Title:
Prevalence and magnitude of preseason clinically-significant single-leg balance and hop test asymmetries in an English adult netball club

Author Name and Affiliations:

First Author and Corresponding Author: Nicholas C Clark
School of Sport, Rehabilitation, and Exercise Sciences. University of Essex. Wivenhoe Park, Colchester, Essex, CO4 3SQ.
n.clark@essex.ac.uk

Second Author: Elaine M Mullally
Faculty of Sport, Health and Applied Sciences. St Mary’s University, Waldegrave Road, Twickenham, TW1 4SX
elaine.mullally@stmarys.ac.uk

PII: S1466-853X(19)30303-7
DOI: https://doi.org/10.1016/j.ptsp.2019.08.008
Accepted: 22 August 2019
To appear in: Physical Therapy in Sport

© 2019. This manuscript version is made available under the Creative Commons CC-BY-NC-ND 4.0 license

To cite this manuscript: Clark, N.C., Mullally E.M., Prevalence and magnitude of preseason clinically-significant single-leg balance and hop test asymmetries in an English adult netball club, Physical Therapy in Sport (2019), doi: https://doi.org/10.1016/j.ptsp.2019.08.008
Prevalence and Magnitude of Preseason Clinically-Significant Single-Leg Balance and Hop Test Asymmetries in an English Adult Netball Club
ABSTRACT

Objectives: Side-to-side asymmetry of lower-limb motor-performance is associated with increased noncontact injury risk in agility-sports. Side-to-side symmetry-analyses using single-leg balance and hop tests has not been reported for community-level adult netball players. The purpose of this study was to perform preseason side-to-side symmetry-analyses using eyes-closed-balance (ECB), triple-hop-for-distance (THD), single-hop-for-distance (SHD), and vertical-hop (VH) tests.

Design: Cross-sectional

Setting: Community-level adult netball club.

Participants: Twenty-three female players (age 28.7±6.2yr; height 171.6±7.0cm; mass 68.2±9.8kg).

Main Outcome Measures: Right-left group-level comparisons (paired t-test) and individual-level comparisons (absolute-asymmetry (%)). A limb symmetry index was calculated for each test and a clinically-significant absolute-asymmetry defined as >10%. Clinically-significant absolute-asymmetry prevalence (%) was computed for each test.

Results: There were no right-left significant differences for any test. Maximum absolute-asymmetries for the ECB, THD, SHD, and VH were 93.3%, 15.2%, 16.7%, and 60.3%, respectively. The prevalence of clinically-significant absolute-asymmetries for the ECB, THD, SHD, and VH was 91.3%, 8.7%, 8.7%, and 52.2%, respectively.

Conclusions: Group-level comparisons with statistical tests fail to expose the extent of clinically-significant absolute-asymmetries. Most players demonstrated preseason clinically-significant absolute-asymmetries for the ECB and VH tests. Preseason clinically-significant absolute-asymmetries that may predispose increased lower-limb noncontact injury risk are widespread in a community-level adult netball club.

KEYWORDS

Netball, balance test, hop test, limb symmetry index
INTRODUCTION

Netball is a predominantly female team sport with millions of players across more than 113 countries (1). In England in 2015, there were 2,945 netball clubs and 104,000 players (2) which increased to 180,200 players in 2017 (3). Since then, community-level netball participation in England has grown further with an increase in netball’s popularity after the women’s national team won the Commonwealth Games gold medal in 2018 (4). With an increase in sports participation comes an increase in the number of injuries (5). Netball injuries have reported rates of 9.49 injuries/1,000 players (6) and 500.7 injuries/1,000 playing hours (7). Of all injuries, 57.2-85.3% occur to the lower-limb (6, 8) with knee and ankle injuries being most frequent (7-10) and knee trauma representing almost one-third of netball-related hospitalisations (8). Such injuries result in profound consequences including disability (6, 11, 12), socioeconomic burden (6, 11, 13), and premature retirement from netball (14). Because netball participation in England is increasing, and because of the potential consequences of knee and ankle injury, strategies are needed to mitigate the effects of injury for players, teams, and society, and prolong players’ safe participation across the lifespan.

