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Abstract. We consider existence and uniqueness of homogeneous solutions u > 0
to certain PDE of p-Laplace type, p fixed, n − 1 < p < ∞, n ≥ 2, when u is a
solution in K(α) ⊂ Rn where

K(α) := {x = (x1, . . . , xn) : x1 > cosα |x|} for fixed α ∈ (0, π],

with continuous boundary value zero on ∂K(α) \ {0}. In our main result we show
that if u has continuous boundary value 0 on ∂K(π) then u is homogeneous of
degree 1 − (n − 1)/p when p > n − 1. Applications of this result are given to a
Minkowski type regularity problem in Rn when n = 2, 3.
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1. Introduction

Let u > 0 be a homogeneous p-harmonic function in the cone K(α) ⊂ Rn, n ≥ 2,
with continuous boundary value 0 on ∂K(α) \ {0} where

K(α) := {x = (x1, . . . , xn) : x1 > cosα |x|} for α ∈ (0, π].
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equation.
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More specifically, for fixed p, 1 < p <∞, u is a weak solution to∇·
(
|∇u|(p−2)∇u

)
= 0

in K(α) and

u(tx) = tλu(x) for some real λ whenever t > 0 and x ∈ K(α).(1.1)

Given x ∈ Rn \ {0}, introduce spherical coordinates r = |x| and x1 = r cos θ for
0 ≤ θ ≤ π. If u as in (1.1) is p-harmonic in K(α) and u(1, 0, . . . , 0) = 1 then using
rotational invariance of the p-Laplace equation, it turns out that u has additionally
the following form

u(x) = u(r, θ) = rλ φ(θ) for 0 ≤ θ < α and r > 0(1.2)

with φ(0) = 1 and φ(α) = 0 for some λ(α) = λ ∈ (−∞,∞) and φ ∈ C∞([0, α]).
It was first shown by Krol’ and Maz’ya in [KM72] that if 1 < p ≤ n − 1 and α ∈

(0, π), α is near enough π, then there exists a unique solution to (1.1) in K(α) of the
special form (1.2) with λ(α) > 0. Tolksdorf in [Tol83] showed that given α ∈ (0, π),
for i = 1, 2, there exist unique λi with λ2 < 0 < λ1 and φi where φi is infinitely
differentiable on [0, α] satisfying φi(α) = 0 and φi(0) = 1 and ui(r, θ) = rλiφi(θ) are
solutions to the p- Laplace equation in K(α). Also Porretta and Véron gave another
proof of Tolksdorf’s result in [PV09]. A similar study was made in more general
Lipschitz cones by Gkikas and Véron in [GV18].

Next we discuss what is known about “eigenvalues” λ in (1.2) for various α and n.
Krol’ in [Kro73] (see also [Aro86]) used (1.2) and separation of variables to show for
u as in (1.2) that

0 =
d

dθ

{
[λ2φ2(θ) + (φ′)2(θ)](p−2)/2 φ′(θ) (sin θ)n−2

}
+ λ[λ(p− 1) + (n− p)][λ2φ2(θ) + (φ′)2(θ)](p−2)/2φ(θ)(sin θ)n−2.

Letting ψ = φ′/φ in the above equation he obtained, the first order DE

0 =((p− 1)ψ2 + λ2)ψ′

+ (λ2 + ψ2)[(p− 1)ψ2 + (n− 2) cot θ ψ + λ2(p− 1) + λ(n− p)].
(1.3)

If n = 2 the cotangent term in the above DE goes out and variables can be separated
in (1.3) to get

λdψ

λ2 + ψ2
− (λ− 1) dψ

λ2 + ψ2 + λ(2− p)/(p− 1)
+ dθ = 0.

The boundary conditions imply that φ is decreasing on (0, α) so ψ(α) = −∞ and
ψ(0) = 0. Using this fact and integrating it follows that

(1.4) ± 1− λ− 1√
λ2 + λ(2− p)/(p− 1)

=
2α

π

where +1 is taken if λ > 0 and −1 if λ < 0. For later discussion we note that if
α = π/2, i.e., K(π/2) is a half-space, then (1.4) gives

λ1 = 1 and λ2 =
p− 3− 2

√
p2 − 3p+ 3

3(p− 1)
.
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We remark that λ1 = λ1(π/2) = 1 for n ≥ 2 since x1 = r cos θ is p-harmonic for
1 < p <∞. Also if α = π and n = 2, i.e., K(π) = R2 \ (−∞, 0], then (1.4) yields

λ1 = 1− 1/p and λ2 = (1/16)
(

7p− 16−
√

81p2 − 288p+ 288
)
/(p− 1).

For other values of λ2 = λ2(α) when n = 2, see [LV13]. For n ≥ 3, α = π/2, and
p = 2, one can use the Kelvin transformation to get λ2(π/2) = 1− n while if p = n,
it follows from conformal invariance of the n-Laplacian that λ2(π/2) = −1. Also if
p = (4n− 2)/3 then

−2λ2(π) =
p+ 1− n
p− 1

= β =
n+ 1

4n− 5

since u(r, θ) = r−β/2(cos(θ/2))β in (1.2) for α = π. DeBlassie and Smits in [DS16]
obtained estimates on−λ2(π/2), 1 < p 6= 2 <∞, by leaving out the cotangent term in
(1.3). In fact their solution to the DE in (1.3) with the cotangent term omitted leads
to a supersolution of the form (1.2) for the p-Laplace equation, so leads to a lower
estimate for −λ2(π/2) in (1.3). Upper and lower estimates for λ2(α) for α ∈ (0, π/2]
were also obtained by these authors in [DS18], by finding p-harmonic subsolution and

supersolution of the form rkφ̃(θ) where k < 0 and φ̃ is the solution to (1.2) when p = 2
in K(α). Sub and super p-harmonic solutions of the form rk cos θ were also found in
K(π/2) by Llorente, Manfredi, Troy, and Wu in [LMTW19]. These estimates were
then used to find upper and lower bounds for λ2(π/2) in K(π/2). In [LMTW19], the
authors also use shooting methods to give a strictly ODE proof for existence of a
solution to (1.3) on [0, π/2] satisfying ψ(0) = 0 and limθ→π/2 ψ(θ) = −∞ when p and
n are fixed with 1 < p <∞ and n ≥ 2.

In this paper we consider problems similar to the above for certain PDEs of p-
Laplace type. Our results, when specialized to the p-Laplace equation for fixed p >
n− 1, give a unique solution u to (1.2) in K(π) with continuous boundary value 0 on
∂K(π) and λ = λ1(π) = 1 − (n − 1)/p when n ≥ 3 (compare with Krol’s n = 2 and
α = π result). To be more specific we need some notation. Put

B(z, r) = {y ∈ Rn : |z − y| < r} whenever z ∈ Rn and r > 0.

Let 〈·, ·〉 denote the standard inner product on Rn and let |y| = 〈y, y〉1/2 be the
Euclidean norm of y. Let dy denote n-dimensional Lebesgue measure on Rn and let
Hγ, 0 < γ ≤ n, denote γ-dimensional Hausdorff measure on Rn defined by

Hγ(E) = lim
δ→0

inf

{∑
j

rγj ; E ⊂
⋃
j

B(xj, rj), rj ≤ δ

}
where the infimum is taken over all possible δ-covering {B(xj, rj)} of E. If O ⊂ Rn is
open and 1 ≤ q ≤ ∞, then by W 1,q(O) we denote the space of equivalence classes of
functions h with distributional gradient ∇h = (hy1 , . . . , hyn), both of which are q-th
power integrable on O. Let

‖h‖1,q = ‖h‖q + ‖ |∇h| ‖q
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be the norm in W 1,q(O) where ‖ · ‖q is the usual Lebesgue q norm of functions in the
Lebesgue space Lq(O). Next let C∞0 (O) be the set of infinitely differentiable functions
with compact support in O and let W 1,q

0 (O) be the closure of C∞0 (O) in the norm of
W 1,q(O). Given p, 1 < p <∞, suppose f : Rn→[0,∞) satisfies:

(a) f(tη) = tpf(η) when t > 0 and η ∈ Rn.

(b) There exists ã1 ≥ 1 such that if η, ξ ∈ Rn \ {0}, then

ã−1
1 |ξ|2|η|p−2 ≤

n∑
i,j=1

∂2f

∂ηi∂ηj
(η) ξi ξj ≤ ã1 |ξ|2|η|p−2.

(c) There exists ã2 ≥ 1 such that for Hn-almost every η ∈ B(0, 2) \B(0, 1/2),
n∑

i,j,k=1

∣∣∣∣ ∂3f

∂ηi∂ηj∂ηk
(η)

∣∣∣∣ ≤ ã2.

(1.5)

To conform with the notation in [AGH+17] and [ALSV18] we put A = ∇f for
fixed p > 1 and given an open set O we say that v is A-harmonic in O provided
v ∈ W 1,p(G) for each open G with Ḡ ⊂ O and∫

〈A(∇v(y)),∇θ(y)〉 dy = 0 whenever θ ∈ W 1,p
0 (G).(1.6)

As a short notation for (1.6) we write ∇ · A(∇v) = 0 in O. Note that if f(η) =
p−1|η|p then v as in (1.6) is p-harmonic in O. In this paper, we first prove

Theorem A. Fix f as in (1.5), n ≥ 2, α ∈ (0, π], and suppose 1 < p < ∞ when
α ∈ (0, π), while p > n−1 when α = π. For i = 1, 2, there exists a unique A-harmonic
function ui > 0 in K(α) with ui(1, 0, . . . , 0) = 1 satisfying

(+) u1 has continuous boundary value 0 on ∂K(α).

(++) lim
|x|→∞

u2(x) = 0 and u2 has continuous boundary value 0 on ∂K(α) \ {0}.

Moreover, (1.1) holds with λ = λi(α), for i = 1, 2, where λ2(α) < 0 < λ1(α). Finally,
λ1(π) = 1− (n− 1)/p for p > n− 1 and

λ1(α)− 1 +
n− 1

p
≈ (π − α)

p+1−n
p−1 as α→ π.(1.7)

Remark 1.1. We remark that if 1 < p ≤ n− 1 then a slit has p-capacity zero in Rn

for n ≥ 3 and so one can show (see [HKM06, chapter 2]) that there are no solutions
to (1.3). In fact, Krol’ and Maz’ya in the paper mentioned earlier obtained that

λ1(α) ≈

{
(π − α)

n−1−p
p−1 for 1 < p < n− 1

− 1
log(π−α)

for p = n− 1
as α→ π.

Here and in (1.7), ≈ means the ratio of the two functions is bounded above and below
by positive constants depending only on p, n, and possibly ã1, ã2 in (1.5). We regard
(1.7) as our main contribution in Theorem 1.2. For an outline of our efforts in trying
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to prove this equality we refer the reader to [ALV19]. As mentioned above, our proof
of existence and uniqueness in Theorem A for p-harmonic functions when 0 < α < π
is considerably less general than the proof in [PV09] given for “Lipschitz cones”. Our
proof, however, differs somewhat from the proof of these authors (even for p-harmonic
functions). We include a proof in our setting mainly to facilitate the proof of (1.7)
but also for completeness.

In order to give an application of Theorem A we need some background material.
Let E ⊂ Rn be a convex set with nonempty interior. Then for Hn−1 almost every
x ∈ ∂E, there is a well defined outer unit normal, g(x,E) to ∂E. The function
g(·, E) : ∂E 7→ Sn−1 (whenever defined) is called the Gauss map for ∂E. Let µ be a
finite positive Borel measure on Sn−1 = {x ∈ Rn : |x| = 1} satisfying

(i)

∫
Sn−1

|〈θ, ζ〉| dµ(ζ) > 0 for all θ ∈ Sn−1,

(ii)

∫
Sn−1

ζ dµ(ζ) = 0.

(1.8)

Then in [ALSV18], it was shown that

Theorem 1.2. Let µ be as in (1.8), f as in (1.5), and p fixed, n ≤ p <∞. Then there
exists a compact convex set E with nonempty interior and an A-harmonic Green’s
function U for Rn \ E with pole at infinity satisfying

(a) lim
y→x
∇U(y) = ∇U(x) exists for Hn−1-almost every x ∈ ∂E

as y ∈ Rn \ E approaches x non-tangentially.

(b)

∫
∂E

f(∇U(x)) dHn−1 <∞.

(c)

∫
g−1(K,E)

f(∇U(x)) dHn−1 = µ(K) whenever K ⊂ Sn−1 is a Borel set.

(d) E is the unique set up to translation for which (c) holds.

Also in [AGH+17] the authors proved

Theorem 1.3. Let µ be as in (1.8) and f be as in (1.5). Then for fixed p with
1 < p 6= n− 1 < n, there exists a compact convex set E with non-empty interior and
an A-harmonic capacitary function, Ũ for E, satisfying (a)−(d) of Theorem 1.2 with
U = Ũ . If p = n−1, then there exists a compact convex set E with nonempty interior
having A-capacity 1, and a corresponding A-capacitary function Ũ for E satisfying
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(a) and (b) of Theorem 1.2 with U = Ũ , as well as,

(c′) There exists b̃, 0 < b̃ <∞, with

b̃

∫
g−1(K,E)

f(∇Ũ) dHn−1 = µ(K) whenever K ⊂ Sn−1 is a Borel set.

