

International Journal of Group TheoryISSN (print): 2251-7650, ISSN (on-line): 2251-7669Vol. 8 No. 4 (2019), pp. 5-9.© 2019 University of Isfahan

FURTHER RIGID TRIPLES OF CLASSES IN G_2

MATTHEW CONDER AND ALASTAIR LITTERICK*

Communicated by Gunnar Traustason

ABSTRACT. We establish the existence of two rigid triples of conjugacy classes in the algebraic group G_2 in characteristic 5, complementing results of the second author with Liebeck and Marion. As a corollary, the finite groups $G_2(5^n)$ are not (2, 4, 5)-generated, confirming a conjecture of Marion in this case.

1. Introduction

Let G be a connected simple algebraic group over an algebraically closed field K, and let C_1, \ldots, C_s be conjugacy classes of G. Following [16], we say the s-tuple $\mathbf{C} = (C_1, \ldots, C_s)$ is rigid in G if the set

$$\mathbf{C}_0 \stackrel{\text{def}}{=} \{ (x_1, \dots, x_s) \in C_1 \times \dots \times C_s : x_1 x_2 \cdots x_s = 1 \}$$

is non-empty and forms a single orbit under the action of G by simultaneous conjugation.

Some well-known examples of rigid tuples of classes in simple algebraic groups are the Belyi triples and Thompson tuples, defined in [18]. Other rigid triples are known, see for instance [2, 3, 5, 9, 17]. Rigid tuples of classes are interesting in the context of the inverse Galois problem [12], and also arise naturally in the theory of ordinary differential equations [7].

Recall that a group is (a, b, c)-generated if it is generated by elements x, y and z, of respective orders a, b and c, such that xyz = 1. The group is then called an (a, b, c)-group, and the triple (x, y, z)

.

MSC(2010): Primary: 20G40; Secondary: 20D06.

Keywords: triangle groups, finite groups of Lie type, representation varieties.

Received: 08 June 2018, Accepted: 26 July 2018.

^{*}Corresponding author.

http://dx.doi.org/10.22108/ijgt.2018.111467.1481

is called an (a, b, c)-triple of the group. The theory of (a, b, c)-generation of finite groups has close connections to rigidity, for instance it is a basic observation that given a rigid tuple **C** of classes of *G*, all subgroups $\langle x_1, \ldots, x_s \rangle$ for $(x_1, \ldots, x_s) \in \mathbf{C}_0$ are conjugate in *G*, so that there is at most one r > 0such that the finite subgroup $G(p^r)$ is generated by elements in such an *s*-tuple.

Let $K = \mathbb{F}_5$ be the algebraic closure of the field of five elements. In [9] it is shown that the simple algebraic group $G = G_2(K)$ has a rigid triple of conjugacy classes of elements of orders 2, 5 and 5, and any triple of elements (x_1, x_2, x_3) in the corresponding set \mathbf{C}_0 generates a copy of Alt₅. This is then used to show that none of the groups $G_2(5^n)$, $SL_3(5^n)$ or $SU_3(5^n)$ is a (2, 5, 5)-group.

Here we produce two further rigid triples of classes in $G = G_2(K)$, closely related to the triple above. Recall from [1] that G has a unique class of involutions, with representative t, say, and $C_G(t) = A_1 \tilde{A}_1$ is a central product of two subgroups $SL_2(K)$, where A_1 (resp. \tilde{A}_1) is generated by a long (resp. short) root subgroup of G. There also exist two classes of elements of order 4, with representatives s_1 and s_2 , such that $C_G(s_1) = A_1 T'$ and $C_G(s_2) = \tilde{A}_1 T''$, where T' and T'' are 1-dimensional tori. Finally, recall from [8] that G has three classes of unipotent elements of order 5: the long and short root elements, and the class labelled $G_2(a_1)$, with representative $u = x_\beta(1)x_{3\alpha+\beta}(1)$, where α (resp. β) is the short (resp. long) simple root of G. From [11, Table 22.1.5], the centraliser $C_G(u) = U_4$.Sym₃, where U_4 is a 4-dimensional connected unipotent group.

Theorem 1.1.

