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Abstract. We explore the conditions under which behavior in a strategic setting

can be rationalized as the best response to some belief about other players’ behavior.

We show that a restriction on preferences, which we term quasi-monotonicity, pro-

vides such a test for a family of ultimatum games. Preferences are quasi-monotone

if an agent prefers an allocation that improves her payoff at least as much as that of

others. In an experiment, we find that 94% of the proposers make choices that are

arbitrarily close to quasi-monotone preferences and beliefs. We also find that 90% of

the responders make inconsistent choices in no more than 5% of the decision prob-

lems. Subjects whose choices are consistent as proposers are also more likely to make

consistent choices as responders and to believe that others act consistently. Finally,

we find little support for the convexity of preferences.
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1 Introduction

Revealed preference analysis entails knowledge of the choice sets over which decisions

are made. In strategic environments, the outcomes available to decision makers depend
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on the decisions of other agents. Testing rational behavior in these contexts some-

times requires making strong assumptions about beliefs (see Sprumont 2000, Forges

and Minelli 2009, Carvajal et al. 2013). In particular, these approaches test the joint

hypothesis of rationality and equilibrium behavior. As Manski (2002, 2004) illustrates,

decision rules cannot be identified separately from beliefs. In this paper, we show that,

in a family of simple bargaining games, imposing a minimal set of restrictions on pref-

erences and beliefs yields a test of a well-behaved preference ordering consistent with

observed behavior. Our results show that properties of preferences can be identified

without assuming equilibrium behavior.

In particular, we assume that the bargainers possess quasi-monotone preferences and

that they believe that other bargainers also act according to preferences that are quasi-

monotone. The preferences of a bargainer are quasi-monotone if whenever the total

surplus increases, she prefers allocations in which her payoff increases by more than

other agents’ payoffs. Note that this is a monotonicity notion; it does not imply that all

other outcomes not included in the better-than set would be less preferred. The theory

is agnostic about these alternative allocations. We also assume that the bargainers

have preferences over lotteries that respect first-order stochastic dominance. Quasi-

monotonicity of preferences is akin to self-serving fairness. This behavior is consistent

with the models of fairness in the literature (e.g., Fehr and Schmidt 1999, Bolton and

Ockenfels 2000, and Charness and Rabin 2002), but these models are also consistent

with other preferences.1

We study the implications of the quasi-monotonicity assumption together with opti-

mizing behavior in simple bargaining games. In this context, a proposer’s choice of an

allocation is equivalent to a lottery that delivers her the chosen allocation or nothing.

The setting implies that the probability of the allocation being implemented is equal

to the proposer’s (subjective) belief that the allocation will be accepted by the respon-

der. We derive empirical implications when responders have quasi-monotone preferences

and proposers’ beliefs are consistent with this hypothesis. Our assumptions imply that,

in the context of the ultimatum game, proposers must satisfy the Generalized Axiom

of Revealed Preferences (GARP). The ultimatum game also provides a direct test of

1These models would imply stronger restrictions on preferences than quasi-monotonicity. We discuss

this issue in Section 2. Quasi-monotonicity implies what Benjamin (2015) refers to as joint-monotonicity

of preferences. Benjamin (2015) shows that joint-monotonicity of preferences is important in obtaining

efficient outcomes in bilateral trade problems. Quasi-monotonicity also implies what Dufwenberg,

Heidhues, Kirchsteiger, Riedel, and Sobel (2011) refer to as social monotonicity of preferences. They

show that this property is necessary for obtaining Pareto optimal allocations in market economies with

social preferences.
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the quasi-monotonicity of the preferences of responders. Responders do not face any

uncertainty. Their behavior should therefore be consistent with maximization of a com-

plete, transitive, and quasi-monotone preference ordering. Interestingly, behavior in the

ultimatum game can also reveal (together with the previous assumptions) whether a

responder has convex preferences. Consistency with quasi-monotonicity in both roles

therefore provides a stronger test of our assumptions.

We test the theory by observing the choices of subjects in ultimatum games in labo-

ratory experiments. Specifically, we observe subjects’ bargaining behavior in a number

of ultimatum games that differ in surplus size and the opportunity cost of dividing

the surplus. This experimental design mimics real-world situations where buyers and

sellers, each facing a different opportunity cost of money, bargain over the price of a

non-divisible good. All subjects played both the proposer and the responder roles, which

may have helped them to better understand the decision rules used by responders and

get closer to optimal behavior.

We find that the behavior of the proposers is consistent with the quasi-monotonicity

of their preferences and the belief that other agents behave as if they possess quasi-

monotone preferences. Sixty-nine of the 83 proposers (83%) did not violate GARP and,

of the 14 who did violate it, nine did so by only an arbitrarily small amount.2

Regarding the quasi-monotonicity of responders’ preferences, we find that the behav-

ior of 54 of the 83 subjects (65%) is consistent with quasi-monotone preferences and

that 90% of the responders make inconsistent choices in no more than 5% of the decision

problems. The responders’ behavior is heterogeneous: 31 subjects (37%) accepted all

offers in every game, and 41 subjects (49%) rejected, on average, one or more offers per

game. Twenty-three subjects (28%) rejected three or more offers per game, on average.

We find evidence against the convexity of responders’ preferences. Fifty-two subjects

(63%) violated convexity, and 45 subjects (54%) had at least six violations. All of the

subjects who satisfied convexity as responders accepted all offers. Convexity was not

common among the responders who did reject offers. Importantly, we find that subjects

who satisfy responder rationality are also more likely to satisfy proposer rationality as

well. However, we do not find a similar correlation between proposer rationality and

convex responder rationality.

Our theory makes specific assumptions about the beliefs of the proposers. We test

these assumptions using alternative belief elicitation techniques (see Section 4 and Ap-

pendix B). We find that 81% of the subjects’ beliefs are consistent with responder

2That is, they have a critical cost to efficiency index (CCEI) (Afriat 1973) close to 1.
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rationality and 12% of the subjects’ beliefs are consistent with convex responder ratio-

nality. The result is similar if we use incentivized belief elicitation techniques. In this

case, we find that 75% percent of the subjects have beliefs consistent with responder

rationality and 3% of the subjects have beliefs that are consistent with convex responder

rationality. This result holds if we allow for a small measurement error (5 percentage

points).

The strict convexity of preferences implies that a player in the role of a proposer

behaves as if she has a preference for redistribution. Strict convexity rules out perfectly

selfish preferences. Convexity, however, has additional implications for the behavior

of players in the role of responders. Indeed, the convexity of preferences stands in

contradiction with some models of fairness. Convexity neither implies nor is implied by

models of inequality aversion, and it is therefore a logically independent hypothesis.3

In sum, we find that suitable relaxations of assumptions about preferences and beliefs

can be used to derive testable implications of rational behavior in a strategic environ-

ment. Our experimental data support the assumptions we make. Moreover, we are able

to replicate our results in two different populations. Our results can be extended to other

proposal–response games under additional restrictions (e.g. reciprocal preferences4) us-

ing the same intuition as in Lemma 1 and Proposition 1 as well as to alternating-offer

bargaining games.

The rest of the paper is organized as follows: Section 2 details our behavioral assump-

tions; Section 3 provides the testable implications of these assumptions in ultimatum

games; Section 4 describes the experiment; Section 5 presents the experimental results;

and Section 6 concludes the paper.

2 Theory

2.1 Preferences Consider games in which players have preferences regarding their

own monetary payoff and the monetary payoffs of other players. Let the vector of

monetary payoffs in an n-player game be denoted by the n-vector x ≡ (xi,x−i), where

3Suppose an agent in the role of responder has convex and quasi-monotone preferences. Hence, if

she accepts an allocation (xr, xp) = (2, 1), she will also accept every allocation on the line that connects

zero and this outcome. However, this is not necessarily true in Bolton and Ockenfels’s (2000) model.

Assume that the agent has the utility function u(xr, xp) = xr−| xr

xp+xr
− 1

2 |, consistent with Bolton and

Ockenfels’s model. In this case, the utility of (2, 1) is u(2, 1) = 5/6 > 0, and the utility of (2/10, 1/10) is

−4/60 < 0. That is, (xr, xp) = (2/10, 1/10), which is a convex combination of (0, 0) and (2, 1), will be

rejected according to Bolton and Ockenfels’s model, but it would be accepted according to convexity.

Therefore, the inequality aversion model can generate data inconsistent with convex preferences.
4By reciprocal preferences we mean that responders choose allocations that are more favorable to

proposers whenever the available choices allow higher payoffs to responders.
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xi is Player i’s payoff and x−i is the n−1 vector of payoffs for players other than Player

i. The consumption set in an n-player game is Rn
+.

The nature of the problem requires us to consider the set of binary lotteries. The

lottery has two possible outcomes for Rn
+ and the probability q for the first outcome.

Moreover, we fix the second outcome to be zero. Let L = Rn
+ × [0, 1] denote the set of

binary lotteries, and let (x, q) = L ∈ L denote a binary lottery.

Let �i⊆ L×L be the preference relation for Player i. Let �i denote the strict part of

�i and ∼i the indifferent part of �i. Throughout the analysis we maintain the following

assumptions:

Completeness: For all L,L′ ∈ L, either L �i L′ or L′ �i L or both.

Transitivity: For all L,L′,L′′ ∈ L, if L �i L′ and L′ �i L′′, then L �i L′′.

Stochastic Dominance Preference: For all (x′′, 1) �i (�i)(x
′, 1) and 0 ≤ p ≤

q ≤ 1,

(x′′, q) �i (�i)(x
′, q) �i (�i)(x

′, p).

Stochastic Dominance Preference has two aspects. First, Player i prefers a lottery with

a higher probability of a better outcome. Second, Player i prefers a lottery with a better

bundle (better bundles) if the probabilities are fixed.

Note that we are modeling the proposer’s choice under uncertainty without the inde-

pendence assumption of standard expected utility theory.5

Quasi-Monotonicity: For all (xi,x−i), (x
′
i,x
′
−i) ∈ Rn

+,

(xi,x−i) ≥ (x′i,x
′
−i), ∀j 6= i xi − x′i ≥ xj − x′j ⇒ ((xi,x−i), q) �i ((x′i,x

′
−i), q).

for every q ∈ [0, 1].

Strict Quasi-Monotonicity: For all (xi,x−i), (x
′
i,x
′
−i) ∈ Rn

+,

(xi,x−i) > (x′i,x
′
−i), ∀j 6= i xi − x′i ≥ xj − x′j ⇒ ((xi,x−i), q) �i ((x′i,x

′
−i), q).

for every q ∈ [0, 1].

Quasi-monotonicity (strict quasi-monotonicity) is a relaxation of the monotonicity

(strict monotonicity) assumption from standard preference theory. That is, Player i

5The derivation of the expected utility property in the context of proposal–response games can be

found in Gilboa and Schmeidler (2003).
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has quasi-monotone preferences if she prefers a bundle in which all players’ payoffs are

increased, but none by more than the increase in Player i’s own payoff. Notice that,

unlike the other properties, quasi-monotonicity is defined over the monetary outcomes

and not over binary lotteries.

Convexity: For all x ∈ Rn
+ and α ∈ [0, 1], if x′ %i x and x′′ %i x, then αx′ + (1 −

α)x′′ %i x.

In the case of responders, the notion of rationality can be modified to include convexity

of preferences. Convexity is not connected to the risk preferences of agents (responders)

since responders face no risk. Instead, convexity refers to preferences for redistribution.

2.2 Beliefs In the context of proposal–response probability games, q is endogenously

determined. In particular, consider the situation in which Player i offers Player j the

choice of implementing either bundle x or bundle zero. Note that, in this case, Player

j only has to have preferences over Rn
+, because she does not face any uncertainty. In

the notation above, this is a lottery (x, q) where q is determined by Player j.6 The

belief function q : Rn
+ → [0, 1] is a continuous map of the proposed allocation into the

proposer’s subjective probability that x is realized. Let us state the restrictions on the

belief function that we incorporate into the notion of the proposer’s rationality.

Known Preference Restriction: For all i, Player i knows that for all j 6= i,

Player j’s preferences over allocations are complete, transitive, continuous, and quasi-

monotone.

Belief Consistency: For all x,x′, if for every j 6= i x′ �j x, then q(x′) ≥ q(x).

Belief Consistency states that if a proposer knows that bundle x′ is preferred to bundle

x by all responders,7 then the proposer assigns a higher subjective probability to x′

rather than x being implemented. This is a rather weak assumption on its own and is

restricted by the Known Preference Restriction. The latter implies that the proposer

is guaranteed to have information about responders’ preferences and expects them to

act in accordance with responder rationality. Note that this does not imply that the

proposer knows the entire preference relation of any responder.

6In the sense that q is the probability of Player j accepting allocation x in favor of allocation x′,

according to Player i’s belief.
7This allows generalization of some of the analysis to games with multiple responders who take

actions simultaneously or sequentially.
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2.3 Two-player proposal–response games In what follows, we confine our at-

tention to two-player games. If Player i is the proposer, we denote i as p and j as r,

and if Player i is the responder, we denote i as r and j as p. In the ultimatum game, an

allocation (xp, xr) is chosen by the proposer from a given linear budget constraint, and

the responder chooses either (xp, xr) or (0, 0) as the realized allocation. For simplicity,

we will refer to the lottery ((xp, xr), q((xp, xr))) ∈ L simply as (xp, xr).

We use the term responder rationality to describe a subject with complete, transitive,

and quasi-monotone preferences for allocations. We use the term proposer rationality

to describe a subject with complete, transitive, continuous, strictly quasi-monotone

preferences over binary lotteries who exhibits stochastic dominance and a continuous

belief function that satisfies the known preference restriction and belief consistency

properties. Further, we assume that every proposer exhibits proposer rationality and

that every responder exhibits responder rationality. Following Debreu (1964),8 we can

infer that proposer rationality implies the existence of a continuous utility function over

binary lotteries (Up) that represents the proposer’s preferences.

