P2 in two distinct points, then the group Aut0(S, L) is not reductive
for every ample divisor L, which implies that (S, L) does not admit a constant scalar
curvature Kähler metric by Matsushima’s obstruction. In particular, by Donaldson’s
resolution of Conjecture 1 for toric surfaces, (S, L) is not equivariantly K-polystable, and
in particular (S, L) is not K-polystable.

Recall that the pseudo-effective cone is the closure of the cone of effective divisors.
There is another famous threshold that one can relate to the triple (S, L, Z), which is
commonly known as the pseudo-effective threshold. It can be defined as

(3.2) τ(S, L, Z) = sup
{
µ ∈ Q>0

∣∣∣ the divisor L− µZ is pseudo-effective
}
.

Since nef divisors are pseudo-effective, we always have σ(S, L, Z) 6 τ(S, L, Z), and the
inequality is strict in many interesting cases. In [7], Cheltsov and Rubinstein introduced
a birational modification to the slope test configuration in order to increase the value of
λ up to the pseudo-effective threshold. Let us briefly describe their construction.

Suppose that there exists a birational morphism π : S → S such that the surface S is
smooth, and π is a blow-up of k > 0 distinct points O1, . . . , Ok in the surface S. Moreover,
we assume that the image of the curve Z in the surface S is a smooth curve that contains
all these points. Let Z = π(Z), and denote by C1, . . . , Ck the π-exceptional curves that
are mapped to the points O1, . . . , Ok, respectively. For every point Oi ∈ S, let Γi be the
curve Oi × P1 in the product S × P1. Then there exists a commutative diagram

S × P1

pS

��

πΓ // S × P1

qS
��

S π
// S

where qS is a natural projection, and πΓ is the blow-up of the the curves Γ1, . . . ,Γk. Let
us expand this commutative diagram by adding the threefold X , the blow-up πZ , and
few other birational maps. Namely, recall that we identified Z with the curve Z × {0}
in the product S × P1. Similarly, let us identify the curve Z with the curve Z × {0} in
the product S × P1, so that Z is a proper transform of the curve Z via the blow-up πΓ.
Thus, the threefold X is obtained from S × P1 by blowing up the curves Γ1, . . . ,Γk, with
a consecutive blow-up of the proper transform of the curve Z. If we change the order of
blow-ups here (first blow-up the curve Z, and then blow-up the proper transform of the
curves Γ1, . . . ,Γk), we obtain another (smooth) threefold, which differs from X by exactly
r simple flops. To be precise, let πZ : X → S × P1 be the blow-up of S × P1 along the
curve Z, and denote by Γ1, . . . ,Γk the proper transforms on X of the curves Γ1, . . . ,Γk,

respectively. Let πΓ : X̂ → X be the blow-up of the curves Γ1, . . . ,Γk. Then there exists
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a commutative diagram:

(3.3) X̂
πΓ
��

q

��

X

p

��

πZ
��

ρ

44

X
πZ
��

S × P1

pS

��pP1

��

πΓ // S × P1

qS
��

qP1

��

S π
// S

P1 P1.

Here ρ is a composition of flops, qP1 is the natural projection, and q = qP1 ◦ πZ ◦ πΓ.
Let us describe the curves flopped by ρ. To do this, identify the surface S with the

fibre of pP1 over the point 0 ∈ P1, and denote by S0 its proper transform on the threefold
X . Then S0

∼= S, and the union S0 ∪ EZ is the fibre of p over the point 0 ∈ P1. Denote
the proper transforms of the curves C1, . . . , Ck ⊂ S on the threefold X by C1, . . . , Ck,
respectively. Then the curves C1, . . . , Ck are contained in S0. These are the curves flopped
by ρ. Observe that each Ci is a smooth rational curve that is contained in S0, and its
normal bundle in X is isomorphic to OP1(−1)⊕OP1(−1) (see [7, Lemma 4.1]). Thus, the
map ρ is a composition of r simple flops, commonly known as Atiyah flops.

Remark 3.3. Let us identify the surface S with the fibre of qP1 over the point 0 ∈ P1,

and denote its proper transforms on the threefolds X and X̂ by S0 an Ŝ0, respectively.

Then S0
∼= Ŝ0

∼= S, and ρ maps S0 onto Ŝ0, Moreover, the map ρ induces a birational

morphism S0 → Ŝ0 that contracts the curves C1, . . . , Cr, which is just the morphism

π : S → S, since S0
∼= S and Ŝ0

∼= S. Let EZ be the πZ-exceptional surface. Then ρ−1

flops the proper transforms in X̂ of the fibers of the projection EZ → Z over the points
O1 × {0}, . . . , Ok × {0}.

Let L̂λ = ρ∗(Lλ). When is L̂λ q-ample? To answer this question, let L = π∗(L). Then
L is an ample Q-divisor on the surface S. Observe that σ(S, L, Z) 6 σ(S, L, Z) and

L ∼Q π
∗(L)− k∑

i=1

(L · Ci)Ci.

Then σ(S, L, Z) 6 L · Ci, since (L− λZ) · Ci = L · Ci − λ. Furthermore, we have

L− λZ ∼Q π
∗(L− λZ)+

k∑
i=1

(λ− L · Ci)Ci

is pseudo-effective if L · Ci < λ < σ(S, L, Z) for every i. Thus, if L · Ci < σ(S, L, Z) for
every i, then σ(S, L, Z) < σ(S, L, Z) 6 τ(S, L, Z).
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Lemma 3.4 ([7, Lemma 4.7]). If L ·Ci < λ < σ(S, L, Z) for every i, then L̂λ is q-ample.

Hence, if L · Ci < λ < σ(S, L, Z) for every i, then (X̂ , L̂λ, q) is a test configuration of
the pair (S, L). Its Donaldson–Futaki invariant is also easy to compute. Namely, let

D̂F(λ) = DF(λ) +
2

3
ν(L)

(
k∑
i=1

(
λ− L · Ci

)3

)
=

(3.4)

=
2

3
ν(L)

(
λ3Z2 − 3λ2L · Z +

k∑
i=1

(
λ− L · Ci

)3

)
+ λ2

(
2− 2g(Z)

)
+ 2λL · Z,

where DF(λ) is the rational function defined in (3.1).

Theorem 3.5. If L · Ci < λ < σ(S, L, Z) for every i, then DF(X̂ , L̂λ, q) = D̂F(λ).

Proof. By [7, Lemma A.3], we have

ρ∗(H1) · ρ∗(H2) · ρ∗(H3) = H1 ·H2 ·H3 −
k∑
i=1

(
H1 · Ci

)(
H2 · Ci

)(
H3 · Ci

)
for any three Q-divisors H1, H2, H3 on the threefold X . Therefore, we have(

L̂λ
)3

=
(
Lλ
)3 −

k∑
i=1

(
Lλ · Ci

)3
.

Similarly, as Ci are floppable curves contained in a fibre of p, thenKX ·Ci = 0 = p∗(KP1)·Ci
and we have (

L̂λ
)2 ·
(
KX̂ − q

∗(KP1

))
=
(
Lλ
)2 ·
(
KX − p∗

(
KP1

))
.

Since Lλ · Ci = L · Ci − λ, the assertion follows from (2.2) and Lemma 3.1. �

Corollary 3.6. Suppose that L · Ci < σ(S, L, Z) for every i, and D̂F(σ(S, L, Z)) < 0.
Then there is a positive rational number λ such that L · Ci < λ < σ(S, L, Z) for every i,

and DF(X̂ , L̂λ, q) < 0. In particular, the pair (S, L) is K-unstable.

In this article we will apply this corollary to polarized smooth del Pezzo surfaces.
Which curve Z should we choose in this case? Should it be a (−1)-curve? If the answer
is positive, then which (−1)-curve should we choose? Once the curve Z is chosen, how
should we choose the contraction π : S → S? Is it uniquely determined by the curve Z?
We will answer all these questions in the remaining part of this article. But first, let us
show how to apply Corollary 3.6 in the simplest case.

Example 3.7 (cf. [7, 6.1]). As in Example 3.2, suppose that S ∼= F1. Let Z be a fiber
of the natural projection F1 → P1, let C1 be the (−1)-curve, and let π : S → S be the
contraction of C1, so that k = 1, S ∼= P2, and Z is a line. Up to positive scaling, either
L ∼Q −KS+aC1 for some non-negative rational number a < 1, or L ∼Q −KS+bZ for some
positive rational number b. In the former case, we have ν(L) = 8+a

8+2a−a2 and σ(S, L, Z) = 3,

so that (3.4) gives D̂F(σ(S, L, Z)) = 2
3
· a3+3a2−4

4−a < 0. Similarly, in the latter case, we
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have ν(L) = 4+b
4+2b

and σ(S, L, Z) = 3 + b, so that D̂F(σ(S, L, Z)) = −4
3
· 1+b

2+b
< 0. Thus,

in both cases, the pair (S, L) is K-unstable by Corollary 3.6.

Let us conclude this section by one observation inspired by [22, Corollary 5.29]. To do
this, fix a point P ∈ S that is not contained in the curves Z,C1, . . . , Ck. Let g : S ′ → S
be the blow-up of the point P , and let G be the exceptional curve of the blow-up g.
Denote by Z ′, C ′1, . . . , C

′
k the proper transforms of the curves Z,C1, . . . , Ck on the surface

S ′, respectively. Let P = π(P ). Then P 6∈ Z, and there exists a commutative diagram

S ′
g //

π′ ��

S

π
��

S
′

g
// S

where π′ is a contraction of the curves C ′1, . . . , C
′
k, and g is the blow-up of the point P .

Note that the g-exceptional curve is the proper transform of the curve G on the surface

S
′
. Denote this curve by G. Merging this commutative diagram together with the large

commutative diagram (3.3), we obtain the even larger commutative diagram

X ′

p′

%%

ρ′
��

πZ′ // S ′ × P1 h //

πΓ′

��

pS′

##

S × P1

πΓ

��

pS

||

XπZoo

ρ
��

p

yy

X̂ ′

q′

��

π
Γ
′ ��

S ′
g //

π′
��

S

π
��

X̂

q

��

πΓ��
X ′

π
Z
′ ##

S
′

g
// S X

πZ{{

S
′ × P1

q′
P1{{

h

//

q
S
′

<<

S × P1

qP1 ##

qS

bb

P1 P1.

Here h is the blow-up of the curve P × P1, h is the blow-up of the curve P × P1, and the
maps πZ′ , πZ′ , πΓ′ , πΓ

′ , ρ′, q′P1 , qS′ , pS′ , p
′ and q′ are defined similarly to the maps πZ , πZ ,

πΓ, πΓ, ρ, qP1 , qS, pS, p and q, respectively. To get their detailed description, one just has
to add ′ to every geometrical object involved in the definition of the maps πZ , πZ , πΓ, πΓ,
ρ, qP1 , qS, p and q, We leave this to the reader.

To polarize the surface S ′, choose a positive rational number ε, and let L′ = g∗(L)−εG.
Then L′ is ample provided that the number ε is small enough. Let us assume that this is
the case. Let EZ′ be the exceptional divisor of πZ′ , and let L′λ = (pS′ ◦ πZ′)∗(L′)− λEZ′ ,
where λ is a positive rational number. If λ < σ(S ′, L′, Z ′), then the divisor L′λ is p′-ample
by [23, Proposition 4.1], so that (X ′,L′λ, p′) is a slope test configuration of the pair (S ′, L′).
In this case, its Donaldson–Futaki invariant is given by Lemma 3.1. Namely, we have

DF
(
X ′,L′λ, p′

)
=

2

3
ν(L′)

(
λ3Z2 − 3λ2L · Z

)
+ λ2

(
2− 2g(Z)

)
+ 2λL · Z.
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Here we used the fact that the point P is not contained in the curve Z. This assumption
also implies that

lim
ε→0+

σ
(
S ′, L′, Z ′

)
= σ(S, L, Z).

Moreover, we have ν(L) = −KS ·L
L·L and ν(L′) =

−KS′ ·L′
L′·L′ = −KS ·L−ε

L2−ε2 . This gives

Corollary 3.8 ([22, Corollary 5.29]). Suppose that λ < σ(S, L, Z) and DF
(
X ,Lλ, p) < 0.

Then λ < σ(S ′, L′, Z ′) and DF(X ′,L′λ, p′) < 0 for sufficiently small ε > 0.

Note that this corollary together with Example 3.2 imply Theorem 1.3. A similar corol-
lary exists for the flopped version of the slope test configuration described in Section 3. To

present it here, let L̂′λ = ρ′∗(L′λ) and L
′
= π′∗(L

′). Then L
′

is ample. Since L ·Ci = L′ ·C ′i
for every curve Ci, we have

L′ ∼Q g
∗(L)− εG ∼Q (π′)∗

(
L
′)− k∑

i=1

(L · Ci)C ′i.

By Lemma 3.4, if L ·Ci < λ < σ(S, L, Z) for every i, then L̂λ is q-ample, so that (X̂ , L̂λ, q)
is a test configuration of the pair (S, L). Similarly, if L ·Ci < λ < σ(S

′
, L
′
, Z
′
) for every i,

then L̂′λ is q′-ample, so that (X̂ ′, L̂′λ, q′) is a test configuration of the pair (S ′, L′). In this

case, its Donaldson–Futaki invariant D̂F(X̂ ′, L̂′λ, q′) is given by the formula

2

3
ν(L′)

(
λ3Z2 − 3λ2L · Z

)
+ λ2

(
2− 2g(Z)

)
+ 2λL · Z +

2

3
ν(L′)

(
k∑
i=1

(
λ− L · Ci

)3

)
by Theorem 3.5. As above, we have

lim
ε→0+

σ
(
S
′
, L
′
, Z
′)

= σ
(
S, L, Z

)
.

This gives

Corollary 3.9. Suppose that L · Ci < λ < σ(S, L, Z) for every i, and D̂F(X̂ , L̂λ, q) < 0.

Then L ·Ci < λ < σ
(
S
′
, L
′
, Z
′)

for every i, and D̂F(X̂ ′, L̂′λ, q′) < 0 for sufficiently small ε.

We will use this corollary to prove Theorem 1.4.

4. Ample divisors on del Pezzo surfaces

In this section we describe basic facts about smooth del Pezzo surfaces. The simplest
examples of such surfaces are P2, P1 × P1 and the first Hirzebruch surface F1. To work
with them, we fix notations that we will use throughout the remaining part of this article.
Namely, we denote by ` the class of a line in P2. For P1 × P1, we denote by f1 and f2

the fibres of the two distinct projections P1 × P1 → P1. Similarly, for the surface F1, we
denote by e the unique (−1)-curve in F1, and we denote by f the class of a fibre of the
natural morphism F1 → P1.