In epidemiology, ‘injury control’ refers to preventing or reducing the severity of injury (15) and includes prevention, acute care, and rehabilitation phases of intervention (16). In the injury prevention phase, single-leg balance (SLB) and hop (SLH) tests are used to make side-to-side comparisons of motor-performance and inform judgements about lower-limb injury predisposition and risk (17-19). Single-leg balance and SLH tests are popular in clinical environments because they are quick-and-easy to perform and reliable and valid measures of lower-limb functional joint stability (20-23). The administration of assessments to profile athletes and identify those predisposed to injury is good clinical practice (24-26) and lower SLB and SLH performance is associated with higher lower-limb injury risk in agility-sport athletes (18, 27-30). When making SLB and SLH side-to-side comparisons that inform clinical reasoning about first-time injury predisposition, consideration is for whether statistically or clinically significant side-
to-side differences exist. Making a side-to-side comparison of the quantity of a variable represents a between-limb symmetry analysis. Symmetry occurs when the variable is equal in magnitude in both limbs. Asymmetry occurs when the variable is unequal in magnitude in both limbs.

At group-level, symmetry analysis involves procedures to determine if statistically significant side-to-side differences exist for measures of central tendency (e.g. mean, median) (31-35). A disadvantage of group-level analysis is that it masks clinically-significant asymmetries in some individuals in the group (31-33). Measures of central tendency can mask clinical significance because they reduce group data to a single central value that does not identify extreme values either side of that value, presenting an incomplete picture of data distribution across all individuals in the group (36). Consequently, measures of central tendency lose clinical meaningfulness because individuals who demonstrate extreme values and resulting clinical concerns are missed.

At individual-level, symmetry analysis involves procedures to determine if clinically-significant side-to-side differences exist for individuals’ mean or maximum values (31, 32, 37). Procedures involve the calculation of some form of ‘limb symmetry index’ (LSI) (31-33, 38). Calculation of an LSI involves one limb’s value divided by the other limb’s value and the result multiplied by 100 to yield a percentage (20, 33, 38); 100% represents symmetry, and the size of any difference below/above 100% represents the size of the absolute-asymmetry (e.g. LSIs of 85% and 115% both indicate an absolute-asymmetry of 15%) (29, 31, 32). The LSI is valuable because it identifies the size of a clinically-significant asymmetry in the individual (31, 32) where ‘clinically-significant’ is historically defined as an absolute-asymmetry >10% (39-41). Recently, SLH test asymmetries >10% have been prospectively associated with higher first-time lower-limb noncontact injury risk (29, 30). Because lower-limb motor-performance side-to-side comparisons and asymmetry-analyses are clinically valuable for preseason screening and injury predisposition and risk profiling (18, 27, 29, 42, 43) the use of preseason SLB and SLH testing and symmetry analyses is a clinically diligent and sensible strategy in netball.
Several studies have employed lower-limb motor-performance tests with female netball players.

Single-leg balance tests have been performed using sophisticated computer equipment with elite players in South Africa (44) and high-grade club players in New Zealand (45). Single-leg balance tests have also been performed using the Star Excursion Balance Test (SEBT) with Superleague players in England (46), using a modified SEBT with university players also in England (47), and using eyes-closed-balance (ECB) for time with school players in New Zealand (48). Single-leg hop tests have been performed using a force-plate and a vertical/forward/lateral task with national-level players in New Zealand (37) and a vertical-hop (VH) with club-level players in Australia (49). Single-leg hop tests have also been performed using the single-hop-for-distance (SHD) and triple-hop-for-distance (THD) with regional academy players in England (50). Of the studies cited, only three engaged in preseason assessments (44, 48, 50) with two focusing on players aged <19 years (yr) (44, 48). There is, therefore, an absence of literature reporting preseason lower-limb motor-performance in adult players. Adult players in local communities represent the largest proportion of players in England (2), and so characterising preseason lower-limb motor-performance is important to provide data about the frequency of clinically-significant asymmetries and injury predisposition in this population. Also of the studies cited, three required sophisticated computer equipment (37, 44, 45) and only one performed symmetry analyses (37). There is, subsequently, also an absence of literature regarding the use of ‘field-based’ lower-limb motor-performance tests with widely available equipment to identify clinically-significant asymmetries and injury predisposition with any adult netball player at any netball club in any country. A battery of low-cost, portable, and reliable lower-limb motor-performance tests capable of providing data useful for injury predisposition and risk profiling is a valuable tool for informing a community club’s preseason planning and rational changes in practice.