Before proceeding with the formal results, we elaborate on the assumptions we have

adopted. Proposer rationality requires non-satiation (over the space of certain out-

comes). However, non-satiation in our context operates in the space of lotteries. We

then require that proposers’ preferences satisfy stochastic dominance and strict quasi-

monotonicity. This guarantees non-satiation over the space of lotteries, although we

observe choices on the “projection” of the space of lotteries to the subspace defined

by the belief function. In order to have empirical content, constraints on beliefs are

necessary. To guarantee non-satiation of preferences (on the projection), we need to

guarantee that for every allocation, there is a set of outcomes that are preferred by

proposers and responders. The quasi-monotonicity of responders’ preferences plays a

dual role: (1) it provides information about responder preferences, and (2) it guarantees

that for every allocation there are some allocations that are strictly preferred by the

proposer and weakly preferred by the responder.

In the ultimatum game,9 we can obtain the following result:

Lemma 1. For any ((xp, xr), q(xp, xr)) ∈ L and any a > 0, either ((xp + a, xr +

a), q(xp + a, xr + a)) �p ((xp, xr), q(xp, xr)) or ((xp − a, xr − a), q(xp − a, xr − a)) �p

((xp, xr), q(xp, xr)).

8The original result was stated in Debreu (1954), and a corrected proof is presented in Debreu

(1964).
9Lemma 1 and Proposition 1 apply to n-player games, with one proposer and n− 1 responders who

make decisions in an arbitrary order.



8

Proof. Recall that �p is complete. Therefore, at least one of the following assertions

must be true: (x, q(x)) �p 0 or (x, q(x)) �p 0. We start by considering the first case.

Note that xr + a− xr = xp + a− xp and (xp + a, xr + a) > (xp, xr). Then, by the quasi-

monotonicity of responders, ((xp +a, xr +a), q(xp +a, xr +a)) �r ((xp, xr), q(xp, xr)), and

this is known by the proposer (using the known preference restriction) because it can

be inferred from quasi-monotonicity alone. Then, by belief consistency, the following is

true: q((xp + a, xr + a)) ≥ q((xp, xr)).

From stochastic dominance, we can infer that ((xp + a, xr + a), q((xp + a, xr + a))) �p

((xp + a, xr + a), q((xp, xr))) and ((xp + a, xr + a), q((xp, xr))) �p ((xp, xr), q((xp, xr))).

Then, by transitivity10 and strict quasi-monotonicity, (xp + a, xr + a) �p (xp, xr).

For the second case, ((x, q(x)) �p 0), similar reasoning can be used. �

Lemma 1 states that the preferences of proposers exhibit non-satiation. Hence, pro-

posers will have continuous and non-satiated utility functions.

3 Testing the Theory

Let x1, x2, . . . ,xT be distinct allocations of payoffs, each lying on a linear budget con-

straint. Let p1, p2, . . . , pT be the prices that define the linear budgets together with

incomes m1, m2, . . . ,mT . Following Varian (1992), we adopt the following two defini-

tions: (i) x1 is directly revealed preferred to x2 if x2 is in the choice set when x1 is

chosen; (ii) x1 is indirectly revealed preferred to xT if x1 is directly revealed preferred

to x2, which in turn is directly revealed preferred to x3, ..., which in turn is directly

revealed preferred to xT ; and (iii) x1 is strictly directly revealed preferred to x2 is in the

interior of the choice set of x1. In the case of linear budgets, x1 is in the budget set of

x2 if p2x1 ≤ p2x2, and x1 is in the interior of the choice set of x2 if p2x1 < p2x2.

Generalized Axiom of Revealed Preference (GARP): If x is indirectly re-

vealed preferred to x′, then x′ is not strictly directly revealed preferred to x.

Figure 1 illustrates a violation of GARP in the case of a proposal–response game. Note

that x is directly revealed preferred to x′ since it is in the budget of (p,m). In addition,

x is strictly within the budget of x′. Hence, there is a violation of GARP.

Theorem 1 (Afriat’s (1967) Theorem). The following conditions are equivalent:

(i) There exists a non-satiated utility function that rationalizes the data.

(ii) The data satisfy GARP.

10If a preference relation is transitive and complete, then x �i x
′ and x′ �i x

′′ imply that x �i x
′′.



9

xp

xr

(p,m)

(p′,m′)

(x′r, x
′
p)

(xr, xp)

Figure 1. GARP in the Ultimatum Game

3.1 Testing Proposer Rationality

Proposition 1. In the ultimatum game, a proposer satisfying proposer rationality

makes choices from linear budget sets that satisfy GARP.11

We prove Proposition 1 by applying Theorem 1. However, the two statements operate

in different spaces. The preference relation and the utility function in Theorem 1 are

defined over R2
+, while the preference relation and the utility function in Proposition 1

are defined over L. Hence, we use R to denote the pseudo-preference relation such that

for every x,x′ ∈ R2
+, xRx′ if and only if (x, q(x)) �p (x′, q(x′)). Therefore, it remains

to show that R is complete, transitive, continuous, and non-satiated.

Proof. The completeness, transitivity, and continuity of R follow from the fact that R

is equivalent to the preference relation �p over a subset of L. Hence, the completeness,

transitivity, and continuity12 of �p imply the same properties for R.

The non-satiation of R is implied by Lemma 1.13 Therefore, R is a complete, transi-

tive, continuous, and non-satiated preference relation. Using Debreu’s (1964) result, we

can conclude that there is a continuous, non-satiated utility function that represents R.

Hence, we conclude the proof by applying Theorem 1. �
11Note that the proposition can be generalized for monotone, compact, and balanced budgets, as in

Forges and Minelli (2009). A balanced set is such that if x ∈ B, then αx ∈ B for every α ∈ [0, 1);

Forges and Minelli (2009) call this property “Axiom H”.
12To prove continuity, we appeal to the well-known result from general topology that a set is closed

with respect to a subspace if and only if it can be represented as an intersection of some closed set

with that subspace. Hence, if the upper and lower contour sets of �p are closed, then the contour sets

of R are also closed.
13Moreover, since every linear budget set contains the non-empty set of points that are strictly

quasi-greater than zero, it can easily be shown that choices should lie on the boundary of the budget

set.
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We make two remarks about Proposition 1. First, proposer rationality implies that

the proposer’s choices are consistent with GARP, but not vice versa. This happens

because it is not possible to elicit (even with an infinite amount of experiments) the

entire preference relation over L. Hence, if choices over linear budgets satisfy GARP,

then there is a non-satiated, continuous, complete, and transitive preference relation

over a subset of L.

Second, there are stronger assumptions than quasi-monotonicity (e.g., monotonicity)

that imply the consistency of proposer behavior with GARP.14

3.2 Testing Responder Rationality In this section, we illustrate the consequences

of different assumptions about preferences on responders’ behavior. In proposal–response

games, the responder chooses in a situation of certainty. The sole concern is the re-

sponder’s preferences regarding allocations. In the ultimatum game, the responder

chooses to accept or reject the proposed (xp, xr) allocation. Thus, the responder’s

choice set is {(xp, xr), (0, 0)}. A responder choosing from a sequence of distinct choice

sets {(x1
p, x

1
r ), (0, 0)}, {(x2

p, x
2
r ), (0, 0)}, . . . , {(xTp , xTr ), (0, 0)} can never violate GARP.

The standard revealed preference axioms have no bite, although one can directly inves-

tigate the testable implications of the quasi-monotonicity assumption.

xr

xp

A′A

(x0
p, x

0
r ) = (0, 0)

(x1
p, x

1
r )

R

Slope of 1

x1
r

x1
p

Figure 2. Testing Responder Rationality

Consider Figure 2, which illustrates a typical responder’s choice set. The responder

chooses either to accept the allocation x1 = (x1
p, x

1
r ) or to reject it in favor of the

allocation x0 = (x0
p, x

0
r ) = (0, 0). By quasi-monotonicity, the responder should accept

everything that lies above the 45◦ line going through (0, 0); this set is labelled as A.

Moreover, if the responder accepts x1, then by quasi-monotonicity, the responder would

14This is trivial, since the stronger condition would imply monotonicity and, therefore, the non-

satiation of the pseudo-preference relation R.
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also accept any proposed x that lies above the 45◦ line going through x1 and is greater

than x1 (the set A′). Let A = {x ≥ 0, xr ≥ xp} denote the area above the 45◦ line

originating at zero. The acceptance area can be formally defined as follows:

At ≡ {x : x > xt, xr ≥ xp − (xtp − xtr) } ∪ A

Now suppose that the responder rejects x1, i.e., prefers (0, 0) to (x1
p, x

1
r ). Note that by

quasi-monotonicity, every x that lies in R (below the 45◦ line that goes through x1) is

strictly less preferred than x1. Then, by transitivity, it is less preferred than x0 = (0, 0).

Hence, the responder should reject every bundle from the set R if the responder rejects

x1:

Rt ≡ {x : x ≤ xt, xr ≤ xp − (xtp − xtr) and xp ≤ xtp}.

Let Ax denote the choice sets in which the responder accepted x1 and Rx the choice

sets in which the responder rejected x1:

Ax ≡ { t ∈ {1, . . . , T} : xt is accepted over (0, 0) },

Rx ≡ { t ∈ {1, . . . , T} : xt is rejected in favor of (0, 0) }.

Proposition 2. The observed choices are made by a responder who satisfies responder

rationality if and only if

{xt : t ∈ Rx} ∩

(
A ∪

(⋃
t∈Ax

At

))
= ∅

The proof is provided in the Appendix. Note that the statement is equivalent to the ex-

istence of a complete, transitive, and quasi-monotone preference relation that generates

the observed choices.

In this case, monotonicity has empirical content: if responders’ preferences are mono-

tone, then they would never reject x1 > (0, 0). Note that, for responders, we can test

the assumption of convexity of preferences.

Consider Figure 3, which illustrates a typical responder’s choice set. Similar to the

previous case, consider first the case in which the responder chooses x1 over x0. Con-

vexity then implies that αx1 �r x0 for any α ∈ [0, 1]. This, combined with quasi-

monotonicity, implies that the responder should accept every bundle from the set A′′

(the area above the line that goes through x0 and x1 such that xp ≤ x1
p) in addition to
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xr

xp

A′′

A

A′

(x0
p, x

0
r ) = (0, 0)

(x1
p, x

1
r )

R R′

Slope of x1
r/x

1
p

Slope of 1

x1
r

x1
p

Figure 3. Testing Responder Convex Rationality

any bundle from A. The acceptance region under the assumption of convex responder

rationality is then Ac = A ∪ A′ ∪ A′′. Formally, At
c can be defined as

At
c ≡ At ∪ {x : xp ≤ xtp, xrx

t
p ≥ xpx

t
r}.

If the responder rejects x1, then x0 �r x1. Consider x = γx1 for γ ∈ [1,∞); if x �r x0,

then, by convexity, x1 �r x0 because x1 can be represented as a convex combination of

x0 and x. This implies that every x from R′ (the area below the line that goes through

x0 and x1, such that xp ≥ x1
p) should also be rejected. The rejection region under the

assumption of convex responder rationality is then Rc = R′ ∪ R. Formally, Rt
c can be

defined as

Rt
c ≡ Rt ∪ {x : xrx

t
p ≤ xpx

t
r and xp ≥ xtp}.

xr

xp(x0
p, x

0
r ) = (0, 0)

(x1
p, x

1
r )

(x2
p, x

2
r )

Slope of 1

Slope of x1
r/x

1
p

Figure 4. Necessity of Taking the Convex Hull

Note that to test responder convex rationality, it is not enough to consider only

the union of acceptance areas generated by every accepted point. Figure 4 illustrates
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this point. In this case, x1 and x2 are both better than x0, and the union of the

acceptance areas would just deliver the area above the thick line. Note that the union

of the acceptance areas does not include the convex combinations of x1 and x2 (gray

line), while by convexity we know that any convex combinations of x1 and x2 should

be better than x0 and, as a result, should not be rejected. Therefore, to generate the

acceptance area, we need to take the convex hull of the union of At
c. Let CH(S) = {x :

x =
∑

yi∈A⊆S αiyi, withαi ≥ 0 and
∑
αi = 1} denote the convex hull of the set S.

The following refinement of Proposition 2 characterizes the empirical implications of

convex responder rationality.

Proposition 3. The observed choices are made by a responder who satisfies convex

responder rationality if and only if

{xt : t ∈ Rx} ∩ CH

(
A ∪

(⋃
t∈Ax

At
c

))
= ∅

The proof is in the Appendix.

The tests of proposer and responder rationality are different. First, they make deci-

sions over different spaces. We can directly test the quasi-monotonicity of responders’

preferences. This is not the case for proposers. For responders, we explicitly construct

the sets of points that are better/worse than the choices available at each decision node.

For proposers, linear budgets already include all the points that are quasi-smaller than

a chosen point—this allows us to test the non-satiation/monotonicity of preferences

without any additional construction.

Second, while we can determine the choice sets of proposers (by varying prices and

income), we cannot determine the choice set faced by a responder. This choice set is

determined by the actions of the proposer. To improve our knowledge of responders’

preferences, we then use the strategy method.

4 Experimental Design

We implemented variations on the standard two-player ultimatum game employed by

Guth et al. (1982) and Roth et al. (1991). The standard ultimatum game involves the

proposer offering a division of m dollars between the proposer (xp) and the responder

(xr), so that m = xp + xr. The responder then accepts or rejects the offered (xp, xr)

allocation. If the responder accepts the offer, the responders’ monetary payoff is xr

dollars and the proposer’s monetary payoff is xp dollars. If the responder rejects the

offer, both players receive a monetary payoff of zero dollars.

Our experimental subjects play nine different ultimatum games with budgets m =

xp + p xr with various endowments (m) and relative prices of offers (p). The subjects
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are volunteers from undergraduate economics courses. Each subject makes choices as-

suming both the role of the proposer and that of the responder in each of the nine

games. There is a fifty-fifty chance of ultimately being assigned the role of proposer

or responder, and an equal chance of each of the nine games being selected as the one

whose choices determine the subjects’ final payoffs. Proposers choose xr from the linear

budget constraint m = xp + p xr, discretized into 13 dollar allocations (almost all of

which are integer values). These nine budgets are presented in Figure 5.