Remark 4.1. Note that the divisor af1 + bf2 on P1 × P1 is nef (respectively, ample) if
and only if a > 0 and b > 0 (respectively, a > 0 and b > 0). The classes f1 and f1 also
generate the Mori cone NE(P1×P1). Similarly, a divisor ae+bf on F1 is nef (respectively,
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ample) if and only if b > a > 0 (respectively, b > a > 0). The classes e and f generate
the Mori cone NE(F1).

Now let S be a smooth del Pezzo surface such that K2
S 6 7, so that S 6∼= P2, S 6∼= P1×P1

and S 6∼= F1. Then the Mori cone NE(S) is a polyhedral cone that is generated by all
(−1)-curves on the surface S, i.e. smooth rational curves with self-intersection −1. Recall
that there is a finite number of (−1)-curves on any del Pezzo surface. The description of
these curves is well-known. Nevertheless, we decided to partially present it here, because
we will need this description later.

First, we choose a birational morphism γ : S → P2 that contracts 9 −K2
S > 2 disjoint

(−1)-curves. Such morphism always exists, since we assume that K2
S 6 7. However, it

is never unique for K2
S 6 6. We let r = 9 − K2

S, and denote the γ-exceptional curves
by E1, . . . , Er. Let Lij be the proper transform of the line in P2 that contains the points
γ(Ei) an γ(Ej), where 1 6 i < j 6 r. Then

Lij ∼ γ∗
(
l
)
− Ei − Ej,

and each Lij is a (−1)-curve. In fact, if r 6 4, then these are all (−1)-curves on S aside
of the curves E1, . . . , Er. If r > 5, let Ci1i2i3i4i5 be the proper transform of the conic in P2

that contains γ(Ei1), γ(Ei2), γ(Ei3), γ(Ei4) and γ(Ei5) for 1 6 i1 < i2 < i3 < i4 < i5 6 r.
Then each Ci1i2i3i4i5 is also a (−1)-curve and

Ci1i2i3i4i5 ∼ γ∗
(
2l
)
− Ei1 − Ei2 − Ei3 − Ei4 − Ei5 .

If r = 5 or r = 6, then Ci, Lij, Ei describe all the (−1)-curves in S. If r = 7, then we
denote by Zi the proper transform of the cubic in P2 that contains the points γ(E1),
γ(E2), γ(E3), γ(E4), γ(E5), γ(E6), γ(E7), and Zi is singular at the point γ(Ei). In this
case, each Zi is a (−1)-curve, and

Zi ∼ γ∗
(
3l
)
−
(
E1 − E2 − E3 − E4 − E5 − E6 − E6 − E7

)
− Ei.

We have described all (−1)-curves on S in the case when K2
S > 2. If K2

S = 1, then S
contains many more (−1)-curves. For example, the class

γ∗
(
3l
)
−
(
E1 − E2 − E3 − E4 − E5 − E6 − E6 − E7 − E8

)
− Ei + Ej

contains a unique (−1)-curve for every i 6= j, which we denote by Zij. This curve is the
proper transform of the cubic in P2 that contains all points γ(E1), γ(E2), γ(E3), γ(E4),
γ(E5), γ(E6), γ(E7), γ(E8) except for γ(Ej), which is singular at the point γ(Ei). There



UNSTABLE POLARIZED DEL PEZZO SURFACES 15

is also a unique (−1)-curve defined in each of the following classes:

γ∗(4l)−
8∑
l=1

El − Ei − Ej − Ek 1 6 i < j < k 6 8,

γ∗(5l)−
8∑
l=1
l 6=i,j

El −
8∑
l=1

El 1 6 i < j 6 8,

γ∗(6l)−Ei − 2
8∑
l=1

El 1 6 i 6 8,

completing the description of all (−1)-curves when K2
S = 1.

Let L be an ample Q-divisor on the surface S. Then L · C > 0 for every (−1)-curve C
on the surface S. In fact, the latter condition is equivalent to the ampleness of the divisor
L. Moreover, we have

(4.1) L ∼Q γ
∗(εl)− r∑

i=1

εiEi

for some positive rational numbers ε, ε1, . . . , εr. Unfortunately, this Q-rational equivalence
is not canonical, since the contraction γ is not unique for K2

S 6 6. There is a better way
to work with ample divisors on S. To present it, we let

µL = inf
{
λ ∈ Q>0

∣∣∣ KS + λL ∈ NE(S)
}
.

Then µL is a positive rational number, known as the Fujita invariant of (S, L). Let ∆L

be the smallest face of the Mori cone NE(X) that contains KS + µLL. If ∆L = 0, then
µLL ∼Q −KS. If dim(∆L) 6= 0, then KX + µLL is a non-zero effective divisor. Applying
the Minimal Model Program, we obtain a morphism φ : S → Y where Y is smooth and
such that φ contracts all curves contained in ∆L, i.e. φ is the contraction of the face ∆L.
Then either

• φ is a birational morphism that contracts dim(∆L) 6 r disjoint (−1)-curves, or
• dim(∆L) = r, Y ∼= P1 and general fiber of φ is P1, i.e. φ is a conic bundle.

It seems quite natural to split ample divisors in Amp(S) according to the type of
contraction φ. However, we prefer to use a slightly different splitting into types that is
based on the contraction of one of the largest faces of the Mori cone NE(S) that contains
KX + µLL. The contraction of a face of maximum dimension guarantees that the image
of φ will not contain any (−1)-curve (in fact, the image of φ may not even be a surface,
but P1, giving φ the structure of a conic bundle). Namely, observe that if φ is birational
and Y ∼= P1 × P1, then

(4.2) µLL ∼Q −KS +
r−1∑
i=1

aiFi,
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where F1, . . . , Fr−1 are disjoint (−1)-curves contracted by φ, and each ai is a positive
rational number such that ai < 1. Similarly, if φ is birational and Y 6∼= P1×P1, then there
exists a (possibly non-unique) birational morphism ψ : Y → P2 such that the composition
ψ ◦ φ is a contraction of r disjoint (−1)-curves F1, . . . , Fr, which generate a maximal face
of the Mori cone NE(X) that contains KS + µLL. In this case, we have

(4.3) µLL ∼Q −KS +
r∑
i=1

aiFi,

where each ai is a non-negative rational number such that ai < 1. Observe that Fi ∈ ∆L

if and only if ai > 0, and, a priori, the contraction ψ ◦ φ does not need to coincide with
γ. Note that in both cases, we have a very simple formula for the slope ν(L) of the pair
(S, L). Namely, we have

ν(L) =
−KS · L
L2

= µL
d+

∑r
i=1 ai

d+ 2
∑r

i=1 ai −
∑r

i=1 a
2
i

.

If φ is a conic bundle, then Y ∼= P1, and ∆L is a maximal face of the Mori cone NE(X)
that contains KX +µLL. Note that the morphism φ has exactly r− 1 = 8−K2

S reducible
fibers, each of them consisting of two (−1)-curves, and the face ∆L is generated by these
(−1)-curves. Then we have

(4.4) µLL ∼Q −KS + bB +
r−1∑
i=1

aiFi,

where B is a general fiber of φ, and F1, . . . , Fr−1 are disjoint (−1)-curves contained in the
singular fibers of φ, each ai is a non-negative rational number such that ai < 1, and b is
a positive rational number. Then

ν(L) =
−KS · L
L2

= µL
d+ 2b+

∑r−1
i=1 ai

d+ 4b+ 2
∑r−1

i=1 ai −
∑r−1

i=1 a
2
i

.

In addition, there exists a commutative diagram

(4.5) S
ψ

��

φ

��
Ŝ ω

// P1

where ψ is a birational morphism that contracts the curves F1, . . . , Fr−1, and ω is a natural

projection. Then either Ŝ ∼= F1 or Ŝ ∼= P1 × P1. Observe that the morphism ψ in (4.5) is
uniquely determined by L only if every ai in (4.4) is positive. Thus, if at least one of the

numbers a1, . . . , ar−1 in (4.4) is not positive, then we may assume that Ŝ = P1 × P1.

Definition 4.2. We say that

• the divisor L is of P2-type if φ is birational and Y 6∼= P1 × P1;

• the divisor L is of P1 × P1-type if either φ is a conic bundle and Ŝ ∼= P1 × P1, or
φ is birational and Y ∼= P1 × P1;
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• the divisor L is of F1-type if φ is a conic bundle, Ŝ ∼= F1, and every ai in (4.4) is
positive.

We will always assume that 0 6 a1 6 · · · 6 ar < 1 if L is of P2-type. Similarly, if L is
of P1 × P1-type or of F1-type, then we will assume that 0 6 a1 6 · · · 6 ar−1 < 1.

Remark 4.3. Suppose that L is of P1 × P1-type. Then we can combine numerical equiv-
alences (4.2) and (4.4) together by allowing b to be zero in (4.4). Thus, if b = 0 in (4.4),
then f is birational and Y ∼= P1 × P1, so that every ai in (4.4) is positive.

If K2
S = 7, then r = 2, and γ is uniquely determined. Thus, if L is of P2-type, then we

may assume that F1 = E1 and F2 = E2. Similarly, if L is F1-type, then we may assume
that F1 = E1. If L is of P1 × P1-type, then F1 = L12. In this case, we may assume that
B ∼ L12 + E1 ∼ γ∗(l)− E2.

If K2
S 6 6, we can choose the contraction γ : S → P2 according to the type of the divisor

L. Namely, if L is of P2-type, then we can assume that γ = ψ ◦ φ and Ei = Fi for every
i. Similarly, if L is of either F1-type or P1 × P1-type, then we can assume that

B ∼ L1r + E1 ∼ γ∗(`)− Er,

so that B is a proper transform of a general line in P2 passing through the point γ(Er).
Similarly, if L is of F1-type, then we can assume that Fi = Ei for every i such that
r − 1 > i > 1, so that γ is a composition of ψ with the birational morphism F1 → P2,
which contracts the curve ψ(Er). If L is of P1 × P1-type and r = 3, then we can assume
that F1 = E1 and F2 = L2r. Finally, if L is of P1×P1-type and r > 4, then we can assume
that F1 = E1, F2 = L2r, and Fi = Ei for every i such that r − 1 > i > 3.

Let us illustrate the introduced language by two examples that show how to apply
Corollary 3.6 to the pair (S, L) in the case when S is toric (cf. Examples 3.2 and 3.7).

Example 4.4. Suppose that K2
S = 7. Let Z = L12, C1 = E1, C2 = E2, S = P2, and

let π : S → S be the contraction of the curves C1 and C2 and Z ∼ l. Then we can use
the notations and assumptions of Section 3. We claim that there is a positive rational

number λ such that L · C1 < λ, L · C2 < λ, λ < σ(S, L, Z) and DF(X̂ , L̂λ, q) < 0, which
implies, in particular, that (S, L) is K-unstable. By Corollary 3.6, it is enough to show

that L · C2 < σ(S, L, Z), L · C1 < σ(S, L, Z), and D̂F(σ(S, L, Z)) < 0. To do this, we
may assume that µL = 1. Using (3.4), we see that

D̂F(λ) = ν(L)
(
− 3λ2L · Z − λ3 + (λ− L · C1)3 + (λ− L · C2)3

)
+ 2λ2 + 2λL · Z.

If L is of P2-type, then L · Z = 1 + a1 + a2, L · C1 = 1 − a1, L · C2 = 1 − a2, L ∼Q 3`,
which implies that σ(S, L, Z) = 3 > L · C1 > L · C2, so that

D̂F
(
σ(S, L, Z)

)
=

2

3

(1 + a1 + a2)(a3
1 + 3a2

1 − 6a1a2 + 6a1 + a3
2 + 6a2 + 3a2

2 − 14)

7 + 2(a1 + a2)− a2
1 − a2

2

< 0,
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because

a3
1 + 3a2

1 − 6a1a2 + 6a1 + a3
2 + 6a2 + 3a2

2 − 14 = −(a2 − a1)3−
− 3(1− a2)(a2 − a1)2 − 3(a2 − a1)(1− a2)2 − 6(a2 − a1)(1− a2 + a1)−

− 2(1− a2)3 − 3(a2 − a1)a2 − 3(1− a2)(a1 + a2 + 4) 6 −2(1− a2)3 < 0.

If L is of F1-type, then L · Z = 1 + a1, L · C1 = 1− a1, L · C2 = 1 + b and L ∼Q (3 + b)`,
which implies that σ(S, L, Z) = 3 + b > L · C2 > L · C1, so that

D̂F(σ(S, L, Z)) =
2

3

1 + a1

7 + 4b+ 2a1 − a2
1

+
2

3

1 + a1

7 + 4b+ 2a1 − a2
1

(3a2
1 − 3)b2+

+
2

3

1 + a1

7 + 4b+ 2a1 − a2
1

(
(−16− 6a1 + 12a2

1 + 2a3
1)b− 8a1 + a4

1 + 9a2
1 + 4a3

1 − 14
)
< 0.

Finally, if L is of P1 × P1-type, then L · Z = 1− a1, L · C1 = 1 + a1, L · C2 = 1 + a1 + b
and L ∼Q (3 + b+ a1)`, which implies that σ(S, L, Z) = 3 + a1 + b > L · C2 > L · C1 and

D̂F
(
σ(S, L, Z)

)
=

2

3

(a1 − 1)(2a3
1 + 4a2

1b+ 3a1b
2 + 10a2

1 + 16a1b+ 3b2 + 22a1 + 16b+ 14)

7 + 4b+ 2a1 − a2
1

,

so that D̂F(σ(S, L, Z)) < 0.

