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Abstract

In this paper we examine the competitive equilibria of a dynamic stochastic economy

with complete markets and collateral constraints. We show that, provided the sets of

asset payoffs and of collateral levels are sufficiently rich, the equilibrium allocations

with sequential trades and collateral constraints are equivalent to those obtained in

Arrow–Debreu markets subject to a series of limited pledgeability constraints.

We provide both necessary and sufficient conditions for equilibria to be Pareto effi-

cient and show that when collateral is scarce equilibria are not only Pareto inefficient

but also often constrained inefficient, in the sense that imposing tighter borrowing re-

strictions can make everybody in the economy better off.

We derive sufficient conditions for the existence of Markov equilibria and, for the case

of two agents, for the existence of equilibria that have finite support. These equilibria

can be computed with arbitrary accuracy and the model is very tractable.
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1 Introduction

We examine the competitive equilibria of an infinite-horizon exchange economy where the

only limit to risk sharing comes from the presence of a collateral constraint. Consumers face

a borrowing limit, determined by the fact that all loans must be collateralized, as for example

in Kiyotaki and Moore (1997) or Geanakoplos (1997), but otherwise financial markets are

complete. Only part of the consumers’ future endowment can be pledged as collateral,

hence the borrowing constraint may be binding and limit risk sharing opportunities in the

economy. More specifically, we consider an environment where consumers are unable to

commit to repaying their debt obligations and the seizure of the collateral by lenders is the

only loss an agent faces for his default. There is no additional punishment, for instance

in the form of exclusion from trade in financial markets as in the model considered by

Kehoe and Levine (1993), (2001). However, like in that model, and in contrast to Bewley

(1977) and the literature which followed it1, the borrowing (and collateral) constraint is

endogenously determined in equilibrium by the agents’ limited commitment problem. The

analysis is carried out in a heterogeneous agents version of Lucas’s (1978) asset pricing.

The part of a consumer’s endowment that can be pledged as collateral can be naturally

interpreted as the agent’s initial share of the Lucas tree — a long-lived asset in positive

supply that pays dividends at each date event.

We show in this paper that this is a tractable model of dynamic economies under uncer-

tainty, analyze the welfare properties of competitive equilibria, and establish the existence

of simple dynamic equilibria. More specifically, we first show the equivalence between

the competitive equilibria when trade occurs in a complete set of contingent commodity

markets at the initial date, as in Arrow–Debreu, subject to a series of appropriate limited-

pledgeability constraints, and the equilibria when trade is sequential, in a sufficiently rich

set of financial markets where short positions must be backed by collateral. This allows

us to clearly identify market structures, and in particular the specification of asset payoffs

and of the associated collateral requirements, such that the only financial friction is the

limited commitment requiring all loans to be collateralized. Second, we provide necessary

and sufficient conditions for competitive equilibria to be fully Pareto-efficient – that is for

the amount of available collateral to be sufficiently large that the collateral constraint never

binds. We then show that, whenever the constraint binds, competitive equilibria in this

model are not only Pareto inefficient but are also often constrained inefficient, in the sense

that introducing tighter restrictions on borrowing from some date t > 0 makes all agents

better off. Third, we derive sufficient conditions for the existence of a Markov equilibrium

in this model and show that Markov equilibria often have “finite support” in the sense that

individuals’ consumption only takes finitely many values. A unique Markov equilibrium

exists whenever each agent’s coefficient of relative risk aversion is bounded above by one.

Under the same assumption, or alternatively when all agents have identical, constant rel-

1See Heathcote, Storesletten, and Violante (2009) for a survey.
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ative risk aversion utility functions, or when there is no aggregate uncertainty, equilibria

have finite support if there are only two types of agent.

Several papers (the quoted work of Kiyotaki and Moore (1997), Geanakoplos (1997),

and various others) have formalized the idea that borrowing on collateral might give rise

to cyclical fluctuations in real activity and enhance the volatility of prices. They typically

assume that financial markets are incomplete, and/or that the collateral requirements are

exogenously specified, so that it is not clear if the source of the inefficiency is the missing

markets or the limited ability of the agents to use the existing collateral for their borrowing

needs. Furthermore, dynamic models with collateral constraints and incomplete markets

turn out to be very difficult to analyze (see Kubler and Schmedders (2003) for a discussion),

no conditions are known that ensure the existence of recursive equilibria, and there are

therefore few quantitative results about welfare losses due to collateral.

We show here that considering an environment where financial markets are complete

and there are no restrictions on how the existing collateral can be used to back short po-

sitions allows matters to be simplified considerably. In our model, equilibria can often be

characterized as the solution of a finite system of equations. We show that a numerical ap-

proximation of equilibria is fairly simple and a rigorous error analysis is possible. Moreover,

we can use the implicit function theorem to conduct local comparative statics.

As mentioned above, there is also a large literature that assumes that agents can trade

in complete financial markets, default is punished with permanent exclusion from future

trades, and loans are not collateralized. We refer for convenience in what follows to these

models as “limited enforcement models”. As shown in Kehoe and Levine (2001), Ligon

et al. (2002), and Alvarez and Jermann (2000), these models are quite tractable since

competitive equilibria can be written as the solution to a planner’s problem subject to

appropriate constraints. Even though this is not true in the environment considered here

— the limited commitment constraint has a different nature and we show that competitive

equilibria may be constrained inefficient — tractability is still obtained.

Chien and Lustig (2010) (also Lustig (2000) in an earlier, similar work) examine a version

of the model in this paper with a continuum of agents and growth. The main focus of their

analysis is on a quantitative assessment of the asset pricing implications of the model and

their similarities with Alvarez and Jermann (2000). Their notion of recursive equilibrium

also uses instantaneous weights (Chien and Lustig call them “stochastic Pareto-Negishi

weights”) as an endogenous state variable and is essentially identical to ours. However,

our results on the existence of such recursive equilibria and of finite support equilibria are

rather different, as explained in more in detail in Section 4. Also, they do not examine how

the allocation can be decentralized in asset markets with collateral constraints, nor they

discuss the constrained inefficiency of competitive equilibria.

Cordoba (2008) considers an economy with production, no aggregate uncertainty, and a

continuum of ex ante identical agents and derives sufficient conditions for Pareto-efficiency

that are similar to ours.
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Lorenzoni (2008), Kilenthong and Townsend (2011), and Gromb and Vayanos (2002) also

show that collateral constraints can lead to constrained inefficient equilibrium allocations.

However, the analyses by Lorenzoni and by Kilenthong and Townsend are different as

they consider a production economy where capital accumulation links different periods and

the reallocation is induced by a change in the level of investment that modifies available

resources. In our pure exchange setup resources are fixed, only their distribution can vary,

and the reallocation is induced by tightening the borrowing constraints with respect to

their level endogenously determined in equilibrium. Gromb and Vayanos consider a model

with segmented markets and competitive arbitrageurs who need to collateralize separately

their positions in each asset, giving conditions under which reducing the arbitrageurs’ short

positions in the initial period leads to a Pareto improvement. They also consider a pure

exchange economy but the segmentation of markets is a key ingredient in their analysis.

Geanakoplos and Zame (2002, and, in a later version, 2009) are the first to formally

introduce collateral constraints and default into general equilibrium models. They consider

a two-period model with incomplete markets where a durable good needs to be used as

collateral. They are the first to point out that, even if markets are complete and the amount

of collateral in the economy is large, the Pareto-efficient Arrow–Debreu allocation may not

be obtained unless one allows for collateralized financial securities to be used as collateral

in addition to the durable good (they refer to this as “pyramiding”). Our equivalence result

in Section 2 below makes crucial use of this insight.

The remainder of this paper is organized as follows. In Section 2 we describe the environ-

ment, and define an Arrow–Debreu equilibrium with limited pledgeability and a financial

markets equilibrium with collateral constraints. We establish the equivalence of equilib-

rium allocations in these two concepts when there are sufficiently many assets available for

trade. In Section 3 we analyze the welfare properties of equilibria. We derive conditions

on the level of collateral under which equilibria are Pareto efficient and show that if these

conditions are not satisfied they may be constrained inefficient. In Section 4 we study the

existence of Markov equilibria and derive conditions under which they can be described by

a finite system of equations. Proofs are collected in the Appendix.

2 The model

In this section we describe the physical economy, define a notion of Arrow–Debreu equi-

librium with limited pledgeability and of a financial markets equilibrium with collateral

constraints, and give conditions for these two concepts to be equivalent.

2.1 The physical economy

We examine an infinite-horizon stochastic exchange economy with a single perishable con-

sumption good available at each date t = 0, 1, ... We represent the resolution of uncer-
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tainty by an event tree. At each period t = 1, . . . one of S possible exogenous shocks

s ∈ S = {1, . . . , S} occurs, with a fixed initial state s0 ∈ S. Each node of the tree is

characterized by a history of shocks σ = st = (s0, ..., st). The exogenous shocks follow a

Markov process with transition matrix π, where π(s, s′) denotes the probability of shock s′

given s. We assume that π(s, s′) > 0 for all s, s′ ∈ S. With a slight abuse of notation we

also write π(st) to denote the unconditional probability of node st. We collect all nodes of

the infinite tree in a set Σ and we write σ′ � σ if node σ′ is either the same as node σ or a

(not necessarily immediate) successor.

There are H infinitely lived agents which we collect in a set H. Agent h ∈ H maximizes

a time-separable expected utility function

Uh(c) = uh(c0, s0) + E

( ∞∑
t=1

βtuh(ct, st)

∣∣∣∣∣ s0

)
,

where (conditional) expectations are formed with respect to the Markov transition matrix

π, and the discount factor satisfies β ∈ (0, 1). We assume that the possibly state dependent

Bernoulli function uh(·, s) : R++ → R is strictly monotone, C2, strictly concave, and satisfies

the Inada-condition uh′(c, s) = ∂uh(c,s)
∂c →∞ as c→ 0, for all s ∈ S.

Each agent h’s endowment over his lifetime consists of two parts. The first part is

given by an amount of the consumption good that the agent receives at any date event,

eh(st) = eh(st) where eh : S → R++ is a time-invariant function of the shock. In addition,

the agent is endowed at period 0 with an exogenously given share θh(s−1) ≥ 0 of a Lucas tree.

The tree is an infinitely lived physical asset that pays each period strictly positive dividends

d : S → R++, which depend solely on the current shock realization s ∈ S. The tree exists

in unit net supply,
∑

h∈H θ
h(s−1) = 1, and its shares can be traded at any node σ for a unit

price q(σ). The total endowment of the consumer is therefore ωh(st) = eh(st)+θh(s−1)d(st).