When assuming the responder role, subjects make their accept/reject decisions before

they know which of the 13 allocations have been proposed. Consequently, for each of the

13 allocations, subjects make a choice to accept or reject it, thereby determining their

response to whichever allocation is actually proposed. For example, for the ultimatum

game with an endowment of m = $24 and a relative price of giving of p = 1/3, the

choice sets for the proposer and the responder are

C = { 3, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 69 } and D = { 0, 1 },

respectively. The proposer’s and the responder’s monetary payoffs as a function of c ∈ C
and d ∈ D are xp(c, d) =

(
24 − 1

3
c
)
d and xr(c, d) = c d, respectively. The other eight

versions of the ultimatum games are similarly defined.

For brevity, we summarize these games by convex, linear budget constraints (such

as $24 = xp + 1
3
xr) rather than the actual discretized choice set C. To make the

choice sets more transparent, subjects were presented with the final dollar allocations

rather than with budget constraints and endowments.15 Eighty-eight participants were

recruited from undergraduate economics courses at Georgetown University. There were

two experimental sessions, one with 43 participants and one with 45 participants. One

participant in each session was chosen at random to be a monitor. The monitor made no

decisions but verified to the other participants that the experimenters correctly followed

the procedures described in the instructions. Once the participants were assembled, the

instructions were read out loud, with participants reading along on their own copies. The

subjects solved several preparatory exercises to familiarize themselves with the games,

and the experimenter subsequently reviewed the correct answers. The subjects then

proceeded to fill out the experimental decision forms, placing their completed decisions

in a plain envelope. The nine games were randomly ordered on each subject’s decision

forms. However, the proposer and responder roles were presented systematically for

each game, with the proposer decision always presented first.

15Appendix C displays the decision sheets that were used.
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Figure 5. Budget Constraints Faced by Proposers

In plain view, these envelopes were collected, shuffled, and randomly separated into

two equal-sized piles, one for proposers and one for responders. Once the proposer–

responder pairs were formed, the forms were taken to a nearby room to calculate the

payments. One of the nine games was chosen at random for each pair and implemented.

The payments, along with an $8 attendance reimbursement, were placed in a private

envelope with only the subject’s identification number on the outside. Another experi-

menter who was not involved in the calculation of payments handed out the envelopes

to the participants, who were then escorted from the room. While payments were being

calculated, subjects filled out a post-experiment questionnaire that elicited their under-

standing of the games, some expectation data, and some demographic covariates. The

experiment lasted less than an hour, and the participants earned an average of $23.08

(s.e. $1.70). Of the 86 participants, 55 were male and 31 were female. In addition to

the two monitors, three subjects did not completely fill out their decision sheets. The

analysis excludes them, leaving an experimental population of 83 subjects.
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5 Results

The observed choices of proposers and responders for each of the nine budgets are

summarized in Table 1. Columns 2 and 3 give the means and standard deviations of

the proposed xr values. Column 4 shows the fraction of proposers who are generous,

meaning their proposed xr for a particular budget exceeded the minimum, and column

5 shows the mean proposals among the generous. The next four columns show the

behavior of responders who adhered to a cutoff rule, meaning that for each budget

there was a cutoff below which all proposed xr values were rejected, and above which

all proposed xr values were accepted. Columns 6 and 7 show the mean and standard

deviation of the highest rejected xr values for each budget. Column 8 shows the fraction

of rejectors—responders who rejected at least the minimum xr—and column 9 shows

the mean of the highest rejected xr values for the rejectors. The final column shows the

number of responders who did not adhere to a cutoff rule for each budget.16

m = xp + p xr, Proposed xr Highest rejected xr No cut-

with (m, p) = All proposers Generous All responders Rejectors off rule

Mean St.Dev %-age Mean Mean St.Dev %-age Mean n

($12, 1
5) $10.63 $9.27 80.7% $12.57 $4.00 $10.66 47.0% $8.53 3

($24, 1
3) $13.88 $9.55 80.7% $16.48 $5.10 $12.96 45.8% $11.13 3

($24, 1
2) $10.72 $6.31 81.9% $12.65 $4.51 $9.05 44.6% $10.11 3

($36, 1) $10.75 $6.87 83.1% $12.72 $4.25 $6.86 51.8% $8.21 2

($48, 1) $13.23 $8.72 83.1% $15.71 $5.23 $9.72 51.8% $10.09 3

($60, 1) $16.17 $11.37 79.5% $20.08 $6.39 $12.36 56.6% $11.28 4

($48, 2) $8.61 $5.84 79.5% $10.58 $4.00 $5.88 53.0% $7.54 3

($72, 3) $9.05 $6.23 77.1% $11.44 $4.02 $5.77 50.6% $7.95 2

($60, 5) $5.14 $3.63 80.7% $6.25 $2.81 $3.36 59.0% $4.76 3

All 9 budgets $10.91 $8.39 80.7% $13.18 $4.47 $9.05 51.1% $8.76 5

Table 1. Summary of Proposer and Responder Behavior

The middle three rows of Table 1 show subjects’ behavior in ultimatum games with

budgets having a price of one and an income that increases from $36 to $48 to $60.

Examination of these three ultimatum games clearly revealed positive income effects.

Mean proposals and the variance of proposals increased with income, as did the mean

proposal among the generous. The mean and the variance of the highest rejected xr

16Table 1 shows that five responders made decisions from at least one budget that did not conform

to a cutoff rule. The number of cutoff rule violations was nine for Subject 346, eight for Subject 416,

seven for Subject 421 and one each for Subject 305 and Subject 443.
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also increased with income, as did the mean highest rejected xr among the rejectors.

Compared to previous studies of unitary-price ultimatum games (Roth 1995; Camerer

2003), subjects in the present study made slightly smaller proposals on average.

Ultimatum games with p 6= 1 have previously been studied by Kagel, Kim, and Moser

(1996) and Castillo and Cross (2008). Both of these studies collected data on ultimatum

games with relative offer prices of 1
3

and 3. In Kagel et al.’s (1995) study, the subjects

played ten rounds assigned to either the proposer role or the responder role. Proposers

offered 63.7% of their endowment from a p = 3 budget and 24.2% from a p = 1
3

budget,

considerably higher than the corresponding shares in the one-shot ultimatum games

studied here.

5.1 Proposer Rationality Were the revealed preference axioms violated by pro-

posers, and if so, how severely? A useful measure of the severity of violations is Afriat’s

(1973) Critical Cost Efficiency Index17 (CCEI) (see Varian 1992). The CCEI is a rela-

tive measure—with the range [0, 1]—of how much one would have to relax each budget

constraint to eliminate violations. The closer the CCEI is to one, the milder the relax-

ations of any budgets that are necessary to eliminate violations. A CCEI of 1 indicates

no violations, and small violations are indicated by a CCEI of 1− ε.18 We refer to small

violations as ε violations and other violations as large violations. The upper panel of

Table 2 shows the size distribution of the CCEI across proposers. Column 2 shows that

69 of the 83 proposers (83.1%) did not violate GARP, and of the 14 violators, nine were

ε violators. No proposer had a CCEI of 0.80 or less.

How effective is GARP as a test of the hypothesis that proposers possess well-

behaved, quasi-monotonic preferences and believe responders’ preferences to be like-

wise? Bronars’ (1987) popular test compares this null hypothesis to the alternative

that subjects make uniformly random choices from each budget—that is, (a) the choice

from each budget is the realization of a draw from a uniform distribution supported by

that budget line, and (b) choices from separate budgets are independent. The lower

panel of Table 2 reports the power of Bronars’ test from a simulation of 50,000 pseudo-

subjects. This power of 90% compares favorably to that computed in other studies

(see Famulari 1995, Cox 1997, Sippel 1997, Harbaugh et al. 2001, and Andreoni and

17The first time analog of Critical Cost Efficiency for production analysis, called P-efficiency, was

introduced by Afriat (1972) .
18That is, CCEI > 1− 0.00001. In some cases, the violations of GARP are arbitrarily close to one.

This is the case if one of the chosen points lies within the intersection of the budget sets. Any ε > 0 will

eliminate the violation. Note that this type of violation can appear as a consequence of measurement

error due to the discretization of the decision problem.
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CCEI (Critical Cost

Efficiency Index)
Number of Subjects Violations per Subject

1∗ 69 0

1− ε∗ 9 1.33

[0.9, 1− ε∗) 3 2.67

[0.8, 0.9) 2 2.50

[0, 0.8) 0 n.a.

Power Analysis

Test Test Power
Average Number

of Violation

Bronars’ Test 0.9012 10.63

e.d.f. test 0.8136 7.42

∗ CCEI’s of 1 and 1− ε denote no violations and small violations respectively
Table 2. Violations of Testable Implications for Proposers

Miller 2002). Indeed, we designed the experiment specifically to have a high Bronars’

power—this is possible because Bronars’ test is an ex ante test of rationality.

Alternatively, one can consider an ex post test of rationality where the alternative

hypothesis supposes choices are independent draws from the empirical distribution func-

tion (e.d.f.) supported by each budget line—that is, the actual distribution of proposals

observed in the experiment. Note that the power of this e.d.f. test is tied to observed

behavior, and certain patterns of observed behavior can lead to the power being quite

low. Consider the extreme case where no proposers ever make a generous offer; this

yields an e.d.f. test with zero power. However, the pattern of proposals that was actu-

ally observed did not lead to an e.d.f. test with particularly low power. Column 2 in the

lower panel of Table 2 shows that the e.d.f. test performed solidly in our experiment,

having only a nine percentage point loss of power compared to Bronars’ test.

5.2 Responder Rationality Table 3 presents the results of testing responder ratio-

nality and convex responder rationality using the empirical implications from Proposi-

tions 2 and 3. Column 3 shows that 65% of the subjects satisfied responder rationality

and 90% of the subjects made no more than five violations. The benchmark of five

mistakes is important because, formally, every subject faced 117 decision problems (13

options under nine different budget sets). Therefore, if the number of violations is no

more than 5, the subject makes mistakes in no more than 5% of the decision-making
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situations. Column 5 shows that only 37% of the subjects satisfied convex responder ra-

tionality and that 54% of the subjects made more than five mistakes, i.e., made mistakes

frequently.

Responder Rationality Convex Responder Rationality

Number of Violations Number of Subjects Percent of Subjects Number of Subjects Percent of Subjects

0 54 65% 31 37%

1 6 7% 1 1%

2 8 10% 3 4%

3 2 2% 1 1%

4 4 5% 1 1%

5 1 1% 1 1%

≥ 6 8 10% 45 54%

Power of Test

Proposer Rationality Convex Proposer Rationality

Test Power of Test
Average Number

of Violations (std)
Power of Test

Average Number

of Violations (std)

Random 1.0000 47.0850 (4.8914) 1.0000 58.6110 (5.3513)

Random Cutoff 1.0000 34.1910 (9.8979) 1.0000 62.5970 (11.1140)

e.d.f. 1.0000 7.1360 (2.4243) 1.0000 16.3290 (3.0731)

e.d.f. Cutoff 0.9960 8.1660 (3.8373) 1.0000 24.0310 (6.1289)

Table 3. Violations of Testable Implications for Responders

It is worth noting that all 31 non-violators of convexity are among the 54 non-violators

of responder rationality. We note that while responder rationality does not formally

require a cutoff rule, convex responder rationality does. Furthemorer, these 31 non-

violators are subjects that accepted all offers in every game. Research by Andreoni,

Castillo, and Petrie (2003) using the discrete and convex version of the ultimatum game

showed that convexity for a fixed price and income is common. Our experiments were

consistent with this finding as well. We found that only five of the 83 subjects violated

a within-game cutoff rule. Hence, violations of convexity were not due to inconsistent

responder behavior within a game, but rather inconsistent behavior across games.

To determine the power of the test, we generated 50,000 pseudo-subjects who followed

one of the following rules. The first simple rule is an analog of Bronars’ test in which

a pseudo-subject is equally likely to accept or reject any given alternative. Second,

we considered adding a cutoff rule to Bronars’ test—each pseudo-subject followed a

cutoff rule that was chosen at random separately for each game. The third test was an

e.d.f. test in which every pseudo-subject accepted an offer according to the empirical

distribution of acceptances for such an offer. Finally, we randomly assigned cutoff rules

according to their empirical distribution. Note that the power of all tests was almost 1,

i.e., none of the pseudo-subjects showed behavior that was consistent with the notions
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of rationality, and the mean number of violations was significantly higher than the mean

number of violations for the real subjects (2.37 for responder rationality and 16.08 for

convex responder rationality). This enabled us to conclude that the test we conducted

has enough power to guarantee that our subjects’ choices are actually consistent with

the notions of rationality and that the observed results are not false positives.

Consistent with

Responder Rationality

Inconsistent with

Responder Rationality

Consistent with Proposer Rationality (CCEI = 1) 48 (58%) 21 (25%)

Inconsistent with Proposer Rationality (CCEI 6= 1) 6 (7%) 8 (10%)

Table 4. Cross Table: Proposer Rationality and Responder Rationality

Table 4 compares subjects’ consistency with quasi-monotonicity as proposers and re-

sponders. The majority of the subjects (58%) satisfied quasi-monotonicity as proposers

and responders. Quasi-monotone proposers were more likely to be quasi-monotone re-

sponders than non-quasi-monotone proposers (70% v. 43%, Fisher’s exact test p-value =

0.070). Note, however, that a sizable proportion of the subjects (25%) satisfied quasi-

monotonicity as proposers, but not as responders. Table 4 provides support for the

Known Preference Restriction assumption. Only 11% (6 out of 54 subjects) of the sub-

jects that were quasi-monotone as responders failed quasi-monotonicity of preferences

and beliefs as proposers.