There were two purposes for this study: 1. to determine if there were statistically significant side-to-side differences for the preseason single-leg ECB, THD, SHD, and VH in uninjured, adult, female netball players at one English community netball club; 2. to determine the prevalence of
clinically-significant preseason asymmetries for the ECB, THD, SHD, and VH tests. Tests were chosen because they are associated with first-time lower limb injury risk in agility-sport athletes (18, 27-30) and because they are portable, practically viable at many clubs, and are meaningful to players and coaches regarding athletic performance. It was hypothesised: 1. there would be statistically significant side-to-side differences for the ECB, THD, SHD, and VH tests; 2. the majority of players would demonstrate clinically-significant asymmetries for the ECB, THD, SHD, and VH tests. This study is original because no previous work has reported side-to-side comparisons and asymmetry analyses for a battery of SLB and SLH field-tests in uninjured, adult, female netball players at one English community netball club. This study’s findings will be practically significant because they will highlight the extent to which clinically-significant preseason lower-limb motor-performance asymmetries linked to injury predisposition and risk exist at a single club and require subsequent consideration for intervention.

METHODS

Study design

Cross-sectional.

Sample size calculation

An a priori power analysis was performed using G*Power (51). To detect a side-to-side difference with a medium effect size (ES) of 0.50, 80% power, and significance set at 0.05, 27 participants were required.

Ethical approval, participant recruitment, informed consent

University ethics approval was obtained. Participants were recruited from an English community netball club using an email invitation distributed by the Club Secretary to all adult players. Informed consent and a physical activity readiness questionnaire were completed by all participants.
Participants

Inclusion criteria were: females aged 18-55yr participating in one or more netball training/matches per week and registered for unrestricted preseason training. Exclusion criteria were: current lower-quadrant pain, any time-loss lower-quadrant injury in the previous two months (i.e. injury requiring withdrawal from one or more training/matches), any history of lumbar spine/hip/knee/ankle fracture or surgery, and any current neurological condition that could affect sensorimotor processing at any level of the nervous system (e.g. concussion). Twenty-three players volunteered and reported being uninjured and available for selection (mean±standard deviation: age 28.7±6.2yr; height 171.6±7.0 centimetres (cm); mass 68.2±9.8 kilograms (kg)). The club competed in the London and South East Regional League and the Surrey County League.

Instrumentation.

Height was measured with a SECA 213 stadiometer (HaB Direct, Warwickshire, UK). Mass was measured with SECA 760 weighing scales (HaB Direct, Warwickshire, UK). Leg-length was measured with a fibreglass anthropometric measuring tape (HaB Direct, Warwickshire, UK). The ECB test was measured with a Junso JS510 digital stopwatch (Sports Warehouse, Edinburgh, UK). The THD and SHD were measured with a fibreglass athletics measuring tape (Sports Warehouse, Edinburgh, UK). The VH was recorded with a Panasonic HC-V720 high-definition Camcorder (Panasonic UK Ltd, Berkshire, UK) and analysed using Kinovea freeware (52).

Procedures.

Data collection occurred at the club’s outdoor training site (concrete netball court) in one session. Players were instructed to avoid fatiguing exercise/sports for 48 hours beforehand. Test/limb order considered skill demands (high-to-low), cumulative muscle fatigue, and time-efficiency. Data collection occurred in station order format: anthropometry (height, mass, leg-length), barefoot ECB, shod THD, shod SHD, and shod VH. Limb order was right then left, players
alternated between limbs for each test. After the anthropometry and ECB stations, players
completed a standardised warm-up (toe-walking, heel-walking, parallel squats, forward lunge-
walk, right lateral-lunge walk, left lateral lunge-walk, high-knee lifts, butt-kicks, right and left
single-leg squats). Arm movement was permitted for all SLH tests to assist balance (21, 53, 54).
Practice trials for all tests were followed by three measured trials for each limb. Trials were
terminated if players reported any pain.