(d′) E is the unique set up to translation satisfying (c′) with A-capacity 1.

The definition of A-capacity, a A-capacitary function, and of the A-harmonic
Green’s function with pole at∞ are given in section 2. As an application of Theorem
A when n = 2, 3, we prove the regularity of the Minkowski problem.

Theorem B. Let µ be as in (1.8) and f as in (1.5). Suppose also that α̂ ∈ (0, 1), k is
a non-negative integer, and dµ = Θ dHn−1 on Sn−1 for some 0 < Θ ∈ Ck,α̂(Sn−1). If
k ≥ 1, assume f ∈ Ck+2,α̂(Rn \{0}). Let E be the compact convex set with non-empty
interior in Theorem 1.2 or Theorem 1.3 corresponding to µ. If either n = 2, 3, and
1 < p < ∞, or n ≥ 4 and 1 < p ≤ 2, then ∂E is locally the graph of a Ck+2,α̂(Rn−1)
function.

Remark 1.4. Theorems 1.3 and B were first proved by Jerison in [Jer96] for Laplace’s
equation (i.e., when f(η) = |η|2/2) and after that generalized to p-harmonic functions
when 1 < p < 2 in [CNS+15] for n > 2. It will turn out that it suffices to assume that
Θ is bounded above and below on Sn−1 in order to conclude ∂E is strictly convex and
locally the graph of a C1,ε function where ε > 0 depends on ã1, ã2, p, n, the eccentricity
of E, and the bounds for Θ.

1.1. Outline of the proof of Theorems A and B. Existence in Theorem A for
α ∈ (0, π) follows easily from interior regularity results and Wiener type estimates
for A-harmonic functions listed in section 2. Uniqueness in Theorem A for α ∈ (0, π)
follows from boundary Harnack inequalities, originally proved for positive p-harmonic
functions vanishing on a portion of a Lipschitz domain in [LN07, LN10]. These
inequalities were updated to A-harmonic functions for fixed p with 1 < p < n in
[AGH+17] and for p ≥ n in [ALSV18]. Uniqueness in the case α = π is somewhat
more involved (since K(π) ∩ B(0, ρ) is not a Lipschitz domain), using not only the
above boundary Harnack inequalities but also arguments from [LLN08] and [LN18].
To outline the proof of (1.7) we now write u(·, α) and λ(α) for u1 and λ1 in Theorem
A relative to K(α). First it follows easily from our existence and uniqueness results
that lim

α→π
λ(α) = λ(π). From boundary Harnack inequalities for A-harmonic functions,

as well as an integral identity proved in [AGH+17] for n−1 < p < n and in [ALSV18]
for p ≥ n, we eventually obtain

c̄(δ)−1 ≤
∫
∂K(α)∩{x:x1≥−1+4δ}

sin(π − α) f(∇u(y))dHn−1 ≤ c̄(δ).(1.9)

in (4.10) where

0 < π − α << δ << 1 and δ is fixed.
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Also c(δ) ≥ 1 is a positive constant depending only on p, n, and ã1, ã2 in (1.5). To
estimate the integral in (1.9) we use a boundary Harnack inequality for A-harmonic
functions on lower dimensional sets from [LN18] to essentially obtain

|∇u(·, α)| ≤ c′ (π − α)
2−n
p−1 on ∂K(α) ∩ [B(0, 2) \B(0, 1/2)](1.10)

where c′ depends on p, n, and ã1, ã2 in (1.5). From (1.9), (1.10), and homogeneity of
u(·, α) we finally get

c(δ)−1 ≤
(∫ 1

0

r(λ(α)−1)p+n−2dr

)
(π − α)

p−n+1
p−1

≤ c(δ)

(λ(α)− 1)p+ n− 1
(π − α)

p−n+1
p−1

(1.11)

where c(δ) has the same dependence as c̄(δ) above and we have also used the fact
that an element of surface area on ∂K(α) is of the form [sin(π− α)]n−2rn−2dr. From
(1.11) and some arithmetic we conclude

λ(α) ≤ 1− n− 1

p
+ c∗ (π − α)

p−n+1
p−1 as α→ π(1.12)

for some c∗ = c∗(p, n, ã1, ã2) and so get the desired upper estimate for λ1(α) in
Theorem A. The lower estimate is similar. We note that a slightly different proof
of Theorem A for p-harmonic functions when n − 1 < p < n (with more details) is
outlined in [ALV19].

As for the proof of Theorem B, armed with Theorems A, 1.2, and 1.3., we can
follow closely the proof in [CNS+15], who in turn followed closely the proof in [Jer96].
Indeed, Jerison in [Jer96], first converts Theorem B into a regularity statement for
the solution, say û to a Monge Ampère equation whose right-hand side corresponds
to a measure µ̂ on Sn−1. To show regularity of û, he first generalized the Alexandrov-
Bakelman inequality (see [Jer96, Lemma 7.3]) and then used this generalization to
prove a certain integral inequality for µ̂ in Theorem 6.5 of [Jer96]. This inequality was
then used to show that arguments in [Caf89, Caf90a, Caf91, Caf90b] could be used
to eventually obtain Theorem B (see also [GH00]). Theorem A is used in Theorem B
to prove the analogue of Theorem 6.5 in [Jer96] when n = 2, 3 and p > 2.

As for the plan of this paper, in section 2, we state some basic properties of A-
harmonic functions, give the definitions mentioned after Theorem 1.3, and prove
existence in Theorem A. In section 3, we state several boundary Harnack inequalities
and then apply these inequalities to prove uniqueness in Theorem A. In section 4
we state integral identities from [AGH+17, ALSV18] and then use these identities to
prove Theorem A. Theorem B is proved in section 5.

2. Basic estimates and definitions for A-harmonic functions

In this section we first introduce some notation and then state some fundamental
estimates for Ã = ∇f̃ -harmonic functions when p is fixed, 1 < p <∞, and f̃ satisfies
(1.5) with f = f̃ . Second, we define the A-capacitary function when 1 < p < n
and A-harmonic Green’s function with pole at ∞ when p ≥ n of a compact convex
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set E. Third, we show existence of ui for i = 1, 2, in Theorem A relative to K(α)
when α ∈ (0, π). Concerning constants, unless otherwise stated, in this section, and
throughout the paper, c will denote a positive constant ≥ 1, not necessarily the same
at each occurrence, depending at most on p, n, ã1, ã2, which sometimes we refer to
as depending on the data. In general, c(t1, . . . , tm) denotes a positive constant ≥ 1,
which may depend at most on p, n, ã1, ã2 and t1, . . . , tm, not necessarily the same at
each occurrence. Also, as in the introduction, if B ≈ C then B/C is bounded from
above and below by constants which, unless otherwise stated, depend at most on the
data. Let ek be the n tuple with one in the kth position and zeros elsewhere. Let
d(E1, E2) denote the distance between the sets E1 and E2. For short we write d(x,E2)
for d({x}, E2). Also put E1 + E2 = {x+ y : x ∈ E1, y ∈ E2} and λE = {λx : x ∈ E}
for λ > 0. Let diam(E), Ē, and ∂E denote the diameter, closure, and boundary of E
respectively. We write max

E
ũ, min

E
ũ to denote the essential supremum and infimum

of ũ on E whenever E ⊂ Rn and ũ is defined on E.

Lemma 2.1. Given p, 1 < p < ∞, n ≥ 2, and f̃ as in (1.5), let ũ be a positive

Ã = ∇f̃ -harmonic function in B(w, 4r) for r > 0.Then

(i) rp−n
∫
B(w,r/2)

|∇ũ|p dy ≤ c ( max
B(w,r)

ũ)p,

(ii) max
B(w,r)

ũ ≤ c min
B(w,r)

ũ.
(2.1)

Furthermore, there exists σ̃ = σ̃(p, n, ã1, ã2) ∈ (0, 1) such that if x, y ∈ B(w, r), then

(iii) |ũ(x)− ũ(y)| ≤ c

(
|x− y|
r

)σ̃
max
B(w,2r)

ũ.

Proof. A proof of this lemma can be found in [Ser64]. �

Lemma 2.2. Let p, n, f̃ , Ã, ũ, w, r, be as in Lemma 2.1. Then ũ has a representative
locally in W 1,p(B(w, 4r)), with Hölder continuous partial derivatives in B(w, 4r) (also

denoted ũ), and there exist β̃ ∈ (0, 1] and c ≥ 1, depending only on p, n, ã1, ã2, such
that if x, y ∈ B(w, r), then

(â) c−1 |∇ũ(x)−∇ũ(y)| ≤ (|x− y|/r)β̃ max
B(w,r)

|∇ũ| ≤ c r−1 (|x− y|/r)β̃ ũ(w).

(b̂)

∫
B(w,r)

n∑
i,j=1

|∇ũ|p−2 |ũxixj |2dy ≤ cr(n−p−2)ũ(w).

(2.2)

Proof. A proof of Lemma 2.2 can be found in [Tol84]. �

Definition 2.3. Fix p, 1 < p < ∞ and let f̃ be as in (1.5) with f = f̃ . If K̃ is a

compact subset of the connected open set D, define the Ã = ∇f̃ -capacity of K̃ relative
to D by

CapÃ(K̃,D) = inf

{ ∫
D

f(∇w(x))dx : w ∈ C∞0 (D) and w(x) ≥ 1 for x ∈ K̃
}
.
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In case f̃(η) = p−1|η|p for η ∈ Rn, we write Capp(K̃,D) instead of CapÃ(K̃,D). If

D = Rn we also write CapÃ(K̃) and Capp(K̃) for short. We note from (1.5) that

Capp(K̃,D) ≈ CapÃ(K̃,D) and CapÃ(τK̃ + {x0}) = τn−pCapÃ(K̃)(2.3)

for τ > 0 and x0 ∈ Rn. Ratio constants depend only on the data. If n ≤ p <∞ then
CapÃ(K̃) ≡ 0.

Definition 2.4. Let p, f̃ , Ã, be as in Definition 2.3. A compact set K̃ ⊂ Rn is called
uniformly (r0, p)-fat if there exists ĉ ≥ 1 such that

Capp(K̃ ∩ B̄(w, r), B(w, 2r))

Capp(B̄(w, r), B(w, 2r))
≥ ĉ−1

for all 0 < r ≤ r0 and w ∈ K̃.

Lemma 2.5. Let p, f̃ , Ã, be as in Definition 2.4 and suppose that K̃ is a uni-
formly (r0, p)-fat compact set wirh K̃ ∩ B(z, 3ρ) 6= ∅, where r0 = diam(K̃). Let
ζ ∈ C∞0 (B(z, 4ρ)) with ζ ≡ 1 on B(z, 3ρ). If 0 ≤ ũ is Ã-harmonic in B(z, 4ρ) \ K̃,
and ũζ ∈ W 1,p

0 (B(z, 4ρ) \ K̃), then ũ has a continuous extension to B(z, 3ρ) ob-
tained by putting ũ ≡ 0 on K̃ ∩ B(z, 3ρ). Moreover, if 0 < r < min{r0, ρ} and
w ∈ K̃ ∩B(z, 2ρ), then

(i) rp−n
∫

B(w,r/2)

|∇ũ|p dy ≤ c1

(
max
B(w,r)

ũ

)p
.(2.4)

where c1 depends only on p, n, ã1, ã2, and the uniform (r0, p)-fatness constant for K̃.
Furthermore, there exist σ̂ ∈ (0, 1) and c2 ≥ 1, having the same dependence as c1,
such that

(ii) |ũ(x)− ũ(y)| ≤ c2

(
|x− y|
r

)σ̂
max
B(w,r)

ũ

whenever x, y ∈ B(w, r/2) and 0 < r < min{r0, ρ}.

Proof. Here (i) in (2.4) is a standard Caccioppoli inequality and (ii) for y ∈ K̃
follows from uniform (r0, p)-fatness of K̃ and essentially Theorem 6.18 in [HKM06].
Combining this fact with (2.1) (iii) we obtain (ii). �

Lemma 2.6. Let Ã, p, f̃ , K̃, r0, z, ρ, ũ be as in Lemma 2.5. Then there exists a unique
finite positive Borel measure ν̃ with support contained in K̃ ∩B(z, 3ρ) such that∫

〈Ã(∇ũ(y)),∇φ(y)〉 dy = −
∫

φ dν̃ whenever φ ∈ C∞0 (B(z, 2ρ)).(2.5)

Moreover, there exists c̄ ≥ 1, with the same dependence as c1 in Lemma 2.5, for which

c̄−1 rp−nν̃(B(w, r/2)) ≤ max
B(w,r)

ũp−1 ≤ c̄rp−nν̃(B(w, 2r))(2.6)
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whenever 0 < r < min{r0, ρ} and w ∈ K̃ ∩ B(z, ρ). Furthermore, suppose for some
constant Λ ≥ 1 that if w ∈ K̃∩B(z, ρ), and 0 < s < r, there exists as(w) ∈ B(w, r)\K̃
with

Λ d(as(w), ∂[B(z, 2ρ) \ K̃]) ≥ s.