- (i) The triples of classes $\mathbf{C} = (t^G, s_1^G, u^G)$ and $\mathbf{D} = (t^G, s_2^G, u^G)$ are rigid in $G = G_2(K)$.
- (ii) Every triple of elements in C₀ or D₀ generates a subgroup isomorphic to the symmetric group Sym₅.
- (iii) None of the groups $G_2(5^n)$ are a (2, 4, 5)-group for any n. Neither are the groups $SL_3(5^n)$ or $SU_3(5^n)$.

Remark 1.2.

- (1) Each subgroup Sym₅ in part (ii) here contains a subgroup Alt₅ arising from [9, Theorem 1(ii)].
- (2) Keeping track of details in the proof in [9] shows that G₂(K) has a unique class of subgroups Alt₅. These subgroups have centraliser Sym₃, and by Lang's theorem these split into three classes in G₂(5^r), with centraliser orders 6, 3 and 2. Similarly, if S and S' are representatives of the two subgroup classes in part (ii) here, then C_G(S) ≅ Sym₃, while C_G(S') is cyclic of order 2. It follows that the class of S (resp. S') splits into 3 (resp. 2) classes of subgroups in G₂(5^r), with centralisers of order 6, 3, 2 (resp. 2 and 2).
- (3) A conjecture of Marion [14] states that, for a simple algebraic group G in characteristic p, if δ_i denotes the dimension of the variety of elements of G of order i and if δ_a + δ_b + δ_c = 2 dim(G), then at most finitely many of the finite groups G(p^r) are (a, b, c)-groups. For G of type G₂, this criterion holds precisely when (a, b, c) = (2, 4, 5) or (2, 5, 5). Hence part (iii), together with [9, Theorem 1(iii)], verifies the conjecture for G = G₂ in characteristic 5. A non-constructive proof

2. Proof of the Theorem

We proceed in the manner of [9]. Let $G = G_2(K)$ and $t, u, s_1, s_2 \in G$ as above. If σ is a Frobenius morphism of G induced from the field map $x \mapsto x^5$ of K, then

$$G = \bigcup_{n=1}^{\infty} G_{\sigma^n} = \bigcup_{n=1}^{\infty} G_2(5^n).$$

The element $u = x_{\beta}(1)x_{3\alpha+\beta}(1)$ is a regular unipotent element in a subgroup $A_2 = SL_3(K)$ of Ggenerated by long root groups, and therefore lies in a subgroup $\Omega_3(5) \cong \text{Alt}_5$ of G, which we denote by A. Now, let $S = N_{A_2}(A) = SO_3(5) \cong \text{Sym}_5$. Following the proof given in [9] we find that $N_G(A) = S \times C_G(A)$ and $C_G(A) = \langle z, \tau \rangle \cong \text{Sym}_3$, where $\langle z \rangle$ is the centre of A_2 and τ is an outer involution in $N_G(A_2) = A_2.2$. Note that $C_{A_2}(\tau) = SO_3(K)$, so $\tau \in C_G(S)$.

Let v be an involution in $S \setminus A$, so that $S = \langle A, v \rangle$, and define $S' = \langle A, v\tau \rangle$, so that $S' \cong \text{Sym}_5$ also. Then $C_G(S)$, $C_G(S') \leq C_G(A) = \langle z, \tau \rangle$ and therefore

(2.1)
$$C_G(S) = \langle z, \tau \rangle,$$

(2.2)
$$C_G(S') = \langle \tau \rangle$$

In particular S and S' are not conjugate in G.

Next consider the set of (2, 4, 5)-triples of Sym₅. It is straightforward to show that there are exactly 120 such triples, and that Sym₅ acts transitively on these by simultaneous conjugation.