2.2 Arrow–Debreu equilibrium with limited pledgeability

We assume that eh(st) cannot be sold in advance in order to finance consumption or sav-

ings at any date before the endowment is received, it thus constitutes the non-pledgeable

component of the agent’s total endowments ωh(st). To formalize the notion of an equilib-

rium with non-pledgeable endowments, we define an Arrow–Debreu equilibrium with

limited pledgeability as a collection of prices (ρ(σ))σ∈Σ and a consumption allocation

(ch(σ))h∈Hσ∈Σ such that ∑
h∈H

(ch(σ)− ωh(σ)) = 0, for all σ ∈ Σ (1)
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and for all agents h

(ch(σ))σ∈Σ ∈ arg max
c≥0

Uh(c) s.t. (2)∑
σ∈Σ

ρ(σ)c(σ) ≤
∑
σ∈Σ

ρ(σ)ωh(σ) <∞ (3)∑
σ�st

ρ(σ)c(σ) ≥
∑
σ�st

ρ(σ)eh(σ) for all st. (4)

The definition is the same as that of an Arrow–Debreu competitive equilibrium, where

agents are able to trade at the initial date t = 0 in a complete set of contingent commodity

markets, except for the additional constraints (4). These constraints express precisely the

condition that eh(σ) is unalienable – that is to say this component of the endowment can

only be used to finance consumption in the node σ in which it is received or in any successor

node. Note that these additional constraints are likely to be binding whenever the eh-part

of the agent’s endowments is large relative to the part given by the tree’s dividends – that

is when there is only a small amount of future endowments that can be traded at earlier

nodes of the event tree.

2.3 Financial markets with collateral constraints

We will show that the abstract equilibrium notion proposed above allows us to capture

the allocations attained as competitive equilibria in a standard setting where agents trade

sequentially in financial markets and short positions must be backed by collateral, provided

markets are “complete” in a sense made precise below.

We consider an environment where at each node st any agent h can trade the tree as well

as J financial assets (in zero net supply), collected in a set J . These assets are one-period

securities: asset j traded at node st promises a payoff bj(s
t+1) = bj(st+1) ≥ 0 at the S

successor nodes (st+1). The agent can hold any amount θ(st) ≥ 0 of shares of the tree,

which trade at the price q(st). In addition, for each security j ∈ J , with price pj(s
t), the

agent can hold any long position φj+(st) ≥ 0 as well as a short position φj−(st) ≤ 0. The

net position in security j is denoted by φj(s
t) = φj+(st)+φj−(st). We assume that all loans

are non-recourse – that is consumers can default at no cost on the prescribed payments.

To ensure that some payments are made, each short position in a security must be backed

by an appropriate amount of the tree or of long positions in other financial securities that

are admissible as collateral. The specification of a financial security j ∈ J is then given

not only by its promised payoff bj(.) but also by its collateral requirement, described by the

vector2 kj ∈ RJ+1
+ . For each unit of security j sold short by a consumer, he is required to

hold kjJ+1 units of the tree as well as kji units of each security i ∈ J as collateral.

Since all loans are non-recourse, the consumer will find it optimal to default on his

promise to deliver bj(st+1) per unit sold whenever bj(st+1) is higher than the value of the

2In principle this collateral requirement could vary with the exogenous shock, but for our purposes it

suffices to assume that it is fixed.
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collateral associated with the short position. In this case the buyer of the financial security

gets the collateral associated with the promise. Hence, the actual payoff of any security

j ∈ J at any node st+1 is endogenously determined by the agents’ incentives to default and

the collateral requirements, as in Geanakoplos and Zame (2002) and Kubler and Schmedders

(2003). It is given by the values fj(s
t+1) satisfying the following system of equations, for

all j ∈ J :

fj(s
t+1) = min

{
bj(st+1),

J∑
i=1

kji fi(s
t+1) + kjJ+1(q(st+1) + d(st+1))

}
. (5)

For this equation to have a nontrivial solution, we assume that the tree is used as collateral

for each security j, either directly or indirectly. If the tree is not used as collateral for

security j — that is kjJ+1 = 0 — it must be used as collateral for some other security, in

turn used as collateral for another security and so on until we reach one of the securities

used as collateral for j. In this way, the tree backs, indirectly, the claims of all securities

along the chain. This construction will be made precise in the proof of Theorem 1.

A collateral constrained financial market equilibrium is defined as a collection of

choices (ch(σ), θh(σ), (φh+(σ), φh−(σ)))σ∈Σ for all agents h ∈ H, prices, (p(σ), q(σ))σ∈Σ, and

payoffs (f(σ))σ∈Σ satisfying (5) such that the following conditions hold.

(CC1) Market clearing:∑
h∈H

θh(σ) = 1 and
∑
h∈H

φh+(σ) +
∑
h∈H

φh−(σ) = 0 for all σ ∈ Σ.

(CC2) Individual optimization: for each agent h

(θh(σ), φh+(σ), φh−(σ), ch(σ))σ∈Σ ∈ arg max
θ≥0,φ+≥0,φ−≤0,c≥0

Uh(c) s.t.

c(st) = eh(st) + φ(st−1) · f(st) + θ(st−1)(q(st) + d(st))− θ(st)q(st)− φ(st) · p(st), ∀st

θ(st) +
∑
j∈J

kjJ+1(st)φj−(st) ≥ 0, ∀st

φj+(st) +
∑
i∈J

kij(s
t)φi−(st) ≥ 0, ∀st, ∀j ∈ J .

Condition (CC1) is the standard market clearing condition for the tree and the financial

assets, where long (φ+) and short (φ−) positions of securities are separated. Condition

(CC2) requires that each agent chooses asset holdings and consumption at each node to

maximize utility subject to a standard budget constraint and additional constraints requir-

ing the agent to hold sufficient amounts of the tree (the first inequality constraint) and of

long positions in financial securities (the second inequality constraint) so as to satisfy the

collateral requirements for these assets. The existence of a collateral constrained financial

markets equilibrium follows by the argument in Kubler and Schmedders (2003).
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While our assumptions on the rules governing collateral are obviously abstracting from

many important issues arising in practice, we try to model two key aspects of collateral

contracts. First, we assume that margins are asset specific in that an asset cannot be

used for two different short positions at the same time even if these two positions require

payment in mutually exclusive states. It is important to point out that in this case no

information over all the trades carried out by an agent is required to enforce these collateral

constraints — it suffices to post the required collateral for each short position; hence we can

say that the financial contracts traded in the markets are non-exclusive. This is in contrast

to other limited commitment models, such as Kehoe and Levine (1993, 2001) or Alvarez

and Jermann (2000) where observability of all trades in financial markets is assumed. It is

also in contrast to Chien and Lustig (2010) who assume that margins are portfolio-specific.

They analyze a model with collateral requirements where, in addition to the tree, a complete

set of S Arrow securities is available for trade at each node and the tree must be used as

collateral for short positions in these Arrow securities. Chien and Lustig assume that each

unit of the tree can be used to secure short positions in several Arrow securities at the same

time, i.e. the collateral constraint only has to hold for the whole portfolio of securities held.

These “portfolio margins” clearly allow economizing on the use of the tree as collateral but

they generally also require a stronger enforcement and coordination ability among lenders,

or the full observability of agents’ trades, not needed in the environment considered here.

The specification adopted here, based on asset specific margins, is closer to trading practices

used in financial markets (see, e.g., Appendix A in Brunnermeier and Pedersen (2009) for

details).

Second, the fact that margins are asset specific requires other channels to economize

on collateral. This is done via our assumption that not only the tree but also financial

securities can be used as collateral. Geanakoplos and Zame (2002) refer to this assumption as

“pyramiding”. In practice, financial securities are routinely used for collateralized borrowing

(e.g., in repo agreements, see Bottazzi et al. (2012), but also in other transactions) —

however, as Brunnermeier and Pedersen (2009) point out, in order to take short positions

in more complicated securities such as derivatives brokers typically require cash-collateral.

Our assumption of pyramiding implies an implicit re-use of collateral that is somewhat

similar to “rehypothecation”, but there are some important differences. Rehypothecation

refers to the common practice in financial trades that allows a lender to use the collateral

received on a loan as collateral he pledges to enter a short position with a third party. In

many collateralized trades the borrower remains the owner of the asset used as collateral

but the lender gains broad rights to use the collateral; in some trades the borrower loses

ownership over the pledged asset altogether (see, e.g., Monnet (2011) for a description of

institutional details). We assume instead that a lender can reuse the collateral that is

backing his loan only indirectly by using the long position in the loan as collateral. Since

agents can default on their debt obligations, at the cost only of losing the posted collateral,

it is clear that the tree is ultimately backing all financial claims, directly or indirectly. But
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the lender can never profit from a situation where the value of the collateral exceeds that

of the borrower’s obligations, by not returning the collateral. One possible reason why in

practice one sees rehypothecation rather than pyramiding is that financial securities are

only good collateral if they are traded on liquid markets, which might make it difficult to

build a large pyramid of financial securities with possibly different payoffs, backed by a

single physical asset.

2.4 Equivalence of Arrow–Debreu and financial market equilibrium

We will show that any Arrow–Debreu equilibrium allocation with limited pledgeability can

also be attained at a collateral constrained financial market equilibrium, provided financial

markets are complete. As we will see, in this environment the notion of “complete markets”

is a little subtler than usual, since it requires the presence of a sufficiently rich set of financial

assets not only in terms of the specification of their payoff but also of their collateral

requirement. To illustrate what sufficiently rich means here, it is useful to first consider a

simple two-period example.

Suppose there are three agents with identical preferences trading in period 1 to insure

against uncertainty in the second period. There are three equiprobable states in the second

period (which in a slight abuse of notation we refer to as s = 1, 2, 3) and the tree pays 1

unit in each of these states. Each agent has initial holdings of the tree equal to 4 units3

while the non-pledgeable second period endowment of the three agents is

e1 = (0, 6, 9), e2 = (6, 9, 0) and e3 = (9, 0, 6).

In this environment it is easy verify that the Arrow–Debreu equilibrium with limited pledge-

ability features a constant level of consumption in the three states:

c1 = c2 = c3 = (9, 9, 9).

This equilibrium is Pareto-efficient and coincides with the standard Arrow–Debreu equilib-

rium.