Suppose also that whenever w1, w2 ∈ B(z, 2r) \ K̃ and 0 < r ≤ ρ/Λ, there exists a
rectifiable curve τ : [0, 1]→B(z, 2ρ) \ K̃ with τ(0) = w1 and τ(1) = w2, and such that

(a) H1(τ) ≤ Λ |w1 − w2|,
(b) min{H1(τ([0, t])), H1(τ([t, 1])) } ≤ Λ d(τ(t), ∂[B(z, 2ρ) \ K̃]), t ∈ (0, 1).

(2.7)

If w ∈ B(z, r/2) ∩ K̃ then

[rp−nν̃(B(w, 2r))]1/(p−1) ≈ ũ(ar(w)) ≈ max
B(w,r)

ũ ≈ [rp−nν̃(B(w, r/2))]1/(p−1).(2.8)

Ratio constants depend only on the data, the uniform fatness constant for K̃, and Λ.

Proof. For the proof of (2.5), see [HKM06, Theorem 21.2] The left-hand inequality
in (2.6) follows from (2.5), (1.5), and Hölder’s inequality, using a test function, φ,
with φ ≡ 1 on B̄(w, r/2). The proof of the right-hand inequality in (2.6) follows from
[KZ03] (see also [EL91]). Here (2.7) is equivalent to a Harnack chain condition used in
the definition of an non-tangentially accessible domain (see [JK82]). The proof of the
middle inequality in (2.8) follows from an argument often attributed to Carleson (see
[AS05]) and just uses (2.4) (ii), (2.1) (ii), and (2.6). The first and last inequalities in
(2.8) give the “doubling property” of ν measure. �

Remark 2.7. Uniform (r0, p)-fatness of Rn \ D for some r0 > 0 is a sufficient
condition for solvability of the Dirichlet problem for Ã-harmonic PDEs in a bounded
domain D in the sense that if φ is a continuous function on ∂D, then there exists an
Ã-harmonic function Φ in D with continuous boundary values equal to φ on ∂D. In
fact, if every point in Rn \D is uniformly (r0, p)-fat, then∫ r0

0

[
Capp((Rn \D) ∩ B̄(w, r), B(w, 2r))

Capp(B̄(w, r), B(w, 2r))

] 1
(p−1) dr

r
=∞.

That is, uniform (r0, p)-fatness implies Wiener regularity (see [HKM06, Theorem
6.33]). We also remark that if E ⊂ B(0, ρ) is a convex set with diam(E) = 1 and
Hk(E) > 0 for some positive integer k > n − p then E is (1, p)-uniformly fat and
CapÃ(E,B(0, 2ρ)) ≈ 1 with ratio constants depending only on the data when 1 < p <
n while for p ≥ n these constants depend on the data and also ρ. On the other hand,
if Hk(E) <∞ for some positive integer k ≤ n− p then CapÃ(E) = 0 (see [HKM06,
chapter 2]).
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2.1. Definition of A-capacitary and A-harmonic Green’s functions.

Definition 2.8. Let 1 < p < n and f be as in (1.5) and let E be a compact convex
set with CapA(E) > 0. Then the A-capacitary function of E, say Ũ , is the unique
continuous function Ũ 6≡ 1, 0 < Ũ ≤ 1, on Rn satisfying

(a) Ũ is A-harmonic in Rn \ E.
(b) Ũ ≡ 1 on E and Ũ(x)→ 0 uniformly as |x| → ∞.

(c) |∇Ũ | ∈ Lp(Rn) and Ũ ∈ Lp∗(Rn) for p∗ =
np

n− p
.

(d) CapA(E) =

∫
Rn
〈A(∇Ũ),∇Ũ〉 dy.

(2.9)

For existence and uniqueness of Ũ see Lemma 4.1 in [AGH+17]. We note that if
ν̃ denotes the measure associated with Ũ as in Lemma 2.6 then ν̃(E) = CapA(E)
(see [AGH+17, Lemma 4.2]). Therefore, if E ⊂ B(0, 1) with diam(E) ≥ 1/2 and
n− 1 < p < n then from (2.8) and Remark 2.7 we have

(2.10) c−1 ≤ CapA(E) ≤ c max
B(0,2)

(1− Ũ)

where c depends only on the data.
In order to define an A-harmonic Green’s function with pole at ∞ when p ≥ n, we

first have to define a fundamental solution, say F, with pole at 0 in Rn when p ≥ n.
Definitions for p = n and n < p <∞ are different and we start with p = n.

Definition 2.9. If p = n we say that F is a fundamental solution to ∇ ·A(∇F ) = 0
in Rn with pole at 0 if

(i) F is A-harmonic in Rn \ {0},
(ii)F ∈ W 1,l

loc(Rn) for 1 < l < n, F (e1) = 1, and

|F (x)| = O(log |x|) in a neighborhood of ∞,

(iii)

∫
〈A(∇F (z)),∇θ(z)〉 dz = −θ(0) whenever θ ∈ C∞0 (Rn).

(2.11)

If p > n we say that F is a fundamental solution to ∇ · A(∇F ) = 0 in Rn with pole
at 0 if

(i) F is A-harmonic in Rn \ {0},
(ii) F ∈ W 1,p

loc (Rn), F is continuous in Rn, F (0) = 0, F > 0 in Rn \ {0},

(iii)

∫
〈A(∇F (z)),∇θ(z)〉 dz = −θ(0) whenever θ ∈ C∞0 (Rn).

(2.12)

Existence and uniqueness of F in (2.11) and (2.12) are proved in Lemma 4.4 and
Lemma 4.6 of [ALSV18], respectively.

Definition 2.10. Given a compact, convex set E ⊂ Rn we say that U is the A-
harmonic Green’s function for Rn \ E with pole at ∞, if U : Rn \ E → (0,∞)
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has continuous boundary value 0 on ∂E, U is A-harmonic in Rn \ E, and U(x) =
F (x) + k(x) where k(x) is a bounded function in a neighborhood of ∞.

Remark 2.11. In [ALSV18] the authors show that U exists and is unique if and only
if the convex compact set E is either (a) nonempty when p > n or (b) contains at
least two points when p = n. If U exists then it was also shown that k ≤ 0 in Rn \ E
and k is Hölder continuous in a neighbourhood of ∞ with lim

x→∞
k(x) = k(∞). They

then define

CA(E) :=

{
e−k(∞)/γ when p = n,
(−k(∞))p−1 when p > n.

If E is a single point and p = n (so U does not exist), set CA(E) := 0. Here γ is
a constant depending only on the data which occurs in the asymptotic expansion of
F (x) as x→∞. From the definition of CA(E) and translation, dilation invariance of
A-harmonic functions it follows as in (2.3) that if x0 ∈ Rn, r > 0, and E is a convex
compact set then

CA(rE + {x0}) =

{
rCA(E) when p = n,
rp−nCA(E) when p > n.

(2.13)

Also if ν is the measure associated with U as in Lemma 2.6 then (see Lemmas 5.2,
5.3 in [ALSV18]), ν(E) = 1. Hence if E ⊂ B(0, 1) with 1/2 ≤ diam(E) it follows
from (2.8) that

(2.14) max
B(0,2)

U ≈ 1 where the proportinal constants depend only on the data.

Finally, if E1 ⊂ E2 are compact convex sets and U1 and U2 the corresponding A-
harmonic Green’s functions with pole at ∞ then

(2.15) U1 ≥ U2 in Rn so CA(E1) ≤ CA(E2).

2.2. Existence in Theorem A. To show existence and uniqueness for u1 and u2 in
Theorem A we shall also need the following lemma.

Lemma 2.12. Fix p with 1 < p <∞ and α ∈ (0, π) and suppose 0 < r ≤ R/10. Let
v be the A-harmonic function in D = [K(α) \ B̄(re1,

rα
100

)] ∩B(0, R) with continuous
boundary values v ≡ 1 on ∂B(re1,

rα
100

) and v ≡ 0 on [∂B(0, R) ∩K(α)] ∪ [∂K(α) ∩
B(0, R)]. Then there exists c ≥ 1 such that

−c 〈∇v(x), x−re1|x−re1|〉 ≥ v(x) whenever x ∈ D.(2.16)

Here c depends on the data and α if 1 < p ≤ n− 1, while c depends only on the data
if p > n− 1.

Proof. Let D̂ = {y : y + re1 ∈ D} and define v̂ on D̂ by v̂(y) = v(y + re1) for y ∈ D̂.
Given λ with 1 < λ < 1001/1000, set D̂(λ) = {y ∈ D̂ : λy ∈ D̂}. From the definition
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of D, D̂, v, v̂, and translation and dilation invariance of A-harmonic functions we see
that y 7→ v̂(y) and y 7→ v̂(λy) are both A-harmonic in D̂(λ). If

h(y) :=
v̂(y)− v̂(λy)

λ− 1
for y ∈ D̂(λ)

we claim that

c̆ h(y) ≥ v̂(y) for y ∈ D̂(λ)(2.17)

where c̆ ≥ 1 has the same dependence as c in Lemma 2.12. Using the boundary
maximum principle for A-harmonic functions and continuity of h and v̂ we see that
it suffices to prove (2.17) when y ∈ ∂D̂(λ). To do this we note from the definition

of D̂(λ) that if y ∈ ∂D̂(λ), then either y = z/λ for some z ∈ ∂D̂ with v̂(z) = 0 or

y ∈ ∂D̂ and v̂(y) = 1. In the first case we see that v̂(λy) = 0 so (2.17) is trivially

true. In the second case let f̃(η) = f(−η), and note that 1− v̂ is Ã-harmonic in D̂.

Using this note, uniform fatness of K(α) ∩B(0, R), the definition of D̂, (2.4) (ii) for
v̂, and Harnack’s inequality we deduce that if r′ = 2αr

100
, then 1− v̂ ≥ c−1

∗ on ∂B(0, r′)
for some c∗ ≥ 1 with the same dependence as c in the statement of Lemma 2.12.
Thus c∗(1− v̂) ≥ 1 on ∂B(0, r′) and (1− v̂) ≡ 0 on ∂B(0, r′/2). Also this function is
Ã-harmonic in T = B(0, r′) \ B̄(0, r′/2).

Using these facts and a barrier type argument as in [AGH+17, section 7] or [ALSV18,
(4.6)-(4.9)], it follows (since |y| = r′/2) that

v̂(y)− v̂(λy) = 1− v̂(λy) ≥ (λ− 1)/(c̄ c∗)(2.18)

where c̄ ≥ 1 depends only on the data. From (2.18) we conclude that (2.17) also

holds in the second case when y ∈ ∂D̂(λ). Thus (2.17) holds on ∂D̂(λ) so by the

above maximum principle is valid in D̂(λ). Letting λ → 1 in (2.17) and using (2.2)
(â), as well as the chain rule, we get

−c〈∇v̂(y), y/|y|〉 ≥ v̂(y)

for y ∈ D̂. Clearly this inequality implies (2.16). �

To begin the proof of existence in Theorem A for u1, let v and D be as in Lemma
2.12 and put R = l, r = l/10, for l = 2, 3, . . .. Set vl = Ml v where Ml > 0 is chosen
so that vl(e1) = 1. Extend vl to a continuous function in B̄(0, l) by defining vl ≡ 0
on [B̄(0, l) \K(α)] ∪ ∂B(0, l) while vl ≡ Ml on B̄( le1

10
, lα

1000
). Using Lemmas 2.1, 2.2,

2.5 and letting l→∞ it follows from Ascoli’s theorem that a subsequence of (vl), also
denoted (vl), converges uniformly to u1, an A-harmonic function in K(α) that is also
Hölder continuous in Rn with u1 ≡ 0 on Rn \K(α).