Now let $\mathbf{C} = (t^G, s_1^G, u^G)$ and $\mathbf{D} = (t^G, s_2^G, u^G)$, and for q a fixed power of 5 let $\mathbf{C}_0(q) = \mathbf{C}_0 \cap G_2(q)^3$ and $\mathbf{D}_0(q) = \mathbf{D}_0 \cap G_2(q)^3$. We now show that $|\mathbf{C}_0(q)| = |\mathbf{D}_0(q)| = |G_2(q)|$. For this we require the character table of $G_2(q)$, given in [1] and available in the CHEVIE [4] computational package. Since $C_G(u)/C_G(u)^\circ = S_3$, an application of Lang's theorem [13, Theorem 21.11] shows that $u^G \cap G_2(q)$ splits into three classes, with representatives denoted in [1] by u_3 , u_4 and u_5 , and respective centraliser orders $6q^4$, $3q^4$ and $2q^4$. For $x, y, z \in G_2(q)$ let a_{xyz} be the corresponding class algebra constant. Calculations with the character table show that

$$a_{ts_iu_j} = \begin{cases} q^4 & \text{if } i = 1, \ j \in \{3, 4, 5\} \text{ or } i = 2, \ j = 4, \\ 3q^4 & \text{if } i = 2, \ j = 3, \\ 0 & \text{if } i = 2, j = 5. \end{cases}$$

7

8 Int. J. Group Theory 8 no. 4 (2019) 5-9

and it follows that

$$|\mathbf{C}_{0}(q)| = \sum_{j=3}^{5} |u_{j}^{G_{2}(q)}|a_{ts_{1}u_{j}} = |G_{2}(q)| \left(\frac{q^{4}}{6q^{4}} + \frac{q^{4}}{3q^{4}} + \frac{q^{4}}{2q^{4}}\right) = |G_{2}(q)|,$$
$$|\mathbf{D}_{0}(q)| = \sum_{j=3}^{5} |u_{j}^{G_{2}(q)}|a_{ts_{2}u_{j}} = |G_{2}(q)| \left(\frac{3q^{4}}{6q^{4}} + \frac{q^{4}}{2q^{4}}\right) = |G_{2}(q)|.$$

Now let \mathbf{E} denote (resp. \mathbf{E}') denote the set of triples $(x_1, x_2, x_3) \in \mathbf{C}_0 \cup \mathbf{D}_0$ which generate a conjugate of S (resp. a conjugate of S'). Then G is transitive on both \mathbf{E} and \mathbf{E}' , since if $\langle x_1, x_2, x_3 \rangle = \langle y_1, y_2, y_3 \rangle^g$ are each isomorphic to Sym₅, then (x_1^g, x_2^g, x_3^g) and (y_1, y_2, y_3) are (2, 4, 5) triples in a fixed copy of Sym₅, hence conjugate in Sym₅ by the observation above. Moreover both \mathbf{E} and \mathbf{E}' are non-empty, since S and S' each contain (2, 4, 5)-triples and a unique conjugacy class of unipotent elements, whose elements are conjugate to an element of A and therefore are conjugate to u. By (2.1) and (2.2) the stabiliser of a point in \mathbf{E} is isomorphic to Sym₃, and the stabiliser of a point in \mathbf{E}' is cyclic of order 2. Hence applying Lang's theorem shows that $\mathbf{E}(q) = \mathbf{E} \cap G_2(q)^3$ splits into three $G_2(q)$ -orbits, of orders $|G_2(q)|/r$ for r = 2, 3, 6, and similarly $\mathbf{E}'(q) = \mathbf{E}' \cap G_2(q)^3$ splits into two orbits, each of order $|G_2(q)|/2$. Therefore,

$$|\mathbf{E}(q)| + |\mathbf{E}'(q)| = |G_2(q)| \left(\frac{1}{6} + \frac{1}{3} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right) = |\mathbf{C}_0(q)| + |\mathbf{D}_0(q)|$$

and it follows that $\mathbf{C}_0(q) \cup \mathbf{D}_0(q) = \mathbf{E}(q) \cup \mathbf{E}'(q)$ for each q. Therefore

$$\mathbf{C}_0 \cup \mathbf{D}_0 = \bigcup_{n=1}^{\infty} \mathbf{C}_0(5^n) \cup \mathbf{D}_0(5^n) = \bigcup_{n=1}^{\infty} \mathbf{E}(5^n) \cup \mathbf{E}'(5^n) = \mathbf{E} \cup \mathbf{E}'$$

Hence G has exactly two orbits on $\mathbf{C}_0 \cup \mathbf{D}_0$. A triple in \mathbf{C}_0 cannot lie in the same orbit as a triple in \mathbf{D}_0 since the corresponding elements of order 4 are not G-conjugate, and it follows that the two G-orbits are \mathbf{C}_0 and \mathbf{D}_0 .