It is also easy to see that a complete set of Arrow securities, each of them collateralized

by the tree, does not suffice to complete the market. To implement the above allocation,

in fact agent 1 would need to hold his endowment of the tree, buy 5 units of the Arrow

security for state 1, and sell short, respectively, 1 and 4 units of the Arrow securities for

states 2 and 3. However, this violates his collateral constraint since he needs a total of 5

units of the tree as collateral while he only holds four units.

More interestingly, if in addition to the Arrow securities there were also three assets

paying zero in one state and 1 unit in the two others, each agent could achieve his Arrow–

Debreu consumption level without violating his collateral constraints by selling 1 unit of

3It simplifies the exposition to assume that there are 12 trees in the economy. Alternatively, we could

take the tree to be in unit supply and assume that it pays 12 units of dividends.
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the asset that pays in the states where he has positive endowments (in addition to selling

3 units of the Arrow security that pays in the state where his endowment is 9). However

no other agent would buy this asset since any agent needs to buy only one Arrow security

to achieve his Arrow-Debreu consumption. Market clearing would not be possible. The

same argument applies to all other specifications of the asset payoffs4. In this example it

is therefore not possible to achieve the Arrow–Debreu equilibrium outcome if all promises

are only backed by the tree.

In contrast, once one allows for pyramiding – that is to say for the presence of promises

backed by financial securities and not the tree, one can easily find asset trades that satisfy

the collateral constraints and implement the Arrow–Debreu consumption allocation with

limited pledgeability. Suppose there are two financial securities with promises b1 = (0, 1, 1),

b2 = (0, 0, 1). One unit of the tree needs to be used as collateral for each short position

in security j = 1, while (only) one unit of financial security 1 is used as collateral for each

short position in j = 2. Consider, then, the following portfolios. Agent 1 holds 9 units of

the tree, θ1 = 9, shorts 9 units of security 1, φ1
1− = −9 using his holdings of the tree as

collateral, and, at the same time, buys 3 units of this security back, φ1
1+ = 3. Finally, he

shorts 3 units of security 2, φ1
2− = −3, using the long position in security 1 as collateral.

Agent 2 holds 3 units of the tree, shorts 3 units of security 1 and buys 9 units of security

2, θ2 = 3, φ2
1− = −3, φ2

2+ = 9. Agent 3 holds no tree, buys 9 units of security 1 and shorts

6 units of security 2, backed by his holdings of security 1, i.e. θ3 = 0, φ3
1+ = 9, φ3

2− = −6.

Note that given the above specification of asset payoffs and collateral requirements, it

is obviously crucial that agent 3 can use a long position in security 1 as collateral to back

his short sales of security 2. The need for agent 1 to go at the same time long and short

in the same security on the other hand is not essential and depends on our assumption

that only security 1 can be used as collateral for short positions in a security with payoff

(0, 0, 1). Alternatively, we could have assumed that there are two distinct securities with

payoff (0, 0, 1), one of which is collateralized by financial security j = 1, as above, the other

by the tree, in which case agent 1 could just short 6 units of security 1 and 3 units of the

second security with payoff (0, 0, 1), both collateralized by the tree.

The previous example illustrates the basic intuition of how to construct a set of assets

which allows one to attain the Arrow–Debreu equilibrium allocations with limited pledge-

ability in a setup with sequential trading of financial securities and collateral constraints.

Our main result in this section generalizes this construction and the above argument to

the infinite-horizon, stochastic economy under consideration with any number of states and

consumers. To prove the result, it is convenient to introduce an alternative equilibrium

notion with sequential trading, where each period intermediaries purchase the tree from

consumers and issue a complete set of one period, state-contingent claims (options) on the

tree, which are bought by consumers. This specification, although slightly artificial, allows

4Kilenthong (2011) makes this point in a slightly different environment with capital.
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us to simplify the proof and turns out to be useful for analyzing the properties of collateral

constrained equilibria when markets are complete.

More precisely, at each node st intermediaries purchase the tree from the consumers and

issue J = S “tree options”, where option j promises the delivery of one unit of the tree the

subsequent period if, and only if, shock s = j realizes. At each date event st households

can trade the tree and, in addition, can only take long positions θs(s
t) ≥ 0, s = 1, . . . , S in

these S tree options at the prices qs(s
t) > 0, s = 1, ..., S. The intermediaries’ holdings of

the tree ensure that all due dividend payments can be made.

An equilibrium with intermediaries is defined as a collection of individual consump-

tion levels (ch(σ))h∈Hσ∈Σ , portfolios (θhs (σ))h∈Hσ∈Σ,s∈S , and prices (q(σ), qs(σ))σ∈Σ,s∈S , such that

markets clear and agents maximize their utility – that is

(IE1) at all nodes st, ∑
h∈H

θhs (st) = 1 for all s ∈ S.

(IE2) for all agents h ∈ H

(ch, θh) ∈ arg max
θ,c≥0

Uh(c) s.t.

c(st) = eh(st) + θst(s
t−1)

(
q(st) + d(st)

)
−

S∑
s′=1

θs′ (s
t)qs′ (s

t) for all st,

θs(s
t) ≥ 0, for all st, s.

(IE3) at all nodes st,

q(st) =

S∑
s=1

qs(s
t).

Condition (IE3) ensures that intermediaries make zero profit in equilibrium, since the

intermediation technology, with zero costs, exhibits constant returns to scale.

As mentioned above, the concept of equilibrium with intermediaries is used to show

under which conditions Arrow–Debreu equilibria can be implemented as financial markets

equilibria. The following theorem formalizes this.

Theorem 1 For any Arrow–Debreu equilibrium with limited pledgeability there exists an equi-

librium with intermediaries with the same consumption allocation. Moreover, one can construct

the payoffs and collateral requirements of S − 1 financial securities such that there exists a

collateral constrained financial markets equilibrium with the same consumption allocation.

It is relatively easy to show that any Arrow–Debreu equilibrium allocation with limited

pledgeability can also be attained as an equilibrium with intermediaries. In order to show

that this equilibrium can be attained as an equilibrium with collateral constraints, one

needs to construct a rich enough asset structure that ensures that the payoffs achieved
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with the tree options can be replicated by trading in the asset market, subject to collateral

constraints. The basic construction is to set the payoff of each security j = 1, ..., S−1, equal

to zero in states s = 1, ..., j and equal to 1 in states j+ 1, ..., S. One unit of security j must

be used as collateral for each unit short position in security j+1, for j = 2, .., S−1, while a

unit of the tree is used as collateral for unit short positions in security 1. This specification

generalizes that of the simple example above. It suffices to verify that we can always find

portfolios that allow us to replicate the consumption allocation of the equilibrium with

intermediaries. The details of the proof are in the Appendix.

Note that the reverse implication of that stated in Theorem 1 also holds for collateral

constrained equilibria without bubbles.5 Given the equivalence established in the theorem

above, in most of the paper we will consider the notion that turns out to be more convenient,

depending on the issue — that one of equilibrium with intermediaries or that of Arrow–

Debreu equilibrium with limited pledgeability.

Our collateral constrained equilibrium concept with complete financial markets has some

interesting similarities to both Kehoe and Levine (1993) and Golosov and Tsyvinski (2007).6

Kehoe and Levine (1993) differs from most of the other papers in the literature on limited

enforcement models by the fact that an environment with several physical commodities is

considered. In the event of default only part of the agents’ endowment can be seized and

agents also face the punishment of permanent exclusion from trade in financial markets, but

their trades in the spot commodity markets are not observable and cannot be prevented. In

addition to the intertemporal budget constraint agents then face at each node a constraint on

their continuation utility level, which in this case depends on (spot market) prices. Golosov

and Tsyvinski (2007) consider an environment where insurance contracts are offered in

the presence of moral hazard, but hidden trades by the agents in some markets cannot be

prevented and hence prices (together with agents’ utilities) again enter the agents’ incentive

constraints. Prices also enter the additional constraint given by (4) above, which has,

however, the form of a budget constraint (agents’ utilities do not appear), and reflects the

fact that no exclusion from trade in any market is possible. Agents’ incentives are captured

by the specification of asset payoffs in (5) and trades at each node are always restricted by

the collateral constraint. A possible interpretation of this is that agents can always hide all

their trades: as argued in the previous section, no information on agents’ trades is needed

to enforce the collateral constraints.

5Since the existence proof in Kubler and Schmedders (2003) shows that collateral constrained financial

markets equilibria without bubbles exist, Theorem 1 implies the existence also of Arrow–Debreu equilibria

with limited pledgeability.
6We thank an anonymous referee for pointing out this connection to us.
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3 Welfare properties of equilibria

In this section we investigate the welfare properties of competitive equilibria with collateral

constraints. We first examine the case where there are Pareto-efficient competitive equilibria

since the amount of available collateral is “sufficiently large” to satisfy the collateral needs

of the economy and the collateral constraints never bind. We derive both necessary and

sufficient conditions for the existence of Pareto-efficient equilibria in general economies with

no aggregate uncertainty as well as those with aggregate uncertainty when consumers have

identical constant relative risk aversion (CRRA) utility.

We then consider the case where collateral is scarce and no competitive equilibrium

is Pareto efficient. We study an example where there is an equilibrium that is inefficient

and characterize its properties. The main result of this section shows that in this case

equilibria are not only Pareto inefficient, but may also be constrained inefficient. That is,

even by taking the borrowing restrictions imposed by the collateral constraints into account,

a welfare improvement can still be obtained with respect to the competitive equilibrium.

3.1 When do Pareto-efficient equilibria exist?

It is useful to begin the analysis by examining the issue in the framework of the following

simple example, which will also be used in other parts of the paper. There are two types

of agents, two possible realizations of the shocks each period, and no aggregate uncertainty.

The shocks are i.i.d. with probabilities π(1, 1) = π(2, 1) = π(1, 2) = π(2, 2) = 1
2 . We

assume the tree has a deterministic dividend d and the endowments of agent 1 are e1(1) =

h, e1(2) = 0, the endowments of agent 2 are e2(1) = 0, e2(2) = h, where 0 < h, and the

agents’ Bernoulli utility function is state invariant, uh(c, s) = uh(c) for h = 1, 2. While we

assumed above that endowments are strictly positive, it is useful to consider the example

with e1(2) = e2(1) = 0 since this simplifies computations considerably. Our results carry

over to an example where endowments are strictly positive.