To construct u2, we let r = 1/l, R = l, and let vl = M̂l v for l = 2, 3, . . . , where M̂l

is chosen so that vl(e1) = 1. Extend vl to a continuous function on B̄(0, l) by putting

vl ≡ 0 on [B(0, l) \K(α)] ∪ ∂B(0, l) and vl ≡ M̂l on B̄(e1/l,
α

100l
). Also from Lemmas

2.1, 2.2, 2.5 and (2.8) we deduce for l > ρ > 2/l, that there exists c ≥ 1 and β̆ ∈ (0, 1)



14 M. AKMAN, J. LEWIS, AND A. VOGEL

such that

max
B(0,l)\B(0,ρ)

vl ≤ cvl(ρe1) ≤ c2ρ−β̆.(2.19)

Here c and β̆ depend on the data and α if 1 ≤ p ≤ n−1 while these constants depend
only on the data if p > n− 1. Letting l→∞, it follows from the above lemmas, and
Ascoli’s theorem that a subsequence of (vl), also denoted (vl), converges uniformly
to u2, an A-harmonic function in K(α) that is locally Hölder continuous in Rn \ {0}
with u2 ≡ 0 on Rn \ (K(α)∪ {0}). Moreover, (2.19) holds with vl replaced by u2 and
from (2.16) we have

−c 〈∇u2(x), x/|x|〉 ≥ u2(x) whenever x ∈ K(α).(2.20)

3. Boundary Harnack inequalities and uniqueness in Theorem A

To prove that u1 and u2 are unique and satisfy (1.1) in Theorem A we use a variety
of boundary Harnack inequalities, mostly in Lipschitz domains. To set the stage for
these inequalities, let K ⊂ Rn−1, n ≥ 2, be a nonempty compact set and recall that
φ : K → R is said to be Lipschitz on K provided there exists b̂, 0 < b̂ <∞, such that

|φ(z′)− φ(w′)| ≤ b̂ |z′ − w′| whenever z′, w′ ∈ K.(3.1)

The infimum of all b̂ such that (3.1) holds is called the Lipschitz norm of φ on K,

denoted by ‖φ‖̂K . It is well-known that if K ⊂ Rn−1 is compact, then φ has an
extension to Rn−1 (also denoted by φ) which is differentiable almost everywhere in
Rn−1 and

‖φ‖̂Rn−1 = ‖ |∇φ| ‖∞ ≤ c‖φ‖̂K .
Now suppose that D is an open set, w ∈ ∂D, r̂ > 0, and

∂D ∩B(w, 4r̂) = {y = (y′, yn) ∈ Rn : yn = φ(y′)} ∩B(w, 4r̂),

D ∩B(w, 4r̂) = {y = (y′, yn) ∈ Rn : yn > φ(y′)} ∩B(w, 4r̂)
(3.2)

in an appropriate coordinate system for some Lipschitz function φ on Rn−1 with
φ(w′) = wn. Note from elementary geometry that if ζ ∈ ∂D∩B(w, 2r̂) and 0 < s < r̂,
we can find points

as(ζ) ∈ D ∩B(ζ, s) with d(as(ζ), ∂D) ≥ c−1s

for a constant c depending on ‖φ‖̂. In the following, we let as(ζ) denote one such
point. Also let ∆(w, r) = ∂D ∩B(w, r), r > 0, and if ζ ∈ ∆(w, 2r̂) and t > 1 let

Γ(ζ) = Γ(ζ, t) = {y ∈ D ∩B(w, 4r̂) : |y − ζ| < t d(y, ∂D)}.
Unless otherwise stated we always assume that t is fixed and so large that Γ(ζ)
contains the inside of a truncated cone with vertex at ζ, height r̂, axis along the
positive en axis, and of angle opening θ = θ(t) > 0. We note for D and r̂ as above
that Rn \ (D ∩ B(w, r̂)) is uniformly (r̂, p)-fat for 1 < p <∞. Thus, if v satisfies the
same hypotheses as ũ in Lemmas 2.5 and 2.6, then these Lemmas are valid with ũ
replaced by v in the above D. It follows that (see [ALSV18, Section 8] and [AGH+17,



NOTE ON AN EIGENVALUE PROBLEM WITH APPLICATIONS 15

section 10] there exists c̄ ≥ 1, depending only on the data and ‖φ‖̂, such that if
0 < r ≤ r̂ and r̄ = r/c̄, then

r̄p−n
∫

B(w,r̄)

|∇v|pdx ≤ c̄(v(ar̄(w)))p.(3.3)

Moreover, there exists σ̂ ∈ (0, 1), depending only on the data and ‖φ‖̂, such that

|v(x)− v(y)| ≤ c̄

(
|x− y|
r̄

)σ̂
v(ar̄(w)) whenever x, y ∈ B(w, r̄).(3.4)

Finally, there exists a unique finite positive Borel measure ν on Rn, with support
contained in ∆̄(w, r), such that

(a)

∫
〈∇f(∇v),∇ψ〉dx = −

∫
ψ dν whenever ψ ∈ C∞0 (B(w, r)),

(b) c̄−1 r̄p−nν(∆(w, r̄)) ≤ (v(ar̄(w)))p−1 ≤ c̄ r̄p−nν(∆(w, r̄)).

(3.5)

Also in [AGH+17, section 10] for 1 < p < n and in [ALSV18, section 8] for p ≥ n we
updated to A-harmonic functions the following Lemmas proved in [LN07], [LN10],
for p-harmonic functions when 1 < p <∞.

Lemma 3.1. Let D, r̂, w, φ be as in (3.2), p fixed, 1 < p <∞, and 0 < r ≤ r̂. Also let
v be A-harmonic in D∩B(w, r) and continuous in B(w, r) with v ≡ 0 on B(w, r)\D.
There exists c? ≥ 1, depending only on the data and ‖φ‖̂, such that if 4r̃ = r/c? and
x ∈ B(w, r̃) ∩D, then

(a) c−1
?

v(x)

d(x, ∂D)
≤ 〈∇v(x), en〉 ≤ |∇v(x)| ≤ c?

v(x)

d(x, ∂D)
,

(b) lim
x→y

x∈Γ(y)∩B(w,2r)

∇v(x)
def
= ∇v(y) exists for Hn−1-almost every y ∈ ∆(w, r̃).

(3.6)

Moreover, ∆(w, r̃) has a tangent plane for Hn−1-almost every y ∈ ∆(w, r̃). If n(y)
denotes the unit normal to this tangent plane pointing into D ∩B(w, 2r̃), then

∇v(y) = |∇v(y)|n(y) for Hn−1-almost every y ∈ ∆(w, 2r̃)(3.7)

and

dν

dHn−1
(y) = p

f(∇v(y))

|∇v(y)|
for Hn−1-almost every y ∈ ∆(w, 2r̃).(3.8)

Finally, there exists q > p/(p− 1) and c?? with the same dependence as c? such that∫
∆(w,r̃)

(
f(∇v)

|∇v|

)q
dHn−1 ≤ c?? r

(n−1)(1−q)
(∫

∆(w,r̃)

f(∇v)

|∇v|
dHn−1

)q
.(3.9)

To prove uniqueness for u1 in Theorem A we need the following boundary Harnack
inequality.
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Lemma 3.2. Let D, r̂, w, φ, p, be as in Lemma 3.1 and 0 < r ≤ r̂. Also let vi, for
i = 1, 2 be A-harmonic in D ∩ B(w, r) and continuous in B(w, r) with v1 ≡ v2 ≡ 0
on B(w, r) \D. Then there exist β+ ∈ (0, 1) and c+ ≥ 1, depending only on the data

and ‖φ‖̂, such that if r+ = r/c+ then∣∣∣∣v1(x)

v2(x)
− v1(y)

v2(y)

∣∣∣∣ ≤ c+

(
|x− y|
r+

)β+ v1(x)

v2(x)
(3.10)

whenever x, y ∈ D ∩B(w, r+).

3.1. Uniqueness in Theorem A for 0 < α < π. To prove uniqueness for u1 when
p, 1 < p <∞, and α ∈ (0, π) are fixed, suppose û > 0 in K(α) and is also A-harmonic
as well as continuous in Rn with û ≡ 0 on Rn \K(α) and û(e1) = 1. Using Lemma
3.2 with D = B(0, R) ∩K(α), v1 = u1, v2 = û, and w = 0, r̂ = R/2, we find that∣∣∣∣u1(x)

û(x)
− u1(y)

û(y)

∣∣∣∣ ≤ c+

(
|x− y|
R

)β+ u1(x)

û(x)
(3.11)

in B(0, R
2c+

) for some c+ and β+ depending only on the data and Lipschitzness of

∂K(α). Fixing x, y, and letting R → ∞ it follows that u1 = û. To show that u1 has
the form (1.2) observe that for fixed t > 0, the function x 7→ u1(tx) for x ∈ K(α) is
positive, A-harmonic, and has boundary value 0 on ∂K(α), so by uniqueness of u1,
we have

u1(tx) = u1(te1)u1(x) whenever x ∈ K(α).(3.12)

Differentiating (3.12) with respect to t (permissible by Lemma 2.2) and evaluating at
t = 1 we see that

〈x,∇u1(x)〉 = 〈e1,∇u1(e1)〉u1(x) whenever x ∈ K(α).

If we put ρ = |x|, x/|x| = ω ∈ Sn−1, in this identity we obtain that

ρ (u1)ρ(ρω) = 〈e1,∇u1(e1)〉u1(ρω).

Dividing this equality by ρu1(ρω), integrating with respect to ρ, and exponentiating,
we find that u1(rω) = rλ1u1(ω) whenever ω ∈ Sn−1 where λ1 = 〈e1,∇u1(e1)〉.

To prove uniqueness for u2 in K(α) with p and α fixed with 0 < α < π, 1 <
p < ∞, we let 0 < û be A-harmonic in K(α) with continuous boundary value 0 on
∂K(α) \ {0}, û(e1) = 1, and

lim
|x|→∞

û(x) = 0.(3.13)

From Lemma 3.2 we see that if w ∈ ∂K(α) \ {0}, r = |w|/4, v1 6= v2 ∈ {û, u2}, then
(3.10) in Lemma 3.2 is valid. Now (3.10) for û, u2, (3.13), (2.19) for u2, Harnack’s
inequality and the maximum principle for A-harmonic functions yield that

c−1 ≤ u2(x)

û(x)
≤ c for x ∈ K(α)(3.14)
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where c ≥ 1 depends only on the data. Indeed, if for example

lim inf
x→0

x∈K(α)

u2(x)

û(x)
= 0

then the above program first gives u2(x)/û(x)→ 0 as x→ 0 in K(α) and second that
u2 ≡ 0, clearly a contradiction.

Now (3.14), (3.6) (a) for û and u2 when w ∈ ∂K(α)\{0} and r = |w|/4, and (2.20)

imply that there exist c∗ ≥ 1 and β̂ ∈ (0, 1), depending only on the data and α, such
that ∣∣∣∣ u′(x)

u′′(x)
− u′(y)

u′′(y)

∣∣∣∣ ≤ c∗
u′(x)

u′′(x)

(
ρ

min{|x|, |y|}

)β̂
for x, y ∈ Rn \B(0, c∗ ρ)(3.15)

whenever 0 < ρ < 1/c∗ and u′ 6= u′′ ∈ {û, u2}. Fixing x, y, and letting ρ → 0 we
conclude that û = u2. The proof of (3.15) is quite similar to the proof of (3.10)
(given the above assumptions) only arguments are made in Rn \ B(0, ρ) rather than
B(0, r). For the proof of a somewhat stronger inequality than (3.15) when û and u2

are p-harmonic functions, see the proof of Theorem 3 and Corollary 5.25 in [LN10].
The proof of (3.15) when û and u2 are A-harmonic is essentially unchanged, so we
omit the details. Homogeneity of u2, i.e., (1.1), assuming uniqueness, is proved in the
same way as for u1 when α ∈ (0, π).

3.2. Existence and uniqueness in Theorem A for α = π. It remains to show
existence and uniqueness in Theorem A when α = π and p > n − 1. To do this, for
i = 1, 2, we temporarily write

ui(tx, α) = tλi(α)ui(x, α) for x ∈ K(α) and α ∈ (0, π)

for the functions in Theorem A corresponding to K(α). From the maximum principle
forA-harmonic functions it follows that if 0 < α1 < α2 < π, then u1(·, α1) ≤ c̄ u1(·, α2)
in K(α1) ∩B(0, 1) so necessarily

0 < λ1(α2) ≤ λ1(α1).

Also strict inequality must hold since otherwise from (1.1) it would follow that
u1(·, α1)/u1(·, α2) has an absolute maximum in K(α1) which again leads to a con-
tradiction by way of the maximum principle for A-harmonic functions. Similarly , if
0 < α1 < α2 < π, then u2(·, α1) ≤ c̄ u2(·, α2) in K(α1) \ B(0, 1) and λ2(α) < 0 for
α ∈ (0, π), thanks to (2.19) for u2(·, α). Thus

0 < −λ2(α2) ≤ −λ2(α1).