Example 4.5. Suppose thatK2
S = 6. Then it follows from [28] (see also [16, Example 3.2])

that (S, L) is K-polystable if and only if ε1 = ε2 = ε3 or ε = ε1 + ε2 + ε3 in (4.1). Thus,
if L is of P2-type, then (S, L) is K-polystable if and only if a1 = a2 = a3, because

εi = L · Ei =
1− ai
µL

and ε = L · γ∗(l) = 3
µL

in this case. Similarly, if L is of F1-type, then ε1 = 1−a1

µL
, ε2 = 1−a2

µL

and ε3 = 1+b
µL

and ε = 3+b
µL

, which implies that (S, L) is not K-polystable, because a1 > 0,

a2 > 0 and b > 0 in this case. Finally, if L is of P1 × P1-type, then ε1 = 1−a1

µL
, ε2 = 1+a2

µL
,

ε3 = 1+a2+b
µL

and ε = 3+a2+b
µL

, so that (S, L) is K-polystable if and only if a1 = a2. Thus,

we see that (S, L) is K-polystable if and only if either L is of P2-type and a1 = a2 = a3,
or L is of P1 × P1-type and a1 = a2. In fact, if none of these conditions is satisfied, then
(S, L) can be destabilized by the flopped version of the slope test configuration described
in Section 3. To show this, let Z be one of the (−1)-curves on the surface S, let C1 and
C2 be two disjoint (−1)-curves that intersect Z, and let π : S → S be the contraction
of the curves C1 and C2. Then S ∼= F1 and Z ∼ f + e. Let us use the notations and
assumptions of Section 3. As in Example 4.4, it is enough to show that we can choose

Z such that L · C1 < σ(S, L, Z), L · C2 < σ(S, L, Z) and D̂F(σ(S, L, Z)) < 0. To do
this, we may assume that µL = 1. If L is of P2-type, then we let Z = L12, C1 = E1 and
C2 = E2, so that L · Z = 1 + a1 + a2, L · C1 = 1 − a1, L · C2 = 1 − a2, Z ∼ f + e and
L ∼Q (2 + a3)e+ 3f , which implies that

σ(S, L, Z) = 2 + a3 > L · C2 > L · C1,
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and it follows from (3.4) that

D̂F
(
σ(S, L, Z)

)
=

2(a1 + a2 + a3)h1(a1, a2, a3)

3(6 + 2(a1 + a2 + a3)− a2
1 − a2

2 − a2
3)
,

where h1(a1, a2, a3) = a3
1+a3

2−2a3
3+3a2

1−6a1a2+3a1a3+3a2
2+3a2a3−6a2

3+3a1+3a2−6a3.
If a1 < a3, then

h1(a1, a2, a3) = −3a2
1(a2 − a1)− 6a2

1(a3 − a2)− 3a1(a2 − a1)2 − 12a1(a2 − a1)(a3 − a2)−
− 6a1(a3 − a2)2 − (a2 − a1)3 − 6(a2 − a1)2(a3 − a2)− 6(a2 − a1)(a3 − a2)2−
− 2(a3 − a2)3 − 3a1(a2 − a1)− 6a1(a3 − a2)− 9(a2 − a1)(a3 − a2)−

− 6(a3 − a2)2 − 3(a2 − a1)− 6(a3 − a2) 6 3(a2 − a1)− 6(a3 − a2) < 0,

so that D̂F(σ(S, L, Z)) < 0 in this case. Similarly, if L is of F1-type, we let Z = L13,
C1 = E1 and C2 = E3, so that L ·Z = 1+a1, L ·C1 = 1−a1, L ·C2 = 1+ b, Z ∼ e+f and
L ∼Q (2 + b+a2)e+ (3 + b)f , which implies that σ(S, L, Z) = 2 + b+a2 > L ·C2 > L ·C1,
so that

D̂F
(
σ(S, L, Z)

)
=

2(a1 + a2)h2(a1, a2, b)

3(6 + 4b+ 2(a1 + a2)− a2
1 − a2

2)
,

where h2(a1, a2, b) is the polynomial

3(a1−a2)b2 +(2a2
1 +a1a2−4a2

2 +9(a1−a2)−3)b+a3
1−2a3

2 +3a2
1 +3a1a2−6a2

2 +3a1−6a2.

Since a1 6 a2, it follows that h(a1, a2, b) < 0 unless b = a1 = a2 = 0, and we conclude

that D̂F(σ(S, L, Z)) < 0 in this case as well. Finally, if L is of P1 × P1-type, let Z = E1,
C1 = L13 and C2 = L12, so that L · Z = 1 − a1, L · C1 = 1 + a1, L · C2 = 1 + b + a1,
Z ∼ f + e and L ∼Q (2 + b+ a1 + a2)e+ (3 + b+ a1)f , so that

σ(S, L, Z) = 2 + b+ a1 + a2 > L · C2 > L · C1,

which implies that

D̂F
(
σ(S, L, Z)

)
=

2(a1 − a2)h3(a1, a2, b)

3(6 + 4b+ 2(a1 + a2)− a2
1 − a2

2)
,

where h3(a1, a2, b) is the polynomial

2a3
1 + 4a2

1 + 4a2
1b+ 4a2

1a2 + 7a1a2b+ 3a1b
2 + 2a3

2 + 4a2
2b+ 3a2b

2+

+ 6a2
1 + 4a2

2a1 + 12a1a2 + 9a1b+ 6a2
2 + 9a2b+ 6a1 + 6a2 + 3b.

This shows that D̂F(σ(S, L, Z)) < 0 provided a1 6= a2.

Proof of Theorem 1.4. The assertion follows from Example 4.5, Corollary 3.9 and the fact
that S is a del Pezzo surface. �

In the remaining part of this article we will apply Corollary 3.6 to the pair (S, L) in
the case when S is not toric. To do this in a concise way, we need to prove several very
explicit technical results about polarized del Pezzo surfaces. We will do this in the next
section.
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5. Seshadri constants and pseudo-effective thresholds

Let us use all assumptions and notations of Section 4. Suppose, in addition, that
K2
S 6 5, so that S is not toric. In this case, the group Aut(S) is known to be finite, and

the pair (S,−KS) is K-stable by Tian’s theorem [25].
Let Z be a (−1)-curve in the del Pezzo surface S, and let µ be a positive rational

number. In this section, we study numerical properties of the divisor L− µZ. Since this
problem depend on the scaling of L in an obvious way, we will assume, for simplicity, that
that the Fujita invariant of the pair (S, L) equals 1, i.e. µL = 1.

The first threshold that controls the numerical properties of the divisor L− µZ is the
Seshadri constant σ(S, L, Z). In our case, it can be computed as follows:

(5.1) σ(S, L, Z) = min

{
L · C
Z · C

∣∣∣∣∣ C is a (−1)-curve on S such that C ∩ Z 6= ∅

}
.

Using this formula, one can easily compute σ(S, L, Z). The second threshold one can
relate to the triple (S, L, Z) is the pseudo-effective threshold τ(S, L, Z) defined in (3.2).
Observe that σ(S, L, Z) 6 τ(S, L, Z).

Remark 5.1. If S ∼= P1 × P1 or S ∼= P2, then τ(S, L, Z) = σ(S, L, Z). Similarly, if S ∼= F1

and σ(S, L, Z) = L·f
Z·f , then σ(S, L, Z) = τ(S, L, Z).

For the simple reason of applying results of Section 3 to the pair (S, L), we are mostly
interested in the case when σ(S, L, Z) < µ < τ(S, L, Z). Because of this, we will always
assume that

σ(S, L, Z) 6 µ 6 τ(S, L, Z).

Then L − µZ is a pseudo-effective divisor. Moreover, it is not nef if µ > σ(S, L, Z).
Taking its Zariski decomposition (see [15, Theorem I:2.3.19]), we see that there exists a
birational morphism π : S → S that contracts k > 0 disjoint (−1)-curves C1, . . . , Ck such
that

(5.2) L− µZ ∼Q π
∗(L− µZ)+

k∑
i=1

ciCi,

where L = π∗(L) and Z = π(Z), the divisor L−µZ is nef, and c1, . . . , ck are some positive

rational numbers. Then S is a smooth del Pezzo surface, K2
S

= K2
S + k and Z

2
= −1 + k.

Note that k = 0 if and only if the divisor L− µZ is nef. In this case, the morphism π is
an isomorphism. If k > 1, from (5.1), we see that

σ
(
S, L, Z

)
> µ >

L · Ci
Z · Ci

> σ(S, L, Z)

for every i. Without loss of generality, we may assume that L·Ci

Z·Ci
6 L·Cj

Z·Cj
for i < j.

Remark 5.2. Let C1, . . . , Cm be disjoint (−1)-curves on S such that Ci ·Z = 1 for every i.

Let η : S → S̃ be the contraction of the curves C1, . . . , Cm, let L̃ = η∗(L), and let Z̃ =
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η(Z). Then Z̃ is smooth and

(5.3) L− σ(S̃, L̃, Z̃)Z ∼Q η
∗(L̃− σ(S̃, L̃, Z̃)Z̃) +

m∑
i=1

(
σ(S̃, L̃, Z̃)− L · Ci

)
Ci.

Suppose that σ(S̃, L̃, Z̃) > L·Ci for every i, and suppose also that σ(S̃, L̃, Z̃) = τ(S̃, L̃, Z̃).

Then τ(S, L, Z) = σ(S̃, L̃, Z̃). Moreover, if we also have σ(S̃, L̃, Z̃) > L · Ci for every i,
then (5.3) is the Zariski decomposition of L − τ(S, L, Z)Z. In this case we may assume
that η = π, because the Zariski decomposition is unique by [15, Theorem I:2.3.19].

In Section 6, we will apply Corollary 3.6 to the pair (S, L) using the curve Z, the
contraction π : S → S, and a positive rational number λ such that 0 � λ < µ. To do
this we need the curve Z to be smooth. This is always the case when K2

S > 3, because
then any two (−1)-curves intersect at most at one point. However, this is an additional
condition in the case K2

S 6 2. Recall that we assume that K2
S 6 5.

Lemma 5.3. Suppose that L is of P2-type, Z = E1, µ = τ(S, L, Z) and

(5.4) a3 >



2

3
if K2

S = 1,

3

5
if K2

S = 2,

1

2
if K2

S = 3,

1

3
if K2

S = 4,

0 if K2
S = 5.

Then k = r − 1, we may assume that C1 = L12, C2 = L13, C3 = L14, . . . , Ck = L1r, and

σ(S, L, Z) = L · L12 = 1 + a1 + a2 6 L · L13 = 1 + a1 + a3 6 · · ·
· · · 6 L · L1r = 1 + a1 + ar < 2 + a1 = σ

(
S, L, Z

)
= τ(S, L, Z).

If K2
S is even, then S = F1. If K2

S is odd, then S = P1 × P1. The curve Z is smooth.

Proof. Let η : S → S̃ be the contraction of L12, . . . , L1r, let L̃ = η∗(L), and let Z̃ = η(Z).

Then Z̃2 = r − 2, and the curve Z̃ is smooth. Moreover, either S̃ ∼= F1 or S̃ ∼= P1 × P1.
In the former case, we have η(Ei) ∼ f for every i > 2. Similarly, in the latter case, we
may assume that η(Ei) ∼ f2 for every i > 2.

Suppose that K2
S is even. Then there is a (−1)-curve E ⊂ S disjoint from the curves

L12, . . . , L1r, which implies that S̃ ∼= F1 and η(E) ∼ e. Indeed, if K2
S = 4, then E = C12345.

Similarly, if K2
S = 2, then E = Z1. Moreover Z̃ · f = 1, from which we can deduce that

Z̃ ∼ e+ r−1
2
f , which in turn implies that

L̃ ∼Q (2 + a1)e+
(

3 +
r − 1

2
a1 +

r∑
i=2

ai

)
f.
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Using Remark 5.1 and inequality (5.4), we conclude that

τ
(
S̃, L̃, Z̃

)
= σ

(
S̃, L̃, Z̃

)
= min

{
3 + r−1

2
a1 + a2 + · · ·+ ar

r−1
2

, 2 + a1

}
= 2 + a1.

Suppose now that K2
S is odd. We claim that the surface S contains an irreducible curve

C such that η(C) · η(E2) = 1 and η(C) · η(C) = 0. Indeed, if K2
S = 1, then C = Z1,8.

Similarly, if K2
S = 3, then C = C12345. Finally, if K2

S = 5, then C = L23. Thus, we see

that S̃ ∼= P1 × P1. Then Z̃ ∼ f1 + r−2
2
f2, which implies

L̃ ∼Q (2 + a1)f1 +
(

2 +
r − 2

2
a1 +

r∑
i=2

ai

)
f2.

Using Remark 5.1 and (5.4), we deduce that

τ
(
S̃, L̃, Z̃

)
= σ

(
S̃, L̃, Z̃

)
= min

{
2 + r−2

2
a1 + a2 + · · ·+ ar

r−2
2

, 2 + a1

}
= 2 + a1.

Hence, we see that τ(S̃, L̃, Z̃) = σ(S̃, L̃, Z̃) = 2 + a1 in all cases. On the other hand,
we have

(5.5) L− (2 + a1)Z ∼Q η
∗(L̃− (2 + a1)Z̃

)
+

r∑
i=2

(1− ai)L1i.

Using Remark 5.2, we see that µ = τ(S, L, Z) = σ(S̃, L̃, Z̃) = 2 + a1, and (5.5) is the
Zariski decomposition of the divisor L−µZ. Since the Zariski decomposition is unique by

[15, Theorem I:2.3.19], we may assume that η = π and S̃ = S, so that k = r − 1. Hence,
we may also assume that C1 = L12, C2 = L13, C3 = L14, . . . , Ck = L1r. Note that (5.5)
and (5.1) imply that σ(S, L, Z) = 1 + a1 + a2. �

Lemma 5.4. Suppose that L is of F1-type, Z = E1, µ = τ(S, L, Z) and

(5.6) a3 >
5−K2

S

6−K2
S

.

Then

σ(S, L, Z) = L·L1r = 1+a1 6 L·L1i = 1+b+a1+ai < 2+a1+b = σ
(
S, L, Z

)
= τ(S, L, Z)

for every i such that 2 6 i < r. One has k = r− 1, C1 = L1r, and Ci = L1i for r > i > 2.
If K2

S is even, then S = F1. If K2
S is odd, then S = P1 × P1. The curve Z is smooth.

Proof. Observe first that 2 + a1 + b > L · L1i for every i > 2, because

L ∼Q −KS +
r−1∑
i=1

aiEi + b(L1r + E1).

Let η : S → S̃ be the contraction of the curves L12, . . . , L1r, let L̃ = η∗(L) and Z̃ = η(Z).

Then Z̃ is smooth and Z̃2 = r−2. Moreover, either S̃ = F1 or S̃ = P1×P1. Furthermore,
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if K2
S = 9 − r is even, then Z̃2 is odd, so that S̃ = F1. Arguing as in the proof of

Lemma 5.3, we see that S̃ = P1 × P1 if K2
S is odd. Let Ẽi = η(Ei). Then

Ẽi · Ẽj =


0 if i > 2 and j > 2,

1 if j > i = 1 or i > j = 1,

r − 2 if i = j = 1.