Since there is no aggregate uncertainty, at a Pareto-efficient allocation agents’ con-

sumption is constant, i.e. ch(st) = ch for all st, for h = 1, 2, and the same is true at

an Arrow–Debreu equilibrium, with supporting prices given by ρ(st) = (β/2)t. For this

allocation to be also an equilibrium in the present environment, the collateral constraints,

or equivalently the limited pledgeability constraints (4), must all be satisfied. The latter

reduce to

ch − h+ch
β

1− β
− h

β/2

1− β
≥ 0, for h = 1, 2. (6)

In addition, by feasibility we have c1 + c2 = h + d. If the initial distribution of the tree

among agents is such that c1 = c2 at the Arrow–Debreu equilibrium, it is easy to see that

(6) is satisfied if, and only i,f
d

1− β
≥ h (7)
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that is, if the total discounted flow of dividends paid by the tree are larger than the vari-

ability of agents’ non-pledgeable endowments.

To generalize the simple example, first note that in the stationary environment consid-

ered in this paper Pareto-efficient allocations are always such that agents’ consumption only

depends (at most) on the current realization of the shock (see, e.g., Judd et al. (2003)).

Consider a Pareto-efficient allocation
{
ch(s)

}h∈H
s∈S . For this allocation to be supported as

an Arrow–Debreu equilibrium with limited pledgeability the supporting prices, given by

ρ(st) = uh′(ch(st), st)β
tπ(st) for all st and any h, must be such that the limited pledgeabil-

ity constraints are satisfied for all agents h ∈ H and all shocks s ∈ S:

uh′(ch(s), s)(ch(s)− eh(s)) + E

( ∞∑
t=1

βtuh′(ch(st), st)(c
h(st)− eh(st))

∣∣∣∣∣ s0 = s

)
≥ 0. (8)

Moreover, the initial distribution of the tree at t = 0 (i.e., the initial conditions) must

ensure that the intertemporal budget constraint (3) holds. In what follows we will say that

Pareto-efficient equilibria exist for an economy if there are initial distributions for which

the competitive equilibrium is Pareto-efficient. We discuss in Subsection 4.2.2 below what

happens if Pareto efficient equilibria exist but initial conditions are such that collateral

constraints bind initially. We provide conditions that guarantee that in the long run the

equilibrium allocation will converge to that of a Pareto-efficient equilibrium.

For general utility functions and endowments, there are no simple conditions on funda-

mentals that ensure (8) since equilibrium allocations cannot be derived analytically. How-

ever, for the case of no aggregate uncertainty and for the case of identical CRRA utility

equilibrium allocations can be determined easily.

3.1.1 No aggregate uncertainty

When there is no aggregate uncertainty – that is to say
∑

h∈H ω
h(s) is equal to a constant

ω for all shock realizations s ∈ S, and agents’ Bernoulli functions are state independent, all

Pareto-efficient allocations must satisfy ch(s) = ch for all s, h. Hence condition (8) simplifies

to

max
s∈S

[
eh(s) + E

( ∞∑
t=1

βteh(st)

∣∣∣∣∣ s0 = s

)]
≤ ch

1− β
for all h ∈ H (9)

and using the feasibility of the allocation we obtain the following7:

Theorem 2 A necessary and sufficient condition for the existence of a Pareto-efficient equi-

librium with no aggregate uncertainty is

(1− β)
∑
h∈H

max
s∈S

[
eh(s) + E

( ∞∑
t=1

βteh(st)

∣∣∣∣∣ s0 = s

)]
≤ ω. (10)

7Necessity is obvious given (9). Sufficiency follows from the observation that under (10) it is always

possible to find a Pareto-efficient allocation
{
ch
}h∈H

that satisfies (9).
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Recalling that ω −
∑

h∈H e
h(s) = d(s), condition (10) requires the amount of collateral

in every state, measured by d(s), to be sufficiently large relative to the variability of the

present discounted value of the agents’ non-pledgeable endowment, captured by the term

on the left-hand side of (10).

If in addition shocks are i.i.d. and d(s) = d for all s, condition (10) simplifies to8

∑
h∈H

max
s∈S

eh(s) ≤ ω − βe
1− β

=
d

1− β
+ e, (11)

where e =
∑

h∈H e
h(s) for any s.

3.1.2 Identical CRRA preferences

Consider next the case where all agents have identical CRRA preferences with coefficient of

relative risk aversion r. In this case, all Pareto-efficient allocations satisfy the property that,

for all h, s, ch(s) = λhω(s) for some λh ≥ 0 and
∑

h∈H λ
h = 1, where ω(s) =

∑
h∈H ω

h(s).

We can therefore write condition (8) as

λh

ω(s)r−1
+E

( ∞∑
t=1

βt
λh

ω(st)r−1

∣∣∣∣∣ s0 = s

)
≥ eh(s)

ω(s)r
+E

( ∞∑
t=1

βt
eh(st)

ω(st)r

∣∣∣∣∣ s0 = s

)
for all s ∈ S, h ∈ H.

As in the previous section, feasibility allows us to obtain from the above inequality the

following necessary and sufficient condition for the existence of an efficient equilibrium:

1 ≥
∑
h∈H

max
s∈S

eh(s)
ω(s)r + E

(∑∞
t=1 β

t e
h(st)
ω(st)r

∣∣∣ s0 = s
)

1
ω(s)r−1 + E

(∑∞
t=1 β

t 1
ω(st)r−1

∣∣∣ s0 = s
) (12)

When all agents have log-utility, i.e. r = 1, condition (12) greatly simplifies and reduces to

1

1− β
≥
∑
h∈H

max
s∈S

[
eh(s)

ω(s)
+ E

( ∞∑
t=1

βt
eh(st)

ω(st)r

∣∣∣∣∣ s0 = s

)]
,

analogous to (10).

Condition (12), while not very intuitive, can obviously be verified numerically for given

processes of individual endowments and dividends. It is obviously beyond the scope of this

paper to take a stand on which values should be considered as realistic for the level of persis-

tence and the size of the idiosyncratic shocks as well as for the amount of available collateral.

It might be interesting, however, to consider an example of a calibrated economy from the

applied literature. Heaton and Lucas (1996) calibrate a Lucas-style economy with two types

of agents to match key facts about the US economy. They take the dividend-share to be

earnings to stock-market capital and estimate this number to be around 15 percent of total

income. They assume that aggregate growth rates follow an 8-state Markov chain and cali-

brate their model using the PSID (Panel Study of Income Dynamics) and NIPA (National

8This condition is a clear generalization of (7) obtained for the example.
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Income and Product Accounts). We consider their calibration for the “Cyclical Distribu-

tion Case” but de-trend the economy to ensure we remain in our stationary environment.

We find that for their specification of the economy the competitive equilibrium is Pareto-

efficient (i.e., condition (12) holds). This shows that, if one considers the specification of

idiosyncratic risks in Heaton and Lucas (1996) to be somewhat realistic, Pareto-efficient

equilibria exist (in the sense that there are initial conditions for which equilibria are Pareto

efficient) for all realistic levels of collateral.

3.2 Constrained inefficiency of equilibria

If the collateral in the economy is too scarce to support a Pareto-efficient allocation, it could

still be the case that the equilibrium allocation is constrained Pareto efficient in the sense

that no reallocation of the resources that is feasible and satisfies the collateral constraints

can make everybody better off. We show here that this may not be true by presenting

a robust example for which a welfare improvement can indeed be found subject to these

constraints. We consider in particular the reallocation obtained when agents are subject to

constraints on trades that are tighter than the collateral constraints.

3.2.1 Pareto Inefficient equilibria

Consider again the simple environment of the example of Section 3.1. When

h >
d

1− β
, (13)

as we showed, a Pareto-efficient competitive equilibrium does not exist, so the only possible

equilibrium is one where the collateral constraints bind (at least in some state). We show

next that when (13) holds, an inefficient equilibrium exists where agents’ consumption

and prices are time invariant functions of the shock s alone. We will refer to equilibria

satisfying this property as steady-state equilibria. We will show below that this steady-state

equilibrium might be constrained inefficient.

It turns out to be simpler to carry out this analysis in terms of the notion of equilibrium

with intermediaries. Given the symmetry of the environment, it is natural to conjecture that

the steady-state equilibrium is symmetric with c1(1) = c2(2) and θ1 = (0, 1), θ2 = (1, 0). In

the following we will verify this conjecture. Letting q1(s) and q2(s) denote the equilibrium

prices of the tree options (with the price of the tree satisfying the zero profit condition

q(s) = q1(s) + q2(s) stated above), the consumption values of agent 1 supported by the

above portfolios readily obtain from the budget constraints:

c1(1) = h− q2(1),

c1(2) = d + q1(2) + q2(2)− q2(2) = d + q1(2)

The values of the equilibrium prices must satisfy the first-order conditions of agent 1 for

the security paying in state 2 (since agent 1 is always unconstrained in his holdings of this
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asset)

q2(1)u′(c1(1)) = β
1

2
(q1(2) + q2(2) + d)u′(c1(2))

q2(2)u′(c1(2)) = β
1

2
(q1(2) + q2(2) + d)u′(c1(2))

and the corresponding conditions of agent 2 for the security paying in state 1. From the

second condition above we obtain:

q2(2) =
β

2− β
(q1(2) + d).

By symmetry we also have q1(1) = q2(2) and q1(2) = q2(1).

To prove the existence of a steady-state it suffices to show that the first-order conditions

have a solution in prices that support an allocation with c1(1) > c1(2), i.e. that satisfy

h− q2(1) > d + q2(1).

To do so we can reduce the system to a single equation in q2(1) and obtain the following.

q2(1)u′(h− q2(1)) =
β

2− β
(q2(1) + d)u′(d + q2(1))

The existence of a positive solution q2(1) > 0 follows directly from the intermediate value

theorem. To see that the solution must satisfy h−q2(1) > d+q2(1), suppose to the contrary

that h− q2(1) ≤ d + q2(1). By concavity of u(.) this must imply q2(1) ≤ β
2−β (q2(1) + d) or

2q2(1) ≤ β d
1−β . But then we would obtain h ≤ d + 2q2(1) ≤ d

1−β , which contradicts (13)

above.

We have thus shown that under (13) a symmetric steady-state equilibrium exists. If the

initial conditions of the economy are such that s0 = 1 and θ1(s−) = 0, there is a competitive

equilibrium that is identical to this steady state at each date t. Since c1(1) > c1(2) the

equilibrium is clearly inefficient. In the rest of this section we will focus on this equilibrium9.