Consistent with Convex

Responder Rationality

Inconsistent with Convex

Responder Rationality

Consistent with Proposer Rationality (CCEI = 1) 30 (36%) 39 (47%)

Inconsistent with Proposer Rationality (CCEI 6= 1) 1 (1%) 13 (16%)

Table 5. Cross Table: Proposer Rationality and Convex Responder Rationality

Table 5 compares subjects’ consistency with quasi-monotonicity as proposers and

convexity as responders. The choices of the majority of the subjects (63%) were not

consistent with convexity of preferences. Quasi-monotone proposers were more likely

to satisfy convexity as responders than non-quasi-monotone proposers (45% v. 7%,

Fisher’s exact test p-value = 0.013). Note, however, that the only subjects whose

choices as responders satisfied convexity were subjects who never rejected offers. This

calls into doubt the assumption of the convexity of preferences in models of responders’

behavior.

5.3 Beliefs We collected subjects’ expectations after the experiment was completed,

while payments were being prepared. Subjects were asked to provide an estimate of the
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probability that a particular offer would be rejected had it been offered by a responder.

In particular, subjects were asked to answer questions of the form:

What do you think is the percent chance that Proposal Rule a would be Rejected by the Responder?

© 0% © 1%–30% © 31%–70% © 71%–99% © 100%.

This procedure is suggested by Manski (2004), and Manski and Neri (2013) im-

plemented an incentivized version to elicit second-order beliefs in strategic games. A

distinct advantage of this procedure is that it allows subjects to express uncertainty

about their beliefs. Most of the literature on belief elicitation is devoted to the elic-

itation of point probabilistic beliefs (see Schotter and Treviño (2014) for a thorough

discussion on the elicitation of beliefs). A potential drawback is that the elicitation

is not incentivized. However, we show in Appendix B that use of Hossain and Okui’s

(2013) incentivized belief elicitation task produces similar results. Just as important,

Appendix B also provides a replication of our original choice experimental results.

Table 6 reports the distribution of answers for all of the allocation rules we asked.

We observe that subjects reported that allocations that are less favorable to responders

are more likely to be rejected.

Table 7 reports whether the elicited beliefs are consistent with our assumptions of

Known Preference Restrictions and Belief Consistency. These hypotheses cannot be

tested separately; therefore, we evaluate them jointly.19

We now describe how we tested for belief consistency. Belief consistency implies that

if allocation x is preferred to x′ by all proposers, then the probability that x is rejected

should be no greater than the probability of rejecting x′. Additional restrictions are

implied by the Known Preference Restriction. Let bt denote the belief that xt is rejected.

If beliefs are consistent with responder rationality, then if outcome xt is greater than xs

according to quasi-monotonicity, the probability of rejecting xs should be greater than

the probability of rejecting xt.

Corollary 1. Let A = {x ≥ 0, xr ≥ xp} and At ≡ {x : x > xt, xr ≥ xp−(xtp−xtr) } ∪A.

A set of beliefs b1, . . . , bT is consistent with responder rationality if and only if for every

xs ∈ At \ A, bs ≤ bt.

We now present a test of whether beliefs are consistent with (convex) responder ra-

tionality. Recall that subjects are randomly matched to a member of the population

19Each assumption taken alone does not have empirical content. If a player knows that other players

are rational, but does not update beliefs correspondingly, then she still satisfies the Known Preference

Restriction assumption. If a player has beliefs consistent with alternative preferences/notions of ratio-

nality, these beliefs do not have to be consistent with the tests we propose.
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Allocation Probability q(x) that offer x will be rejected:

(xp, xr) = 0 ∈ [1, 30] ∈ [31, 70] ∈ [71, 99] = 100

(23, 3) 9.6 26.5 21.7 36.1 6.0

(22, 6) 12.0 36.1 32.5 19.3 0.0

(20, 12) 30.1 55.4 12.0 2.4 0.0

(18, 18) 72.3 26.5 0.0 1.2 0.0

(59, 1) 9.6 19.3 14.5 43.4 13.3

(50, 10) 20.5 28.9 28.9 19.3 2.4

(40, 20) 27.7 47.0 21.7 3.6 0.0

(30, 30) 72.3 26.5 1.2 0.0 0.0

(60, 4) 9.6 22.9 16.9 44.6 6.0

(40, 8) 14.5 28.9 32.5 22.9 1.2

(36, 12) 27.7 42.2 22.9 7.2 0.0

(18, 18) 71.1 28.9 0.0 0.0 0.0

(55, 1) 9.6 20.5 10.8 42.2 16.9

(40, 4) 12.0 27.7 21.7 34.9 3.6

(25, 7) 20.5 39.8 24.1 15.7 0.0

(10, 10) 68.7 30.1 1.2 0.0 0.0

Table 6. Distribution of Elicited Beliefs

of responders. Beliefs are said to be consistent with (convex) responder ratio-

nality if there is a population of (convex) responder rational players whose probability

of rejecting the outcome xt is equal to the proposer’s belief. Recall that the convex

acceptance region is defined as At
c ≡ At ∪ {x : xp ≤ xtp, xrx

t
p ≥ xpx

t
r} (see Figure 3).

That is, if xt is accepted, then every convex combination of zero and xt is better than

zero and therefore should be accepted. Hence, every allocation on the line that connects

zero and xt should be accepted. Moreover, quasi-monotonicity implies that every point

above this line should also be accepted. Furthermore, if we consider a population of

players with convex preferences, then the probability of rejection of every point in the

convex acceptance region of xt should be no greater than the probability of rejection of

xt. However, the convex acceptance region guarantees that for every point, the upper

contour set is convex if that point was the only accepted one. If more than one point

was accepted, then the union of the convex acceptance regions may not itself be convex

(see Figure 4). Therefore, it is necessary to take the convex hull of the union of the

convex acceptance regions. Let C = {xt : t ∈ {1, . . . , T}} denote the set of all points

over which beliefs are elicited, and let 2C denote the power set of C.
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Corollary 2. A set of beliefs b1, . . . , bT is consistent with convex responder rationality

if and only if xs ∈ CH
(
A ∪

( ⋃
xt∈S

At
c

))
implies bs ≤ max

xt∈S
{bt} for every S ∈ 2X\{xs}.20

Corollaries 1 and 2 are statements about point beliefs, while the beliefs we elicited

are interval beliefs. We therefore test for the existence of point beliefs that lie within

the elicited range provided to subjects and that satisfy the belief consistency criteria.

Beliefs Consistent with

Responder Rationality

Beliefs Consistent with

Convex Responder Rationality

All Subjects 67 (83) 10 (83)

Satisfy Proposer Rationality 61 (69) 10 (69)

Satisfy Proposer and

Responder Rationality
43 (48) 9 (48)

Satisfy Proposer and

Convex Responder Rationality
25 (30) 9 (30)

∗ Total number of subjects falling in the corresponding category given in parenthesis

Power of Test

Random 0.9970 1.0000

e.d.f 0.9100 1.0000

Table 7. Consistency of Beliefs

Table 7 reports the degree of consistency of individual beliefs with the assumptions

of this paper. The first column includes subjects who believe that responders have

quasi-monotone preferences, and the second column includes subjects who believe that

responders have convex preferences. Each row in Table 7 presents results according to

the characteristic of the subject reporting the beliefs. We can see that 67 (81%) of

all subjects have beliefs that are consistent with responder rationality. If we consider

only subjects whose beliefs are consistent with proposer rationality, we observe that 61

(88%) of these subjects have beliefs consistent with responder rationality. Regarding

beliefs that are consistent with responders having convex preferences, we see that only

10 (12%) of all the subjects have beliefs consistent with the notion of convex responder

rationality. Moreover, five of these subjects assigned the same belief to every allocation.

To test the robustness of these results, we performed power tests for the consistency

of the beliefs with responder rationality. We found that at least 91% of the random

subjects had beliefs that fail the test, and 100% of the random subjects had beliefs that

are not consistent with the notion of convex responder rationality. In sum, the elicited

20Although the precise test is NP-hard, the number of sets one should consider is 2T−1 for every T

observations. Moreover, at every step, it is necessary to take a convex hull of the set of points.
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beliefs were consistent with the assumptions we made and the analysis of the choice

data we provided.

In our experimental design, we asked every subject to complete three tasks: to make

decisions as proposers and as responders and to report beliefs. This allows us to identify

which assumptions of proposer rationality failed. We observe that 43 (52%) subjects

passed all three tests, 5 (6%) failed only consistency of beliefs, and 2 (2%) failed only

proposer rationality (i.e., violated stochastic dominance). In addition, 21 of the subjects’

beliefs are consistent with proposer rationality but are not consistent with responder

rationality, and 18 of the subjects passed the belief consistency test. These subjects

seem to have consistent beliefs and behave rationally, but fail to have quasi-monotone

preferences themselves.21 The empirical analysis of beliefs presented so far relies on

hypothetical questions. A more robust test of our assumptions would require obtaining

similar results using incentivized elicitation of beliefs. We therefore collected additional

experimental data on choices and beliefs using incentivized methods (Hossain and Okui,

2013). Table B.6 presents the results on consistency of beliefs using this new data set,

and Table B.1 in the appendix summarizes the choice data. Tables B.2 and B.3 show

that the new experimental sessions mimic the results in Tables 2 and 3 in the paper.

Further, Table B.6 shows that our results regarding beliefs mimic those using non-

incentivized methods. The similarities are even clearer if we relax the test of consistency

to allow for a 5 percentage point measurement error. This provides further support for

our assumptions and original results.

6 Conclusions

Samuelson (1938) revealed that a preference approach provides an intuitive and pow-

erful way to test the empirical content of microeconomic theory. The usefulness of this

approach has been apparent in the many applications and extensions over the years.22

21Formally, various monotonicity assumptions imply behavior consistent with GARP. For instance,

subjects might prefer outcomes that increase proposers’ and responders’ payoffs equally. This, together

with the quasi-monotonicity of responders’ preferences, would imply behavior consistent with GARP,

but it would lead to a rejection of responder rationality.
22Revealed preference analyses have been used to study preferences for giving and social preferences

(Andreoni and Miller 2002; Fisman, Kariv and Markovits 2007), psychiatric patients (Battalio et al.

1973), children (Harbaugh, Krause, and Berry 2001), rats, pigeons, and monkeys (Kagel, Battalio,

and Green 1995; Chen, Lakshminarayanan, and Santos 2006), risk preferences (Choi et al. 2007;

Andreoni and Harbaugh 2009), characteristic models (Blow, Browning, and Crawford 2008), household

bargaining (Cherchye, De Rock, and Vermeulen 2007), rational expectations (Browing 1989), habits

(Crawford 2010), market equilibriums (Brown and Matzkin 1996), decisions on nonlinear budget sets

(Matzkin 1991; Forges and Minelli 2009; Chavas and Cox 1993), and games (Sprumont 2000).
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This paper investigates the revealed preference approach in strategic environments. We

show that a completely nonparametric analysis of a simple game is informative. In

doing so, we have identified basic restrictions that must be placed on behavior to be

consistent with this approach. We observed the behavior of bargainers in a number

of ultimatum games and found that the behavior strongly supports the assumption of

quasi-monotone preferences. This implies that, even absent parametric assumptions

about preferences or collecting data on beliefs, we can extrapolate behavior to counter-

factual games. Importantly, though, the measures of belief are strongly consistent with

our assumptions.

Quasi-monotonicity is consistent with many models of fairness (Fehr and Schmidt

1999; Bolton and Ockenfels 2000; and Charness and Rabin 2002).23 Interestingly, our

approach also suggests that further assumptions in models of fairness, such as homoth-

eticity or quasi-linearity, are testable nonparametrically. In this context, we also find

evidence against the convexity of preferences.

Additional assumptions beyond quasi-monotonicity are needed to rationalize behavior

in other games (e.g., the investment game, as shown in Berg, Dickhaut, and McCabe

1995). Our study illustrates that the revealed preference approach provides a framework

to systematically study these assumptions.

23Agents with quasi-monotone preferences will never reject offers that are favorable to them, while

some models of fairness might allow this to occur.
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Appendix A: Proofs

To prove the propositions, we need to introduce additional notation. First, we use

set-theoretic notation for the preference relations. A set R ⊆ X × X is said to be

a preference relation. We denote the set of all preference relations on X as R.

We denote the reverse preference relation as R−1 = {(x, y)|(y, x) ∈ R} (P−1(R) =

{(x, y)|(y, x) ∈ P (R)}). The symmetric part ofR is I(R) = R∩R−1, and the asymmetric

part is P (R) = R \ I(R). We denote the non-comparable part of R as N(R) = X ×X \
(R∪R−1). We say that relation R′ is an extension of R, denoted as R � R′, if R ⊆ R′

and P (R) ⊆ P (R′). Note that for every R ⊆ R′, R′ is an extension of R if and only if

P−1(R) ∩ R = ∅ (for the proof see Demuynck (2009)). Hereafter, we will refer to this

property as consistency with R′.

Next, we formally define the revealed preference relation. Let (xt, Bt)t=1...T be a finite

consumption experiment in which xt are the chosen points and Bt are budgets. We

assume that all budgets are compact and monotone.24 Let RE denote the revealed

preference relation. (xt, y) ∈ RE if y ∈ Bt, (xt, xt) ∈ I(RE), and (xt, y) ∈ P (RE)

for any y ∈ Bt \ {xt}. Recall that in the case of the responder choice problem, Bt =

{(xp, xr), (0, 0)}. To simplify notation, let xDi y mean that x ≥ y and for every j 6= i,

xi − yi ≥ xj − yj. With this additional nomenclature we can define quasi-monotonicity

as follows:

Observation A.1. R is quasi-monotone if and only if Dr ⊆ R.

Proof of Proposition 2.

Definition A.1. Let T : R → R denote a transitive closure. Then (x, y) ∈ T (R)

if there is a sequence of elements S = s1, . . . , sn such that for every j = 1, . . . , n − 1,

(sj, sj+1) ∈ R.