For anthropometry, standing height and mass were measured using routine procedures (55). For
leg-length (56), players were barefoot and supine-lying on a portable treatment table. Leg-length
was measured once from the anterior superior iliac spine to the tip of the medial malleolus using
the anthropometric tape measure to the nearest millimetre (mm). Reliability (intraclass correlation
coefficient (ICC)=0.99) has been reported for this procedure (56).

For the ECB test (57), players stood on the test-leg on a thin mat, the opposite leg flexed with the
heel level with but not touching the approximate mid-point of the standing leg’s calf, the arms
crossed with the hands flat on the chest (Figure 1). Players were instructed to assume the test
position, look forwards, and acquire a steady posture before closing their eyes. Balance was
measured using the digital stopwatch in seconds (s) from the moment the eyes closed to the
moment balance was lost (opening eyes, uncrossing arms, touching heel to the calf, shifting the
stance leg foot, putting the non-stance leg foot to the floor). Reliability has been reported for the
timed ECB test (ICC=0.83) (57).
For the THD (58) and SHD (33), players stood on the test-leg, the distal aspect of the foot aligned with the posterior edge of a start-line (Figure 2). For the THD, players rapidly hopped forwards on the same leg three times to stick the final landing (Figure 2). For the SHD, players countermovement hopped forwards on the same leg once to stick the landing (Figure 2). For both tests, loss of balance and placing the opposite foot on the floor voided the trial and resulted in another attempt. Hop distance was measured from the posterior edge of the start-line to the distal aspect of the foot to the nearest 0.5cm. Reliability has been reported for the THD (ICC=0.95) (59) and SHD (ICC=0.96) (59).
The VH was modified from previous work (38, 60). Players stood on the test-leg with the video camera flat on the floor, the front of the camera 30cm from the lateral border of the foot and perpendicular to the mid-point of the foot’s long axis. Players countermovement hopped upwards once as far as possible, straightening the leg (Figure 3), and then sticking the final landing. If the test-leg failed to straighten or opposite foot touched down first the trial was voided and another attempt performed. Players were given a “3, 2, 1, Go” countdown with camera recording started before the “Go” and stopped after the player had both feet on the ground. The camera was not moved during filming; players faced one direction for one leg and then turned to face the opposite direction for the other leg. Hop distance was calculated from flight-time. Reliability for the calculation of distance from flight-time has been reported (ICC=1.00) (60).
For the VH, video footage was transferred to a laptop computer with Kinovea freeware (52). Test-leg take-off and landing were defined as the first frame in which the foot was fully off the ground and any part of the foot was touching the ground, respectively (60). The freeware’s timer was used to calculate flight-time (s), and VH height was then calculated using the formula $h = (t^2 \times 1.22625)$ where h is the height in meters and t is the flight-time in seconds (60). Hop height in meters was converted to centimetres. Normalisation of data to leg-length was performed for all SLH test trials (61): percent leg-length (%) = (distance hopped (cm) ÷ leg-length (cm)) × 100.

The mean normalised values for each leg within all SLH tests were used for all analyses.

Data Analyses

Summary statistics were calculated including the absolute between-limb differences (right mean – left mean). The +/- sign was removed from the difference. There were no missing data. For statistical analyses (group-level), normality of data was assessed with histogram inspection and Shapiro-Wilk tests. Alpha was set a priori at 0.05. Paired t-tests were used to compare within-test right- and left-side mean values (20, 33). Bonferroni-corrected alpha was set a priori at 0.01 (62, 63). In addition, 95% confidence intervals (CI) were calculated for within-test right- and left-side
values (63-65) and Cohen’s d was estimated for within-test right-left ES (62). Effect sizes of 0.20, 0.50, and 0.80 were considered small, medium, and large, respectively (62).