When the initial conditions are different from those stated above — similarly to what has

already been stated in Section 3.1 — the analysis in Subsection 4.2.2 shows that there

always exists a competitive equilibrium that converges to this steady state.

3.2.2 Pareto-improving intervention

Suppose the economy is at a steady-state equilibrium as described in the previous subsection,

where θ1 = (0, 1), θ2 = (1, 0) at each date t, and consider the welfare effect of tightening the

portfolio restriction to θhs (st) ≥ ε, for ε > 0 and all s ∈ S. This tighter restriction is assumed

to be introduced at t = 1 and to hold for all t ≥ 1. The intervention is announced at t = 0

after all trades have taken place. In the light of the equivalence established in Section 2.4 this

9For the case of general preferences we cannot rule out the possibility that other equilibria exist. In the

following Subsection 3.2.3 we assume that all agents have log utility, in which case it follows from Theorem 5

in Section 4 that the equilibrium is unique (and hence our argument shows that all equilibria are constrained

inefficient).
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is equivalent to increasing the collateral requirements in a collateral constrained financial

market equilibrium. We consider the equilibrium obtained as a result of this intervention,

where agents optimize subject to these tighter constraints and markets clear, and evaluate

agents’ welfare ex ante, at date 0, at the new equilibrium allocation. This allocation clearly

satisfies the collateral constraints. At the same time, since the tighter constraints modify

agents’ trades and hence securities’ prices, it may not be budget feasible at the original

prices. We show the intervention is Pareto improving, for an open set of the parameter

values describing the economy. Thus, inefficient steady-state equilibria (as characterized in

the previous subsection) are also constrained inefficient: making the collateral constraint

tighter in some date events improves welfare.

Given the nature of the intervention and the fact that the economy is initially in a steady

state, there is a transition phase of one period before the economy settles to a new steady

state (at t = 2): the new equilibrium prices and consumption levels depend on time (whether

it is t = 1 or t > 1), and on the realization of the current shock. It is thus convenient to

use the notation qs′(s; t) to indicate the price at time t and state s of the tree option that

pays in state s′. The new equilibrium portfolios are, at all dates t ≥ 1, θ1 = (ε, 1 − ε),
θ2 = (1 − ε, ε) – that is, the short-sale constraint always binds. The consumption level of

type 1 consumers at the date of the intervention, t = 1, is

c1(s1 = 1) = h− q1(1; 1)ε− q2(1; 1)(1− ε)

c1(s1 = 2) = d + q1(2; 1) + q2(2; 1)− q1(2; 1)ε− q2(2; 1)(1− ε)

= d + q1(2; 1)(1− ε) + q2(2; 1)ε

and, at all subsequent dates t > 1,

c1(st = 1) = h + ε (q1(1) + q2(1) + d)− q1(1)ε− q2(1)(1− ε)

= h + εd− q2(1)(1− 2ε)

c1(st = 2) = (d + q1(2) + q2(2)) (1− ε)− q1(2)ε− q2(2)(1− ε)

= d(1− ε) + q1(2)(1− 2ε)

where qs′(s) = qs′(s; t) for all t > 1, s, s′.

The above expressions allow us to gain some intuition for the effects of the intervention

considered. Consider first the direct effect, ignoring the price changes: we see that the

intervention unambiguously increases the variability of consumption across states, not only

at all dates t > 1 but also at t = 1.10 Next, turning our attention to the price changes, we

show in what follows that the equilibrium price of the tree options unambiguously increases,

as a result of the intervention, since their effective supply (the amount that can be traded

in the market) decreases, from 1 to 1 − 2ε. From the above expressions we see that an

increase in prices reduces the variability of consumption across states, since consumers are

10This last property follows from the fact that the consumers’ optimality conditions imply that, at an

initial steady-state equilibrium, we have q2(1) > q1(1) and q1(2) > q2(2).
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net buyers of assets when they are rich and net sellers when they are poor. Hence, the price

effect improves risk sharing, in contrast to the direct effect. We also show that for an open

set of parameter values the price effect prevails over the direct effect.

We have eight new equilibrium prices to determine. By symmetry (of consumers’ pref-

erences, endowments, and shocks), however, these reduce to four, since q1(1; 1) = q2(2; 1),

q2(1; 1) = q1(2; 1), as well as q1(1) = q2(2) and q2(1) = q1(2) for all t = 2, .... Using the

above expressions of the budget constraints, the equilibrium prices can be obtained from

the first-order conditions for the consumers’ optimal choices. After some substitutions, we

obtain11 the following equation that can be solved for q2(1) = q1(2):

q1(2)u′(h + εd− q1(2)(1− 2ε))− β(q1(2) + d)

2− β
u′(d(1− ε) + q1(2)(1− 2ε)) = 0. (14)

It is useful to denote by q0
1(2) the solution of this equation when ε = 0 (that is, at the initial

steady state).

Differentiating (14) with respect to ε and evaluating it at ε = 0 yields the following

expression for the change in equilibrium prices in the new steady state:

dq1(2)

dε

∣∣∣∣
ε=0

=
−
[
β
d+q01(2)

2−β u′′d + q0
1(2)u′′h

]
(d + 2q0

1(2))

u′h −
β

2−βu
′
d − β

d+q01(2)
2−β u′′d − q0

1(2)u′′h

(15)

where u′h = u′(h− q0
1(2)) and u′d = u′(d+ q0

1(2)) with u′′h and u′′d defined analogously. In the

above expression the numerator is clearly positive, and so is the denominator, since equation

(14) evaluated at ε = 0 yields u′h =
d+q01(2)

q01(2)
β

2−βu
′
d >

β
2−βu

′
d. Turning our attention to the

effect on equilibrium consumption, from the above expressions of the budget constraints

and the symmetry of equilibrium prices we obtain

dc1(st = 1)

dε

∣∣∣∣
ε=0

= − dc1(st = 2)

dε

∣∣∣∣
ε=0

= 2q0
1(2) + d− dq1(2)

dε

∣∣∣∣
ε=0

. (16)

From (15) we immediately see that

0 <
dq1(2)

dε

∣∣∣∣
ε=0

< d + 2q0
1(2),

so that dc1(st=1)
dε

∣∣∣
ε=0

> 0. Hence, in the new steady-state for all t > 1, the equilibrium price

of the tree options unambiguously increases, as claimed, as a result of the intervention, but

the change in prices is not enough to overturn the direct effect of the intervention, and so

the variability in consumption across states increases too.

We can similarly proceed to determine the effect on consumption at the transition date

t = 1 :

dc1(s1 = 1)

dε

∣∣∣∣
ε=0

= − dc1(s1 = 2)

dε

∣∣∣∣
ε=0

= q0
1(2)− β(q0

1(2) + d)

2− β
− dq2(1; 1)

dε

∣∣∣∣
ε=0

,

11The details for this as well as the similar derivation of (19) below can be found in the Appendix.
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where we used the fact that q1(1; 1), evaluated at ε = 0, is equal to q1(1) and the steady-

state value before the intervention,
β(q01(2)+d)

2−β .

The effect on the discounted expected utility of consumer 1 of an infinitesimal tightening

of the portfolio restriction – that is from ε = 0 to dε > 0 is given by

dU

dε

∣∣∣∣
ε=0

=
1

2

(
u′h − u′d

) dc1(s1 = 1)

dε

∣∣∣∣
ε=0

+
β

2(1− β)

(
u′h − u′d

) dc1(st = 1)

dε

∣∣∣∣
ε=0

. (17)

By symmetry, the expression for the change in consumer 2’s expected utility has the same

value. Hence the welfare effect of the intervention considered is determined by the sign of

the expression in (17).

Since u′h < u′d, our finding on the sign of (16) implies that the effect of the intervention

considered on agents’ steady state welfare, given by the second term in (17), is always

negative. For the intervention to be welfare improving we therefore need to have a welfare

improvement in the initial period that is sufficiently large to compensate for the negative

effect after that period. More precisely, from (17) it follows that dU
dε

∣∣
ε=0

> 0 if, and only if,

dc1(s1 = 1)

dε

∣∣∣∣
ε=0

< − β

1− β
dc1(st = 1)

dε

∣∣∣∣
ε=0

,

or equivalently, substituting the expressions obtained above for the consumption changes

and rearranging terms,

dq2(1; 1)

dε

∣∣∣∣
ε=0

>
2q0

1(2) + dβ

(2− β) (1− β)
− β

1− β
dq2(1)

dε

∣∣∣∣
ε=0

(18)

That is, for an improvement to obtain the price change in the first period, dq2(1;1)
dε

∣∣∣
ε=0

, has

to be sufficiently large that c1(s1 = 1) decreases, increasing risk sharing in this intermediate

period, and by a sufficiently large amount.

Again by differentiating the consumers’ first-order conditions with respect to ε we obtain

the following expression for the price effect at the intermediate date:

dq2(1;1)
dε

∣∣∣
ε=0

=

q01(2)

(
β(q01(2)+d)

2−β −q01(2)

)
u′′h−

β(q01(2)+d)

2−β u′′d

(
d+2q01(2)− dq1(2)

dε

∣∣∣
ε=0

)
+ β

2−β u
′
d
dq1(2)
dε

∣∣∣
ε=0

u′h−q
0
1(2)u′′h

(19)

Substituting this expression into the condition obtained above for the intervention to be

improving, (18), and rearranging terms we get:

q0
1(2) (1− β)

[
βd− 2 (1− β) q0

1(2)
]
u′′h− (1− β)β(q0

1(2) + d)u′′d
(
d+2q0

1(2)
)

−
(
2q0

1(2) + dβ
) (
u′h−q0

1(2)u′′h

)
+
[
β (2− β)

(
u′h−q0

1(2)u′′h

)
+ β (1− β)u′d + (1− β)β(q0

1(2) + d)u′′d

]
dq1(2)
dε

∣∣∣
ε=0

> 0

(20)

Condition (20) is stated in terms of endogenous variables, which obviously raises the ques-

tion if there are economies for which the equilibrium values satisfy it. We have the following

result.
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Theorem 3 There are specifications of economies in the environment under consideration that

are robust with respect to perturbations in (h, d, β), and to perturbations of preferences, for

which condition (20) holds and hence there exists a steady-state equilibrium that is constrained

inefficient.