Demuynck (2009) shows that there is a complete and transitive extension of a prefer-

ence relation R if and only if R � T (R).25 Observation A.1 implies that R � T (R∪Dr)

if and only if there is a complete, transitive, and quasi-monotone extension of R. In the

context we consider, x is chosen if and only if it is strictly better than y, and therefore,

there is a complete, transitive, and quasi-monotone relation that generates the observed

choices if and only if there is a complete, transitive, and quasi-monotone extension of

the revealed preference relation. This implies the following result:

24If x ∈ Bt, then any y ≤ x is also in Bt. Moreover, since we work on Rn, the budget set will also

include elements with negative coordinates.
25A similar result can be found in earlier papers by Szpilrajn (1930) and Richter (1966).
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Lemma A.1. There is a complete and weakly quasi-monotone preference relation R

that generates the observed choices if and only if RE � T (RE ∪Dr).

Hence, it only remains to prove that the proposed test is equivalent to T (RE ∪ Dr)

being an extension of RE.

Lemma A.2. RE � T (RE ∪Dr) if and only if

{xt : t ∈ Rx} ∩

(
A ∪

(⋃
t∈Ax

At

))
= ∅

Before we start the proof, note that for any (x, y) ∈ T (R ∪ Dr), there is a shortest

sequence that adds (x, y) to T (R∪Dr). By the transitivity of Dr, the shortest sequence

cannot contain more than one pair sj, sj+1 such that sj Dr sj+1. Moreover, since every

element is directly compared with only x0 = (0, 0), the shortest sequence cannot contain

more than one pair sj, sj+1 such that (sj, sj+1) ∈ RE. Hence, the following observation

is true:

Observation A.2. If (x, y) ∈ T (RE ∪ Dr) and x 6= y, then the length of the shortest

sequence that adds (x, y) is at most three. Moreover, the sequence cannot contain more

than one pair sj, sj+1 such that (sj, sj+1) ∈ RE or more than one pair sj, sj+1 such that

sj Dr sj+1.

Given this observation, we will only refer to sequences of no more than three elements

in what follows. Further, we will use the equivalent definition of being an extension,

that is, P−1(RE) ∩ T (RE ∪Dr) = ∅.

Proof of Lemma A.2. (⇒) We first show that if RE � T (RE ∪ Dr), then there is no

violation of the test. Assume, to the contrary, that at least one of the conditions is

violated. We will show that any of these violations causes a violation of consistency

with T (RE ∪Dr).

Assume there exists an xt such that xt ∈
⋃

t∈Ax
At and t ∈ Rx. The first part implies

that there is a xk such that (xk, x0) ∈ RE and xt Dr x
k. Then (xt, x0) ∈ QM(RE).

The second part implies that xt was rejected: (x0, xt) ∈ P (RE). Therefore, (xt, x0) ∈
T (RE ∪Dr) ∩ P−1(RE) 6= ∅, i.e., RE is not consistent with T (RE ∪Dr).

(⇐) We now show that if the data pass the test, then RE is consistent with T (RE ∪Dr)

. Assume, to the contrary, that there exists some (x, y) ∈ T (RE ∪Dr) ∩ P−1(RE) 6= ∅.
Hence (x, y) ∈ T (RE ∪ Dr) and (y, x) ∈ P (RE). Note that by the nature of the data

(binary choice between xt and x0), either x = x0 or y = x0. We will show that either of
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these cases will result in failing the test.

Case 1: Assume that x = x0, and let y = xt. Then there is a shortest sequence

S = s1, s2, s3 such that s1 = x0 and s3 = xt. Then (x0, s2) ∈ RE since there is no

element x ∈ R2
+ such that Dr in R2

+. This implies that s2 = xs, i.e., a chosen point.

Therefore, (xs, xt) ∈ Dr, that is, xs ∈ At at the same time that (x0, xs) ∈ RE implies

that s ∈ Rx. This immediately implies a contradiction.

Case 2: Assume that x = xt, and let y = x0. Then there is a shortest sequence

S = s1, s2, s3 such that s1 = xt and sn = x0. Then (s2, x
0) ∈ RE, that is, s2 = xs and

it is an accepted point.26 Moreover, xtDr x
s, that is, xt ∈ As and xt is a rejected point.

This immediately implies a contradiction. �

Proof of Proposition 3. Let us start with the proof of necessity.

Proof of Necessity. Assume, to the contrary, that the choices satisfy convex responder

rationality—there is a complete, transitive, quasi-monotone, and convex preference re-

lation R that is an extension of RE. Consider the two following cases.

Let xt ∈ {xt : t ∈ Rx} ∩ CH
(
A ∪

(⋃
t∈Ax

At
c

))
. This implies that (x0, xt) ∈

P (RE), because xt is rejected. Considering the second part, let us assume that xt ∈(
A ∪

(⋃
t∈Ax

At
c

))
, that is, there is an xk that is accepted: (xk, x0) ∈ P (R), such that (i)

xt > 0 and xtr ≥ xtp, (ii) xt ≥ xk and xtr − xkr ≥ xtp − xkp, and (iii) xtp ≤ xkp, x
t
rx

k
p ≥ xtpx

k
r .

Quasi-monotonicity and (i) imply that (xt, x0) ∈ R. Quasi-monotonicity and (ii)

imply that (xt, xk) ∈ R, and by transitivity, (xt, x0) ∈ P (R). Convexity, quasi-

monotonicity, transitivity, and (iii) imply27 that (xt, x0) ∈ R. Another possibility is

that xt ∈ CH
(
A ∪

(⋃
t∈Ax

At
c

))
\
(
A ∪

(⋃
t∈Ax

At
c

))
. Therefore, there exist xk1 , . . . , xkn

that are accepted and xt =
∑n

i=1 αix
ki such that αi ≥ 0 and

∑n
i=1 αi = 1; therefore, by

convexity, (xt, x0) ∈ R. �

The proof of sufficiency is analogous to the proof of Proposition 1. We use the function

that induces convexity and transitivity, which also satisfies the conditions in Demuynck

(2009). Therefore, the analog of Lemma A.2 is satisfied. Finally, we show that RE is

consistent with its convex and transitive extension if and only if the convex responder

rationality test is passed.

26The alternative case is s2 Dr x
0, which immediately implies that xt Dr s2 Dr x

0, i.e., xt ∈ A and is

a rejected point.
27There exists x = αx0 + (1−α)xk, and hence (x, x0) ∈ R. Moreover, xt ≥ x and xtr−xr ≥ xtp−xp,

and hence (xt, x) ∈ R.
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Let UR(x) = {y : (y, x) ∈ R} denote the upper contour set of x. Let LR(x) = {y :

(x, y) ∈ R} denote the lower contour set of x. We will say that a preference relation

R is convex if for every x ∈ X, UR(x) is convex.

For any finite set A ⊆ X, let V (A) denote the interior of the convex hull spanned

by elements of A:

V (A) =

{
x ∈ X : x =

∑
yi∈A

αiyi

}
,

where for all i, αi > 0, and
∑

i αi = 1.

We introduce the function C(R) that Demuynck (2009) used to prove the existence

of complete, transitive, and convex extensions of preferences. Consider a finite number

of sequences S1, . . . , Sm. For an element sij < nSi , we say that set A is compatible

with sij if

• A ⊆ {skv : k ∈ {1, . . . ,m}, v ∈ {1, . . . , nSk}}, and

• sij+1 ∈ A.

Let the sequence S1, . . . , Sm be given. We use A(sij;S
1, . . . , Sm) to denote the collection

of all sets A that are compatible with sij. Set A’s being compatible with an element

sij means that there is a set of points (taken from the family of sequences) that are

no worse than sij, including sij and sij+1. This allows us to represent sij as a convex

combination of the points that are no worse than sij+1. By convexity, this would imply

that sij is no worse than sij+1.

Definition A.2. Let C(R) denote the convex and transitive closure of R. Then

(x, y) ∈ C(R) if there is a family of sequences S1, . . . , Sm such that for all i = 1, . . . ,m:

si1 = x, si
nSi = y, and for all i = 1, . . . ,m and j = 1, . . . , nSi − 1:

either (sij, s
i
j+1) ∈ R, or

there is a set A ∈ A(sij;S
1, . . . , Sm) such that sij ∈ V (A).

The following result can be immediately deduced from the results in Demuynck (2009)

and Observation A.1:

Lemma A.3. There exists a complete, convex ,and weakly quasi-monotone preference

relation that generates the observed choices if and only if RE � C(RE ∪Dr).

Therefore, we need to prove that consistency with C is equivalent to the test of

convex responder rationality. Demuynck (2009) shows that C(R) = R if and only if R

is transitive and convex. Therefore, the following corollary follows from Lemma A.3:

Corollary A.1. If R is convex and transitive, then it is consistent with C(R).
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We now construct a convex, transitive, and quasi-monotone extension of RE and show

that if the test of convex responder rationality is satisfied, then RE is consistent with

it. This allows us to complete the proof by applying Corollary A.1. We construct a

convex, transitive, and quasi-monotone extension of RE in two steps. First, we construct

QE, which is quasi-monotone and convex, but not yet transitive. Second, we construct

TC(QE), which is convex, transitive, and quasi-monotone.

xr

xpx0

xt

Slope of 1

Slope of x1
r/x

1
p

LQ′E
(xt)

UQ′E
(xt)

xr

xpx0

xt

Slope of 1

Slope of x1
r/x

1
p

LQ′E
(xt)

UQ′E
(xt)

(a) xt is accepted (b) xt is rejected

Figure A.1. Constructing Q′E

To construct the relation QE, which is a convex and quasi-monotone extension of RE, we

need to construct the intermediate relation Q′E, which is a substantial subrelation of QE.

If allocation xt ∈ CH
(
A ∪

(⋃
t∈Ax

At
c

))
, then LQ′E

(xt) = {x : xp ≤ xtp, xrx
t
p ≤ xpx

t
r} and

UQ′E
(xt) = {x : xDrx

t}. If allocation xt ∈
⋃

t∈Rx
Rt

c, then LQ′E
(xt) = {x : xtDrx}∪{x :

xp ≥ xtp, xrx
t
p ≥ xpx

t
r} and UQ′E

(xt) = {x : xp ≤ xtp, xrx
t
p ≤ xpx

t
r} ∪ {x : x Dr x

t}.
In addition, LQ′E

(x0) =
(⋃

t∈Rx
Rt

c

)
and UQ′E

(x0) = CH
(
A ∪

(⋃
t∈Ax

At
c

))
. Figure A.1

illustrates the construction of Q′E; the upper and lower contour sets are the shadowed

areas. Q′E is an intermediate relation that is the most important addition to RE (the

revealed preference relation). We then construct QE as the union of Q′E, RE, and the

quasi-monotone relation, i.e., QE = Q′E ∪Dr ∪RE.

Note that Dr is also a binary relation, so that this union is well-defined. This guaran-

tees that QE, as well as every preference relation that extends QE, is quasi-monotone.

Moreover, it can easily be seen that QE is convex, since all the upper contour sets are

convex by construction.

To define the convex and transitive extension, we use the following inductive proce-

dure. Let C0 = T (R), and let Ci = T
(
Ci−1(R) ∪

[⋃
x∈Θ(Ci−1(R)){(x, y) : x ∈ CH(UCi−1

(y))}
])

,

where Θ(R) = {x : LR(x) 6= ∅ and LR(x) 6= {x}}. Then TC(R) = T
(⋃

i∈NCi(R)
)
.

This procedure simply takes, at every step, the transitive closure of the convexification

of the previous relation Ci−1(R). Convexification is simply taking the convex hull of
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every upper contour set. We next show that TC(R) is convex and transitive, and hence

consistent with C.

Lemma A.4. TC(R) is convex and transitive.

Proof. By construction, TC(R) is transitive, since it is defined as a transitive closure

of the union of preference relations. Hence, it remains to show that TC(R) is convex.

Assume, to the contrary, that there is an x ∈ X such that there are y1, . . . , yn ∈
UTC(R)(x) and there is a y =

∑
i αiyi, ai ≥ 0,

∑
i αi = 1 such that y /∈ UTC(R)(x).

First, we show that TC(R) \
( ⋃

i∈N
Ci(R)

)
= ∅. Assume, to the contrary, that there

is a (yi, x) ∈ TC(R) \
( ⋃

i∈N
Ci(R)

)
. By the definition of transitive closure, this means

that there is a sequence with S = s1, . . . , sn, s1 = yi and sn = x such that for every

j = 1, . . . , n − 1, (sj, sj+1) ∈
⋃
i∈N

Ci(R). By the construction of
⋃
i∈N

Ci(R), for every

j = 1, . . . , n − 1, there is a kj such that (sj, sj+1) ∈ Ckj(R). Let m be the maximum

integer such that m ≥ kj for every j.28 Therefore, (yi, x) ∈ Cm+1(R).

Second, we show that if y1, . . . , yn ∈ UTC(R)(x), then y ∈ UTC(R)(x) for all y =
∑

i αiyi

such that αi > 0 and
∑

i αi = 1. Assume, to the contrary, that there is y =
∑

i αiyi

such that αi > 0,
∑

i αi = 1, and y /∈ UTC(R)(x). Note that by the construction of

TC(R), for every i = 1, . . . , n − 1, there is ki such that yi ∈ UCki
(R)(x). Let m be the

maximum integer such that m ≥ ki for every i. Therefore, y ∈ UCm+1(R)(x), since the

upper contour set of Cm+1(R) is obtained by taking a convex hull of all upper contour

sets of Cm(R). �

Therefore, TC(QE) is a convex, transitive, and quasi-monotone relation (see Lemma

A.4 and Observation A.1). Hence, it remains to show that RE � TC(QE). Let us start

with a supplementary result that shows that RE � QE.

Lemma A.5. If

{xt : t ∈ Rx} ∩ CH

(
A ∪

(⋃
t∈Ax

At
c

))
= ∅,

then RE � QE.

Proof. Assume, to the contrary, that there are (y, x) ∈ P (RE) and (x, y) ∈ QE and

consider the following cases.

Case 1: y = xt and x = x0. If (x0, xt) ∈ QE, then x0 ∈ UQE
(xt). But by the construc-

tion of QE there are only three possibilities for x0 ∈ UQE
(xt): (i) (x0, xt) ∈ RE – this

28m exists because all the sequences are finite.
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is impossible because (xt, x0) ∈ P (RE); (ii) (x0, xt) ∈ Q′E – this is impossible because it

implies that xt is rejected; and (iii) (x0, xt) ∈ Dr – this is impossible, because we have

xt > x0.