Therefore, if S̃ = F1, then Z̃ = Ẽ1 ∼ e + r−1
2
f , and Ẽi ∼ f for every i > 2. In this case,

we have η∗(B) ∼ Z̃, so that

L̃ ∼ (2 + b+ a1)e+
(

3 +
r − 1

2
b+

r − 1

2
a1 + a2 + · · ·+ ar−1

)
f,

which implies

τ
(
S̃, L̃, Z̃

)
= σ

(
S̃, L̃, Z̃

)
= min

{
2+b+a1,

2 + r−2
2
b+ r−2

2
a1 + a2 + · · ·+ ar−1

r−2
2

}
= 2+b+a1,

because of (5.6) and Remark 5.1. Similarly, if S̃ = P1 × P1, then we may assume that

Ẽi ∼ f2 for every i > 2, so that Ẽ1 ∼ f1 + r−2
2
f2. In this case, we have

L̃ ∼ (2 + b+ a1)f1 +
(

2 +
r − 1

2
b+

r − 2

2
a1 + a2 + · · ·+ ar−2

)
f2,

which implies that τ(S̃, L̃, Z̃) = σ(S̃, L̃, Z̃) = 2 + b+a1, because of (5.6) and Remark 5.1.
On the other hand, we have

(5.7) L− (2 + b+ a1)Z ∼Q η
∗(L̃− (2 + b+ a1)Z̃

)
+

r∑
i=1

(2 + b+ a1 − L · L1i)L1i.

Using Remark 5.2, we see that τ(S, L, Z) = 2+b+a1, and (5.7) is the Zariski decomposition
of the divisor L − µZ. Since the Zariski decomposition is unique, we may assume that

η = π and S̃ = S, so that k = r − 1, C1 = L1r, and Ci = L1i for for every i such
that 2 6 i < r. Thus, to complete the proof of the lemma, we have to show that
σ(S, L, Z) = 1 + a1. This follows easily from (5.7) and (5.1). �

Lemma 5.5. Suppose that K2
S = 5, L is of P1 × P1-type, Z = E1, µ = τ(S, L, Z). Then

σ(S, L, Z) = L · L14 = 1 + a1 6 L · L12 = 1 + b+ a1 6

6 L · L13 = 1 + b+ a1 + a2 + a3 < 2 + b+ a1 + a2 = σ
(
S, L, Z

)
= τ(S, L, Z).

Moreover, one has k = 3, S = P1 × P1, C1 = L14, C2 = L12, C3 = L13.

Proof. Recall that

L ∼Q −KS + a1E1 + a2L24 + a3E3 + b(L13 + E1),

and the only (−1)-curves on the surface S that intersect Z are the curves L12, L13 and
L14. Intersecting L with these curves, we see that σ(S, L, Z) = L · L14 = 1 + a1 by (5.1).
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Let η : S → S̃ be the contraction of the curves L12, L13 and L14. Then S̃ ∼= P1 × P1.

Let Z̃ = η(Z), L̃24 = η(L24) and Ẽ3 = η(E3) . Then L̃24 · Ẽ3 = 1 and L̃2
24 = Ẽ2

3 = 0.

Thus, we may assume that L̃24 ∼ f1 and Ẽ3 ∼ f2. Since Z̃2 = 2, we have Z̃ ∼ f1 + f2.

Let L̃ = η∗(L). Since η∗(B) ∼ Z̃, we have

L̃ ∼Q −KS̃ + (b+ a1)Z̃ + a2L̃24 + a3Ẽ3 ∼Q (2 + b+ a1 + a2)f1 + (2 + b+ a1 + a3)f2,

so that σ(S̃, L̃, Z̃) = τ(S̃, L̃, Z̃) = 2 + b+ a1 + a2. Moreover, we have

(5.8) L− (2 + b+ a1 + a2)Z ∼Q η
∗(L̃− (2 + b+ a1 + a2)Z̃

)
+

+ (2 + b+ a1 + a2 − L · L14)L14 + (2 + b+ a1 + a2 − L · L12)L12+

+ (2 + b+ a1 + a2 − L · L13)L13.

Using Remark 5.2, we see that τ(S, L, Z) = 2 + b + a1 + a2, and (5.8) is the Zariski
decomposition of the divisor L − µZ, so that k = 3. Thus, we may assume that η = π,

S̃ = S, and also C1 = L14, C2 = L12 and C3 = L13. �

Lemma 5.6. Suppose that K2
S = 4, L is of P1 × P1-type, Z = E1, µ = τ(S, L, Z). Then

σ(S, L, Z) = L · L15 = 1 + a1 6 L · L12 = 1 + b+ a1 6

6 L · L13 = 1 + b+ a1 + a2 + a3 6 L · L14 = 1 + b+ a1 + a2 + a4 <

< min

{
3

2
+ b+ a1 +

a2 + a3 + a4

2
, 2 + b+ a1 + a2

}
= σ

(
S, L, Z

)
= τ(S, L, Z).

Moreover, one has k > 4, C1 = L15, C2 = L12, C3 = L13, C4 = L14 and

(a) either k = 4, S = F1, a3 + a4 > 1 + a2 and τ(S, L, Z) = 2 + b+ a1 + a2,
(b) or k = 5, C5 = C12345, S = P2, a3 + a4 < 1 + a2, and

L · C12345 = 1 + b+ a1 + a3 + a4 < τ(S, L, Z) =
3

2
+ b+ a1 +

a2 + a3 + a4

2
.

Proof. Recall that

L ∼Q −KS + a1E1 + a2L25 +
4∑
i=3

aiEi + b(L15 + E1).

Observe that the only (−1)-curves on S that intersect Z are the curves E1, L12, L13, L14,
L15 and C12345. Intersecting the divisor L with these curves, we get

L · L15 = 1 + a1 6 L · L12 = 1 + b+ a1 6 L · L13 = 1 + b+ a1 + a2 + a3 6

6 L · L14 = 1 + b+ a1 + a2 + a4 6 L · C12345 = 1 + b+ a1 + a3 + a4,

which implies that σ(S, L, Z) = 1 + a1 by (5.1).
Note that the curves L12, L13, L14, L15 and C12345 are disjoint. Let η : S → P2 be the

contraction of these curves, L̃ = η∗(L), and Z̃ = η(Z). Then Z̃ is a conic and

L̃ ∼Q (3 + 2b+ 2a1 + a2 + a3 + a4)`,
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so that σ(S̃, L̃, Z̃) = τ(S̃, L̃, Z̃) = 3
2

+ b + a1 + a2+a3+a4

2
. Moreover, a2 + 1 > a3 + a4, if

and only if σ(S̃, L̃, Z̃) > L · C12345 = 1 + b+ a1 + a3 + a4. Observe that

(5.9) L− σ
(
S̃, L̃, Z̃

)
Z ∼Q

5∑
i=2

(
σ
(
S̃, L̃, Z̃

)
− L · L1i

)
L1i+

+
(
σ
(
S̃, L̃, Z̃

)
− L · C12345

)
C12345.

Using Remark 5.2, we see that if a2+1 > a3+a4, then τ(S, L, Z) = τ(S̃, L̃, Z̃) = σ(S̃, L̃, Z̃),
so that (5.9) is the Zariski decomposition of the divisor L−µZ. Hence, if a2 +1 > a3 +a4,

then we may assume that η = π, S̃ = S, C1 = L15, C2 = L12, C3 = L13, C4 = L14 and
C5 = C12345.

To complete the proof, we now assume that a2 + 1 6 a3 + a4. Let υ : S → F1 be the

contraction of the curves L12, L13, L14 and L15, let L̂ = υ∗(L) and Ẑ = υ(Z). Then

(5.10) L− (2 + b+ a1 + a2)Z ∼Q υ
∗(L̂− (2 + b+ a1 + a2)Ẑ

)
+

+ (2 + b+ a1 + a2 − L · L15)L15 + (2 + b+ a1 + a2 − L · L12)L12+

+ (2 + b+ a1 + a2 − L · L13)L13 + (2 + b+ a1 + a2 − L · L14)L14,

where the coefficients on the right hand side of (5.10) are all positive. Furthermore,

σ(Ei) ∼ f if i > 2, σ(E2) · Ẑ = 1 and Ẑ2 = 3, so it follows that Ẑ ∼ e + 2f . Similarly
σ(L25) ∼ e+ f . Hence, we have

L̂ ∼Q (2 + b+ a1 + a2)e+ (3 + 2b+ 2a1 + a2 + a3 + a4)f.

Since 1 + a2 6 a3 + a4, it follows from Remark 5.1 that

σ(Ŝ, L̂, Ẑ) = τ(Ŝ, L̂, Ẑ) = 2 + b+ a1 + a2.

Using Remark 5.2, we see that τ(S, L, Z) = 2 + b+a1 +a2, and the Zariski decomposition

of the divisor L−µZ is given by (5.10). Hence, we may assume that υ = π and Ŝ = S, so
that k = 4 in this case. Moreover, we may also assume that C1 = L15, C2 = L12, C3 = L13

and C4 = L14. This completes the proof of the lemma. �

Lemma 5.7. Suppose that K2
S = 3, L is of P1 × P1-type, Z = E1, µ = τ(S, L, Z). Then

σ(S, L, Z) = L · L16 = 1 + a1 6 L · L12 = 1 + b+ a1 6

6 L · L13 = 1 + b+ a1 + a2 + a3 6 L · L14 = 1 + b+ a1 + a2 + a4 6

6 min

{
1 + b+ a1 +

a2 + a3 + a4 + a5

2
, 2 + b+ a1 + a2

}
= σ

(
S, L, Z

)
= τ(S, L, Z).

Moreover, one has k > 1, C1 = L16, and one of the following cases holds:

(a) if a1 = a2 = a3 = a4 = a5 = 0, then k = 1 and µ = 1 + b;
(b) if a2 = a3 = a4 = a5 > 0, then k = 2, C2 = L12 and µ = 1 + b+ a1 + 2a2;
(c) if a2 = a3 < a4 = a5, then k = 3, C2 = L12, C3 = L13 and µ = 1 + b+ a1 + a2 + a5;
(d) if a2 + a5 = a3 + a4 and a4 < a5, then k = 4, C2 = L12, C3 = L13, C4 = L14 and

µ = 1 + b+ a1 + a2 + a5;
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(e) if a2 + a5 < a3 + a4 and a3 + a4 + a5 < 2 + a2, then k = 5, C2 = L12, C3 = L13,
C4 = L14, C5 = L15, S = P1 × P1 and µ = 1 + b+ a1 + a2+a3+a4+a5

2
;

(f) if a2 + a5 < a3 + a4 and a3 + a4 + a5 > 2 + a2, then k = 5, C2 = L12, C3 = L13,
C4 = L14, C5 = L15, S = P1 × P1 and µ = 2 + b+ a1 + a2;

(g) if a2 + a5 > a3 + a4, then k = 5, C2 = L12, C3 = L13, C4 = L14, C5 = C12346, S = F1

and µ = 1 + b+ a1 + a2+a3+a4+a5

2
.

Proof. Recall that

L ∼Q −KS + a1E1 + a2L26 +
5∑
i=3

aiEi + b(L16 + E1).

Observe also that the only (−1)-curves on S that intersect Z are the curves L12, L13, L14,
L15, L16, C12345, C12346, C12356, C12456 and C13456. Moreover, we have

L · L16 = 1 + a1 6 L · L12 = 1 + b+ a1 6 L · L13 = 1 + b+ a1 + a2 + a3 6

6 L · L14 = 1 + b+ a1 + a2 + a4 6 L · C12346 = 1 + b+ a1 + a3 + a4 6

6 L · C12356 = 1 + b+ a1 + a3 + a5 6 L · C12456 = 1 + b+ a1 + a4 + a5 <

< L ·C13456 = 1 + b+a1 +a2 +a3 +a4 +a5 6 L ·C12345 = 1 + 2b+a1 +a2 +a3 +a4 +a5,

and L ·L14 6 L ·L15 = 1 + b+a1 +a2 +a5 6 L ·C12356. Then σ(S, L, Z) = 1 +a1 by (5.1).

If a2 + a5 6 a3 + a4, let η : S → S̃ be the contraction of the curves L16, L12, L13, L14

and L15. Similarly, if a2 +a5 > a3 +a4, let η : S → S̃ be the contraction of the curves L16,

L12, L13, L14 and C12346. In both cases, let L̃ = η∗(L) and Z̃ = η(Z). Similarly, denote

by L̃26, Ẽ3, Ẽ4, Ẽ5 and C̃12345 the images on S̃ of the curves L26, E3, E4, E5 and C12345,

respectively. If a2 + a5 6 a3 + a4, then Z̃2 = 4, L̃2
26 = 2, Ẽ2

3 = Ẽ2
4 = Ẽ2

5 = C̃2
12345 = 0,

Z̃ · Ẽ3 = 1, the curves Ẽ3, Ẽ4 and Ẽ5 are disjoint, and C̃12345 · Ẽ2 = 1, so that S̃ ∼= P1×P1.

In this case, we may assume that Ẽ3 ∼ Ẽ4 ∼ Ẽ5 ∼ f2, which implies that Z̃ ∼ f1 + 2f2

and L̃26 ∼ f1 + f2, so that

L̃ ∼Q (2 + b+ a1 + a2)f1 + (2 + 2b+ 2a1 + a2 + a3 + a4 + a5)f2,

which in turns implies that

σ
(
S̃, L̃, Z̃

)
= τ(S̃, L̃, Z̃) = min

{
2 + b+ a1 + a2, 1 + b+ a1 +

a2 + a3 + a4 + a5

2

}
.

Similarly, if a2 + a5 > a3 + a4, then Z̃2 = 4, Ẽ2
5 = −1, L̃2

26 = Ẽ2
3 = Ẽ2

4 = 1, and

Ẽ5 · L̃26 = Ẽ5 · Ẽ3 = Ẽ5 · Ẽ4 = Z̃ · Ẽ5 = 0, which implies that S̃ ∼= F1 and Ẽ5 ∼ e. In this

case, we have Z̃ ∼ 2e+ 2f and L̃26 ∼ Ẽ3 ∼ Ẽ4 ∼ e+ f , so that

L̃ ∼Q (2 + 2b+ 2a1 + a2 + a3 + a4 + a5)e+ (3 + 2b+ 2a1 + a2 + a3 + a4)f,

which also gives σ(S̃, L̃, Z̃) = τ(S̃, L̃, Z̃) = 1 + b+ a1 + a2+a3+a4+a5

2
by Remark 5.1.