Moreover, strict inequality holds in this equation since otherwise we could get a
contradiction by the same argument as above. We conclude from our considerations
for i = 1, 2, that

|λi(α)| is decreasing on (0, π).(3.16)

For i = 1, 2, let
λi(π) = lim

α→π
λi(α).
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We note that if α ∈ (0, π] and n − 1 < p < ∞ then Lemmas 2.1, 2.2, 2.5, and
(2.8) are valid for u1 in K(α) ∩ B(0, ρ) with constants depending only on the data
as follows from uniform (ρ, p)-fatness of (Rn \K(α)) ∩B(0, ρ) when n− 1 < p <∞.
Using these facts and Ascoli’s theorem we find that as m → ∞, a subsequence of
{u1(·, π − 1/m)}, converges uniformly on compact subsets of Rn to u1(·, π), a Hölder
continuous function on Rn which is A-harmonic in K(π) with u1 ≡ 0 on ∂K(π).
Similarly, Lemmas 2.1, 2.2, 2.5, (2.8), (2.20), and (2.19) (with vl replaced by u2) are
valid for u2(·, α) in K(α) ∩ B(w, ρ) whenever w ∈ ∂K(α) \ {0} and ρ < |w|/4. All
constants depend only on the data for n − 1 < p < ∞. Using these facts as above,
we obtain u2(·, π), a uniform limit on compact subsets of Rn \ {0}, of a subsequence
of (u2(·, π − 1/m)) as m→∞. Also u2(·, π) is A-harmonic in K(α) \ {0} and locally
Hölder continuous on Rn \ {0} . Moreover, (2.19), (2.20) hold with vl, u2, replaced by
u2(·, π). From (1.1) for α ∈ (0, π) and (3.16) we deduce for i = 1, 2, that

ui(tx, π) = tλi(π)ui(x, π) whenever x ∈ Rn \ {0}.(3.17)

To prove uniqueness of ui(·, π) for i = 1, 2, we need several Lemmas analogous to
Lemmas 3.1 and 3.2 for Lipschitz domains.

Lemma 3.3. Fix p with n − 1 < p < ∞, n > 2, t > 0, and let Ĭ be the line
segment with endpoints −3te1/2 and −te1/2. Let 0 < v be A = ∇f -harmonic in

B(−te1, t/2) \ Ĭ with continuous boundary value 0 on Ĭ . Then there exists c ≥ 4,
depending only on the data, such that

c−1 v(x)

d(x, Ĭ)
≤ |∇v(x)| ≤ c

v(x)

d(x, Ĭ)
(3.18)

for x ∈ B(−te1, t/c) \ Ĭ .

Proof. See Lemma 7.1 in [LN18]. �

Lemma 3.4. Let p, n, f, t, Ĭ, be as in Lemma 3.3. For fixed ρ, 0 < ρ < t/2, let

0 < vi, i = 1, 2, be A-harmonic in B(−te1, ρ) \ Ĭ . There exist c∗ ≥ 1 and β∗ ∈ (0, 1),
depending only on the data, such that∣∣∣∣v1(x)

v2(x)
− v1(y)

v2(y)

∣∣∣∣ ≤ c∗
v1(x)

v2(x)

(
|x− y|
ρ

)β∗
(3.19)

whenever x, y ∈ B(−te1, ρ/c∗) \ Ĭ .

Proof. See Lemma 6.2 in [LN18]. �

We now prove uniqueness of u1(·, π) when p > n− 1 and n ≥ 2. Suppose 0 ≤ û is
also A-harmonic in K(π) with continuous boundary value 0 on ∂K(π) and û(e1) = 1.
Then from (3.19), Harnack’s inequality, and the maximum principle for A-harmonic
functions we deduce for n ≥ 3 as in (3.14) that

c̃−1 ≤ u1(x, π)

û(x)
≤ c̃ whenever x ∈ Rn \ ∂K(π)(3.20)
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where c̃ depends only on the data. To prove (3.20) for n = 2 we note that both com-

ponents of B(−te1, ρ) \ Ĭ are Lipschitz domains so we can use the boundary Harnack
inequality for Lipschitz domains (Lemma 3.2) to estimate the ratio of u1(·, π)/û in

B(−te1, t/c) \ Ĭ . Doing this and using Harnack’s inequality, the maximum principle
for A-harmonic functions, once again, it follows that Lemma 3.4 and (3.20) are also
valid when n = 2. Next observe from homogeneity of u1, u1 ≥ 0, and Lemmas 2.1,
2.2, that given 0 < δ < π there exists c(δ) ≥ 1, depending only on the data and δ,
such that

c(δ)−1 u1(x, π)

d(x, ∂K(π))
≤ |∇u1(x, π)| ≤ c(δ)

u1(x, π)

d(x, ∂K(π))
(3.21)

for x ∈ K(π−δ). Using Lemma 3.3 for u1(·, π) when n > 2 and (3.1) (a) on both sides
of ∂K(π) when n = 2, we deduce for fixed δ = δ0 near enough π that (3.21) is valid
when x ∈ K(π) for some c(δ0), depending only on the data. Finally (3.20), (3.21),
and Lemmas 3.3, 3.4, can be used for n ≥ 3 as in [LN18, subsection 4.2, Assumption
1] and for n = 2 as in [LLN08] to show first that (3.21) with u1 replaced by û holds
when x ∈ K(π) for some 0 < δ = δ1 < δ0. Second that (3.19) of Lemma 3.4 is valid
for x, y in K(π)∩B(0, ρ) whenever v1 = u1, v2 = û. Letting ρ→∞ in this inequality
it follows that û = u1(·, π) so u1 is unique.

To briefly outline the strategy in the proof of Lemma 3.4, assuming (3.21) for û, u1,
in Rn \ ∂K(π), when n ≥ 3, suppose a, b ∈ (0,∞). Then using Lemmas 2.1, 2.2, and
(3.21), one can show that χ(x) = (a |∇û(x)| + b |∇u1(x)|)p−2 is an A2 weight on Rn

with A2 constant ≤ c where c depends only on the data. That is,(∫
B(y,r)

χdx

)
·
(∫

B(y,r)

χ−1dx

)
≤ c r2n whenever y ∈ Rn and r > 0.

Also ζ = a u1− b û is a weak solution to the degenerate elliptic divergence form PDE,

Lζ =
n∑

i,j=1

∂(bij(x)ζxj)

∂xi
= 0(3.22)

where

bij(x) =

∫ 1

0

fηiηj(ta u1(x, π) + (1− t)b û(x)) dt(3.23)

whenever x ∈ K(π). Moreover, for some c ≥ 1 depending only on the data,

c−1χ(x)|ξ|2 ≤
n∑

i,j=1

bij(x)ξiξj ≤ c|ξ|2χ(x) for ξ ∈ Rn \ {0}.(3.24)

Using (3.22)-(3.24) the authors then use boundary Harnack inequalities from diver-
gence form linear degenerate elliptic PDE whose degeneracy is given in terms of an
A2 weight to get Lemma 3.4 (see section 4 in [LN18]) . On the other hand, (3.21) for
û is proven by a perturbation type argument as in (4.42)-(4.45) of [LN18].

Uniqueness of u2(·, π) is proved similarly. Indeed suppose û is also A-harmonic
in K(π) with continuous boundary value 0 on ∂K(π) \ {0}, and lim|x|→∞ û(x) = 0.
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Then (3.20) and (3.21) in K(π) are valid with u1(·, π) replaced by u2(·, π) by the
same argument as the one we gave for u1(·, π). These inequalities can then be used
as outlined above to show that for some c̄∗ ≥ 1 and β∗ ∈ (0, 1), depending only on
the data, that ∣∣∣∣u2(x, π)

û(x)
− u2(y, π)

û(y)

∣∣∣∣ ≤ c∗
u2(x, π)

û(x)

(
ρ

min{|x|, |y|}

)β∗
(3.25)

whenever |x|, |y| ≥ 2ρ. Letting ρ → 0 we then get u2(·, π) = û. This completes the
proof of uniqueness for u1(·, π) and u2(·, π).

4. Proof of (1.7) in Theorem A

To show λ(π) = 1− (n− 1)/p for fixed p > n− 1, n ≥ 2, and f as in (1.5), we let
0 < δ < 10−100 be a small but fixed number. Also ε > 0, 0 < ε << δ1000 is allowed to
vary. Put

E = {x : x1 ≥ −1} \K(π − ε).
Given η ∈ Rn \ {0}, let f̂(η) = f(−η) when n − 1 < p < n. If n − 1 < p < n let

U = 1− Û where Û is the Â = ∇f̂ -capacitary function for E as in Theorem 1.3, so U
is A = ∇f -harmonic. If n ≤ p <∞ let U be the A = ∇f -harmonic Green’s function
for E as in Theorem 1.2. We also write u and λ for u1(·, π − ε) and λ1(π − ε) in
Theorem A when there is no chance of confusion. We shall need the following lemma
(see Definition 2.8, Remark 2.11 for notation).

Lemma 4.1. We have

p

∫
∂E

〈x+ e1,n〉f(∇U)dHn−1 =


p(n−p)
p−1

CapÂ(E) when n− 1 < p < n

γ when p = n
p−n
p−1
CA(E)1/(p−1) when p > n

≈ c

where n(x) denotes the outer unit normal at x ∈ ∂E and c depends only on the data.

Proof. Lemma 4.1 is proved in [ALV19] (see Remark 11.3) for p ≥ n and in [AGH+17]
(see Remark 13.4) for n − 1 < p < n, using the Hadamard variational formula. The
integral in these remarks is defined in terms of a measure on Sn−1 obtained by way of
the Gauss map, so for example as in (c) of Theorem 1.2 for p ≥ n, and the support
function of a convex set relative to zero rather than −e1. However, using (1.8) (ii) and
the definition of a support function it is easily seen that both integrals are equal. �

To obtain estimates on U near ∂E we note that in [LN18, Lemma 5.3], it was shown
that for fixed p with n− 1 < p <∞ and n ≥ 3, a continuous function w on Rn exists
with w ≡ 0 on T where

T := {x : xk = 0 for 2 ≤ k ≤ n and −∞ < x1 <∞}.
Also w is A-harmonic in Rn \ T and for x ∈ Rn,

w(x) ≈ |x− x1e1|θ where θ =
p+ 1− n
p− 1

.(4.1)
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Ratio constants depend only on the data. We use (4.1) to show that there exists
c̃1 ≥ 1 depending only on the data with

c̃1 U(x) ≥ w(x) when x ∈ B(0, 2) ∩ {y : |y − y1e1| ≥ c̃1ε}.(4.2)

To prove (4.2) observe from Lemma 4.1, (2.10) withA replaced by Â for n−1 < p < n,
and (2.14) when p ≥ n that w ≤ c′U on ∂B(0, 2). Using (4.1) and the boundary
maximum principle for A-harmonic functions it follows that for some c′′ ≥ 1,

w ≤ c′U + c′′εθ in K(π − ε) ∩B(0, 2)(4.3)

where constants depend only on the data. Using (4.1) in (4.3) we see for ε > 0,
sufficiently small, that (4.2) is valid. Next we show for some c̃2 ≥ 4, depending only
on the data that

U/w ≤ c̃2 in B(−1
2
e1,

1
c̃2

) \ T.(4.4)

To prove (4.4) let v1 be the A-harmonic function in B(−1
2
e1,

1
4
) \ T with continuous

boundary values v1 = u on ∂B(−1
2
e1,

1
4
) and v1 ≡ 0 on T ∩ B(−1

2
e1,

1
4
). Comparing

boundary values of u and v1, we see from the maximum principle for A-harmonic
functions that u ≤ v1 in B(−1

2
e1,

1
4
) \ T. This inequality, (4.1), and Lemma 3.4 with

v2 = w, give (4.4) since u(−1
2
e1 + 1

4
en) ≈ w(−1

2
e1 + 1

4
en).

Let S = E ∩ {y : y1 ≥ −1 + 4δ} and let V be the A-harmonic Green’s function
for the complement of S1 = E ∩ {x : x1 ≤ −1 + 4δ} with a pole at infinity when

p ≥ n while V = 1 − V̂ where V̂ is the Â-harmonic capacitary function for S1 if
n− 1 < p < n. We note from (2.15) that V ≥ U in Rn when p ≥ n. Using this note,
(3.6) (b), (3.7), and the Hopf boundary maximum principle we deduce for n < p <∞
that ∫

∂S1∩∂E
〈y + e1,∇U〉f(∇U(y))|∇U(y)|−1dHn−1

≤
∫
∂S1

〈y + e1,∇V (y)〉f(∇V (y))|∇V (y)|−1dHn−1

≤ cδ
|p−n|
p−1

(4.5)

thanks to Lemma 4.1 with E replaced by S1 and (2.13), where c depends only on the
data. If 1 < p < n we see from (2.9) (b) that U(x), V (x)→1 as |x|→∞ so U ≤ V
in Rn, by the maximum principle for A-harmonic functions. In view of this fact and

(2.3) we conclude that (4.5) remains valid when 1 < p < n if δ
|p−n|
p−1 is replaced by

δ|p−n|. If p = n it follows from (2.4) (ii), (2.8), for U with w = −e1, and (2.14), (2.8),
dilation invariance and Harnack’s inequality for A-harmonic functions, as applied to
V, that for some c ≥ 1, σ̂ ∈ (0, 1), depending only on the data,

max
∂B(−e1,8δ)

U ≤ cδσ̂ ≤ c2δσ̂ min
∂B(−e1,8δ)

V.