This proves parts (i) and (ii) of the Theorem. For part (iii), suppose that $G_2(5^n)$, $SL_3(5^n)$ or $SU_3(5^n)$ is a (2,4,5)-group, with corresponding set of generators x_1, x_2, x_3 . Since $L(G_2) \downarrow A_2$ is a direct sum of $L(A_2)$ and two 3-dimensional irreducible A_2 -modules (cf. [10, Table 8.5]), it follows that $C_{L(G_2)}(x_1, x_2, x_3) = 0$. An application of a result of Scott [15] to the module L(G), as in the proof of [16, Corollary 3.2], then yields

$$\dim(x_1^G) + \dim(x_2^G) + \dim(x_3^G) \ge 2\dim(G) = 28$$

implying $(x_1^G, x_2^G, x_3^G) = \mathbf{C}$ or \mathbf{D} , which contradicts part (ii) of the Theorem.

Acknowledgments

The first author is jointly supported by the Cambridge and Woolf Fisher Trusts. The second author is supported by the Alexander von Humboldt Foundation.

9

References

- B. Chang and R. Ree, *The characters of G₂(q)*, Symposia Mathematica, XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972), Academic Press, London, 1974, 395–413.
- [2] M. Dettweiler and S. Reiter, On rigid tuples in linear groups of odd dimension, J. Algebra, 222 (1999) 550–560.
- [3] W. Feit and P. Fong, Rational rigidity of $G_2(p)$ for any prime p > 5, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 19831984), Cambridge Univ. Press, Cambridge, 1985, 323–326.
- [4] M. Geck, G. Hiss, F. Lübeck, G. Malle and Götz Pfeiffer, CHEVIE—a system for computing and processing generic character tables, Appl. Algebra Engrg. Comm. Comput., 7 (1996) 175–210.
- [5] R. Guralnick and G. Malle, Rational rigidity for $E_8(p)$, Compos. Math., 150 (2014) 1679–1702.
- [6] S. Jambor, A. Litterick and C. Marion, On finite simple images of triangle groups, To appear in Israel Journal of Mathematics.
- [7] N. M. Katz, *Rigid local systems*, Annals of Mathematics Studies, 139, Princeton University Press, Princeton, NJ, 1996.
- [8] R. Lawther, Jordan block sizes of unipotent elements in exceptional algebraic groups, Comm. Algebra, 23 (1995) 4125–4156.
- [9] Martin W. Liebeck, Alastair J. Litterick and Claude Marion, A rigid triple of conjugacy classes in G₂, J. Group Theory, 14 (2011) 31–35.
- [10] M. W. Liebeck and G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., 121 (1996) vi+111.
- [11] _____, Unipotent and nilpotent classes in simple algebraic groups and Lie algebras, Mathematical Surveys and Monographs, 180, American Mathematical Society, Providence, RI, 2012.
- [12] G. Malle and B. Heinrich Matzat, *Inverse Galois theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999.
- [13] G. Malle and D. Testerman, *Linear algebraic groups and finite groups of Lie type*, Cambridge Studies in Advanced Mathematics, **133**, Cambridge University Press, Cambridge, 2011.
- [14] C. Marion, On triangle generation of finite groups of Lie type, J. Group Theory, 13 (2010) 619-648.
- [15] L. L. Scott, Matrices and cohomology, Ann. of Math. (2), 105 (1977) 473-492.
- [16] K. Strambach and H. Völklein, On linearly rigid tuples, J. Reine Angew. Math., 510 (1999) 57-62.
- [17] J. G. Thompson, Rational rigidity of G₂(5), Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984), Cambridge Univ. Press, Cambridge, 1985, 321–322.
- [18] Helmut Völklein, Rigid generators of classical groups, Math. Ann., **311** (1998) 421–438.

Matthew Conder

Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom Email: mjc271cam.ac.uk

Alastair Litterick

Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany Email: ajlitterick@gmail.com