For clinical analyses (individual-level), an LSI (%) was calculated for each player: (right mean \(-\) left mean) \(\times \) 100 (32, 39, 66). An LSI of 100% represented side-to-side symmetry, <100% lower ride-side/higher left-side performance, >100% lower left-side/higher right-side performance; the LSI, therefore, indicated both the magnitude (size) and direction (side) of asymmetry. Because the size of asymmetry is the principal matter of clinical interest (20), absolute-asymmetry was calculated: 100% \(-\) player’s LSI. The +/- sign was removed from the difference. Because a clinically-significant absolute-asymmetry is historically defined as an asymmetry >10% (39-41) and an asymmetry >10% has been reported as prospectively associated with first-time noncontact lower limb injury risk (29, 30), an absolute-asymmetry >10% was used in this study to define ‘clinically-significant’ and players ‘at-risk’ of injury (30). Counts were made of players with absolute-asymmetries >10% and overall-prevalence (%) computed for each test: (number of players with an absolute-asymmetry >10% \(\div \) total number of players) \(\times \) 100 (67, 68). For the players with an absolute-asymmetry >10%, side-prevalence was calculated for those with right-side lower performance (\(\% =\) number of players with right-side lower performance \(\div\) number of players with absolute-asymmetry >10%); the remaining proportion represented those with left-side lower performance.

RESULTS

Although the power analysis required 27 players, only 23 volunteered to participate from a potential pool of 50 players. No player experienced pain during testing, and there were no adverse events. Summary statistics are presented in Table 1 and 2.
All data were normally distributed (P > 0.05). There were no significant side-to-side differences for the ECB (P = 0.02), THD (P = 0.69), SHD (P = 0.87), or VH (P = 0.31) tests. The ECB test right and left mean values and 95% CI were, however, quite different (Table 2). The right and left mean values and 95% CI for the THD, SHD, and VH were similar (Table 2). The ECB test demonstrated a medium ES, all other ES were small (Table 2).

Summary statistics for LSIs and absolute-asymmetries are presented in Table 3. The minimum and maximum LSIs for the ECB and VH tests extended below and above 100% indicating some players had large absolute-asymmetries where the lower performance was demonstrated by the right or left side, respectively (Table 3). Very large absolute-asymmetries were evidenced by the maximum absolute-asymmetries for the ECB and VH tests (Table 3). The overall-prevalence of absolute-asymmetries > 10% was high for the ECB test indicating the vast majority of players demonstrated clinically-significant asymmetries (Table 3). The overall-prevalence of absolute-asymmetries > 10% for the VH indicated that more than half of the players demonstrated...
clinically-significant asymmetries (Table 3). The overall-prevalence of clinically-significant absolute-asymmetries was low for the THD and SHD (Table 3). For side-prevalence, the majority of players had right-side lower performance for the ECB test whereas for the VH test the majority of players had left-side lower performance (Table 3).

Table 3. Summary statistics for limb symmetry indices and absolute-asymmetries (n=23)

<table>
<thead>
<tr>
<th>Eyes Closed Balance</th>
<th>Triple Hop</th>
<th>Single Hop</th>
<th>Vertical Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI (%)</td>
<td>Absolute LSI (%)</td>
<td>Absolute LSI (%)</td>
<td>Absolute LSI (%)</td>
</tr>
<tr>
<td>Min</td>
<td>17.5</td>
<td>84.8</td>
<td>83.3</td>
</tr>
<tr>
<td>Max</td>
<td>193.3</td>
<td>112.1</td>
<td>116.4</td>
</tr>
<tr>
<td>95% CI</td>
<td>59.6, 99.5</td>
<td>96.8, 101.9</td>
<td>97.6, 102.7</td>
</tr>
<tr>
<td>Mean</td>
<td>79.6</td>
<td>99.3</td>
<td>100.2</td>
</tr>
<tr>
<td>SD</td>
<td>46.2</td>
<td>5.8</td>
<td>6.0</td>
</tr>
<tr>
<td>O-Prevalence (%)</td>
<td>91.3</td>
<td>5.8</td>
<td>6.0</td>
</tr>
<tr>
<td>S-Prevalence (%)</td>
<td>76.2</td>
<td>5.8</td>
<td>5.8</td>
</tr>
</tbody>
</table>

LSI = limb symmetry index (see text for equation)

Absolute Asymmetry = absolute difference (+/- sign removed) between an LSI of 100% and an actual LSI