Then by the boundary maximum principle for A-harmonic functions,

U ≤ c2δσ̂V in B(−e1, 8δ) \ S1.(4.6)
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Using (4.6) and arguing as above it follows for some c ≥ 1 that∫
∂S1∩∂E

〈y + e1,∇U〉f(∇U(y))|∇U(y)|−1dHn−1 ≤ cδnσ̂.(4.7)

From (4.5), (4.7), Lemma 4.1, we see for δ > 0 sufficiently small that∫
∂E

〈y + e1,∇U〉f(∇U(y))|∇U(y)|−1dHn−1

≈
∫
∂S∩∂E

〈y + e1,∇U〉f(∇U(y))|∇U(y)|−1dHn−1

(4.8)

where constants depend only on the data. Finally, we claim for some c(δ) ≥ 1,
depending only on the data and δ that

c(δ)−1 ≤ u

U
≤ c(δ) in B(0, 1− 2δ) ∩K(π − ε).(4.9)

Once (4.9) is proved we get Theorem A as follows. Note that S ⊂ B(0, 1 − 2δ) and
in Lemma 4.1, 〈x + e1,n(x)〉 = sin ε when x 6= 0 and x ∈ ∂S ∩ ∂E. Using this note,
Lemma 4.1, (4.8). (4.9), and the Hopf boundary maximum principle we find that for
some c̄(δ) ≥ 1, depending only on the data and δ,

c̄(δ)−1 ≤
∫
∂S∩∂E

sin(ε)f(∇u(y))dHn−1 ≤ c̄(δ).(4.10)

We also note that ∂E ∩ B(−1/2, 1/4) is Lipschitz on a scale of ε/100. That is, if

z ∈ ∂E∩ B̄(−1/2, 1/4), there exists φ : Rn−1→R satisfying ‖φ‖̂ ≤ 100 such that after
a possible rotation of coordinates,

E ∩B(z, ε/100) = {x = (x′, xn) : xn > φ(x′)} ∩B(z, ε/100),

∂E ∩B(z, ε/100) = {x = (x′, xn) : xn = φ(x′)} ∩B(z, ε/100).
(4.11)

From (4.11), (3.8), (1.5) (a), (3.9) with q replaced by p/(p−1) (permissible by Hölder’s
inequality), (3.5) (b), and Harnack’s inequality all applied to u and U we see that∫

∂E∩B(z, ε
1000

)

f(∇v)dHn−1 ≈ εn−p−1vp(z + 10εen) whenever v = u or v = U(4.12)

where ratio constants depend only on the data. Using this inequality, (4.9), (4.2),
(4.4), (4.1), and the Hopf boundary maximum principle once again, we obtain that∫

∂E∩B(z, ε
1000

)

f(∇u)dHn−1 ≈ εn−p−1w(z + 10εen)p ≈ ε
(p+1−n)
p−1(4.13)

where ratio constants depend on the data and δ. Integrating (4.13) over z ∈ ∂E ∩
B(−1/2, 1/4), and interchanging the order of integration or giving a covering argu-
ment, we conclude after some arithmetic that∫

∂E∩B(−1/2,1/4)

f(∇u)dHn−1 ≈ ε
2−n
p−1 .(4.14)
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Using (4.14), (λ(π − ε)− 1)p-homogeneity of f(∇u), and 0 < λ(π − ε) < 1 in (4.10)
we arrive at

1 ≈
∫
∂S

sin(ε)f(∇u(y))dHn−1

≈ ε
(p+1−n)
p−1

∫ 1

0

tp(λ−1)+n−2dt

≈ 1

p(λ− 1) + n− 1
ε
(p+1−n)
p−1

(4.15)

where for brevity we have written λ for λ(π − ε). Also ratio constants depend only
on δ and the data. Clearly (4.15) implies that

λ− 1 + (n− 1)/p ≈ ε
(p+1−n)
p−1 .

So if α = π − ε and we use the notation in Theorem A it follows from this inequality
that there exist δ0 and ε0 with 0 < ε0 << δ0, and a positive constant k ≥ 1 depending
on δ0 and the data such that if π − ε0 < α < π, then

k−1(π − α)
(p+1−n)
p−1 ≤ λ1(α)− 1 + (n− 1)/p ≤ k (π − α)

(p+1−n)
p−1 .(4.16)

Thus Theorem A is true once we prove claim (4.9).
Claim (4.9) is easily proved for n = 2 using (3.10) on both sides of ∂K(π − ε)

in each of the Lipschitz domains obtained from removing the positive x1 axis from
B(0, 1−2δ)∩∂K(π−ε), as well as Harnack’ s inequality and u(e1) ≈ U(e1) ≈ 1. Thus
we assume n > 2. In this case we give an argument which was first used in [BL05,
Lemma 2.16] and later in [LN18, section 6.1]. To begin note that (4.9) follows from

c−1 u((δ − 1)e1 + δen)

U((δ − 1)e1 + δen)
≤ max

B((δ−1)e1,δ/200)\E

u

U
≤ c

u((δ − 1)e1 + δen)

U((δ − 1)e1 + δen)
(4.17)

for some c ≥ 1, depending only on the data, as we see from 0 < ε << δ << 1,
U(e1) ≈ u(e1) ≈ 1, and Harnack’s inequality for A-harmonic functions. To prove the
right-hand inequality in (4.17) let

Ct := {x = (x1, x
′) ∈ Rn : (δ − t− 1) < x1 < (δ + t− 1), |x′| < δ/1000}

when t ∈ [δ/200, δ/10] and suppose that u/U > ζ at some point in ∂Cδ/200 \E. Given
t ∈ (δ/200, δ/100) observe from Harnack’s inequality and the maximum principle for
A-harmonic functions that either we have u(y)/U(y) > ζ at some y in ∂Ct \ E with
y1 = δ ± t − 1 or the right-hand inequality in (4.17) holds. If ζ is large enough this
observation implies that there exists I = [δ/200, δ/100] or I = [−δ/100,−δ/200] such
that for all t ∈ I there is y′′ = y′′(t) with 0 < |y′′| < δ/1000 and

u(δ + t− 1, y′′)

U(δ + t− 1, y′′)
> ζ.(4.18)

If for example there exists t′ ∈ [−δ/100,−δ/200] such that for all y = (δ + t′ − 1, y′′)
in ∂C−t′ \ E we have u(y)/U(y) ≤ ζ, then we can apply the above analysis in

{x = (x1, x
′) ∈ Rn : (δ + t′ − 1) < x1 < (δ + t− 1), |x′| < δ/1000}
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whenever t ∈ [δ/200, δ/100] to conclude the existence of I = [δ/200, δ/100].
Let ν and τ denote the measures associated with u and U restricted to Cδ/10.

We observe from (3.5) (b) that ν and τ are doubling measures in the sense that if
z ∈ Cδ/100 ∩ ∂E and 0 < s < δ/200, then

θ(B(z, 10s)) ≤ c θ(B(z, s))(4.19)

for θ ∈ {ν, τ} and some c ≥ 1 depending only on the data.
Given t ∈ I, choose y′′(t) as in (4.18). If |y′′(t)| > 4ε we put ρ(t) = |y′′(t)|.

Otherwise since as noted earlier ∂E ∩B(−1, 1/4) is Lipschitz on a scale of ε/100, we
deduce from (3.10) of Lemma 3.2 that there exists ŷ′′ = ŷ′′(t) with |ŷ′′| = 4ε and

ζ <
u(δ + t− 1, y′′)

U(δ + t− 1, y′′)
≤ c

u(δ + t− 1, ŷ′′)

U(δ + t− 1, ŷ′′)
.

In this case we put ρ(t) = 4ε. Set ỹ′′(t) = y′′(t) when |y′′(t)| > 4ε while ỹ′′(t) = ŷ′′(t),
otherwise. Using (4.19) and (3.5) (b) once again it follows that

ζp−1 ≤ c

(
u(δ + t− 1, ỹ′′(t))

U(δ + t− 1, ỹ′′(t))

)p−1

≤ c2 ν(B((δ + t− 1)e1, ρ(t)))

τ(B((δ + t− 1)e1, ρ(t)))
.(4.20)

Next using a standard covering lemma we see there exists {tj}, tj ∈ I, for which (4.20)
holds with t, ỹ′′(t), ρ(t), replaced by tj, ỹ

′′(tj), ρ(tj). Also if κ(tj) = (δ+ tj−1)e1, then

L := {y : y1 = δ + t− 1, t ∈ I} ∩ ∂E ⊂
⋃
j

B(κ(tj), ρ(tj)),

B(κ(tk), ρ(tk)/5) ∩B(κ(tl), ρ(tl)/5) = ∅ when l 6= k.

(4.21)

From (4.19), (4.20), (4.21), (3.5), and Harnack’s inequality it follows, for some c ≥ 1,
depending only on the data, that

ζp−1τ(L) ≤ ζp−1τ

(⋃
j

B(κ(tj), ρ(tj))

)
≤ ζp−1

∑
j

τ(B(κ(tj), ρ(tj)))

≤ c
∑
j

ν(B(κ(tj), ρ(tj)/5)) ≤ c2ν(L).

(4.22)

Also from (2.8) and Harnack’s inequality we see that

δp−nτ(L) ≈ U((δ − 1)e1 + δen)p−1 and δp−nν(L) ≈ u((δ − 1)e1 + δen)p−1

where ratio constants depend only on the data. Using these inequalities in (4.22) we
find that

ζ ≤ c
u((δ − 1)e1 + δen)

Û((δ − 1)e1 + δen)
.

The righthand inequality in (4.17) follows from this display and Harnack’s inequality
for A-harmonic functions with 2ζ = max(u/U) on ∂Cδ/200\E. Interchanging the roles
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of u and U in this argument we get the left-hand inequality in (4.17). This completes
the proof of claim (4.9) and so also of Theorem A.

5. Proof of Theorem B

We begin this section with a discussion of some familiar concepts from convex
geometry which were used in [Jer96, CNS+15] to prove analogues of Theorem B. Let
E ⊂ Rn be a compact convex set with nonempty interior. Translating and dilating E
if necessary we may assume that B̄(0, 1) ⊂ E is a ball with largest radius contained in
E while B̄(0, R̃0) is the ball with smallest radius and center at the origin containing E
for some R̃0 > 0. Then ẽ = 1/R̃0 is called the eccentricity of E. From basic geometry
one sees that if w ∈ ∂E there exists ĉ = ĉ(n) ≥ 1, depending only on n such that
∂E can be covered by at most N = ĉ2(ẽ)1−n balls, B(w, r̃), with w ∈ ∂E, r̃ ≥ 1/8,
and the property that after a possible change of coordinates there exists a real valued
convex function φ on

B̄′(w′, r̃) := {x′ = (x1, . . . , xn−1) : |x′ − w′| ≤ r̃}

which extends to a Lipschitz function on Rn−1 with ‖φ‖̂ ≤ ĉ/ẽ. Moreover, if we let
w = (w′, wn) and φ(w′) = wn, after a possible change of coordinates, we also have

{(x′, xn) : xn = φ(x′) and x′ ∈ B̄′(w′, r̃)} ⊂ ∂E,

{x = (x′, xn) : xn > φ(x′)} ∩B(w, r̃) ⊂ E \B(0, 1/2).
(5.1)

Definition 5.1. Let ψ be a real valued convex function on a bounded convex open
set Ω ⊂ Rn−1. If x′ ∈ Ω we write θ = (θ1, . . . , θn−1) ∈ ∂ψ(x′) provided ψ(y′) ≥
ψ(x′) + 〈θ, y′ − x′〉 whenever y′ ∈ Ω. If τ is a finite positive Borel measure on Ω then
ψ is said to be a solution to the Monge-Ampère equation

det(∇2ψ) = τ on Ω(5.2)

in the sense of Alexandrov provided that

Hn−1

( ⋃
x′∈K

∂ψ(x′)

)
= Hn−1 (∂ψ(K)) = τ(K) for each Borel set K ⊂ Ω.(5.3)

Let g denote the Gauss function for ∂E, suppose (5.1) is valid, and set Ω = B′(w′, r̃)
and φ = ψ. If x′ ∈ Ω then one can define

g(x′, φ(x′)) =

{
(θ,−1)

(1 + |θ|2)1/2
: θ ∈ ∂φ(x′)

}
.(5.4)

We note that the mapping x′ 7→ 〈x′,−1〉
(1+|x′|2)1/2

= ξ is one to one from Rn−1 onto

Sn−1 ∩ {ξ : ξn < 0}. Moreover, the inverse of this mapping has Jacobian |ξn|−n at ξ
with |ξ| = 1 and ξn < 0. Using this fact, it follows from (5.2), (5.3), and (5.4) that if
K ⊂ B(w′, r̃) is a Borel set and K̃ := {(x′, φ(x′)) : x′ ∈ K} then

Hn−1(∂φ(K)) = τ(K) =

∫
g(K̃)

|ξn|−ndHn−1(5.5)
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in the sense of Alexandrov. Next suppose for fixed p with 1 < p < ∞ that U , E,
and µ are as in Theorem 1.2 or U = 1 − Ũ where Ũ is as in Theorem 1.3. Then for
Hn−1-almost every y ∈ ∂E we see from Theorems 1.2 and 1.3 that

g(y) =
∇U(y)

|∇U(y)|
.(5.6)

Thus g is well defined by (5.6) on a Borel set E1 ⊂ E with Hn−1(E \E1) = 0. If also
dµ = ΘdHn−1|Sn−1 and there exists ã3 ≥ 1 such that

0 < ã−1
3 ≤ Θ(ξ) ≤ ã3 for Hn−1-almost every ξ ∈ Sn−1,(5.7)

then from ‖|∇φ|‖∞ ≤ c/ẽ < ∞, finiteness and positivity of µ, as well as the Radon-
Nikodym theorem we conclude for τ and K as in (5.5) that

τ(K) =

∫
g(K̃)

|ξn|−n dHn−1ξ

=

∫
K

(1 + |∇φ|2(x′))(1+n)/2f(∇U(x′, φ(x′))

Θ(g(x′, φ(x′))
dx′.