Case 2: y = x0 and x = xt. If (xt, x0) ∈ QE, then xt ∈ UQE
(x0). But by the

construction of QE there are only three possibilities: (i) (xt, x0) ∈ RE – this is impossible

because (x0, xt) ∈ P (RE); (ii) (xt, x0) ∈ Q′E – this is impossible because xt is a rejected

point; and (iii) (xt, x0) ∈ Dr – this is impossible because it implies that xt ∈ A. �

Lemma A.6. If

{xt : t ∈ Rx} ∩ CH

(
A ∪

(⋃
t∈Ax

At
c

))
= ∅,

then RE � TC(QE).

Before proceeding with the proof, we make two observations.

Observation A.3. If

{xt : t ∈ Rx} ∩ CH

(
A ∪

(⋃
t∈Ax

At
c

))
= ∅,

then for every t ∈ Ax, UQE
(xt) = UTC(QE)(x

t).

Observation A.3 says that if the data are consistent with the test, then the upper contour

sets of the accepted points remain unaffected by taking the convex closure. This follows

from the construction of QE. Moreover, the only points that can be better than xt are

other accepted points. Hence, if the data are consistent with the test, then the only

points that can be preferred to the accepted point are y Dr x
t.

Observation A.4. If

{xt : t ∈ Rx} ∩ CH

(
A ∪

(⋃
t∈Ax

At
c

))
= ∅,

then UQE
(x0) = UC(QE)(x

0).

Observation A.4 says that if the data are consistent with the test, then the upper contour

set of x0 remains unaffected by taking the convex closure. This also follows from the

construction of QE. If the data are consistent with the test, then the only points that

are better than x0 are the accepted points, points that are better than the accepted

points, and y Dr x
0; however, UQE

(x0) already includes the convex hull of these points.
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Therefore, since the upper contour sets of accepted points remain unchanged, the upper

contour set of zero remains unchanged as well.29

Proof of Lemma A.6. Assume, to the contrary, that (y, x) ∈ P (RE) and (x, y) ∈ TC(QE).

Note that (x, y) /∈ QE, since RE � QE.

Case 1: y = xt and x = x0. Note that (x0, xt) ∈ TC(QE) implies that x0 ∈
UTC(QE)(x

t). However, xt is an accepted point, and therefore Observation A.3 implies

that UTC(QE)(x
t) = UQE

(xt). Hence (x0, xt) ∈ QE, which is a contradiction.

Case 2: y = x0 and x = xt. Note that (xt, x0) ∈ TC(QE) implies that xt ∈
UTC(QE)(x

0). However, xt is an accepted point, and therefore, Observation A.4 implies

that UTC(QE)(x
0) = UQE

(x0). Hence (xt, x0) ∈ QE, which is a contradiction. �

We can complete the proof by applying Lemma A.6 and Lemma A.3.

Proof of Corollary 1. Without loss of generality, assume that all the beliefs can be

expressed as integers between 0 and 100. While we assume a finite population size to

avoid complicating the notation, all of the results hold for a continuous population. We

then construct an incomplete preference relation that is consistent with T (R ∪Dr) and

apply Lemma A.1, which guarantees the existence of a complete transitive and quasi-

monotone extension of R. The construction is done in a way that guarantees that the

frequency of an outcome being accepted corresponds to the elicited beliefs. Let P(xt),

with typical element a, denote the set of agents who prefer xt to zero. We assume that

if xt is an element on the 45◦ line and a /∈ P(xt), then a is indifferent between zero and

xt. This guarantees that she will reject xt but keeps her preference relation consistent

with Dr. Since the set of beliefs is well-ordered, we can reorder its elements such that

1− bt < 1− bs if t < s. Let P(x1) be such that |P(x1)| = 1− b1, which can be done by

taking a random set of 1− b1 subjects from the population. P(xt) can be constructed

using the following recursive rule: (1) |P(xt)| = 1− bt; (2) P(xs) ⊆ P(xt) for all s < t;

(3) if 1− bt = 1− bs, then P(xs) = P(xt).

Lemma A.7. For every player a in the population, the constructed preference relation

is consistent with T (R ∩Dr).

Proof. We prove this Lemma using Lemma A.2. Assume, to the contrary, that there

are xt and xs such that xs Dr xt, a /∈ P(xs), and a ∈ P(xt). The last two conditions

imply that xt is preferred to zero, and zero is preferred to xs by the construction of

29An additional observation is implicit in this explanation, namely, the upper contour sets of yDr x
0

also remain unchanged.
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the preference relation. However, the conditions also imply that P(xt) ⊆ P(xs), and

therefore, a ∈ P(xs), which is a contradiction. �

Hence, the proof can be completed using Lemma A.1.

Proof of Corollary 2. We first establish the necessity of the conditions. Assume that

there is a population of convex responder rational agents such that the frequency of

choices coincides with the elicited beliefs. Let Ac(S) denote CH

(
A ∪

( ⋃
xt∈S

At
c

))
, and

let ∂Ac(S) denote the southwest border of the convex hull. Then
⋂

xs∈S∩∂Ac(S)

P(xs) is the

set of people who prefer xs to zero for every point that lies within the boundary of the

convex hull. Then the convexity of preferences implies that P(xt) ⊂
⋂

xs∈S∩∂Ac(S)

P(xs)

for every xt ∈ Ac(S) \ ∂Ac(S). Therefore, bt ≤ max
xs∈S∩∂Ac(S)

{bs} for every xt ∈ Ac(S).

In particular, this implies that max
xs∈S∩∂Ac(S)

{bs} = max
xs∈S
{bs}. Therefore, we can conclude

that bt ≤ max
xs∈S
{bs} for every xt ∈ Ac(S).

We now establish the sufficiency of the conditions. Since the set of beliefs is well-

ordered, we can reorder its elements such that 1 − bt < 1 − bs if t < s. Let P(x1)

be such that |P(x1)| = 1 − b1, which can be done by taking a random set of 1 − b1

subjects from the population. P(xt) can be constructed using the following recursive

rule: (1) |P(xt)| = 1 − bt; (2) P(xs) ⊆ P(xt) for all s < t; (3) if 1 − bt = 1 − bs, then

P(xs) = P(xt).

Lemma A.8. For every player a in the population, the constructed preference relation

is consistent with convex responder rationality.

Proof. Assume, to the contrary, that there is a violation, i.e., xs ∈ S ∈ 2C\xt
and

xt ∈ Ac(S). That is, a ∈ P(xs) for every xs ∈ S and a /∈ P(xt). These conditions

imply that bt ≤ max
xs∈S
{bs} = br. Therefore, P(xr) ⊆ P(xt) by the construction. This is

a contradiction. �

Hence, we can complete the proof by applying Proposition 3.

Appendix B: Additional Data

We conducted two additional experimental sessions at Texas A&M University with

a total of 40 subjects. In addition to the ultimatum games, we conducted incentivized

point belief elicitation using the binarized scoring procedure from Hossain and Okui

(2013).

Table B.1 reproduces Table 1. Recall that a proposer is called generous if she offers

more than the minimum possible allocation. A responder is called a rejector if she

rejects the minimum allocation. Table B.1 shows that subjects at Texas A&M offer more
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m = xp + p xr, Proposed xr Highest rejected xr No cut-

with (m, p) = All proposers Generous All responders Rejectors off rule

Mean St.Dev %-age Mean Mean St.Dev %-age Mean n

($12, 1
5) $16.44 $16.21 97.5% $16.80 $3.90 $1.78 100.0% $3.90 4

($24, 1
3) $20.85 $12.65 100.0% $20.85 $7.30 $2.98 100.9% $7.30 5

($24, 1
2) $16.35 $8.36 97.5% $16.72 $6.72 $3.16 100.0% $6.72 6

($36, 1) $15.83 $4.95 97.5% $16.20 $8.24 $4.04 100.0% $8.24 6

($48, 1) $20.40 $7.99 97.5% $20.90 $8.81 $4.00 100.0% $8.81 6

($60, 1) $24.68 $8.12 95.0% $25.92 $10.31 $6.37 100.0% $10.31 6

($48, 2) $12.55 $5.03 90.0% $13.83 $7.79 $3.61 100.0% $7.79 5

($72, 3) $13.85 $5.92 90.0% $15.28 $9.00 $4.20 100.0% $9.00 5

($60, 5) $7.84 $3.08 92.5% $8.43 $6.44 $2.02 100.0% $6.44 7

All 9 budgets $16.53 $10.00 95.28% $17.30 $7.65 $4.28 100.0% $7.65 7

Table B.1. Summary of Proposer and Responder Behavior

money as proposers and reject higher offers as responders. Hence, the two populations

have different preferences. In what follows, we analyze the consistency of proposers’

and responders’ choices and beliefs.

CCEI Number of Subjects Bronars’ power e.d.f. power

1 34 .9012 .7870

[1− ε, 1) 4 .8352 .4893

[.9, 1− ε) 1 .5882 .3368

[.8, .9) 0 .3018 .1196

[0, .8) 1

Table B.2. Proposer Rationality

Table B.2 shows the pass rates for consistency with proposer rationality. The pass

rate is 85% and increases to 95% if we allow for small violations. The pass rates are not

significantly different from those obtained in the original data.30

Table B.3 presents the results on responder rationality and convex responder ratio-

nality for the new data. The results are qualitatively similar to the original sample:

subjects’ beliefs are consistent with responder rationality but not with convex respon-

der rationality. Forty-five percent of the subjects’s beliefs are consistent with responder

rationality, and this number goes up to 78% if we allow for no more than five mistakes.

30Further, we compare pass rates using a t-test, the Wilcoxon rank sum test, and estimated confi-

dence intervals based on the Clopper-Pearson procedure.
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Responder Rationality Convex Responder Rationality

Number of Violations Number of Subjects Percent of Subjects Number of Subjects Percent of Subject

0 18 45% 8 20%

≤ 5 31 78% 8 20%

≥ 6 9 22% 32 80%

Power of Test

Proposer Rationality Convex Proposer Rationality

Test Power of Test
Average Number

of Violations (std)
Power of Test

Average Number

of Violations (std)

Random 1.0000 47.0850 (4.8914) 1.0000 58.7460 (5.6078)

Random Cutoff 1.0000 34.1910 (9.8979) 1.0000 62.8880 (10.8994)

e.d.f. 0.9990 15.4810 (3.3961) 1.0000 32.4580 (3.7548)

e.d.f. Cutoff 0.9180 11.4410 (4.5483) 1.0000 38.0280 (6.1267)

Table B.3. Responder Rationality

At the same time, 80% make six or more mistakes according to the convex respon-

der rationality. The original sample contains a larger share of subjects whose beliefs

are consistent with responder rationality, and a larger share of its population have no

more than five violations of responder rationality. However, neither of the differences

is statistically significant. There is no significant difference for consistency with convex

responder rationality if we compare exact pass rates, while the difference is significant

if we relax the notion of rationality and allow for no more than five violations.

Consistent with

Responder Rationality

Inconsistent with

Responder Rationality

Consistent with Proposer Rationality (CCEI = 1) 17 (42%) 21 (52%)

Inconsistent with Proposer Rationality (CCEI 6= 1) 1 (3%) 1 (3%)

Table B.4. Cross Table: Proposer Rationality and Responder Rationality

Consistent with

Responder Rationality

Inconsistent with

Responder Rationality

Consistent with Proposer Rationality (CCEI ≥ 1− ε) 29 (73%) 9 (22%)

Inconsistent with Proposer Rationality (CCEI < 1− ε) 2 (5%) 0 (0%)

Table B.5. Cross Table: Weak Proposer Rationality (CCEI ≥ 1 − ε)
and Responder Rationality (number of violations ≤ 5)

Tables B.4 and B.5 present results on the interdependence between proposer and

responder rationality. The results are similar to those obtained in the original data.

Figure B.1 shows the mean and the 95% confidence intervals for the elicited be-

liefs. Recall that we elicited beliefs regarding the probability that an offer is rejected.
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Figure B.1. Average Beliefs and Confidence Intervals

Therefore, higher numbers imply a higher probability of rejection. The wide confidence

intervals imply a high degree of heterogeneity of beliefs. At the same time, the beliefs

are monotone within a menu (blocks of four) but not between the menus. In particular,

beliefs not only depend on the responder’s payoff, but also on the proposer’s payoff—the

probability of rejecting is higher for (36, 12) than for (18, 12). However, this is not al-

ways the case—the probabilities of accepting equal split outcomes (18, 18) and (30, 30)

are the same, regardless of the different price regimes (p = 1 in the first case and p = 3

in the second case). Finally, we found that the average beliefs are consistent with both

responder rationality and convexity.31

We now turn to the analysis of beliefs at the individual level. To make this compa-

rable to the original experiment, which elicited beliefs in intervals, we introduce a slack

variable e or measurement error term for beliefs. Without a measurement error, the

probability of rejecting offer x (q(x)) is higher than the probability of rejecting offer x′

(q(x′)) if and only if q(x) > q(x′). Given the slack variable, the probability of rejecting

offer x (q(x)) is higher than the probability of rejecting offer x′ (q(x′)) if and only if

q(x) > q(x′) + e (we denote this as q(x) >e q(x
′) ). We consider three levels of slack:

31An average belief bi is greater than belief bj if it is greater at the 5% significance level. For instance,

the probability of rejecting (23, 2) is significantly greater than the probability of rejecting (20, 8), while

it is not significantly greater than the probability of rejecting (22, 4). If we do not account for confidence

intervals, then average beliefs are not consistent with responder rationality. In addition, we conduct

power estimates using Bronars’ and the e.d.f. tests, using repeated sampling of 40 observations out of

the populations of 10000 simulated observations. All power tests return 1.0000—there is zero chance

that e.d.f. or uniform random subjects would generate beliefs that would be on average consistent.
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no slack, five percentage points, and thirty percentage points. A slack of 5 percentage

points reflects the observed variation in the experiment. A slack of 30 percentage points

reflects the span of intervals in the original experiment.