Min = minimum; Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound)

SD = standard deviation

O-Prevalence = overall-prevalence (see text for definition and equation)

S-Prevalence = side-prevalence (see text for definition and equation)

DISCUSSION

Netball participation in England is rapidly increasing at community-level versus elite/professional-level (3, 4) and, therefore, netball injury prevention efforts at community-level are critical to maximise positive impacts on the largest numbers of players and help mitigate the socioeconomic burden of netball lower-limb injury. The first purpose of this study was to determine if there were statistically significant side-to-side differences for the preseason single-leg ECB, THD, SHD, and VH tests in uninjured, adult, female netball players at one English community netball club. It was hypothesised there would be statistically significant side-to-side differences for all tests. Findings demonstrate there were no statistically significant side-to-side differences for any test. The second purpose of this study was to determine the prevalence of clinically-significant preseason asymmetries for the ECB, THD, SHD, and VH tests. It was
hypothesised the majority of players would demonstrate clinically-significant asymmetries for all tests. Findings demonstrate the majority of players had clinically-significant asymmetries for the ECB and VH tests only.

Comparison of the ECB and normalised SLH test values for this study (Table 2) to previous literature is not possible because no other work has reported such data for uninjured, adult, female netball players at one English community netball club. The alternative is to compare the ECB and non-normalised hop test values for this study (Table 1) to data reported for uninjured female netball players of different age and other similar adults. For the ECB test, mean values of 15.8-20.8s for female netball players aged 15-17yr (48) and 28.8s for a mixed-sex group aged 20-29yr (69) have been reported. For the THD, mean values of 586.0-590.0cm for female regional academy netball players aged 17-19yr (50) and 519.4-532.4cm for female elite basketball players with mean age 20.5yr (70) are recorded. For the SHD, mean values of 153.8-154.6cm for female elite basketball players with mean age 20.5yr (70) and 187.0-188.0cm for female regional academy netball players aged 17-19yr (50) have been reported. For the VH, mean values of 16.9-17.6cm for female recreational agility-sport athletes (33) and 29.0-30.0cm for female elite tennis players aged over 16yr (71) are recorded. Based on the studies cited here, mean test values for the present work appear comparable with some literature. Until more literature examining preseason single-leg motor-performance in uninjured, adult, female community-level netball players become available, the present data serve as reference data for such players.

This study found no statistically significant side-to-side difference in group mean values for any test (Table 2). Such findings are consistent with ECB and SHD right-left comparisons in uninjured adults (69, 72). However, such findings are inconsistent with other work that identified statistically significant differences for THD right-left comparisons in uninjured female elite basketball players (70) (right-left ES=0.20). Use of ES alongside P-values is advocated because P-values alone do not give an indication of the magnitude of difference between two central
tendency values for the same variable (63, 64). Use of the 95% CI is advocated because ES themselves can distort study findings and be misleading (65). Although the ECB test demonstrated a non-significant side-to-side difference, the right-left ES was medium and the right and left 95% CI were quite different (Table 2) suggesting there were, in fact, real performance differences between the right and left sides. Such findings are aligned with ECB data for adolescent female netball players (48) (right-left ES=0.46). In contrast, for the THD, SHD, and VH, right-left ES were small (trivial) and right and left CI were very similar (Table 2). Such findings are also aligned with THD and SHD data for regional-level netball players (50) (right-left ES=0.09-0.10). Regardless of the advocated use of ES alongside P-values, and regardless of the trivial right-left ES for the THD, SHD, and VH in this study (Table 2), ES analysis still represents group-level analysis which employs a variable’s mean and/or standard deviation value for its calculation (65). Such procedures, therefore, do not account for individuals with extreme values either side of the central value and for whom there may be individual clinical concerns. Consequently, although group-level right-left comparisons may demonstrate trivial side-to-side ES, such comparisons are not useful in injury prevention because they fail to identify individuals within the group who possess clinically-significant side-to-side differences and asymmetries (31-33, 37).