(5.8)

Thus to prove regularity of ∂E, we study the Monge-Ampère equation in domains
of the form Ω = B′(w′, r̃) with measure as in (5.8). To outline some of the work of
previous authors on the Monge-Ampère equation we need several definitions.

Definition 5.2. Given ψ, Ω as in Definition 5.1 and x′ ∈ Ω, t > 0, θ ∈ ∂ψ(x′), we
put

S(x′, θ, t) := {y′ ∈ Ω : ψ(y′)− ψ(x′)− 〈θ, y′ − x′〉 < t}(5.9)

and call S = S(x′, θ, t) a cross section of ψ. Define the reduced distance δ(·, S) on
S(x′, θ, t) by

δ(z′, S) = min

{
|z′ − x̂|
|z′ − ŷ|

: x̂, ŷ ∈ ∂S and z′ lies on the line segment from x̂ to ŷ

}
.

Note from convexity of ψ that S(x′, θ, t) is a convex set. Let x̄′ denote the centroid
of S and for 0 < λ < 1, set

S(x′, θ, t, λ) := {z′ : z′ = λ(y′ − x̄′) + x̄′, such that y′ ∈ S(x′, θ, t)}.
For ease of writing, for y′ ∈ Ω, we put

Sλ := S(x′, θ, t, λ),

lx′,θ(y
′) := ψ(x′) + 〈θ, y′ − x′〉,

ψ̃(y′) := ψ(y′)− lx′,θ (y′)− t
(5.10)

when x′, θ, t are understood. Then from a theorem of John (see [Fig17, A.3.2]) it
follows that there exists a unique ellipsoid, E of maximum volume with E ⊂ S ⊂
(n − 1)E . Using this fact and basic geometry we deduce the existence of a positive
constant β(n) and an affine mapping of the form Tz′ = A(z′− x̄′) for z′ ∈ Rn−1 where
A is an n− 1× n− 1 nonsingular matrix with T (x̄′) = 0 and

B′(0, β(n)) ⊂ T (S) ⊂ B′(0, 1).
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Here T (S) is said to be a normalization of S. Note that δ(z′, T (S)) = δ(T−1z′, S)
and if Ψ(z′) = ψ(T−1z′) for z′ ∈ T (S) then Ψ is convex and

∂ψ(x′) = At ∂Ψ(Tx′)

where At is the transpose of A. Also Ψ is a solution to the Monge-Ampère equation
in T (S) with measure T where

T (T (K)) = (det A−1) τ(K)

whenever K ⊂ S is a Borel set. Finally, let Ψ̃(Ty′) = ψ̃(y′) for y′ ∈ Ω.
Using the above normalizations it was shown in [Jer96, Lemma 7.3] that

Lemma 5.3. Let Ω, ψ, τ, t, x′, θ, be as in Definitions 5.1, 5.2, and suppose S̄(x′, θ, t) ⊂
Ω. Then given 0 < ε ≤ 1, there is a positive constant C(ε, n) such that

|Ψ̃(z′)|n−1 ≤ C(ε, n) δ(z′, T (S))ε
∫
T (S)

δ(y′, T (S))1−εdT (y′)(5.11)

whenever z′ ∈ T (S).

Proof. See Lemma 7.3 in [Jer96]. �

Our goal is to show for ψ = φ, Ω = B′(w′, r̃), and Θ, ã3 as in (5.7), (5.8), that there
exists ε0 ∈ (0, 1] for which ∫

S

δ(y′, S)1−ε0dτ(y′) ≤ Ĉτ(S 1
2
)(5.12)

whenever S̄ = S̄(x′, θ, t) ⊂ Ω where ε0 and Ĉ depend on the data, ẽ, and ã3 in (5.7).
Before proving (5.12) we show as in [Jer96] and [GH00], how (5.12) can be used to

prove Theorem B. Indeed, normalizing this problem we deduce first that if Ψ̃(Tz′) =

ψ̃(z′), then from (5.12) it follows as in Proposition 2.10 of [GH00] that∫
T (S)

δ(z′, T (S))1−ε0dT (z′) ≤ ĈT (S 1
2
) ≤ C ′ |min

T (S)
Ψ̃|n−1 = C ′tn−1.(5.13)

Using this inequality in (5.11) of Lemma 5.3 with ε = ε0 and z′ = T (x′), Ψ̃(T (x′)) =
−t, we deduce

1 ≈ d(T (x′), ∂T (S))(5.14)

where ratio constants have the same dependence as Ĉ in (5.12). Using (5.12)-(5.14),
it follows that

Lemma 5.4. Let ψ be a real valued convex function on the convex open set Ω, and
continuous on Ω̄. If ψ ≥ l on ∂Ω where l is an affine function and ψ(z′) = l(z′) at
some point z′ ∈ Ω, then either {y′ : ψ(y′) = l(y′)} = {z′} or this set has no extremal
points in Ω.
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Proof. See Theorem 1 in [Caf91] or Theorem 4.1 in [GH00]. The proof in either paper
is by contradiction and uses invariance of (5.11) and (5.12) under affine mappings as

well as the following result. Suppose that ψ̂j for j = 1, 2, . . . , are convex functions and

solutions to the Monge-Ampère equation with measures τ̂j in an open set Ω̂. If (ψ̂j)

converges uniformly on compact subsets of Ω̂ to ψ̂, a solution to the Monge-Ampère
equation in Ω̂ with measure τ̂ , then τ̂j ⇀ τ̂ weakly in Ω̂ (see [Gut01, Lemma1.2.2]).

�

Applying Lemma 5.4 with ψ = φ and Ω = B′(w′, r̃) as in (5.1) we see that ∂E is
strictly convex since otherwise it would follow from repeated application of Lemma
5.4 to balls (as in (5.1)), with nonempty intersection, that ∂E contains a line segment
of infinite length. From this contradiction we conclude that ∂E is strictly convex.
Now given w = (w′, φ(w′)) ∈ ∂E, with x′ ∈ B̄(w′, r̃/4), where φ, r̃ are as in (5.1), we
choose t so that for S(x′, θ, t) as in (5.10) we have

S(x′, θ, t) ⊂ B′(x′, r̃/2) and S̄(x′, θ, t) ∩ ∂B′(x′, r̃/2) 6= ∅.
Geometrically this means there is a point z = (z′, zn) ∈ ∂E with z′ ∈ S̄(x′, θ, t) ∩
∂B′(x′, r̃/2) which lies at most t distance from the support plane yn = lx′,θ(y

′) to

∂E at (x′, φ(x′)). We claim that t ≥ t0 > 0, where t0 has the same dependence as Ĉ
in (5.12). Indeed, otherwise using a compactness argument, the above convergence
result, and Lemma 5.4 we could obtain a contradiction to the strict convexity of ∂E.
Finally, we observe from Lipschitzness of φ as in (5.1) that there exists r1 ≥ r0 > 0

where r0 has the same dependence as t0 with B′(x′, r1) ⊂ S. Next if φ̃ is as in (5.10)
with φ = ψ, we claim there is a σ > 2, with the same dependence as t0, r0, satisfying

0 ≤ t+ φ̃(y′) ≤ σ−l t when l = 1, 2, . . . , and y′ ∈ Ŝ1/2l .(5.15)

Here Ŝλ is defined in the same way as Sλ in (5.10) only with x̄′ replaced by x′.
Indeed, this inequality holds for l = 1 since otherwise we could use Lemma 5.4 and a
compactness argument, as above, to contradict the strict convexity of ∂E. Iterating
this inequality we obtain (5.15). From (5.15) and arbitrariness of x′ ∈ B′(w′, r̃/4),
we get first that

∇φ(x′) exists for x′ ∈ B′(w′, r̃/4),

|φ(y′)− φ(x′)− 〈∇φ(x′), y′ − x′〉| ≤ Ĉ1|y′ − x′|1+α′
(5.16)

whenever y′ ∈ B′(w′, r̃/4), where Ĉ1 ≥ 1, α′ ∈ (0, 1), depend on the data, ẽ, and ã3

in (5.7). Also from convexity and uniform Lipschitzness of φ we deduce the existence

of Ĉ2 ≥ 1, having the same dependence as Ĉ1 for which

Ĉ2 |〈∇φ(y′)−∇φ(x′), y′ − x′〉| ≥ |∇φ(y′)−∇φ(x′)||y′ − x′|(5.17)

whenever x′, y′ ∈ B′(w′, r̃/4). Combining (5.16), (5.17), and using the triangle in-
equality, we find that

∂E is locally C1,α′ with norm constants depending only on the data, ẽ, and ã3.

(5.18)
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Using (5.18) and results from [Lie88] we see that ∇U when 1 < p ≤ n or ∇Ũ when
p > n has a C1,β′ extension to ∂E for some β′ ∈ (0, 1) having the same dependence
as α′. Also from [Lie88] or (5.23) (to be proved) we have min{|∇U |, |∇Ũ |} > 0 on
∂E where constants depend only on the data and ẽ. In view of this information and
(5.2), (5.5), (5.8), we find that if 0 < Θ ∈ C0,α̂(Sn−1), then for some 0 < s1, s2, α∗,
having the same dependence as α′,

s1 <
dτ

dHn−1
< s2 <∞ and

dτ

dHn−1
∈ C0,α∗(Ω).(5.19)

From the above remarks, (5.19), and [Caf89, Caf90a, Caf90b], we conclude that φ ∈
C2,α̂(Ω). Further applications of [Caf89, Caf90a, Caf90b] also give the higher order
smoothness results in Theorem B.

It remains to prove (5.12) in order to complete the proof of Theorem B. Throughout
the proof of this inequality we let C ≥ 1 be a positive constant which may depend only
on the data, ẽ, and ã3, not necessarily the same at each occurrence. Also if A ≈ B,
proportionality constants may depend on the data, ẽ, and ã3. Let f̂(η) = f(−η) when

1 < p < n and f̂(η) = f(η) when p ≥ n. Also set Û = 1 − Ũ when 1 < p < n and

Û = U when p ≥ n. Then Û is Â = ∇f̂ -harmonic in Rn\E with continuous boundary
value 0 on ∂E. Observe from the discussion above (5.1), (5.7), and (5.8) that if K ⊂ Ω
is a compact set then

τ(K) ≈
∫
K

|∇Û(x′, φ(x′))|pdx′ = χ(K).(5.20)

Thus we only prove (5.12) for χ(·). Recall that S̄ = S̄(x′, θ, t) ⊂ Ω = B′(w′, r̃). We
see that

F = {(y′, φ(y′)) : y′ ∈ S̄}

is the part of ∂E that lies below or on the plane

Σ1 = {(y′, yn) : yn − φ(x′)− 〈θ, y′ − x′〉 = t}

and above or on the support plane {(y′, yn) : yn − φ(x′) − 〈θ, y′ − x′〉 = 0} to ∂E at
x = (x′, φ(x′)). Then S can be viewed as the projection of F onto the plane yn = 0
by lines parallel to en or the yn axis. To simplify the geometry in what follows and
for use in adapting the work in [Jer96] to our situation we also project F onto Σ1 by
lines parallel to en. More specifically, given y = (y′, φ(y′)) ∈ F, let π(y) ∈ Σ1 be that
point with

〈π(y), ei〉 = y′i for 1 ≤ i ≤ n− 1.