To prove the theorem, we show (in the Appendix) that for sufficiently small β condition

(20) is satisfied if

1 + d
u′′(d + q0

1(2))

u′(d + q0
1(2))

+
u′(h− q0

1(2))

u′(d + q0
1(2))

< 0. (21)

As shown in the previous Subsection, 3.2.1, when h (1− β) > d a Pareto-inefficient steady-

state equilibrium exists with
u′(h−q01(2))

u′(d+q01(2))
< 1. It, then, follows that the inequality−u′′(d+q01(2))

u′(d+q01(2))
>(

1 +
u′(h−q01(2))

u′(d+q01(2))

)
/d is satisfied when the absolute risk-aversion is sufficiently high. There-

fore, condition (20) holds and the steady-state equilibrium is constrained inefficient when-

ever the agents’ absolute risk aversion is uniformly above 2/d and β is sufficiently small. It

is clear that this is true for an open set of parameters and utility functions.

3.2.3 Logarithmic preferences

While Theorem 3 above is all one can say in general, it is useful to illustrate, for a given

specification of the agents’ utility function, how large the set of parameter values is for which

one obtains constrained inefficient equilibria. We consider here the case where u(c) = log(c).

It can be verified that in this case an explicit solution of (14) for the equilibrium price can

be found, given by

q0
1(2) = β

h

2
.

Since the utility is homothetic it is without loss of generality to normalize d = 1. Direct

computations show that
dq2(1; 1)

dε

∣∣∣∣
ε=0

=
β(1 + h)(1 + βh)

2 + βh

and
dq1(2)

dε

∣∣∣∣
ε=0

=
β(−4h + β2h(2 + 3h) + 2β(1 + h− 2h2)

2(β − 2)(2 + βh)
.

According to equation (18) an improvement is possible if

β
dq2(1)

dε

∣∣∣∣
ε=0

+ (1− β)
dq2(1; 1)

dε

∣∣∣∣
ε=0

− 2q2(1) + dβ

(2− β)
> 0

Substituting these expressions into (18) we find that, in the case of logarithmic prefer-

ences, the intervention considered is welfare improving if, and only if,

2− β(h− 2)h + β2h2 < 0.

Figure 1 shows, in the space h, β, the region of values of these parameters for which

competitive equilibria are constrained inefficient as well as the region where equilibria are
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Pareto efficient. We see that the region where constrained inefficiency holds is quite large,

while the region where full Pareto efficiency cannot be attained but still the intervention

considered is not welfare improving is very small.

4 Stationarity properties of equilibria

In this section we give conditions for the existence of a (stationary) Markov equilibrium

and, for the case of two agents, we give conditions that ensure that this Markov equilibrium

has finite support.

The example in Section 3.2.1 demonstrates that even when the constraints bind there can

exist equilibria where consumption and prices only depend on the current realization of the

exogenous shock. Since the stochastic process of the exogenous variables has finite support,

these equilibria have finite support. While equilibria of this type generally exist for pure

exchange economies with Pareto-efficient equilibria, in models with incomplete markets,

or with overlapping generations, equilibrium prices and consumption levels typically take

infinitely many values along an equilibrium path. It is obviously an important question

whether along the equilibrium path the endogenous variables take finitely many or infinitely

many values. If they take finitely many values, the equilibrium can be characterized by

a finite system of equations, it can typically be computed easily and, one can conduct

local comparative statics using the implicit function theorem. Ligon et al. (2002) show

that in limited enforcement models finite support equilibria always exist if there are two

agents. However, in those models equilibrium allocations are constrained efficient and can

be obtained as the solution of a convex programming problem. As we have demonstrated,

competitive equilibrium in our model may be constrained inefficient and it is not possible

to derive equilibrium allocations as the solution to a planner’s problem — the argument in

Ligon et al. (2002) crucially depends on this property. In this respect our model is closer

to models with incomplete financial markets and in these models finite support equilibria

typically do not exist.

Even if equilibria have infinite support, they might still be tractable if they are Markov

for some simple, endogenous state variable (as, for example, is the case in the stochastic

growth model). In many models with heterogenous agents and market imperfections, how-

ever, it is an open problem under which conditions Markov equilibria exist (see, e.g., Kubler

and Schmedders (2002) or Santos (2002)).

In this section we investigate the conditions under which there exist Markov equilibria,

and equilibria where individuals’ consumption follow a Markov process with finite support.

As argued above, the existence of equilibria with these properties is important, as such

equilibria are simpler to study and to compute. We begin by providing some sufficient con-

ditions for the existence of Markov equilibria. This analysis becomes simpler if we consider

the Arrow–Debreu equilibrium notion with limited pledgeability and use as endogenous

state variable the instantaneous Negishi weights, yielding current consumption levels (as
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in Chien and Lustig (2010)), rather than the beginning-of-period distribution of the tree.

The intuition for why this simplifies the analysis is that, as we will see below, if at some

node an agent’s limited pledgeability constraint does not bind, the agent’s instantaneous

Negishi weight remains constant — hence one only needs to analyze the evolution of the

weight for nodes where the constraints are binding. In the remainder of the section we

show that, for economies with only two types of agents, finite support equilibria exist under

more general conditions, and then conclude with a brief discussion of the existence of finite

support equilibria with more than two agents.

4.1 Existence of Markov equilibria

We take the endogenous state at some node st to be the Negishi consumption weights

λ(st) ∈ RH++ where

(c1(st), . . . , cH(st)) ∈ arg max
c∈RH+

∑
h∈H

λh(st)uh(ch, st) s.t.
∑
h∈H

(ch − ωh(st)) = 0.

Negishi’s (1960) approach to proving the existence of a competitive equilibrium, instead of

solving for consumption values that clear markets, solves for weights that enforce budget

balance (see also Dana (1993)). Judd et al. (2003) show how to use this approach to

compute equilibria in Lucas-style models with complete markets (and without collateral

constraints). Chien and Lustig (2010) (see also Chien et al. (2011)) consider a Markov

equilibrium notion that features individual multipliers — interpretable as the inverse of our

consumption weights — as the endogenous state variable in a model analogous to ours,

though for a slightly different economy with a continuum of agents.

The state, then, consists of the current shock and all agents’ current Negishi weights,

(s, λ). To define a competitive equilibrium satisfying the Markov property (in short, a

Markov equilibrium), we need to rewrite the equilibrium conditions in a recursive form,

specifying a policy function that determines how the endogenous variables depend on the

state and a transition map that associates to the current state a probability distribution

over next period’s states. The consumption policy function, C : S×RH++ → RH+ is obviously

given by

C(s, λ) = arg max
c∈RH+

∑
h∈H

λhuh(ch, s) s.t.
∑
h∈H

(ch − ωh(s)) = 0. (22)

To understand how λ evolves across time periods and shock realizations, consider an

Arrow–Debreu equilibrium with limited pledgeability, with prices (ρ(σ))σ∈Σ, and a con-

sumption allocation (ch(σ))h∈Hσ∈Σ . If for an agent h and a node st the limited pledgeability

constraint does not bind, i.e. ∑
σ�st

ρ(σ)ch(σ) >
∑
σ�st

ρ(σ)eh(σ),

from the agent’s first-order conditions it follows that his marginal rate of substitution be-

tween st−1 and st must equal the price ratio, ρ(st)
ρ(st−1)

and, as we show formally below, we
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have λh(st) = λh(st−1). If, on the other hand, the constraint binds∑
σ�st

ρ(σ)ch(σ) =
∑
σ�st

ρ(σ)eh(σ),

his marginal rate of substitution must be higher than ρ(st)
ρ(st−1)

and we have λh(st) > λh(st−1).

A key determinant for the transition of λ is thus the value of an agent’s future lifetime

consumption in excess of his non-pledgeable endowments at any date event. We write

this recursively as a function of the state (s, λ) denoting it agent h’s “excess expenditure

function” V h(s, λ), for each h. In what follows, it is useful to write (in a slight abuse of

notation)

uh′(s, λ) = uh′
(
Ch(s, λ), s

)
.

A Markov equilibrium consists of a policy function C : S × RH++ → RH+ , together

with a transition function L : S × RH++ → RH++, and excess expenditure functions V h :

S × RH++ → R for all agents h ∈ H, such that for all h ∈ H, all s ∈ S, and all λ ∈ RH++ :

V h(s, λ) = uh′(s, λ)
(
Ch(s, λ)− eh(s)

)
+ β

∑
s′

π(s, s′)V h(s′, L(s′, λ)) (23)

and for all s′ ∈ S,

V (s′, L(s′, λ)) ≥ 0 (24)

L(s′, λ)− λ ≥ 0 (25)

V (s′, L(s′, λ))
(
L(s′, λ)− λ

)
= 0 (26)

Note that since consumption is homogenous of degree zero in the Negishi weights we

could normalize λ to lie in the H − 1 dimensional unit simplex, ∆H−1 = {λ ∈ RH+ :∑H
h=1 λ

h = 1}. At this point it simplifies the exposition and the notation not to do so, since

without this normalization (25) implies that we always have L(s′, λ) ≥ λ while the relative

Negishi weight of an agent actually decreases if he is unconstrained and some other agents

are constrained.

With λ normalized to lie in the simplex, the conditions defining a Markov equilibrium

become a little messier. Since in parts of the argument in Section 4.2 it will turn out

to be convenient to adopt this normalization, it is useful to briefly illustrate here how

the definition of a Markov equilibrium changes with such a normalization. The functions

C(.), V (.) and L(.) become maps from S × ∆H−1 and we need to introduce an auxiliary

function γ : S×∆H−1 → RH+ . While the definition of V h is as in equation (23) and equation

(24) is unchanged, equations (25)-(26) become:

Lh(s′, λ) =
λh + γh(s′, λ)∑H
i=1(λi + γi(s′, λ))

and γh(s′, λ)V h(s′, L(s′, λ)) = 0 for all h ∈ H (27)

To show that a Markov equilibrium as defined above indeed satisfies all the properties of

an Arrow–Debreu equilibrium with limited pledgeability, we compare the first-order condi-

tions for the latter equilibrium with conditions (23) – (26) above. To get some understanding
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of the expression of the excess expenditure function in (23), note that we proceeded as in

the Negishi approach, by taking an agent’s marginal utility to value his net consumption.