An absolute-asymmetry >10% was used in this study to define clinically-significant asymmetry because an absolute-asymmetry >10% is prospectively associated with first-time noncontact lower-limb injury risk (29, 30). The majority of players demonstrated a clinically-significant absolute-asymmetry for the ECB and VH tests (Table 3). Such findings are consistent with previous work in uninjured agility-sport athletes (31). Because the majority of players in this study demonstrated a clinically-significant absolute-asymmetry for either the ECB test or VH (Table 3), this could indicate the majority of players were predisposed to and at-risk of first-time noncontact lower-limb injury at that point-in-time. As such, preseason correction of clinically-significant absolute-asymmetries using appropriate interventions should be considered by team
coaches and clinical personnel. Generic injury prevention interventions (i.e. standardised whole-
team exercise programmes) are known to be effective for reducing knee and ankle injury
incidence in agility-sport athletes (73-75). Alternatively, specific and targeted injury prevention
interventions (i.e. individualised exercise programmes) are also advocated for beneficially
modifying injury risk factors in agility-sport athletes (76-78). Because some players had right-
side lower performances and other players had left-side lower performances for different tests
(Table 3), individualised interventions may need to be prioritised over generic whole-team
training sessions (26, 79). Coaches and clinical personnel will need to decide which intervention
method best suits their team’s logistical needs. Based on the present data, because clinically-
significant preseason absolute-asymmetries were highly prevalent, preseason screening for
clinically-significant absolute-asymmetries is a clinically diligent and overall sensible strategy in
English community-level adult netball. Correction of preseason clinically-significant absolute-
asymmetries may then contribute to the prevention of in-season knee and ankle injuries.

Potential limitations include not performing dominant-to-nondominant side-to-side comparisons
(33, 37, 72). Such comparisons were not performed because dominance changes according to task
demands (e.g. skill versus load-bearing) (80, 81) and because the size of an absolute-asymmetry
is the principal factor that first draws clinical attention after which the side with the lower task
performance is identified. Potential limitations also include using a simple LSI formula compared
to other more complex equations employing right and left designators within several
mathematical operations (82). Such equations were not used because the LSI formula used in this
study is indeed simple with few mathematical operations, is quick to complete, and ultimately
yields a clinically meaningful value. Potential limitations further include not sub-grouping players
into different team positions because different positions have distinct physiological/technical
demands (83). Sub-grouping was not performed in this study because individual-level analysis
and intervention-customisation are of most clinical importance when considering injury control
interventions (26). Future research should replicate this study’s design with other similar player
samples to corroborate its findings. Future research should also replicate this study’s design with community-level child/adolescent samples to establish the prevalence of clinically-significant absolute-asymmetries in the growing player. Both contexts of suggested future research will provide valuable information for the community-level netball-specific lower-limb injury control process.

CONCLUSION

The test battery used in this study was safely employed with a community-level netball club. Uninjured, adult, female netball players did not demonstrate preseason statistically significant side-to-side differences in ECB, THD, SHD, or VH performance. Group-level asymmetry analyses using statistical significance tests, however, masked the extent to which individual players possessed clinically-significant absolute-asymmetries that may require corrective intervention. Researchers should use individual-level as well as group-level data analysis methods when reporting asymmetry analyses with groups of athletes. The ECB and VH tests may be particularly useful for identifying preseason clinically-significant asymmetries, although the THD and SHD should also be employed for thoroughness because they are also capable of identifying players with clinically-significant absolute-asymmetries. This study highlights the widespread existence of preseason clinically-significant lower-limb motor-performance absolute-asymmetries linked to injury predisposition and risk in a single English adult netball club. This study also highlights a battery of low-cost and portable field-tests that are capable of contributing to diligent and sensible netball club preseason screening.
REFERENCES

Highlights

- Group-level statistics fail to expose preseason clinically-significant asymmetries
- Most players had clinically-significant asymmetry for the eyes-closed-balance test
- Most players had clinically-significant asymmetry for the vertical-hop test
- Clinically-significant asymmetry is widespread in a community-level adult netball
Conflicts of Interest

None declared.

Ethical statement

This study received institutional ethics approval and all participants gave informed consent to participate.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Acknowledgements

Thank you to Carrie M. King, Stephanie C. Davies, and Alice M. Mooney for their assistance with parts of data collection.