If a2 + a5 6 a3 + a4, then

(5.11) L − σ
(
S̃, L̃, Z̃

)
Z ∼Q η∗

(
L̃ − σ

(
S̃, L̃, Z̃

)
Z̃
)

+
6∑
i=2

(
σ
(
S̃, L̃, Z̃

)
− L · L1i

)
L1i.
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and the coefficients in front of each L1i in (5.11) are all non-negative, so that Remark 5.2

gives τ(S, L, Z) = σ(S̃, L̃, Z̃). Moreover, if a2 + a5 < a3 + a4, then all coefficients in front
of each L1i in (5.11) are positive, so that (5.11) is the Zariski decomposition of the divisor

L − µZ by Remark 5.2. In this case, we may assume that η = π and S̃ = S, C1 = L16,
C2 = L12, C3 = L13, C4 = L14 and C5 = L15, which gives us the cases (e) and (f).

Similarly, if a2 + a5 > a3 + a4, then τ(S, L, Z) = σ(S̃, L̃, Z̃) by Remark 5.2, since all the
coefficients in front of the right hand side of

(5.12) L− σ
(
S̃, L̃, Z̃

)
Z ∼Q η

∗
(
L̃− σ

(
S̃, L̃, Z̃

)
Z̃
)

+
(
σ
(
S̃, L̃, Z̃

)
− L · L16

)
L16+

+
4∑
i=2

(
σ
(
S̃, L̃, Z̃

)
− L · L1i

)
L1i +

(
σ
(
S̃, L̃, Z̃

)
− L · C12346

)
C12346,

are positive. Using Remark 5.2 again, we see that if a2 + a5 > a3 + a4, then (5.12) is the
Zariski decomposition of the divisor L − µZ. In this case we may assume that η = π,

S̃ = S, C1 = L16, C2 = L12, C3 = L13, C4 = L14 and C5 = C12346, which gives us the
case (g).

To complete the proof, we may assume that a2+a5 = a3+a4. Then µ = 1+b+a1+a2+a5,
so that (L−µZ) ·L16 = −b−a2−a5 < 0, (L−µZ) ·L12 = −a2−a5, (L−µZ) ·L13 = a3−a5

and (L−µZ) ·L14 = a4−a5. Let υ : S → Ŝ be the contraction of the curve L16, and those
curves (if any) among L12, L13 and L14 that have negative intersection with L− µZ. Let

L̂ = υ∗(L) and Ẑ = υ(Z), so that

(5.13) L− µZ ∼Q υ
∗(L̂− µẐ)+ (µ− L · L16)L16 +

4∑
i=2

(µ− L · L1i)L1i.

By Remark 5.2, the Zariski decomposition of the divisor L−µZ is (5.13), so that we may

assume that η = π, S̃ = S and C1 = L16. If µ − L · L12 = 0, then k = 1, which is case
(a). Moreover, if µ − L · L14 > 0, then k = 4, and we may also assume that C2 = L12,
C3 = L13 and C4 = L14, which is case (d). Similarly, if µ−L ·L14 = 0 and µ−L ·L13 > 0,
then k = 3, and we may assume that C2 = L12 and C3 = L13, which is case (c). Finally,
if µ−L ·L13 = 0, then k = 2, and we may assume that C2 = L12, which is case (b). This
completes the proof of the lemma. �

If K2
S = 2, let us denote the (−1)-curve curve Z1 also as Z17.

Lemma 5.8. Suppose that K2
S 6 2, L is of P1 × P1-type, and Z = E1. Then

σ(S, L, Z) = L · L1r = 1 + a1 6 L · L12 = 1 + b+ a1 6

6 L · L13 = 1 + b+ a1 + a2 + a3 6 L · L14 = 1 + b+ a1 + a2 + a4 6

6 L · L15 = 1 + b+ a1 + a2 + a5 6 L · L16 = 1 + b+ a1 + a2 + a6.

Moreover, one has L · L14 6 L · C1234r = 1 + b+ a1 + a3 + a4. Furthermore, one has

L · Z17

Z · Z17

=
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
,
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and the curve Z17 is disjoint from the (−1)-curves L1r, L12, L13, L14, L15, L16 and C1234r.
Let C be a (−1)-curve on the surface S such that the curve C intersects the curve Z, C
is not one of E1, L1r, L12, L13, L14, L15, L16, C1234r, Z17 and a3 > 2

3
. Then

L · C
Z · C

> min

{
L · L16, L · C1234r,

L · Z17

Z · Z17

}
.

Proof. Recall that

L ∼Q −KS + a1E1 + a2L2r +
r−1∑
i=3

aiEi + b(L1r + E1),

and observe that all assertions of the lemma are obvious except for the last one. Let us
prove it. Note that C · B > C · Z > 1, since B ∼ E1 + L1r and C 6= L1r. Moreover, by
looking at the classes of the list of (−1)-curves in S, we have C ·Z 6 4−K2

S. Furthermore,
the surface S contains a unique (−1)-curve Z ′ such that Z ′ · Z = 4 −K2

S. We also have
Z + Z ′ ∼ −(3 − K2

S)KS. Indeed, if K2
S = 2, then Z ′ = Z17 and if K2

S = 1, then γ(Z ′)
is a sextic curve that has triple singular point at γ(E1), and double points in the points
γ(E2), γ(E3), γ(E4), γ(E5), γ(E6), γ(E7) and γ(E8).

Suppose first that C · Z = 1. Then

L · C
Z · C

= L · C > 1 + b+ a1 + a2C · L2r +
r−1∑
i=3

aiC · Ei.

Thus, if C · (L2r + E3 + · · ·+ Er−1

)
> 3, then

L · C
Z · C

> 1 + b+ a1 + a2 + a3 + a4 > 2 + b+ a1 + a2 > 1 + b+ a1 + a2 + a6 = L · L16.

Going through the list of (−1)-curves on S, we see that if C · (L2r +E3 + · · ·+Er−1) 6 2,
then either C = L17 and K2

S = 1, or C is one of the curves C12ijr with 2 < i < j < r and
(i, j) 6= (3, 4). In the former case, we have L · C > L · L16. In the latter case, we have
L · C > L · C1234r.

Suppose now that C · Z > 2. If K2
S = 2, then C · Z = 2 as C · Z 6 4 −K2

S and C =
Z ′ = Z17. Thus, to complete the proof, we may assume that K2

S = 1 and 3 > C · Z > 2.
If C · Z = 3, then C = Z ′ ∼Q −2KS − Z, so that

L · C
Z · C

=
L · (−2KS − Z)

3
=

1 + 4b+ 3a1 + 2a2 + 2a3 + 2a4 + 2a5 + 2a6 + 2a7

3
>
L · Z17

Z · Z17

because a3 > 2
3
. Thus, we may assume that C · Z = 2. If C = Z1i with 2 6 i 6 8, then

L · C > 1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6 + a7 − ai > L · Z17.

For the other three types of classes of possible (−1)-curves introduced in section 4 it is
straight forward to see that L · C > L · Z17. �

Now we are ready to complete this section by proving
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Lemma 5.9. Suppose that K2
S 6 2, L is of P1 × P1-type, Z = E1, and a3 > 2

3
. Then

σ(S, L, Z) < µ 6 τ(S, L, Z), k > 2, C1 = L1r, C2 = L12, µ = σ(S, L, Z) and the curve Z
is smooth, where

min

{
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
, 1 + b+ a1 + a2 + a6

}
.

Moreover one of the following cases holds:

(a) if 1 + a2 + a3 > a4 + a5 + a6, then k = 2 and µ = 1+2b+2a1+a2+a3+a4+a5+a6

2
;

(b) if 1 + a2 + a3 < a4 + a5 + a6 and a3 + a5 + a6 6 1 + a2 + a4, then k = 3, C3 = L13 and
µ = 1+2b+2a1+a2+a3+a4+a5+a6

2
;

(c) if a3 + a5 + a6 > 1 + a2 + a4, a3 + a4 + a6 6 1 + a2 + a5 and a2 + a5 + a6 6 1 + a3 + a4,
then k = 4, C3 = L13, C4 = L14 and µ = 1+2b+2a1+a2+a3+a4+a5+a6

2
;

(d) if a3 + a4 + a6 > 1 + a2 + a5 and 1 + a2 + a6 > a3 + a4 + a5, then k = 5, C3 = L13,
C4 = L14, C5 = L15 and µ = 1+2b+2a1+a2+a3+a4+a5+a6

2
;

(e) if a3 + a4 + a6 > 1 + a2 + a5 and 1 + a2 + a6 < a3 + a4 + a5, then k = 5, C3 = L13,
C4 = L14, C5 = L15 and µ = 1 + b+ a1 + a2 + a6;

(f) if a2 + a5 + a6 > 1 + a3 + a4, then k = 5, C3 = L13, C4 = L14, C5 = C1234r and
µ = 1+2b+2a1+a2+a3+a4+a5+a6

2
.

Proof. Using Lemma 5.8, we see that

L · Z17

Z · Z17

=
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
> 1 + b+ a1 = L · L12 > σ(S, L, Z),

because a3 > 2
3
. So that µ is the smallest number among L·Z17

Z·Z17
and L · L16, so that

µ > σ(S, L, Z). We will show later that µ 6 τ(S, L, Z). Observe that µ > L · L1r and
µ > L ·L12. However, we do not know whether µ is larger than the remaining intersections
L · L13, L · L14, L · L15, L · L16 and L · C1234r or not, because L·Z17

Z·Z17
can be small. This

explains the several cases we may have.
Suppose first that either µ > L · L15 or µ > L · C1234r (or both). Note that µ > L · L15

if and only if a6 > a5 and a3 + a4 + a6 > 1 + a2 + a5. Similarly, µ > L · C1234r if and
only if a2 + a6 > a3 + a4 and a2 + a5 + a6 > 1 + a3 + a4. In particular, we must have

a2 + a5 6= a3 + a4. If a2 + a5 < a3 + a4, let η : S → S̃ be the contraction of the curves L1r,

L12, L13, L14 and L15. Similarly, if a2 + a5 > a3 + a4, let η : S → S̃ be the contraction of

the curves L1r, L12, L13, L14 and C1234r. Denote by Ẽ5, Ẽ6, Ẽ7, L̃16, L̃17, Z̃15, Z̃16 and Z̃17

the images on S̃ of the curves E5, E6, E7, L16, L17, Z15, Z16 and Z17, respectively. Then

S̃ is a smooth del Pezzo surface and K2
S̃

= K2
S + 5. If K2

S = 1 (K2
S = 2, respectively) and

a2 + a5 < a3 + a4, then all (−1)-curves on S̃ are Ẽ6, Ẽ7, L̃16, L̃17, Z̃16 and Z̃17 (Ẽ6, L̃16

and Z̃17, respectively). Similarly, if d = 1 (d = 2, respectively) and a2 + a5 > a3 + a4,

then all (−1)-curves on S̃ are Ẽ5, Ẽ6, Ẽ7, Z̃15, Z̃16 and Z̃17 (Ẽ5, Ẽ6, Z̃17, respectively).

Let L̃ = η∗(L) and Z̃ = η(Z). Then Z̃ is smooth, and µ = σ(S̃, L̃, Z̃). The latter

follows from the intersection of the divisor L̃−µZ̃ with (−1)-curves on S̃. For example, if

a2 +a5 > a3 +a4, then µ = 1+2b+2a1+a2+a3+a4+a5+a6

2
, which implies that (L̃−µZ̃) · Z̃17 = 0.

Similarly, if a2 +a5 6 a3 +a4 and 1 +a2 +a6 < a3 +a4 +a5, then µ = 1 + b+a1 +a2 +a6,
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which implies that (L̃− µZ̃) · L̃16 = 0. In particular L̃− µZ̃ is nef. On the other hand, if
a2 + a5 < a3 + a4, then L · L15 6 L · C1234r, and

(5.14) L− µZ ∼Q η
∗(L̃− µZ̃)+ (µ− L · L1r)L1r +

5∑
i=2

(µ− L · L1i)L1i,

where µ−L ·L1i > 0 for every i ∈ {2, 3, 4, 5, r}, as µ > L ·L15. If a2 + a5 < a3 + a4, then

(5.15) L− µZ ∼Q η
∗(L̃− µZ̃)+ (µ− L · L1r)L1r+

+
4∑
i=2

(µ− L · L1i)L1i + (µ− L · C1234r)C1234r,

where µ − L · L1i > 0 for every i ∈ {2, 3, 4, r} and µ − L · C1234r > 0. Therefore, the
divisor L−µZ is pseudo-effective in both cases. In particular, we see that µ 6 τ(S, L, Z).
Moreover, (5.14) (respectively (5.15)) is the Zariski decomposition of the divisor L− µZ
in the case when a2 +a5 < a3 +a4 (respectively when a2 +a5 > a3 +a4). Since the Zariski

decomposition of L− µZ is unique, we may assume that η = π and S̃ = S, so that k = 5
in this case. Thus, we may assume that C1 = L1r, C2 = L12, C3 = L13, C4 = L14. If
a2 + a5 < a3 + a4, then C5 = L15, so that we are either in the case (d) or in the case (e).
If a2 + a5 > a3 + a4, then C5 = C1234r, which is the case (f). This proves the required
assertion in the case when µ > L · L15 or µ > L · C1234r.

Now we suppose that µ 6 L · L15 and µ 6 L · C1234r. The former inequality implies
that a3 + a4 + a6 6 1 + a2 + a5, so that, in particular, a3 + a4 + a5 6 1 + a2 + a6. Thus,
we have

µ =
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
=
L · Z17

Z · Z17

.