Intuitively this is possible because, as argued above, whenever the agent is unconstrained

at some state s, his marginal rate of substitution between s and the predecessor state s′

equals the prices while, when he is constrained, we have V h(s′, λ) = 0 and it is irrelevant

whether this term is multiplied by the agents’ marginal rate of substitution between s and

s′ or by actual market prices since the product is always zero. With regard to the remaining

conditions, note that the first-order conditions for the optimality of consumption of agent

h at some node st can be written as follows:

βtπ(st)uh′(ch(st), st)− ηhρ(st) +
∑
σ:st�σ

µh(σ)ρ(st) = 0

µh(st)
∑
σ�st

ρ(σ)(ch(σ)− eh(σ)) = 0,

for multipliers ηh ≥ 0 (associated with the intertemporal budget constraint (3)) and µh(σ) ≥
0 (associated with the collateral constraint (4) at node σ). Taking 1

λh(σ)
= ηh−

∑
σ:st�σ µ

h(σ)

for all h, σ, we see that conditions (24)–(26) follow from the above first-order conditions and

that the evolution of λh(σ) is determined by that of the Lagrange multipliers µh(σ).

Theorem 4 Given a Markov equilibrium (C, V, L) and any λ0 ∈ RH++ with V h(s0, λ0) ≥ 0

for all h, there exist initial tree-holdings (θh(s−1))h∈H and an Arrow–Debreu equilibrium with

limited pledgeability with ch(st) = Ch(st, λ(st)) and λ(st) = L(st, λ(st−1)) for all st, t > 0.

Note that if there is a competitive equilibrium with λ(st) = λ∗ for all st, this must be an

unconstrained Arrow–Debreu equilibrium. The fact that λ(st) does not change over time

implies that the additional constraint (4) is never binding in equilibrium and the allocation is

identical to the unconstrained Arrow–Debreu equilibrium allocation and is Pareto efficient.

Therefore, if for a given Markov equilibrium a vector of weights λ∗ exists with V h(s, λ∗) ≥ 0

for all s ∈ S and all h ∈ H, there exist initial conditions (corresponding to the weights λ∗) for

which the Markov equilibrium is identical to an unconstrained Arrow–Debreu equilibrium.

It is well known that in models where the equilibrium may be constrained inefficient

Markov equilibria might not always exist. For the model with collateral constraints, when

financial markets are incomplete no sufficient conditions are known that ensure the existence

of a Markov equilibrium (see Kubler and Schmedders (2003)). In contrast, in the environ-

ment considered here, with complete markets, as shown in the next theorem, the assumption

that all agents’ preferences satisfy the gross substitute property implies that Markov equi-

libria always exist. Dana (1993) shows that this assumption guarantees the uniqueness of

Arrow–Debreu equilibria in infinite horizon exchange economies without constraints. We

show that her argument extends to our model and guarantees the existence of a Markov

equilibrium through the uniqueness of the “continuation-equilibrium”. As pointed out by

Dana (1993), in our context the assumption of gross substitutes is equivalent to assuming
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that for all agents h and all shocks s, the term c uh′(c, s) is increasing in c; or equivalently,

that the coefficient of relative risk aversion −cu
h′′(c,s)
uh′(c,s)

is always less than or equal to one.

While in applied work it is often assumed that relative risk aversion is significantly above

one it is also sometimes argued (see, e.g., Boldrin and Levine (2001)) that a value below

one might be the empirically more relevant case.

We have the following result.

Theorem 5 Suppose that for all agents h and all shocks s, c uh′(c, s) is increasing in c for all

c > 0. Then a Markov equilibrium exists and it is unique.

To establish the result we prove first that for each initial value of λ a unique equilibrium

exists. The proof proceeds by contradiction and is similar to the standard proof of unique-

ness of equilibrium when demand functions exhibit the gross substitute property. Suppose

two equilibrium allocations existed, with two distinct processes for the associated Negishi

weights. Define a new process as the (pointwise) minimum of these two. At the allocation

implied by this process all agents violate their budget constraints, which must violate fea-

sibility since in our economy prices are summable. The uniqueness of the equilibrium for

each λ, then, directly implies the existence — and uniqueness — of a Markov equilibrium.

4.2 Markov equilibria with finite support

The main difficulty in determining whether Markov equilibria with finite support exist lies

in specifying the support. We show that for the case of two agent types, H = 2, there is

a natural characterization of the support. These equilibria constitute a generalization of

the steady-state equilibrium obtained in the example considered in Section 3.2.1. We also

demonstrate how these finite support equilibria are always reached at an equilibrium when

the economy starts with arbitrary initial conditions.

Finally, we discuss briefly the case of more than two agents and show that in this case

there are examples of equilibria with finite support but there are also examples where all

equilibria have infinite support.

4.2.1 Finite support Markov equilibria in economies with two types of agents

When there are only two types of agents finite support equilibria exist under rather general

conditions and are very easy to characterize. It is convenient here to normalize (λ1, λ2)

to always lie in the unit interval. This allows us to denote by λ = λ1 the value of the

consumption weight for agent 1 and to take this as a state variable. In a slight abuse of

notation, we write Ch(s, λ) = Ch(s, (λ, 1− λ)), V h(s, λ) = V h(s, (λ, 1− λ)) etc.

In order to fix ideas, suppose that a Markov equilibrium exists and that, for all agents

h = 1, 2 and all s ∈ S, the excess expenditure function V h(s, .), has a unique zero. Denote
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by λ∗(s) the zero of V 1(s, .) and by λ
∗
(s) > λ∗(s) the zero of V 2(s, .).12 Figure 2 illustrates

a possible form of these functions and their zeros in the simple case where there are two

possible shocks, s = 1, 2. By equations (24) and (27), for each (s, λ) ∈ S × (0, 1) we must

have L(s, λ) = λ or L(s, λ) ∈ {λ∗(s), λ∗(s)}. To see this note that if V h(s, λ) > 0 for

h = 1, 2 then L(s, λ) = λ while if V 1(s, λ) < 0, Equation (27) implies that λ must “jump”

to λ∗(s), and if V 2(s, λ) < 0 it implies that λ must jump to λ
∗
(s). If V h(s, λ) = 0 for some

h = 1, 2 we must have λ ∈ {λ∗(s), λ∗(s)} and since we assumed that there is a unique zero

of each V h(s, .) we have L(s, λ) = λ. Therefore, if each V h(s, .) has a unique zero the entire

equilibrium transition can be described by the 2S numbers λ∗(1), λ
∗
(1), ..., λ∗(S), λ

∗
(S) :

either λ stays constant or it jumps to one of these 2S values. In Figure 2 if we start with

λ = λ
∗
(1) when the current state is s = 1, the endogenous state has to move to λ∗(2) when

state 2 occurs and will alternate (as in Ligon et al. (2002)) between the values λ
∗
(1) and

λ∗(2).

Unfortunately, it is not straightforward to identify conditions under which, when a

Markov equilibrium exists, each excess expenditure function V h(s, .) has a unique zero.

Our main result of this section gives sufficient conditions13.

Theorem 6 Suppose there are two types of agents. A finite support Markov equilibrium exists

for all initial conditions if any one of the following three conditions is satisfied

1. The coefficient of relative risk aversion satisfies −cuh′′(c, s)/uh′(c, s) ≤ 1 for all c, s, h.

2. All agents have identical, constant relative risk aversion (CRRA) Bernoulli utility functions.

3. uh(c, s) is state independent for all h and there is no aggregate uncertainty.

To prove the result we adopt a constructive approach and conjecture that a competitive

equilibrium with finite support exists. We then derive a finite system of equations and

inequalities that characterize the competitive equilibrium in this case and find conditions

under which this system has a solution and one can construct monotone functions V h(s, .)

for all h = 1, 2.

As in the simple case of Figure 2, we want to prove that a Markov equilibrium exists

where at most 2S points are visited in the endogenous state space. In order to characterise

these points as the solution to a system of inequalities, we define for any λ ∈ (0, 1)S and

12The Inada condition on agents’ utility functions together with the fact that V h(s, .) must be bounded

above ensure that V 1(s, λ) < 0 for λ sufficiently small and V 2(s, λ) < 0 for λ sufficiently close to 1. Moreover,

since d(s) > 0, λ
∗
(s) must always be larger than λ∗(s).

13In an earlier working paper version of their published paper, Chien and Lustig also characterize equilibria

with finite support for the case of two shocks and two agents with identical CRRA utility. Our result holds

for any number of shocks under more general conditions.
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λ ∈ (0, 1)S a function L : S × [0, 1]→ [0, 1] by

L(λ,λ)(s, λ) =


λ if λ(s) ≤ λ ≤ λ(s)

λ(s) if λ < λ(s)

λ(s) if λ > λ(s).

This function L(λ,λ)(., .) describes a law of motion for λ.

To characterize when the values (λ, λ) induce the transition function of a finite support

Markov equilibrium we define, for each h = 1, 2, 2S2 numbers V h(s, λ(s̃)), V h(s, λ(s̃)) for

s, s̃ ∈ S to be the solution of the following linear system of 2S2 equations:

V h(s, λ(s̃)) = uh′(s, λ(s̃))
(
Ch(s, λ(s̃))− eh(s)

)
+β

∑
s′

π(s, s′)V h(s′, L(λ,λ)(s
′, λ(s̃))), (28)

V h(s, λ(s̃)) = uh′(s, λ(s̃))
(
Ch(s, λ(s̃))− eh(s)

)
+β

∑
s′

π(s, s′)V h(s′, L(λ,λ)(s
′, λ(s̃))). (29)

The values (λ(s), λ(s))s∈S induce an equilibrium, and are denoted as (λ∗(s), λ
∗
(s))s∈S if

they satisfy the following conditions:

V 1(s, λ∗(s)) = V 2(s, λ
∗
(s)) = 0 for all s ∈ S, (30)

and, for all s, s′

L(λ∗,λ
∗
)(s
′, λ∗(s)) = λ∗(s)⇒ V h(s′, λ∗(s)) ≥ 0 for h = 1, 2 (31)

L(λ∗,λ
∗
)(s
′, λ
∗
(s)) = λ

∗
(s)⇒ V h(s′, λ

∗
(s)) ≥ 0 for h = 1, 2 (32)

When the above conditions are satisfied, by construction, L(λ∗,λ
∗
)(.) describes a transition

function that ensures that V h(s, L(s, λ)) ≥ 0 for all λ ∈ {λ∗(s), λ∗(s), s = 1, ..., S} so that

(24) holds and (27) holds. This constitutes a competitive equilibrium for economies with

initial conditions in {λ∗(s), λ∗(s), s = 1, ..., S}. The advantage of this formulation is that

the computation of an equilibrium reduces to solving a non-linear system of equations and

verifying finitely many inequalities. In the above theorem, however, we claim a stronger

result since we want the finite support equilibrium to exist for all initial conditions. The

stated conditions on preferences and endowments guarantee that each V h(s, .) function has

a unique zero.