Let S̃ = π(F ), and note that S̃ is convex. Define the reduced distance δ(·, S̃) as in
Definition 5.2 with S and Rn−1, replaced by S̃ and Σ1 respectively. From (5.1) and
the discussion above this display we deduce that

δ(x′, S) ≈ δ(π(x), S̃) whenever x ∈ F(5.21)
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where ratio constants depend only on n, ẽ. Let δ(x, F ) = δ(π(x), S̃) when x ∈ F.
Then from (5.20) and (5.21) we conclude that to prove (5.12) it suffices to show,∫

F

δ1−ε0(x, F ) |∇Û(x)|pdHn−1 ≤ C min{|∇Û |p : y ∈ F} Hn−1(F ).(5.22)

Remark 5.5. We note that in [Jer96, section 6], the analogue of F is projected onto
Σ1 by rays through the origin. If P (y) denotes this radial projection of y ∈ F onto
Σ1, then in [Jer96] the reduced distance of y ∈ F is defined to be equal to δ(P (y), S̃).
Using the definition of reduced distance and (5.1) it is easily verified as in (5.21) that
δ(P (y), S̃) ≈ δ(π(y), S̃) where proportionality constants depend only on n and ẽ. Thus
(5.22) implies the corresponding inequality in [Jer96] and vice-versa.

To prove (5.22) we shall require the following lemma.

Lemma 5.6. Let w, E, and r̃ be as in (5.1). There exists C ≥ 1, depending only on
the data and ẽ, such that if 0 < r ≤ r̃/C then

r1−n
∫

∆(w,r)

|∇Û |pdHn−1 ≈ min
∆(w,r)

|∇Û |p ≈ r−p Û(ar(w))p.(5.23)

Proof. Let H be an open half-space with H∩E = ∅ and ∂H a support plane for ∂E at
w. Let ξ denote a unit normal pointing into H and let v be the Â-harmonic function
in G = H ∩ B(w, r) \ B̄(w + rξ/2, r/8) with continuous boundary values, v ≡ 0 on

∂(H ∩ B(w, r)) while v ≡ Û(w + rξ/2) on ∂B(w + rξ/2, r/8). Comparing boundary

values and using Harnack’s inequality for Â-harmonic functions we see that v ≤ cÛ
in G. Also using the boundary Harnack inequality in Lemma 3.2 and comparing v to
a linear function, say l, which vanishes on ∂H with l(w + rξ/2) = Û(w + rξ/2) we
arrive at

Û(w + rξ/2)/r ≤ C ′Û(w + sξ)/s

whenever 0 < s ≤ r/C ′ where C ′ ≥ 1 depends only on the data. Letting s → 0 in
this display we get from Lemma 3.1 for Hn−1-almost every w ∈ ∂E that

Û(w + rξ/2)/r ≤ C ′|∇Û(w)|.(5.24)

Next observe from (3.9) with q = (p − 1)/p, (3.8) of Lemma 3.1, and (3.5)(b) that
there exists C ≥ 1 depending only on the data and ẽ such that for 0 < r ≤ r̃/C,

r1−n
∫

∆(w,r)

|∇Û |pdHn−1 ≈ Cr−p Û(w + rξ/2)p.(5.25)

Combining (5.25), (5.24), and using arbitrariness of w, Harnack’ s inequality for Â-
harmonic functions, we conclude the validity of Lemma 5.6. �

Note from Lemma 5.6 that∫
∂E

|∇Û |p ≤ C and min
∂E
|∇Û | ≥ C−1.(5.26)
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Following [Jer96, Lemma 6.7] we first note from (5.1) that if ζ ∈ F and b denotes the
radius of the largest n− 1 dimensional ball contained in S̃ (the so called inradius of
S̃) then

|ζ − π(ζ)| ≤ C+b(5.27)

for some C+ ≥ 1, depending only on the data and ẽ. Second we state

Lemma 5.7. If y, z ∈ F and δ(y, F ) ≈ 1, then

min
∆(y,b)

|∇Û | ≤ C min
∆(z,b)

|∇Û |.(5.28)

Proof. The analogue of Lemma 5.7 in [Jer96] is Lemma 6.8. Given Lemma 5.6 and
(5.27) we can essentially copy the clever geometric argument in [Jer96], so we refer
to this paper for details. �

Lemma 5.8. There exists ε1 ∈ (0, 1] and C ≥ 2 depending only on the data, ẽ, such
that ε1 ≥ C−1 when 1 < p ≤ n − 1 while ε1 ≥ 1 + (1 − n)/p + C−1 when p > n − 1.
Moreover, if x̂ ∈ F, then

b1−n
∫

∆(x̂,b)

|∇Û |pdHn−1 ≤ Cδ(x̂, F )−p+p ε1 min
F
|∇Û |p.(5.29)

Proof. As in Lemma 6.13 of [Jer96] we note that if δ(x̂, F ) ≈ 1 then (5.29) follows
from Lemmas 5.6 and 5.7. Thus we assume that δ(x̂, F ) << 1 and choose y, z ∈ F
so that δ(y, F ) ≈ 1 and π(z) = z ∈ F ∩ S̃ with π(x̂) lying on the line segment from
π(z) to π(y). Let ρ = |π(z) − π(y)|. We note that if ρ < 100 b, then (5.29) follows

from Lemmas 5.7, 5.6 with w = x̂, y, (5.27), and Harnack’s inequality for Â-harmonic
functions with ε1 = 1. Thus we assume ρ ≥ 100 b. Then from the John ellipsoid
theorem mentioned below (5.10) we deduce

δ̄ := |π(x̂)− π(z)|/ρ ≈ δ(x̂, F )

so we assume, as we may, that |π(x̂)− π(z)| < ρ/100. Next we define the cone:

Γ = {π(z) + s(ζ − π(z)) : ζ ∈ E ∩ B̄(y, ρ/2) and 0 < s <∞}.
Let X denote a point that lies ρ distance from Γ ∪ E and at most 2ρ from y. As in
the proof of Theorem A we first construct V a positive Â-harmonic function in Rn \Γ

which is continuous in Rn with V ≡ 0 on Γ and V (X) = Û(X). Second we use the
boundary Harnack inequality in Lemma 3.2 as in the proof of Theorem A to deduce
that V is unique and satisfies

V (z + s(ŵ − z)) = sε1V (ŵ) for some ε1 > 0 whenever ŵ ∈ Rn \ {z}, s > 0.(5.30)

We observe that Rn \ Γ is contained in a translation and rotation of K(α) for some
α ∈ (0, π). Using this fact, Lemma 3.2, and Theorem A we see that if p > n − 1,
ε1 − 1 + (n − 1)/p ≥ C−1. If 1 < p ≤ n − 1, one can use a compactness argument
or an argument as in [KM72] to show that ε1 ≥ C−1. Let Γ1 be the convex hull of
E ∩ B̄(y, ρ/2) and z. Also let V ∗ be the A-harmonic capacitary function for Rn \ Γ1

when 1 < p < n while V ∗ is the A-harmonic Green’s function for Rn \Γ1 when p ≥ n.
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Define f̂ and Â as above (5.20) and observe that V̂ ∗ = 1 − V ∗ is Â-harmonic when

1 < p < n while V̂ ∗ = V ∗ is Â-harmonic when p ≥ n with continuous boundary value
0 on Γ1. We first let

V ′ =
Û(X)

V̂ ∗(X)
V̂ ∗

and claim that

(a) Û ≤ CV ′ in B(y, 4ρ) \ E.
(b) V ≈ V ′ in B(z, ρ/4) \ Γ.

(c) Û ≈ V ′ ≈ V in B(y, ρ/8) \ E .
(5.31)

To prove (5.31) (a) observe from (2.8) that

max
B̄(y,4ρ)

Û ≤ c Û(X) = c V ′(X) ≤ c2 max
B̄(y,4ρ)

V ′.

This inequality, Γ1 ⊂ E, and the boundary maximum principle for Â-harmonic func-
tions give (5.31) (a). On the other hand, (5.31) (b) follows from (2.8), Harnack’s

inequality for Â-harmonic functions, Lemma 3.2, and the fact that Γ1 ∩ B̄(z, ρ/2) =
Γ ∩ B̄(z, ρ/2). Finally, (5.31) (c) follows from these inequalities and the fact that

Γ ∩ B̄(y, ρ/2) = Γ1 ∩ B̄(y, ρ/2) = E ∩ B̄(y, ρ/2).

We conclude from (5.31) that

Û ≤ CV in B(z, ρ/4) \ E while Û ≈ V in B(y, ρ/8) \ E.(5.32)

If C̃ ≥ 1 is large enough depending on ẽ and the data, then from (5.32), the fact that

ρ ≥ 100 b, (5.27), Harnack’s inequality for Â-harmonic functions, and Lemma 5.6 we
deduce that

b−1 V (π(y)− C̃ben) ≈ b−1 Û(π(y)− C̃ben) ≈ min
F
|∇Û |(5.33)

and

b−1 Û(π(x̂)− C̃ben) ≤ C b−1V (π(x̂)− C̃ben).(5.34)

Next we draw the line segment l̂ from z to π(y)−C̃ben. From similar triangles and the

definition of δ̄ below (5.29), we see that π(x̂)− δ̄C̃ben lies on l̂. From this observation
and homogeneity of V we get

V (π(x̂)− δ̄C̃ben) = δ̄ε1V (π(y)− C̃b en).(5.35)

Now since Γ is convex we can repeat the argument given in Lemma 5.6 with Û replaced
by V to get (5.23) with Û replaced by V, w by π(x̂), and r by δ̄C̃b, C̃b, provided C̃ is
large enough. We obtain

min
B(π(x̂),C̃b)∩∂Γ

|∇V |p ≈ b−pV (π(x̂)− C̃ben)p,

min
B(π(x̂),δ̄C̃b)∩∂Γ

|∇V |p ≈ (δ̄b)−pV (π(x̂)− δ̄C̃ben)p .
(5.36)
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From Lemma 5.6, (5.33)-(5.36), Harnack’s inequality for Â-harmonic functions, we
see that

b1−n
∫

∆(x̂,b)

|∇Û |pdHn−1 ≈ min
∆(x̂,b)

|∇Û |p ≈ b−pÛ(π(x̂)− C̃ben)p

≤ C (δ̄b)−p V (π(x̂)− δ̄C̃ben)p

≤ C ′ δ̄(ε1−1)p min
F
|∇Û |p

(5.37)

where C,C ′ depend only on the data and ẽ. Thus Lemma 5.8 is valid. �

To complete the proof of Theorem B we need Lemma 6.17 from [Jer96] which in
our situation can be stated as following lemma.

Lemma 5.9. With the same notation as in Lemma 5.8 choose a coordinate system
with axes parallel to the axes of an optimal inscribed ellipsoid contained in S̃. Let Q
be a tiling of S̃ by closed cubes ⊂

∑
1 and of side-length s ≤ b with sides parallel to

the coordinate axes. If Q ∈ Q, let Q∗ be the cube concentric to Q with side-length
10((n− 1)!)2s and let

δ∗(Q) = max
y∈Q∗∩S̃

δ(y, S̃).

There exists c(n) ≥ 1 such that∑
{Q: δ∗(Q)<σ}

Hn−1(Q) ≤ c(n)σHn−1(S̃)(5.38)

where C depends only on the data and ẽ.

Let ε1 be as in Lemma 5.8 and put ε0 = ε1 if 1 < p ≤ n−1 while ε0 = ε1−1+(n−1)/p
if p > n− 1. To prove (5.22) and thus complete the proof of Theorem B we first note
from Lemma 5.9 that if ε ∈ (0, 1),∑

{Q∈Q}

δ∗(Q)−1+εHn−1(Q) ≤ C(ε)Hn−1(S̃),(5.39)

as follows from summing separately over cubes Q ∈ Q with δ∗(Q) ≤ 2−ks, k =
0, 1, 2, . . . Second from Lemmas 5.6, 5.8, we deduce that if ŷ, ẑ ∈ F and π(ŷ), π(ẑ) ∈
Q∗, then

max
ζ̂∈{x̂,ŷ}

b1−n
∫

∆(ζ̂,b)

|∇Û |pdHn−1 ≤ C min
ζ̂∈{ŷ,ẑ}

δ−p+ε1p(ζ̂ , F ) min
F
|∇Û |p.

Hence,

b1−n
∫
π−1(Q)∩F

|∇Û |pdHn−1 ≤ Cδ∗(Q)−p+pε1 min
F
|∇Û |p.
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Using (5.39) with s = b/2, and the above inequality we conclude that∫
F

δ1−ε0(·, F ) |∇Û |p dHn−1 ≤ C
∑
Q∈Q

δ∗(Q)1−ε0
∫
π−1(Q)∩F

|∇Û |pdHn−1

≤ C2
∑
Q∈Q

δ∗(Q)1−ε0−p+pε1Hn−1(Q) min
F
|∇Û |p

≤ C3Hn−1(F ) min
F
|∇Û |p

(5.40)

as we obtain from (5.39) if 1 < p ≤ 2 or n = 2, 3, and p > 2. Indeed , δ∗(Q)1−ε0−p+pε1 ≤
δ∗(Q)−1+(p−1)ε0 if 1 < p ≤ 2 while δ∗(Q)1−ε0−p+pε1 = δ∗(Q)2−n+(p−1)ε0 ≤ δ∗(Q)−1+(p−1)ε0

if n = 2, 3 and p > 2. Thus (5.22) is valid and the proof of Theorem B is now complete.
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MR 1829162 (Cited on page 28).
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