Then (L− µZ) · Z17 > 0, (L− µZ) · C1234r > 0, (L− µZ) · L15 > 0, (L− µZ) · L16 > 0.
Let us use the same notations as in the previous case with one exception: now assume

that η : S → S̃ is the contraction of those curves among L1r, L12, L13, L14 that have
negative intersection with L − µZ. In particular, η contracts L1r and L12, since we

already know that (L− µZ) · L1r < 0 and (L− µZ) · L12 < 0. We claim that L̃− µZ̃ is

nef. Indeed, let C̃ be a (−1)-curve on S̃, and let C be its proper transform on the surface

S. Then (L̃−µZ̃) · C̃ = (L−µZ) ·C > 0 by Lemma 5.8. This implies that L̃−µZ̃ is nef.

Now arguing as in the previous case, we see that we can assume that η = π and S̃ = S.
If L1r and L12 are the only curves among L1r, L12, L13, L14 that have negative intersec-

tion with L−µZ, then we get k = 2, and we may assume that C1 = L1r and C2 = L12. In
this case, we have (L−µZ) ·L13 > 0, which can be rewritten as 1 +a2 +a3 > a4 +a5 +a6,
which gives us the case (a). Similarly, if (L− µZ) · L13 < 0 and (L− µZ) · L14 > 0, then
1+a2 +a3 < a4 +a5 +a6 and a3 +a5 +a6 6 1+a2 +a4, respectively. In this case, we have
k = 3, and we may assume that C1 = L1r, C2 = L12 and C3 = L13, which is the case (b).
Finally, if both (L−µZ) ·L13 < 0 and (L−µZ) ·L14 < 0, then a3 + a5 + a6 > 1 + a2 + a4

and k = 4. In this case η contracts all 4 curves L1r, L12, L13, L14, so that we may assume
that C1 = L1r, C2 = L12, C3 = L13, C4 = L14, which is the case (c). This completes the
proof of the lemma. �
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6. Computing Donaldson–Futaki invariants

In this section, we will prove Theorems 1.2 and 1.5. Namely, let S be a smooth del
Pezzo surface such that K2

S 6 5, and let L be an ample Q-divisor on it. We will apply the
results of Section 3 to the pair (S, L) using Lemmas 5.3, 5.4 5.5, 5.6, 5.7, 5.9. To do this,
let us use notations and assumptions of Sections 3, 4 and 5. As usual, we may assume
that µL = 1, where µL is the Fujita invariant of (S, L).

Observe that the inequality (5.4) (respectively (5.6)) follows from (1.1) or (1.2) (respec-
tively (1.4)). Similarly, the inequality a3 > 2

3
follows from (1.3). Thus, we assume that

(5.4) holds in the case when L is of P2-type, (5.6) holds if L if is of F1-type and a3 > 2
3

if
L is of F1-type.

Let Z = E1, and let µ be the number defined in Lemmas 5.3, 5.4 5.5, 5.6, 5.7, 5.9.
Then µ = τ(S, L, Z) except the case when K2

S 6 2 and L is a divisor of P1 × P1-type. In
this case, we have

µ = min

{
1 + 2b+ 2a1 + a2 + a3 + a4 + a5 + a6

2
, 1 + b+ a1 + a2 + a6

}
,

so that µ 6 τ(S, L, Z) by Lemma 5.9. Moreover, there exists a birational morphism
π : S → S that contracts a disjoint union of (−1)-curves C1, . . . , Ck, canonically deter-
mined by (S, L, Z) and which are described in Lemmas 5.3, 5.4 5.5, 5.6, 5.7, 5.9. In each
case, we have µ = σ(S, L, Z), where L = π∗(Z) and Z = π(Z). Here σ(S, L, Z) is the
Seshadri constant of the pair (S, L) with respect to the curve Z. Moreover, it follows
from Lemmas 5.3, 5.4 5.5, 5.6, 5.7, 5.9 that the curve Z is smooth, and L ·Ci < σ(S, L, Z)

for every i. Thus, it follows from Corollary 3.6 that (S, L) is not K-stable if D̂F(µ) < 0,

where D̂F is the rational function defined in (3.4). The goal is to show that D̂F(µ) < 0
provided that the divisor L satisfies the hypotheses of Theorems 1.2 and 1.5.

To simplify computations, let D = 3
2
D̂F(µ)L2, so that D has the same sign as D̂F.

Using (3.4) and L · E1 = 1− a1, we get

(6.1) D = −KS ·L
(
−µ3−3µ2(1−a1)

)
+3µ2L2+3µL2(1−a1)−KS ·L

(
k∑
i=1

(
µ−L·Ci

)3

)
,

where k, each L ·Ci, and µ = σ(S, L, Z) are given by Lemmas 5.3, 5.4 5.5, 5.6, 5.7, or 5.9.
If L is of F1-type or P1 × P1-type, then D = A · b2 + B · b + C for some functions A, B
and C that depend only on a1, . . . , ar−1. For instance, if K2

S = 5 and L is of P1×P1-type,
then (6.1) and Lemma 5.5 imply that D is the polynomial

(6.2)
(

3a2
1 + 3− 3a2

2 − 3a2
3

)
b2+

+
(

4a3
1+3a2

1a2+3a2
1a3−3a1a

2
2−3a1a

2
3−4a3

2−6a2a
2
3−2a3

3+6a2
1−9a2

2−9a2
3+6a1+3a2+3a3+8

)
b+

+ 5 + 4a1 + 4a2 + 4a3 + 2a4
1 − 2a4

2 − a4
3 + 4a3

1 − 7a3
2 − 2a3

3 + 3a2
1a2a3 − 3a1a2a

2
3 + 3a2

1+

+ 3a1a2 − 6a2
2 − 6a2

3 + 2a3
1a2 + 2a3

1a3 − 2a1a
3
2 − a1a

3
3 + a3

2a3 − a2a
3
3 + 3a2

1a2+

+ 3a2
1a3 − 6a1a

2
2 − 6a1a

2
3 + 3a2

2a3 − 12a2a
2
3 + 3a1a3 + 9a2a3 − 3a2

2a
2
3.
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If K2
S = 4 and L is of F1-type, then Lemma 5.4 implies that A = 3a2

1 +6−3a2
2−3a2

3−3a2
4,

B = 4a3
1 + 3a2

1a2 + 3a2
1a3 + 3a2

1a4 − 3a1a
2
2 − 3a1a

2
3−

− 3a1a
2
4 − 2a3

2 − 2a3
3 − 2a3

4 + 3a2
1 − 9a2

2 − 9a2
3 − 9a2

4 + 9a1 + 3a2 + 3a3 + 3a4 + 16,

and

C = 8 + 8a1 + 8a2 + 8a3 + 8a4 + 2a4
1 − a4

2 − a4
3 − a4

4 + 2a3
1 − a3

2 − a3
3 − a3

4 − 9a2
4−

− 9a2
3 − 9a2

2 + 2a3
1a2 + 2a3

1a3 + 2a3
1a4 − a1a

3
2 − a1a

3
3 − a1a

3
4 − a3

2a3 − a3
2a4 − a2a

3
3−

− a2a
3
4 − a3

3a4 − a3a
3
4 + 3a2

1a2 + 3a2
1a3 + 3a2

1a4 − 6a1a
2
2 − 6a1a

2
3 − 6a1a

2
4 + 3a2

2a3 + 3a2
2a4+

+ 3a2a
2
3 + 3a2a

2
4 + 3a2

3a4 + 3a3a
2
4 + 3a1a2 + 3a1a3 + 3a1a4 − 6a2a3 − 6a2a4 − 6a3a4.

Similarly, if S is a smooth cubic surface, L is of P1 × P1-type, a2 + a5 < a3 + a4 and
a3 + a4 + a5 > 2 + a2, then Lemma 5.7 gives k = 5, C1 = L16, C2 = L12, C3 = L13,
C4 = L14, C5 = L15, S = P1 × P1 and µ = 2 + b + a1 + a2. In this case, we have
L ·C1 = 1+a1, L ·C2 = 1+ b+a1, L ·C3 = 1+ b+a1 +a2 +a3, L ·C4 = 1+ b+a1 +a2 +a4

and L ·C5 = 1 + b+ a1 + a2 + a5, so that (6.1) gives A = 3a2
1 + 9− 3a2

2− 3a2
3− 3a2

4− 3a2
5,

B = 4a3
1 + 3a2

1a2 + 3a2
1a3 + 3a2

1a4 + 3a2
1a5 − 3a1a

2
2 − 3a1a

2
3−

− 3a1a
2
4 − 3a1a

2
5 − 4a3

2 − 6a2a
2
3 − 6a2a

2
4 − 6a2a

2
5 − 2a3

3 − 2a3
4−

− 2a3
5 − 9a2

2 − 9a2
3 − 9a2

4 − 9a2
5 + 12a1 + 15a2 + 3a3 + 3a4 + 3a5 + 24,

and

C = 9 + 12a1 + 12a2 + 12a3 + 12a4 + 12a5 − 3a2
1 − 6a2

2 − 12a2
3 − 12a2

4 − 12a2
5−

− a4
4 − a4

5 − 9a3
2 + 3a2

1a3 + 3a2
1a4 + 3a2

1a5 − 6a1a
2
2 − 6a1a

2
3 − 6a1a

2
4 − 6a1a

2
5+

+ 3a2
2a4 + 3a2

2a5 − 12a2a
2
3 − 12a2a

2
4 − 12a2a

2
5 + 3a2

3a4 + 3a2
3a5 + 3a3a

2
4 + 3a3a

2
5+

+ 3a4a
2
5 + 3a1a3 + 3a1a4 + 3a1a5 + 9a2a3 + 9a2a4 + 9a2a5 − 6a3a4 − 6a3a5 − 6a4a5−

− 3a2
2a

2
3 − 3a2

2a
2
4 − 3a2

2a
2
5 + 9a1a2 + 2a3

1a2 + 2a3
1a3 + 2a3

1a4 + 2a3
1a5 − 2a1a

3
2−

− a1a
3
3 − a1a

3
4 − a1a

3
5 + a3

2a3 + a3
2a4 + a3

2a5 − a2a
3
3 − a2a

3
4 − a2a

3
5 − a3

3a4−
− a3

3a5 + 3a2
2a3 − a3a

3
4 − a3a

3
5 − a3

4a5 − a4a
3
5 − 3a2

1a2 + 3a2
1a2a3 − 3a1a2a

2
3−

− 3a1a2a
2
5 − 3a1a2a

2
4 + 3a2

4a5 + 3a2
1a2a5 + 3a2

1a2a4 + 2a4
1 − 2a4

2 − a4
3.

We clearly see the pattern for the polynomial A. Indeed, if L is of F1-type or P1×P1-type,
then

A = 3a2
1 + 3r − 9− 3a2

2 − · · · − 3a2
r−1.

Thus, if L is of F1-type or P1 × P1-type, and a2
1 + r − 3 < a2

2 + · · ·+ a2
r−1, then

D(a1, . . . , ar−1, b) < 0

for b� 0. This proves Theorem 1.2.
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Now let us denote by DP2 the polynomial

(6.3) 5 + 2a3
4 + 2a3

5 + 2a3
6 + 2a3

7 + 2a3
8 + 2a4

1 − a4
2 − a4

3 − a4
4 − a4

5 − a4
6+

− a4
7 − a4

8 + 3a1a6 − 6a1a
2
8 − a2a

3
5 + 3a2a

2
6 + 3a3a

2
6 + 3a6a

2
2 + 2a4a

3
1 + 3a3a

2
7+

+ 20a6 − 18a2
3 − 18a2

4 − 18a2
5 − 18a2

6 − 18a2
7 − 18a2

8 + 3a1a2 + 3a1a4 + 3a1a5+

20a7 + 3a1a7 + 3a1a8 − a1a
3
2 − a1a

3
3 − a1a

3
4 − a1a

3
5 − a1a

3
6 − a1a

3
7 + 3a8a

2
6−

− a1a
3
8 − 6a1a

2
2 − 6a1a

2
3 − 6a1a

2
4 − 6a1a

2
5 − 6a1a

2
6 − 6a1a

2
7 − 6a2a3 + 3a8a

2
4+

+ 20a8 − 6a2a5 − 6a2a6 − 6a2a7 − 6a2a8 + 2a2a
3
1 − a2a

3
3 − a2a

3
4 − a2a

3
6 + 3a8a

2
5+

+ 2a3
3 − a2a

3
7 − a2a

3
8 + 3a2a

2
1 + 3a2a

2
3 + 3a2a

2
4 + 3a2a

2
5 + 3a2a

2
7 + 3a2a

2
8−

− 6a3a5 − 6a3a6 − 6a3a7 − 6a3a8 + 2a3a
3
1 − a3a

3
2 − a3a

3
4 − a3a

3
5 − a3a

3
6+

− 4a3
1 + 3a1a3 − a3a

3
7 − a3a

3
8 + 3a3a

2
1 + 3a3a

2
2 + 3a3a

2
4 + 3a3a

2
5 + 3a3a

2
8−

− 6a3a4 − 6a5a6 − 6a4a6 − a5a
3
7 + 3a7a

2
2 − a8a

3
6 + 2a7a

3
1 + 3a8a

2
7 + 3a5a

2
8+

+ 20a2 − 6a4a5 − 6a4a7 − 6a4a8 − a4a
3
2 − a4a

3
3 − a4a

3
5 − a4a

3
6 − a4a

3
7+

+ 2a3
2 − a4a

3
8 + 3a4a

2
1 + 3a4a

2
2 + 3a4a

2
3 + 3a4a

2
5 + 3a4a

2
6 + 3a4a

2
7 + 3a4a

2
8+

+ 20a3 − 6a5a7 − 6a5a8 + 2a5a
3
1 − a5a

3
2 − a5a

3
3 − a5a

3
4 − a5a

3
6 − a5a

3
8 + 3a5a

2
1−

− 18a2
2 + 3a5a

2
2 + 3a5a

2
3 + 3a5a

2
4 + 3a5a

2
6 + 3a5a

2
7 − 6a6a7 − 6a6a8 + 2a6a

3
1+

+ 20a1 +−a6a
3
2 − a6a

3
3 − a6a

3
4 − a6a

3
5 − a6a

3
7 − a6a

3
8 + 3a6a

2
1 + 3a6a

2
3 + 3a8a

2
2+

+ 3a6a
2
4 + 3a6a

2
5 + 3a6a

2
7 + 3a6a

2
8 − 6a7a8 − a7a

3
2 − a7a

3
3 − a7a

3
4 + 3a8a

2
3−

− 9a2
1 + 20a4 − a7a

3
5 − a7a

3
6 − a7a

3
8 + 3a7a

2
1 + 3a7a

2
3 + 3a7a

2
4 + 3a7a

2
5 + 3a7a

2
6+

+ 20a5 − 6a2a4 + 3a7a
2
8 + 2a8a

3
1 − a8a

3
2 − a8a

3
3 − a8a

3
4 − a8a

3
5 − a8a

3
7 + 3a8a

2
1.