Slack
Beliefs Consistent with

Responder Rationality

Beliefs Consistent with

Convex Responder Rationality

e = 0 22 (40%) 1 (2.5%)

e ≤ 5 30 (75%) 1 (2.5%)

e ≤ 30 37 (93%) 3 (8.5%)

Power Analysis

Test Responder Ratonality Convex Responder Rationality

Bronars & e = 0 0.9900 1.0000

Bronars & e ≤ 5 0.9830 1.0000

Bronars & e ≤ 30 0.8610 0.8610

e.d.f. & e = 0 0.8822 1.0000

e.d.f. & e ≤ 5 0.8214 1.0000

e.d.f. & e ≤ 30 0.4982 1.0000

Table B.6. Belief Consistency

Table B.6 presents the results on belief consistency. Only 40% of the subjects have

consistent beliefs unless we allow for measurement error. This proportion is statisti-

cally different from the proportion of subjects with consistent beliefs in the original

experiment (81%). At the same time, 75% of the subjects have consistent beliefs given

the slack of 5 percentage points. This difference is not statistically different from the

proportion of subjects with consistent beliefs in the original data. The hypothesis that

the beliefs are consistent with convex responder rationality is rejected decisively. Fur-

thermore, with a slack of 30 percentage points, only 3 out of 40 subjects have beliefs

that are consistent with convex responder rationality. The difference in pass rates for

convex responder rationality is not statistically significantly different from the original

data for any of the levels of slack presented. Power analysis conducted using Bronars’

and e.d.f. power tests shows that the tests can successfully distinguish between real

consistent behavior and the randomly consistent behavior.

Finally, we investigate which assumptions of proposer rationality are more likely to

fail by looking at the patterns of behavior in the three experimental tasks. We find

that 23 (58%) of the subjects passed all three tests, 6 (15%) failed only consistency

of beliefs, and 2 (5%) failed only proposer rationality (violate stochastic dominance

preferences). In addition, 9 subjects’ beliefs are consistent with proposer rationality but
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are not consistent with responder rationality. Five of these 9 subjects passed the belief

consistency test. These subjects seem to have consistent beliefs and behave rationally,

but according to a weaker notion of monotonicity.
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Appendix C (For Online Publication Only): Experimental Instructions

C.1: Decision Task

INSTRUCTIONS

Welcome

This is an experiment about decision making. You will be paid for your participation. The

amount of money you earn depends on your decisions and the decisions of others. If you make

good decisions, you could earn a considerable amount of money. The experiment should take

about an hour. At the end of the experiment you will be paid privately and in cash for your

decisions. A research foundation has provided the funds for this experiment.

Thanks For Showing Up

Just for being willing to participate, you will automatically earn $8. Whatever you earn in

the rest of the session will be in addition to this $8.

Your Identity

You will never be asked to reveal your identity to anyone during the course of the experiment.

Your name will never be recorded. Neither the experimenters nor anyone else in the room will

be able to link you to any of your decisions. In order to keep your decisions private, please do

not reveal your choices to any other participant.

Claim Check

At the top of this page is a number on a yellow piece of paper. This is your Claim Check.

Each participant has a different number. Please verify that the number on your Claim Check

is the same as the Claim Check Number on the top of page X.

You will present your Claim Check to an assistant at the end of the experiment to receive

your cash payment.

Please remove your claim check now and put it an a safe place.

THIS EXPERIMENT

You and the other person will be paired randomly and anonymously. No one will know the

identity of the other person in your pair. In this experiment you are asked to make a series of

choices about how to allocate a sum of money between yourself and one other person in the

room.

The task of each pair is to divide from $0 to up to $70 between the two of you. How much

money you end up with at the end of the experiment depends on the decisions both people in
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the pair make.

In each pair, one person will be the Proposer and the other will be the Responder. Your

role will be determined at the end of the session , hence you must understand both roles to

make good choices. In each of the series of choices the Proposer chooses a Proposal Rule. A

Proposal Rule determines how much money will go to the Proposer and how much will go to

the Responder. Given the Proposal Rule the Proposer chooses, the Responder responds by

choosing whether to Accept or Reject the proposal. If the Responder responds with Accept,

then the Proposer and the Responder receive the sums of money determined by the chosen

Proposal Rule. If the Responder responds with Reject, then the Proposer and the Responder

both receive nothing.

IMPORTANT: The Proposer chooses the Proposal Rule without knowing whether

the Responder will respond by Accepting or Rejecting the Proposal Rule.

The Proposal Rules must be chosen from a table like this:

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $59 and Responder gets $1

b Proposer gets $55 and Responder gets $5

c Proposer gets $50 and Responder gets $10

d Proposer gets $45 and Responder gets $15

e Proposer gets $40 and Responder gets $20

f Proposer gets $35 and Responder gets $25

g Proposer gets $30 and Responder gets $30

h Proposer gets $25 and Responder gets $35

i Proposer gets $20 and Responder gets $40

j Proposer gets $15 and Responder gets $45

k Proposer gets $10 and Responder gets $50

l Proposer gets $5 and Responder gets $55

m Proposer gets $1 and Responder gets $59

So, out of the thirteen Proposal Rules in the table, the Proposer must choose only one of

them.

Given that the Proposer has selected a Proposal Rule, then the Responder responds by

Accepting or Rejecting the proposal.
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However, the Responder must respond before finding out the Proposal Rule chosen by the

Proposer. So, for all possible Proposal Rules, the Responder must decide whether to Accept

or Reject.

The Responder will make the thirteen choices from a table like this:

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $59 and Responder gets $1 Accept Reject

b Proposer gets $55 and Responder gets $5 Accept Reject

c Proposer gets $50 and Responder gets $10 Accept Reject

d Proposer gets $45 and Responder gets $15 Accept Reject

e Proposer gets $40 and Responder gets $20 Accept Reject

f Proposer gets $35 and Responder gets $25 Accept Reject

g Proposer gets $30 and Responder gets $30 Accept Reject

h Proposer gets $25 and Responder gets $35 Accept Reject

i Proposer gets $20 and Responder gets $40 Accept Reject

j Proposer gets $15 and Responder gets $45 Accept Reject

k Proposer gets $10 and Responder gets $50 Accept Reject

l Proposer gets $5 and Responder gets $55 Accept Reject

m Proposer gets $1 and Responder gets $60 Accept Reject

EXAMPLES

We now consider some examples.

Example One: Suppose the Proposer circles Proposal Rule k: “Proposer gets $10 and

Responder gets $50.” Suppose also that the Responder circles Accept on line k. Then, since

the Responder chose to Accept, the Proposer receives $10 and the Responder receives $50.

Example Two: Suppose the Proposer circles Proposal Rule d: “Proposer gets $45 and

Responder gets $15.” Suppose also that the Responder circles Accept on line d. Then, since

the Responder chose to Accept, the Proposer receives $45 and the Responder receives $15.

Example Three: Suppose the Proposer circles Proposal Rule g: “Proposer gets $30 and

Responder gets $30.” Suppose also that the Responder circles Reject on line g. Then, since

the Responder chose to Reject, the Proposer receives $0 and the Responder receive $0.
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EXERCISES

While calculating payoffs seems easy, it is important that everyone understand how to

calculate payoffs of both the Proposer and the Responder. So, below we ask you to calculate

the payoffs of both players for some specific examples. After you have finished, we will go over

the correct answers together.

Case One: Suppose the Proposer chooses:

f Proposer gets $35 and Responder gets $25

and for Proposal rule f the Responder chooses:

f Proposer gets $35 and Responder gets $25 Accept Reject

Payoff for the Proposer is $ . Payoff for the Responder is $ .

Case Two: Suppose the Proposer chooses:

e Proposer gets $10 and Responder gets $28

and for Proposal rule f the Responder chooses:

e Proposer gets $10 and Responder gets $28 Accept Reject

Payoff for the Proposer is $ . Payoff for the Responder is $ .

Case Three: Suppose the Proposer chooses:

b Proposer gets $44 and Responder gets $2

and for Proposal rule f the Responder chooses:

b Proposer gets $44 and Responder gets $2 Accept Reject

Payoff for the Proposer is $ . Payoff for the Responder is $ .
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YOUR ROLE

You will be randomly assigned either to the role of the Proposer or to the role of the

Responder. After you are assigned a role, you will be randomly matched with another person

in the room, and your decision for only the role assigned to you will be carried out. One of

your decisions will be chosen randomly and carried out.

IMPORTANT

You must make all your decisions before you know to which role you will be assigned.

Since you won’t know to which role you will be assigned until the very end, you must make

decisions for both roles. After all decisions are made, there is a 50% chance you will be

assigned the Proposer role and a 50% chance you will be assigned the Responder role.

HOW THE PAIRINGS ARE MADE

Attached are decision forms for the Proposer and the Responder. Complete all forms,

imagining as being chosen for each role. Place the completed forms and instructions back on

the envelope.

After you have finished making your decisions, you will put the completed forms in your

envelope. We will collect the envelopes, shuffle them, and separate them into two piles of

equal size; Pile 1 and Pile 2.

If, by chance, your envelope is in Pile 1, you will be a Proposer – we will use only your

decisions in the Proposer role, and ignore your decisions in the Responder role.

If, by chance, your envelope is in Pile 2, you will be a Responder – we will use only your

decisions in the Responder role, and ignore your decisions in the Proposer role.

After shuffling the envelopes in each pile again, each envelope in Pile 1, the Proposers, will

be matched with an envelope in Pile 2, the Responders. This is the way each of you will be

randomly paired with another person in the room.



49

RECEIVING YOUR PAYMENT

After all pairings are made, we will randomly select one of the 9 possible decisions for each

pairing. We will use the alternatives chosen by the Proposer and the Responder to determine

the payoffs for that pair. Your payoff from the pairing will be placed in your earnings envelope

with your Claim Check Number written on the outside of the envelope. You will present your

Claim Check, and we will hand you your earnings envelope.

To further guard your anonymity, an assistant who was not involved in determining the

payoffs, and thus has no idea what is in each envelope, will hand you your earnings envelope.

Finally, to verify that the procedures we describe are followed, a monitor, who was chosen

at the beginning of the experiment, will be present during the determination of payments.

Preparing your payments will take about 15 minutes.

SUMMARY

Step 1: You will eventually assume the role of either Proposer or Responder. However,

before you are randomly assigned a role, you must make choices for both the Proposer role

and the Responder role.

Step 2: After your choices are made, we will randomly assign you the role of either Proposer

or Responder.

Step 3: You will be randomly paired with another person in the room, who has been as-

signed the other role. Your choice only for the role assigned to you will be carried out with

the other person in your pairing.

Step 4: For each pair, one of the 8 decisions will be chosen at random and both of your

decisions will be carried out.

Step 5: Everyone will receive cash payments in private envelopes at the end of the experi-

ment.

You can begin making your decisions

Good luck!
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $35 and Responder gets $1

b Proposer gets $33 and Responder gets $3

c Proposer gets $30 and Responder gets $6

d Proposer gets $27 and Responder gets $9

e Proposer gets $24 and Responder gets $12

f Proposer gets $21 and Responder gets $15

g Proposer gets $18 and Responder gets $18

h Proposer gets $15 and Responder gets $21

i Proposer gets $12 and Responder gets $24

j Proposer gets $9 and Responder gets $27

k Proposer gets $6 and Responder gets $30

l Proposer gets $3 and Responder gets $33

m Proposer gets $1 and Responder gets $35
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $35 and Responder gets $1 Accept Reject

b Proposer gets $33 and Responder gets $3 Accept Reject

c Proposer gets $30 and Responder gets $6 Accept Reject

d Proposer gets $27 and Responder gets $9 Accept Reject

e Proposer gets $24 and Responder gets $12 Accept Reject

f Proposer gets $21 and Responder gets $15 Accept Reject

g Proposer gets $18 and Responder gets $18 Accept Reject

h Proposer gets $15 and Responder gets $21 Accept Reject

i Proposer gets $12 and Responder gets $24 Accept Reject

j Proposer gets $9 and Responder gets $27 Accept Reject

k Proposer gets $6 and Responder gets $30 Accept Reject

l Proposer gets $3 and Responder gets $33 Accept Reject

m Proposer gets $1 and Responder gets $35 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $47 and Responder gets $1

b Proposer gets $44 and Responder gets $4

c Proposer gets $40 and Responder gets $8

d Proposer gets $36 and Responder gets $12

e Proposer gets $32 and Responder gets $16

f Proposer gets $28 and Responder gets $20

g Proposer gets $24 and Responder gets $24

h Proposer gets $20 and Responder gets $28

i Proposer gets $16 and Responder gets $32

j Proposer gets $12 and Responder gets $36

k Proposer gets $8 and Responder gets $40

l Proposer gets $4 and Responder gets $44

m Proposer gets $1 and Responder gets $47
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $47 and Responder gets $1 Accept Reject

b Proposer gets $44 and Responder gets $4 Accept Reject

c Proposer gets $40 and Responder gets $8 Accept Reject

d Proposer gets $36 and Responder gets $12 Accept Reject

e Proposer gets $32 and Responder gets $16 Accept Reject

f Proposer gets $28 and Responder gets $20 Accept Reject

g Proposer gets $24 and Responder gets $24 Accept Reject

h Proposer gets $20 and Responder gets $28 Accept Reject

i Proposer gets $16 and Responder gets $32 Accept Reject

j Proposer gets $12 and Responder gets $36 Accept Reject

k Proposer gets $8 and Responder gets $40 Accept Reject

l Proposer gets $4 and Responder gets $44 Accept Reject

m Proposer gets $1 and Responder gets $47 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $59 and Responder gets $1

b Proposer gets $55 and Responder gets $5

c Proposer gets $50 and Responder gets $10

d Proposer gets $45 and Responder gets $15

e Proposer gets $40 and Responder gets $20

f Proposer gets $35 and Responder gets $25

g Proposer gets $30 and Responder gets $30

h Proposer gets $25 and Responder gets $35

i Proposer gets $20 and Responder gets $40

j Proposer gets $15 and Responder gets $45

k Proposer gets $10 and Responder gets $50

l Proposer gets $5 and Responder gets $55

m Proposer gets $1 and Responder gets $59
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $59 and Responder gets $1 Accept Reject