If L is of P2-type, then D equals DP2 , DP2(a1, a2, a3, a4, a5, a6, 1), DP2(a1, a2, a3, a4, a5, 1, 1),
DP2(a1, a2, a3, a4, 1, 1, 1) and DP2(a1, a2, a3, 1, 1, 1, 1) in the case when K2

S = 1, K2
S = 2,

K2
S = 3, K2

S = 4 and K2
S = 5, respectively. This follows from (6.1) and Lemma 5.3. Now,

by Lemmas A.1 and A.2, we get D < 0 when L is of P2-type and (1.1) or (1.2) hold.
To deal with an ample Q-divisor L of F1-type, let us denote by DF1 the polynomial

(6.4) −
(

1 + 2b+
7∑
i=1

ai

)(
(2 + a1 + b)3 + 3(1− a1)(2 + a1 + b)2

)
+

+3
(
2+a1 +b

)2
(

1+4b+2
7∑
i=1

ai−
7∑
i=1

a2
i

)
+3(1−a1)(2+a1 +b)

(
1+4b+2

7∑
i=1

ai−
7∑
i=1

a2
i

)
+

+
(

1+2b+
7∑
i=1

ai

)(
(1+b)3+(1−a2)3+(1−a3)3+(1−a4)3+(1−a5)3+(1−a6)3+(1−a7)3

)
.

Then D = DF1 in the case when L is of F1-type and K2
S = 1. Indeed, if K2

S = 1, then
it follows from Lemma 5.4 that µ = 2 + a1 + b, k = 7, C1 = L18, C2 = L12, C3 = L13,
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C4 = L14, C5 = L15, C6 = L16 and C7 = L17, so that L ·C1 = 1+a1, L ·C2 = 1+a1 +a2 +b,
L·C3 = 1+a1+a3+b, L·C4 = 1+a1+a4+b, L·C5 = 1+a1+a5+b, L·C6 = 1+a1+a6+b and
L ·C7 = 1 + a1 + a7 + b. Thus, in this case, it follows from (6.1) that D = DF1 . Similarly,
one can deduce from Lemma 5.4 and (6.1) that D equals DF1(a1, a2, a3, a4, a5, a6, 1, b),
DF1(a1, a2, a3, a4, a5, 1, 1, b), DF1(a1, a2, a3, a4, 1, 1, 1, b), DF1(a1, a2, a3, 1, 1, 1, 1, b) in the
case when K2

S = 2, K2
S = 3, K2

S = 4 and K2
S = 5, respectively. Thus, it follows from

Lemma A.3 that D < 0 in the case when L is of F1-type and (1.4) holds.
If K2

S = 5 and L is of P1 × P1-type, then D is the polynomial (6.2). In this case, we
have D < 0 by Lemma A.4 provided that (1.3) holds. Similarly, if K2

S = 4, L is a divisor
of P1 × P1-type, and a3 + a4 > 1 + a2, then it follows from Lemma 5.6 that D is given by

(6.5)
(

3a2
1 − 3a2

2 − 3a2
3 − 3a2

4 + 6
)
b2 + 4a3

1b+ 3a2
1a2b+ 3a2

1a3b+ 3a2
1a4b− 9a2

2b−

− 9a2
3b− 3a1a

2
2b− 3a1a

2
3b− 3a1a

2
4b− 4a3

2b− 6a2a
2
3b− 6a2a

2
4b− 2a3

3b− 2a3
4b+ 3a2

1b−
− 9a2

4b+ 9a1b+ 9a2b+ 3a3b+ 3a4b+ 16b+ 8 + 8a1 + 8a2 + 8a3 + 8a4 + 2a4
1 − 2a4

2−
− a4

3 − a4
4 + 2a3

1 − 8a3
2 − a3

3 − a3
4 − 9a2

4 − 9a2
3 − 6a2

2 + 3a2
1a2a4 − 3a1a2a

2
4 − 3a1a2a

2
3+

− 12a2a
2
4 + 3a2

1a2a3 + 2a3
1a2 + 2a3

1a3 + 2a3
1a4 − 2a1a

3
2 − a1a

3
3 − a1a

3
4 + a3

2a3 + a3
2a4 − a2a

3
3−

− a2a
3
4 − a3

3a4 − a3a
3
4 + 3a2

1a3 + 3a2
1a4 − 6a1a

2
2 − 6a1a

2
3 − 6a1a

2
4 + 3a2

2a3 + 3a2
2a4 − 12a2a

2
3−

+ 3a2
3a4 + 3a3a

2
4 + 3a1a3 + 3a1a4 + 9a2a3 + 9a2a4 − 6a3a4 − 3a2

2a
2
3 − 3a2

2a
2
4 + 6a1a2.

If K2
S = 4 and a3 + a4 6 1 + a2, then D is

(6.6)
(

3a2
1 − 3a2

2 − 3a2
3 − 3a2

4 + 6
)
b2 + 4a3

1b+ 3a2
1a2b+ 3a2

1a3b+ 3a2
1a4b− 3a1a

2
2b−

− 3a1a
2
3b− 3a1a

2
4b− 2a3

2b− 2a3
3b− 2a3

4b+ 3a2
1b− 9a2

2b− 9a2
3b− 9a2

4b+ 9a1b+ 3a2b+

+ 3a3b+ 3a4b+ 16b+ 8 + 8a1 + 8a2 + 8a3 + 8a4 + 3a2
1a2 + 2a4

1 − a4
2 − a4

3 − a4
4 + 2a3

1 − a3
2−

− a3
3 − a3

4 + 3a1a2 − 9a2
4 − 9a2

3 − 9a2
2 − 6a1a

2
2 + 3a1a3 − 6a4a2 − 6a3a2 + 2a3

1a2 + 3a2
3a4+

+ 2a3
1a3 + 2a3

1a4 − a1a
3
2 + 3a3a

2
4 − a1a

3
3 − a1a

3
4 − a3

2a3 − a3
2a4 − a2a

3
3 − a2a

3
4 − a3

3a4−
− a3a

3
4 + 3a2

1a3 + 3a1a4 + 3a2
1a4− 6a1a

2
3− 6a1a

2
4 + 3a2

2a3 + 3a2
2a4 + 3a2a

2
3 + 3a2a

2
4− 6a3a4.

In both cases, (1.3) implies D < 0 by Lemmas A.6 and A.5.
If K2

S = 3, L is of P1 × P1-type, and a3 + a4 + a5 > 2 + a2, then D is the polynomial

(6.7) −
(

3 + 2b+
5∑
i=1

ai

)(
(2 + b+ a1 + a2)3 + 3(1− a1)(2 + b+ a1 + a2)2

)
+

+
(

3(2 + b+ a1 + a2)2 + 3(1− a1)(2 + b+ a1 + a2)
)(

3 + 4b+ 2
5∑
i=1

ai −
5∑
i=1

a2
i

)
+

+
(

3 + 2b+
5∑
i=1

ai

)(
(1 + b+ a2)3 + (1 + a2)3 + (1− a3)3 + (1− a4)3 + (1− a5)3

)
.
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This follows from Lemma 5.7. Similarly, if a3 + a4 + a5 6 2 + a2, then D is

(6.8) − (3 + 2b+ a1 + a2 + a3 + a4 + a5)(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)3

8
−

− 3(1− a1)(3 + 2b+ a1 + a2 + a3 + a4 + a5)(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)2

4
+

+
3(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)2

4

(
3 + 4b+ 2

5∑
i=1

ai −
5∑
i=1

a2
i

)
+

+
3(1− a1)(2 + 2b+ 2a1 + a2 + a3 + a4 + a5)

2

(
3 + 4b+ 2

5∑
i=1

ai −
5∑
i=1

a2
i

)
+

+
(b+ a2 + a3 + a4 + a5)3

8

(
3 + 2b+

5∑
i=1

ai

)
+

(a2 + a3 + a4 + a5)3

8

(
3 + 2b+

5∑
i=1

ai

)
+

+
(a4 + a5 − a2 − a3)3

8

(
3 + 2b+

5∑
i=1

ai

)
+

(a3 + a5 − a2 − a4)3

8

(
3 + 2b+

5∑
i=1

ai

)
+

+
|a3 + a4 − a2 − a5|3

8

(
3 + 2b+

5∑
i=1

ai

)
.

In both cases, (1.3) implies that D < 0 by Lemmas A.7 and A.8.
If K2

S 6 2 and L is of P1 × P1-type, then we can derive the formulas for D using (6.1)
and Lemma 5.9. To present them in a compact way, let us denote by F the polynomial

(6.9) − 1

8

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)3(
1 + 2b+

7∑
i=1

ai

)
+

− 3

4
(1− a1)

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)2(
1 + 2b+

7∑
i=1

ai

)
+

+
3

4

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)2(
1 + 4b+ 2

7∑
i=1

ai −
7∑
i=1

a2
i

)
+

+
3

2
(1− a1)

(
1 + 2b+ 2a1 +

6∑
i=2

ai

)(
1 + 4b+ 2

7∑
i=1

ai −
7∑
i=1

a2
i

)
+

+
1

8

(
1 + 2b+

7∑
i=1

ai

)(
− 1 + 2b+

6∑
i=2

ai

)3

+
1

8

(
1 + 2b+

7∑
i=1

ai

)(
− 1 +

6∑
i=2

ai

)3

.

If K2
S = 1, L is of P1×P1-type, and 1 + a2 + a3 > a4 + a5 + a6 then D = F by Lemma 5.9

Similarly, if K2
S = 1, 1 + a2 + a3 6 a4 + a5 + a6 and a3 + a5 + a6 6 1 + a2 + a4, then D is

the polynomial

(6.10) F +
1

8

(
1 + 2b+

7∑
i=1

ai

)(
a4 + a5 + a6 − 1− a2 − a3

)3
.
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Likewise, if K2
S = 1, a3 + a5 + a6 > 1 + a2 + a4, a3 + a4 + a6 6 1 + a2 + a5 and

a2 + a5 + a6 6 1 + a3 + a4, then D is the polynomial

(6.11) F+
1

8

(
1+2b+

7∑
i=1

ai

)((
a4 +a5 +a6−1−a2−a3

)3
+
(
a3 +a5 +a6−1−a2−a4

)3
)3

.

If K2
S = 1, a3 + a4 + a6 > 1 + a2 + a5, 1 + a2 + a6 > a3 + a4 + a5 and a2 + a5 6 a3 + a4,

then D is the polynomial

(6.12) F +
1

8

(
1 + 2b+

7∑
i=1

ai

)(
a4 + a5 + a6 − 1− a2 − a3

)3
+

+
1

8

(
1+2b+

7∑
i=1

ai

)(
a3+a5+a6−1−a2−a4

)3
+

1

8

(
1+2b+

7∑
i=1

ai

)(
a3+a4+a6−1−a2−a5

)3
.

If K2
S = 1, a2 + a5 + a6 > 1 + a3 + a4 and a2 + a5 > a3 + a4, then D is the polynomial

(6.13) F +
1

8

(
1 + 2b+

7∑
i=1

ai

)(
a4 + a5 + a6 − 1− a2 − a3

)3
+

+
1

8

(
1+2b+

7∑
i=1

ai

)(
a3+a5+a6−1−a2−a4

)3
+

1

8

(
1+2b+

7∑
i=1

ai

)(
a3+a4+a6−1−a2−a5

)3
+

+
1

8

(
1 + 2b+

7∑
i=1

ai

)(
a2 + a5 + a6 − 1− a3 − a4

)3
.

Finally, if K2
S = 1, a3 +a4 +a6 > 1+a2 +a5, 1+a2 +a6 6 a3 +a4 +a5 and a2 +a5 6 a3 +a4,

then D is the polynomial

(6.14) −
(

1 + 2b+
7∑
i=1

ai

)(
4 + b− 2a1 + a2 + a6

)(
1 + b+ a1 + a2 + a6

)2
+

+ 3
((

1 + b+ a1 + a2 + a6

)2
+
(
1− a1

)(
1 + b+ a1 + a2 + a6

))(
1 + 4b+ 2

7∑
i=1

ai−
7∑
i=1

a2
i

)
+

+
(

1 + 2b+
7∑
i=1

ai

)((
b+ a2 + a6

)3
+
(
a2 + a6

)3
+
(
a6 − a3

)3
+
(
a6 − a4

)3
+
(
a6 − a5

)3
)
.

This gives the formulas for D in the case when K2
S = 1 and L is of P1×P1-type. In these

cases, if a2 − a1 > 0.9347, then D < 0 by Lemmas A.9, A.10, A.11, A.12, A.13 and A.14.
If K2

S = 2 and L is of P1 × P1-type, then the formulas for D are obtained from (6.9),
(6.10), (6.11), (6.12), (6.13) and (6.14) by letting a7 = 1. In this case, if a2−a1 > 0.9206,
then D < 0 by Lemmas A.9, A.10, A.11, A.12, A.13 and A.14.

We see that D < 0 in the following cases: when L is of P2-type and either (1.1) or (1.2)
holds, when L is of F1-type and (1.4) holds, when L is of P1 × P1-type and (1.3) holds.
As we already explained above, this implies Theorem 1.5.
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Appendix A. Symbolic computations

The proof of Theorem 1.5 relies on computations which use symbolic algebra packages.
The length limitations of journals make it impractical to include such computations in
original articles. On the other hand, the code used to perform computations is hardly
ever maintained or preserved after several years, making it impossible to verify results
decades later, letting the reader to rely on the good faith and skills of the authors. In
reality this is hardly a new problem of the 21st century. Indeed, let us recall the following
quote of one of the articles of Sylvester [24] from 1871:

The manuscript sheets containing the original calculations [...] are de-
posited in the iron safe of the Johns Hopkins University, Baltimore, where
they can be seen and examined, or copied, by any one interested in the
subject.

Similarly, the online platform arXiv allows us to preserve our computations. The proofs
in this article ultimately require verifying that certain polynomials of degree 4 in up to
8 variables are negative under suitable conditions. The appendix in the online version
of this article [6] contains all details of the proofs of the following lemmas, where such
positivity is claimed, while the version submitted for publication only contains the proofs
of three lemmas, each serving as an example of the three different approaches used in the
proofs.

Let a1, a2, a3, a4, a5, a6, a7, a8, b be real numbers such that 0 6 a1 6 a2 6 . . . 6 an < 1
and b > 0. Let s1 = a2 − a1, s2 = a3 − a2, s3 = a4 − a3, s4 = a5 − a4, s5 = a6 − a5,
s6 = a7 − a6 and s7 = a8 − a7. For every polynomial f in R[a1, a2, a3, a4, a5, a6, a7, a8, b],

let us denote by f̂ the polynomial in R[a1, s1, s2, s3, s4, s5, s6, s7, b] obtained from f using
the corresponding change of variables.

Lemma A.1. Let f be the polynomial (6.3). Then the following assertions hold:

• f(a1, a2, a3, a4, 1, 1, 1, 1) < 0 when a2 − a1 > 0.6248;
• f(a1, a2, a3, a4, a5, 1, 1, 1) < 0 when a2 − a1 > 0.7488;
• f(a1, a2, a3, a4, a5, a6, 1, 1) < 0 when a2 − a1 > 0.8099;
• f(a1, a2, a3, a4, a5, a6, a7, 1) < 0 when a2 − a1 > 0.8469;
• f(a1, a2, a3, a4, a5, a6, a7, a8) < 0 when a2 − a1 > 0.8717.

Proof. Let f5 = f(a1, a2, a3, a4, 1, 1, 1, 1). Then f̂5(0, x, 0, 0) = −9x4+12x3−36x2+12x+5.
This polynomial has one positive root. Denote it by γ5. Then γ5 ≈ 0.6247798071 and

f̂5(a1, x+ γ5, s2, s3) = −4a4
1 − 26a3

1s2 − 13a3
1s3 − 39a3

1γ5 − 39a3
1x− 36a2

1s
2
2−

− 42a2
1s3x− 63a2

1x
2 − 20a1s

3
2 − 30a1s

2
2s3 − 66a1s

2
2γ5 − 66a1s

2
2x− 24a1s2s

2
3 − 8s3

2s3−
− 84a2

1s2x− 12s2
3γ

2
5 − 66a1s2s3γ5 − 66a1s2s3x− 78a1s2γ

2
5 − 78a1s2x

2 − 7a1s
3
3−

− 36a2
1s2s3 − 27a1s

2
3γ5 − 27a1s

2
3x− 39a1s3x

2 − 39a1γ
3
5 − 12s3γ

3
5 − 39a1x

3 − 4s4
2 − 9s2

2s
2
3−

− 15a2
1s

2
3 − 27s2

2s3x− 30s2
2x

2 − 5s2s
3
3 − 21s2s

2
3γ5 − 21s2s

2
3x− 30s2s3x

2 − 72s2γ
2
5x−

− 42a2
1s3γ5 − 21a1s3 − 63a1x− 18s2

2 − 18s2s3 − 6s2
3 − s4

3 − 6s3
3γ5 − 24s2γ

3
5 − 2s3

3 − 18s3
2x−

− 24s2x
3 − 6s3

3x− 24s2
3γ5x− 12s2

3x
2 − 36s3γ

2
5x− 12s3x

3 − 9x4 − 6a1s
2
3 − 3s2s

2
3−
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−48s2x(1−γ5)−a2
1(24−7a1−9γ5−3s3)−9xa2

1(14γ5−1)−6a2
1s2(14γ5−1)−24s3x(1−γ5)−

− 63a2
1γ

2
5 − a1s2x(13γ5 − 2)− 2s3

2(9γ5 + 1)− 4s3(6γ5 − 1− 3γ2
5)− a1(63γ5 − 16− 18γ2

5)−
− 6a1s3x(13γ5− 2)− 6s2

2γ5(5γ5− 2)− 12s2
2x(5γ5− 1)− 3s2

2s3(9γ5− 1)− 12s3x
2(3γ5− 1)−

− 3a1s3γ5(13γ5 − 4)− 24a1s2(2− γ5)− 8s2(6γ5 − 1− 3γ2
5)− 9a1γ5x(13γ5 − 4)−

− 9a1x
2(13γ5 − 2)− 24s2x

2(3γ5 − 1)− 12s2s3x(5γ5 − 1)− 3s2s3γ5(10γ5 − 4)−
− 12(3γ3

5 − 3γ2
5 + 6γ5 − 1)x− (54γ2

5 − 36γ5 + 36)x2 − 12(3γ5 − 1)x3.

All coefficients of this polynomial are negative. This shows that f5 < 0 when a2−a1 > γ5.
In particular, if a2 − a1 > 0.6248, then f5 < 0. The other cases are similar, see [6] for a
complete proof. �

Lemma A.2 ([6]). Let f be the polynomial (6.3). Then the following assertions hold:

• f(a1, a2, a3, a4, 1, 1, 1, 1) < 0 when a3 − a1 > 0.7698;
• f(a1, a2, a3, a4, a5, 1, 1, 1) < 0 when a3 − a1 > 0.8595;
• f(a1, a2, a3, a4, a5, a6, 1, 1) < 0 when a3 − a1 > 0.8985;
• f(a1, a2, a3, a4, a5, a6, a7, 1) < 0 when a3 − a1 > 0.9206;
• f(a1, a2, a3, a4, a5, a6, a7, a8) < 0 when a3 − a1 > 0.9347.

Lemma A.3. Let f be the polynomial (6.4). Then the following assertions hold:

• f(a1, a2, a3, 1, 1, 1, 1, b) < 0 when a2 − a1 > 0.7701;
• f(a1, a2, a3, a4, 1, 1, 1, b) < 0 when a2 − a1 > 0.8595;
• f(a1, a2, a3, a4, a5, 1, 1, b) < 0 when a2 − a1 > 0.8985;
• f(a1, a2, a3, a4, a5, a6, 1, b) < 0 when a2 − a1 > 0.9206;
• f(a1, a2, a3, a4, a5, a6, a7, b) < 0 when a2 − a1 > 0.9347.

Proof. Denote by f5 the polynomial f(a1, a2, a3, 1, 1, 1, 1, b), and let g5(a1, s1, s2, b) = f̂5.
Then g5(0, x, 0, b) = (3 − 6x2)b2 + (8 − 4x3 − 18x2 + 6x)b − 4x4 + 2x3 − 18x2 + 8x + 5.
The discriminant of this polynomial is equal to −80x6 +192x5−108x4−112x3 +84x2 +4.
Denote by δ5 its unique positive root. Then g5(a1, x+ δ5, s2, b) is a sum of

− (12δ5 + 18)bs2x− (36 + 36δ5)a1bx− (6 + 30δ5)a2
1s2− (18δ5 + 12)a2

1b− (9 + 21δ5)a1s
2
2−

− 12δ5b
2x− 12a1b

2δ5 − 27a1s2x
2 − 6bs2x

2 − 18a1bx
2 − 4x4 − 4bx3 − (12δ5 + 18)bx2−

− 18a1x
3 − (8δ3

5 − 3δ2
5 + 18δ5 − 4)s2 − (16δ5 − 2)x3 − (18 + 18δ5)a1bs2 − (6 + 54δ5)a1s2x

− 9s2
2x

2− 8s2x
3− (54δ2

5 + 12δ5 + 30)a1x− (6 + 54δ5)a1x
2− 18a2

1bx− 12a1b
2x− 30a2

1s2x−
− 21a1s

2
2x− 6bs2

2x− 6b2s2x− (5δ5 + 2)s3
2 − 18a3

1x− 5s3
2x− (27δ2

5 + 6δ5 + 15)a1s2−
− 6b2x2−−(24δ2

5 − 6δ5 + 18)s2x− (24δ5− 3)s2x
2− (18δ5 + 3)s2

2x− (12δ2
5 + 36δ5− 6)bx−

− (6δ2
5 + 18δ5 − 3)bs2 − 9a1s

2
2b− 9a2

1s2b− 6a1s2b
2 − 12a2

1s
2
2 − 6a1s

3
2 − (6δ5 + 9)bs2

2−
− 2s3

2b− (30δ2
5 + 12δ5 + 9)a2

1 − 9a3
1s2 − s4

2 − (60δ5 + 12)a2
1x− (18δ2

5 + 36δ5 − 12)a1b−
− 30a2

1x
2 − 3a2

1b
2 − 3s2

2b
2 − (24δ2

5 − 6δ5 + 18)x2 − (18δ3
5 + 6δ2

5 + 30δ5 − 12)a1−



UNSTABLE POLARIZED DEL PEZZO SURFACES 39

− 18a3
1δ5 − (16δ3

5 − 6δ2
5 + 36δ5 − 8)x− (9δ2

5 + 3δ5 + 6)s2
2 − 18a1bs2x− 6b2s2δ5

and the polynomial

(3− 6δ2
5)b2 − (4δ3

5 + 18δ2
5 − 6δ5 − 8)b− 4δ4

5 + 2δ3
5 − 18δ2

5 + 8δ5 + 5.

Observe that all coefficients of the former polynomial are negative, since δ5 ≈ 0.7700518.
On the other hand, the latter polynomial is not positive for all b > 0 by the choice of δ5.
This shows that g5(a1, s1, s2, b) < 0 if s1 > δ5, so that f5 < 0 when a2 − a1 > 0.7701.

One can use the same arguments to prove that f5 < 0 if a2−a1 > 0.7698 and b > 0.2308.
See [6] for a complete proof of this lemma. �

Lemma A.4 ([6]). Suppose that f is (6.2). If a2 − a1 > 0.7452, then f < 0.

Lemma A.5 ([6]). Suppose that f is (6.6). If a2 − a1 > 0.848 , then f < 0.

Lemma A.6. Suppose that f is (6.5), a3 + a4 > 1 + a2, a2 − a1 > 0.848. Then f < 0.

Proof. Let g(a1, s1, s2, s3, b) = f̂ . Then g(a1, x+ 21
25
, s2, s3, b) is a sum of the polynomial

− 12x4 − 1558

25
x3 − 3b2s2

3 − 4bs3
2 − 2bs3

3 − 15s2
3x

2 − 186

5
s2

3x− 18s3
2x− 6s3

3x−

− 1112178

15625
x− 1812

25
s2

2x−
387

5
bx2 − 9087

125
bx− 2766

25
s2x

2 − 92586

625
s2x−

− 477

25
bs2

3 − 60a3
1x− 96a2

1x
2 − 58a1x

3 − 9b2x2 − 378

25
b2x− 20bx3 − 32s2x

3−

− 84a1bs2x− 42a1bs3x− 84a1s2s3x− 24bs2s3x− 6b2s2s3 − 15a1bs
2
3 − 6bs2s

2
3−

− 172434

625
a1x− 30a1bs2s3 −

5754

25
a1x

2 − 1383

25
s3x

2 − 46293

625
s3x− 21a2

1s
2
3−

− 36s2
2x

2 − 16s3x
3 − 6bs2

2s3 −
441

25
s2s

2
3 − 21s2s

2
3x−

6432

25
a2

1x− 6a2
1b

2−

− 7204

3125
b− 954

25
bs2s3 − 114a1s2x

2 − 1923

25
a2

1s3 −
2364

25
a1s

2
2 −

2364

25
a1s2s3−

− 15513

625
bs3 − 6a1b

2s3 − 12a1b
2s2 −

1332

25
a1bs3 − 42a2

1bs2 − 21a2
1bs3 −

2664

25
a1bs2−

− 30a1bs
2
2 − 69ba1x

2 − 4248

25
ba1x− 27s2

2s3x−
2412

25
bs2x− 18bs3x

2 − 1206

25
bs3x−

− 954

25
bs2

2 −
6888

25
a1s2x− 36bs2x

2 − 252

25
b2s2 − 12b2s2x−

3444

25
a1s3x−

−36a1s
2
3x−24bs2

2x−
378

25
a1b

2−18a1b
2x−92736

625
a2

1−12bs2
3x−

1812

25
s2s3x−36s2s3x

2−84a1s
2
2x−

−57a1s3x
2−63a2

1s3x−69a2
1bx−

3708

125
s2

3−126a2
1s2x−

126

25
b2s3−6b2s3x−

73902

625
x2−6b2s2

2−

− 4s4
2 − s4

3 −
278

25
s3

2 −
54687

625
a1s3 −

37176

625
s2s3 − 40a3

1s2 − 20a3
1s3 − 48a2

1s
2
2 − 20a1s

3
2−

− 151

25
s3

3 −
37176

625
s2

2 − 7a1s
3
3 − 8s3

2s3 − 9s2
2s

2
3 − 5s2s

3
3 −

3846

25
a2

1s2
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− 48a2
1s2s3 − 24a1s2s

2
3 −

1206

25
a1s

2
3 −

417

25
s2

2s3 −
109374

625
a1s2 − 30a1s

2
2s3−

− 31026

625
bs2 − 8a4

1 −
412

5
a3

1 − 16a3
1b−

2049

25
a2

1b−
219

625
b2 − 43779

625
ba1.

and the polynomial

265178

390625
− 1120738

15625
a1 −

385426

15625
s3 −

770852

15625
s2.

All coefficients of the former polynomial are negative. But we have a1 + s1 + 2s2 + s3 > 1.
This follows from a3 + a4 > 1 + a2. Thus, if s1 > 21

25
, then a1 + 2s2 + s3 > 4

25
, so that

265178

390625
− 1120738

15625
a1 −

385426

15625
s3 −

770852

15625
s2 < 0.

Hence, if a2 − a1 > 21
25

= 0.84, then f(a1, a2, a3, a4, b) < 0. �

Lemma A.7 ([6]). Suppose that f is (6.8), a3 + a4 + a5 6 2 + a2, a2 − a1 > 0.8911.
Then f < 0.

Lemma A.8 ([6]). Suppose that f is (6.7), a3+a4+a5 > 2+a2, a2−a1 > 0.8911. Then f <
0.

Lemma A.9 ([6]). Suppose that f is the polynomial (6.9). If a2 − a1 > 0.9305, then
f < 0. Similarly, if a2 − a1 > 0.915, then f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.10 ([6]). Suppose that f is the polynomial (6.10) and 1+a2 +a3 6 a4 +a5 +a6.
If a2−a1 > 23

25
, then f < 0. Similarly, if a2−a1 > 9

10
, then f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.11 ([6]). Suppose that f is the polynomial (6.11) and a3 +a5 +a6 > 1+a2 +a4.
If a2−a1 > 23

25
, then f < 0. Similarly, if a2−a1 > 9

10
, then f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.12 ([6]). Suppose that f is the polynomial (6.12) and a3 +a4 +a6 > 1+a2 +a5.
If a2−a1 > 23

25
, then f < 0. Similarly, if a2−a1 > 9

10
, then f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.13 ([6]). Suppose that f is the polynomial (6.14) and 1+a2 +a6 6 a3 +a4 +a5.
If a2−a1 > 23

25
, then f < 0. Similarly, if a2−a1 > 9

10
, then f(a1, a2, a3, a4, a5, a6, 1, b) < 0.

Lemma A.14 ([6]). Suppose that f is the polynomial (6.13) and a2 +a5 +a6 > 1+a3 +a4.
If a2−a1 > 23

25
, then f < 0. Similarly, if a2−a1 > 9

10
, then f(a1, a2, a3, a4, a5, a6, 1, b) < 0.
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