b Proposer gets $55 and Responder gets $5 Accept Reject

c Proposer gets $50 and Responder gets $10 Accept Reject

d Proposer gets $45 and Responder gets $15 Accept Reject

e Proposer gets $40 and Responder gets $20 Accept Reject

f Proposer gets $35 and Responder gets $25 Accept Reject

g Proposer gets $30 and Responder gets $30 Accept Reject

h Proposer gets $25 and Responder gets $35 Accept Reject

i Proposer gets $20 and Responder gets $40 Accept Reject

j Proposer gets $15 and Responder gets $45 Accept Reject

k Proposer gets $10 and Responder gets $50 Accept Reject

l Proposer gets $5 and Responder gets $55 Accept Reject

m Proposer gets $1 and Responder gets $59 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $23 and Responder gets $2

b Proposer gets $22 and Responder gets $4

c Proposer gets $20 and Responder gets $8

d Proposer gets $18 and Responder gets $12

e Proposer gets $16 and Responder gets $16

f Proposer gets $14 and Responder gets $20

g Proposer gets $12 and Responder gets $24

h Proposer gets $10 and Responder gets $28

i Proposer gets $8 and Responder gets $32

j Proposer gets $6 and Responder gets $36

k Proposer gets $4 and Responder gets $40

l Proposer gets $2 and Responder gets $44

m Proposer gets $1 and Responder gets $46
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $23 and Responder gets $2 Accept Reject

b Proposer gets $22 and Responder gets $4 Accept Reject

c Proposer gets $20 and Responder gets $8 Accept Reject

d Proposer gets $18 and Responder gets $12 Accept Reject

e Proposer gets $16 and Responder gets $16 Accept Reject

f Proposer gets $14 and Responder gets $20 Accept Reject

g Proposer gets $12 and Responder gets $24 Accept Reject

h Proposer gets $10 and Responder gets $28 Accept Reject

i Proposer gets $8 and Responder gets $32 Accept Reject

j Proposer gets $6 and Responder gets $36 Accept Reject

k Proposer gets $4 and Responder gets $40 Accept Reject

l Proposer gets $2 and Responder gets $44 Accept Reject

m Proposer gets $1 and Responder gets $46 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $46 and Responder gets $1

b Proposer gets $44 and Responder gets $2

c Proposer gets $40 and Responder gets $4

d Proposer gets $36 and Responder gets $6

e Proposer gets $32 and Responder gets $8

f Proposer gets $28 and Responder gets $10

g Proposer gets $24 and Responder gets $12

h Proposer gets $20 and Responder gets $14

i Proposer gets $16 and Responder gets $16

j Proposer gets $12 and Responder gets $18

k Proposer gets $8 and Responder gets $20

l Proposer gets $4 and Responder gets $22

m Proposer gets $2 and Responder gets $23
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $46 and Responder gets $1 Accept Reject

b Proposer gets $44 and Responder gets $2 Accept Reject

c Proposer gets $40 and Responder gets $4 Accept Reject

d Proposer gets $36 and Responder gets $6 Accept Reject

e Proposer gets $32 and Responder gets $8 Accept Reject

f Proposer gets $28 and Responder gets $10 Accept Reject

g Proposer gets $24 and Responder gets $12 Accept Reject

h Proposer gets $20 and Responder gets $14 Accept Reject

i Proposer gets $16 and Responder gets $16 Accept Reject

j Proposer gets $12 and Responder gets $18 Accept Reject

k Proposer gets $8 and Responder gets $20 Accept Reject

l Proposer gets $4 and Responder gets $22 Accept Reject

m Proposer gets $2 and Responder gets $23 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $23 and Responder gets $3

b Proposer gets $22 and Responder gets $6

c Proposer gets $20 and Responder gets $12

d Proposer gets $18 and Responder gets $18

e Proposer gets $16 and Responder gets $24

f Proposer gets $14 and Responder gets $30

g Proposer gets $12 and Responder gets $36

h Proposer gets $10 and Responder gets $42

i Proposer gets $8 and Responder gets $48

j Proposer gets $6 and Responder gets $54

k Proposer gets $4 and Responder gets $60

l Proposer gets $2 and Responder gets $66

m Proposer gets $1 and Responder gets $69
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $23 and Responder gets $3 Accept Reject

b Proposer gets $22 and Responder gets $6 Accept Reject

c Proposer gets $20 and Responder gets $12 Accept Reject

d Proposer gets $18 and Responder gets $18 Accept Reject

e Proposer gets $16 and Responder gets $24 Accept Reject

f Proposer gets $14 and Responder gets $30 Accept Reject

g Proposer gets $12 and Responder gets $36 Accept Reject

h Proposer gets $10 and Responder gets $42 Accept Reject

i Proposer gets $8 and Responder gets $48 Accept Reject

j Proposer gets $6 and Responder gets $54 Accept Reject

k Proposer gets $4 and Responder gets $60 Accept Reject

l Proposer gets $2 and Responder gets $66 Accept Reject

m Proposer gets $1 and Responder gets $69 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $69 and Responder gets $1

b Proposer gets $66 and Responder gets $2

c Proposer gets $60 and Responder gets $4

d Proposer gets $54 and Responder gets $6

e Proposer gets $48 and Responder gets $8

f Proposer gets $42 and Responder gets $10

g Proposer gets $36 and Responder gets $12

h Proposer gets $30 and Responder gets $14

i Proposer gets $24 and Responder gets $16

j Proposer gets $18 and Responder gets $18

k Proposer gets $12 and Responder gets $20

l Proposer gets $6 and Responder gets $22

m Proposer gets $3 and Responder gets $23
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $69 and Responder gets $1 Accept Reject

b Proposer gets $66 and Responder gets $2 Accept Reject

c Proposer gets $60 and Responder gets $4 Accept Reject

d Proposer gets $54 and Responder gets $6 Accept Reject

e Proposer gets $48 and Responder gets $8 Accept Reject

f Proposer gets $42 and Responder gets $10 Accept Reject

g Proposer gets $36 and Responder gets $12 Accept Reject

h Proposer gets $30 and Responder gets $14 Accept Reject

i Proposer gets $24 and Responder gets $16 Accept Reject

j Proposer gets $18 and Responder gets $18 Accept Reject

k Proposer gets $12 and Responder gets $20 Accept Reject

l Proposer gets $6 and Responder gets $22 Accept Reject

m Proposer gets $3 and Responder gets $23 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $11.50 and Responder gets $2.50

b Proposer gets $11 and Responder gets $5

c Proposer gets $10 and Responder gets $10

d Proposer gets $9 and Responder gets $15

e Proposer gets $8 and Responder gets $20

f Proposer gets $7 and Responder gets $25

g Proposer gets $6 and Responder gets $30

h Proposer gets $5 and Responder gets $35

i Proposer gets $4 and Responder gets $40

j Proposer gets $3 and Responder gets $45

k Proposer gets $2 and Responder gets $50

l Proposer gets $1 and Responder gets $55

m Proposer gets $0.50 and Responder gets $57.50
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $11.50 and Responder gets $2.50 Accept Reject

b Proposer gets $11 and Responder gets $5 Accept Reject

c Proposer gets $10 and Responder gets $10 Accept Reject

d Proposer gets $9 and Responder gets $15 Accept Reject

e Proposer gets $8 and Responder gets $20 Accept Reject

f Proposer gets $7 and Responder gets $25 Accept Reject

g Proposer gets $6 and Responder gets $30 Accept Reject

h Proposer gets $5 and Responder gets $35 Accept Reject

i Proposer gets $4 and Responder gets $40 Accept Reject

j Proposer gets $3 and Responder gets $45 Accept Reject

k Proposer gets $2 and Responder gets $50 Accept Reject

l Proposer gets $1 and Responder gets $55 Accept Reject

m Proposer gets $0.50 and Responder gets $57.50 Accept Reject
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DECISION SHEET FOR THE PROPOSER ROLE:

Suppose you are the Proposer. Choose one and only one alternative

from the following table. Please circle the letter of your choice from the

first column.

Proposer chooses Proposal Rule Proposal Rules to choose from:

by circling one letter in this column

a Proposer gets $57.50 and Responder gets $0.50

b Proposer gets $55 and Responder gets $1

c Proposer gets $50 and Responder gets $2

d Proposer gets $45 and Responder gets $3

e Proposer gets $40 and Responder gets $4

f Proposer gets $35 and Responder gets $5

g Proposer gets $30 and Responder gets $6

h Proposer gets $25 and Responder gets $7

i Proposer gets $20 and Responder gets $8

j Proposer gets $15 and Responder gets $9

k Proposer gets $10 and Responder gets $10

l Proposer gets $5 and Responder gets $11

m Proposer gets $2.50 and Responder gets $11.50
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DECISION SHEET FOR THE RESPONDER ROLE:

Suppose you are the Responder. Circle either Accept or Reject in the

last column. Please complete the table for each possible alternative.

If you are the Responder and the ...then I choose to

Proposer chooses Proposal Rule.. (circle one for Proposal Rule):

a Proposer gets $57.50 and Responder gets $0.50 Accept Reject

b Proposer gets $55 and Responder gets $1 Accept Reject

c Proposer gets $50 and Responder gets $2 Accept Reject

d Proposer gets $45 and Responder gets $3 Accept Reject

e Proposer gets $40 and Responder gets $4 Accept Reject

f Proposer gets $35 and Responder gets $5 Accept Reject

g Proposer gets $30 and Responder gets $6 Accept Reject

h Proposer gets $25 and Responder gets $7 Accept Reject

i Proposer gets $20 and Responder gets $8 Accept Reject

j Proposer gets $15 and Responder gets $9 Accept Reject

k Proposer gets $10 and Responder gets $10 Accept Reject

l Proposer gets $5 and Responder gets $11 Accept Reject

m Proposer gets $2.50 and Responder gets $11.50 Accept Reject
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C.2: Incentivized Beliefs

ADDITIONAL INSTRUCTIONS

Procedure

In this section, you will be asked what do you think is the percent chance that each of

the displayed Proposal Rules is Rejected by the Responder. Please provide a number

between 0 and 100 – the percentage chance with which you think the Responder will

Reject the Proposal Rule.

You will make 12 predictions for different proposal rules in total. One of them will

be chosen to determine your payment. Your payment in this round will depend on your

decisions and a chance.

Payment

You will be able to earn up to $10 in addition to your earnings in the decision stage.

You will receive the additional payment if you are able to outperform the random ma-

chine in predicting the behavior of other participants in the room. After you submit all

your predictions, your earnings will be calculated according to the following procedure:

(1) One of the proposal rules will be chosen at random

(2) One participant from the session (excluding you) will be picked at random and

her decision will be retrieved

(3) Your prediction error is computed as ((your prediction)/100)2 if the decision

picked by the selected participant is Accept and (1 − (your prediction)/100)2 if

the decision picked by the selected participant is Reject

(4) A uniform random number will be drawn form the interval from 0 to 1

(5) You will receive $10 (in addition to money you already earned) if your predic-

tion error is below random number and will not receive any additional payment

otherwise.

Examples

We now consider some examples.

Example: Assume you believe that 50% of Responders rejected the proposal rule

under consideration. We will consider three cases.

Assume your predict that there is a 50% chance a Responder will Reject the offer.

If the randomly retrieved decision was Reject, your prediction error is (1 − 50
100

)2 =

.52 = .25. Since the probability a random number is drawn between 0.25 and 1 is 75%,

you will get $10 with 75% probability and $0 with 25% probability. If the randomly
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retrieved decision was Accept, your prediction error is ( 50
100

)2 = .52 = .25. Since the

probability a random number is drawn between 0.25 and 1 is 75%, you will get $10 with

75% probability and $0 with 25% probability. Assuming that with probability .5 the

randomly retrieved decision is Reject and with probability .5 is Accept. Hence, your

probability of winning the additional prize is .5× .75 + .5× .75 = .75. That is you will

earn extra $10 with probability 75%.

Assume instead that you report that with 0% probability a Responder will Reject

the offer. If the randomly retrieved decision was Reject. Hence, your prediction error is

(1− 0
100

)2 = 12 = 1. Since the probability a random number is drawn between 1 and 1 is

0%, you will get $10 with 0% probability and $0 with 100% probability. If the randomly

retrieved decision was Accept. Hence, your prediction error is ( 0
100

)2 = 02 = 0. Since

the probability a random number is drawn between 0 and 1 is 100%, you will get $10

with 100% probability and $0 with 0% probability. That is you are winning the prize

with probability 100% in this case. Assuming that with probability .5 the randomly

retrieved decision is Reject and with probability .5 is Accept. Hence, your probability

of winning the additional prize is .5 × 0 + .5 × 1 = .5. That is you will earn extra

$10 with probability 50%. Which is lower than probability of winning if you would

report your real expectation (75%).

Assume instead that you report that with 100% probability a Responder will Reject

the offer. If the randomly retrieved decision was Reject. Hence, your prediction error

is (1 − 100
100

)2 = 0. Since the probability a random number is drawn between 0.0 and

1 is 100%, you will always get paid is the retrieved decision if Reject. If the randomly

retrieved decision was Accept. Hence, your prediction error is (100
100

)2 = 12 = 1. In

this case you will never get paid is the retrieved decision if Accept. That is you are

winning the prize with probability 0% in this case. Assuming that with probability .5

the randomly retrieved decision is Reject and with probability .5 is Accept. Hence,

your probability of winning the additional prize is .5× 1 + .5× 0 = .5. That is you will

earn extra $10 with probability 50%. Which is lower than probability of winning

if you would report your real expectation (75%).

As we illustrated above in order to maximize your probability of winning please

honestly report the probability of winning which would be as close as possible to the

real frequency of rejecting the offer. Since any deviation from honest report will only

decrease your probability of winning.
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You can continue now

Good luck!