In the proof we first show that there always exist S pairs (λ∗(s), λ
∗
(s)) such that the

solutions to (28) and (29) satisfy (30). This turns out to be always true under the general

conditions on endowments and preferences considered in this paper and follows from a

standard, fixed-point argument. However, we need rather restrictive conditions as those

stated in the proposition to make sure that (31) and (32) also hold. These conditions turn

out to ensure that the functions V h(s, .) have unique zeros.

Note that in the above construction the intervals ([λ∗(s), λ
∗
(s)])s∈S uniquely define the

values (V h(s, λ(s̃)), V h(s, λ(s̃)))h∈Hs,s̃∈S) and characterize the equilibrium. The equilibrium
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dynamics of these equilibria are straightforward. If one starts at an initial condition that

corresponds to a welfare weight on the boundary of the interval [λ∗(s), λ
∗
(s)] for the initial

state s = s0, only finitely many different welfare weights are visited along the equilibrium.

If the initial condition corresponds to a different value, λ stays constant until we reach a

state s′ where one of the constraint binds in which case λ jumps to λ∗(s) or λ
∗
(s) and the

dynamics proceeds as above.

Ligon et al. (2002) establish an analogous result for two-agent economies with limited

enforcement, where equilibria are solutions of a constrained planner’s problem. In that

model, because the planner’s problem can be formulated as a stationary programming

problem, Markov equilibria always exist and to establish the finite support result it suffices

to ensure the monotonicity of the agents’ indirect utility function. In our model the existence

of a Markov equilibrium is not guaranteed and even if Markov equilibria exist we need to

ensure the monotonicity of the expenditure function. Hence the conditions in Ligon et al.

(2002) are much weaker than those in Theorem 6.

4.2.2 An example

To illustrate the construction of Theorem 6 it is useful to consider again the example

considered in Sections 3.1 and 3.2.1. In that example we showed that when (7) holds, a

Pareto-efficient equilibrium exists with constant consumption for some initial conditions.

However, we did not discuss if and how that steady state could be reached for arbitrary

initial conditions. Applying the results of the previous section, we can show that there

always exists an equilibrium where the steady state is reached, but that it might take

arbitrarily long to reach it. This equilibrium is clearly Pareto inefficient since, along the

transition to the steady state, risk-sharing is imperfect as the collateral constraints will

frequently bind. Nevertheless, the competitive equilibrium always has finite support. The

endogenous state variable, λ, never takes more than three different values.

Suppose for simplicity that h = d
1−β , u1(c) = u2(c) = log(c). Denote aggregate en-

dowments by ω = h + d. It is easy to check that with log utility we have C1(s, λ) = λω

for both s = 1, 2. Also, it is easy to see that under these parameter values there exists a

unique efficient steady-state where each agent’s consumption is given by ω
2 .14 As pointed

out after Theorem 4, a Pareto-efficient Markov equilibrium exists if, for some λ∗, we have

V h(s, λ∗) ≥ 0 for all h and all s. If we start with this initial condition, the economy will be

immediately at the efficient steady state.

In the environment considered here, since agent 1 has a high endowment in shock 1,

we must have λ∗(1) > λ∗(2) and, for an efficient steady state to exist, we must also have

λ∗(1) ≤ λ
∗
(2). In fact, we show now that for h = d

1−β we have λ∗(1) = λ
∗
(2) = 1

2 . To do

so, let us conjecture this property holds, λ∗(1) = λ
∗
(2) = 1

2 , and that L(s, λ∗(1)) = λ∗(1)

14When h < d
1−β there is a continuum of efficient steady-states. The same logic of the argument applies

in that case though calculations are a little more complex.
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for s = 1, 2. With log utility, equations (28) and (29) become

V 1(1, λ∗(1)) = 1− h

λ∗(1)ω
+
β

2

(
V 1(1, λ∗(1)) + V 1(2, λ∗(1))

)
and

V 1(2, λ∗(1)) = 1 +
β

2

(
V 1(1, λ∗(1)) + V 1(2, λ∗(1))

)
.

To verify that our conjecture is correct we need to show that these two equations

have a the solution for V 1(1, λ∗(1)) and V 1(2, λ∗(1)) that satisfies V 1(1, λ∗(1)) = 0 and

V 1(2, λ∗(1)) > 0. It is easy to see that if V 1(1, 0.5) = 0 a solution of the second equation is

given by V 1(2, 0.5) = 1
1−β/2 , which is always positive. Substituting this value into the first

equation yields

V 1(1, 0.5) = 1− h

0.5ω
+
β

2
V 1(2, 0.5) =

d− h

ω
+
β(h + d)

(2− β)ω
= 0,

which holds whenever (2−β)(d−h)+β(h+d) = 0, equivalent to our assumption that h = d
1−β .

By symmetry, λ
∗
(2) = 1

2 solves the corresponding system for V 2(s, λ
∗
(2)), s = 1, 2.

Since endowments in the low state are zero, it is easy to verify that V 1(2, λ) ≥ 0 and

V 2(1, λ) ≥ 0 for all λ ∈ (0, 1). Therefore, in this example the values λ∗(1), λ
∗
(2) completely

characterize the Markov equilibrium. If the initial conditions are such that the initial Negishi

weight λ(s0) = 1/2, the Markov equilibrium coincides with the efficient steady state. On

the other hand, if — for example — λ(s0) < 1
2 , the state variable remains unchanged

at the initial value λ(s0) as long as only shock 2 occurs, since V h(2, λ(s0)) ≥ 0 for both

h = 1, 2. Agent 1 will consume an amount less than 1/2. When shock 1 occurs, we have

V 1(1, λ(s0)) < 0 since λ(s0) < λ∗(1) and V 1(1, .) is increasing. Therefore λ must jump to

λ∗(1) where it will stay from there on. Hence the steady state will be reached after each

shock has realized at least once.

The same argument can also be used to analyze the case where the steady state is

inefficient. It is easy to see that when h > d
1−β we have λ∗(1) > λ

∗
(2). There is no efficient

steady state and along the equilibrium path, after an initial transition similar to the one

above, the instantaneous Negishi weight λ oscillates between the two values λ
∗
(2) and λ∗(1).

4.2.3 Existence and nonexistence of finite support equilibria when H > 2

Unfortunately, for the general case with more than two agent types we do not know of general

conditions that ensure the existence of finite support Markov equilibria. The problem is that

the dynamics of the Negishi weights, which as we saw have a simple pattern when H = 2,

can be much more complex when H > 2. In fact, even for limited enforcement models no

existence results of finite support equilibria are available when H > 2. Nevertheless, it is

useful to show by example that finite support equilibria might exist and to give an example

where finite support equilibria do not exist.

Suppose there are 3 types of agents and three equiprobable i.i.d. shocks. Assume again

the agents have identical log-utility functions, uh(c) = log(c) for all h, endowments are
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e1 = (0, h, h), e2 = (h, 0, h), and e3 = (h, h, 0) for some h > 0, while the tree pays constant

dividends d > 0. The aggregate endowment is deterministic and equal to ω = 2h+ d. As in

the case of two agents, we again normalize instantaneous Negishi weights to lie in the unit

simplex – that is to say, we have λ3 = 1− λ2 − λ1. This allows us to write Ch(s, λ) = λhω

for all h and s.

Using symmetry, we show in what follows that under the condition

h >
d

1− β

there exists a finite support equilibrium where agents 2 and 3 are constrained in state 1,

agents 1 and 3 in state 2, and agents 1 and 2 in state 3. Denoting by λ(s, h) the value

of the Negishi weights in state s where only type h is unconstrained, we need to find the

values of the vectors λ(1, 1), λ(2, 2), and λ(3, 3) constituting the support of the equilibrium.

By symmetry, the weights of all agents when constrained are identical across all states, i.e.

λ1(2, 2) = λ1(3, 3) = λ2(1, 1) = λ2(3, 3) = λ3(1, 1) = λ3(2, 2) = λh for some λh. Similarly,

λ1(1, 1) = λ2(2, 2) = λ3(3, 3) = λl = 1− 2λh. In this situation, the transition function must

therefore satisfy the following property

L(s, λ) = λ(s, s) whenever λ ∈ {λ(1, 1), λ(2, 2), λ(3, 3)}.

Given this property of the transition function and the above specification of the states

where each agent is constrained, proceeding analogously to the previous section we obtain

V 1(1, λ(1, 1)) = 1 +
β

3
V 1(1, λ(1, 1)) =

1

1− β
3

V 1(s, λ(s, s)) = 0 = 1− h

λ1(s, s)ω
+
β

3
V 1(1, λ(1, 1)), s = 2, 3

where the equality V 1(s, λ(s, s)) = 0 holds in the states where agent 1 is constrained. Hence

we must have

1− h

λhω
+

β

3− β
= 0,

or

λh =
(3− β)h

3(d + 2h)
,

and 1 > λh > 1/3 > λl given the assumption h > d
1−β . A finite support equilibrium exists

if we start with initial conditions s0 = 1 and λ(s0) = λ(1, 1) — along the equilibrium path

the instantaneous Negishi weights will only take values in {λ(1, 1), λ(2, 2), λ(3, 3)}.
To illustrate why it is difficult to find general conditions that ensure the existence of

a finite support equilibrium when H > 2, consider the following small modification of the

example above. Instead of assuming that each agent’s individual endowments are high in

two out of the three states, suppose they are high only in one out of the three states. That

is e1 = (h, 0, 0), e2 = (0, h, 0), and e3 = (0, 0, h) for some h > 0. Under the maintained

assumption of logarithmic utility, Theorem 5 ensures the existence of a unique Markov
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equilibrium. However, we will show that under the following assumption on fundamentals

the unique Markov equilibrium has infinite support (and hence there exists no finite support

equilibrium).

β <
3

4
, h >

3d

3− 4β
(33)

To do so, note that whenever agents have zero endowments they must be unconstrained.

We conjecture that in equilibrium each agent h is always constrained in state s = h and

denote his relative instantaneous Negishi weight in this case by λh. We conjecture that in

any equilibrium we have

λh =
h

ω

3− 2β

3
,

that the instantaneous Negishi weights λ lie in the set

∆ε = {λ ∈ R3
+ :
∑
h

λh = 1, λh ≤ λh for all h = 1, 2, 3},

and that the transition L(s, .) takes the following form for any s ∈ S and any λ ∈ ∆ε

L(s, λ) =

{(
λ1′, λ2′ , λ3′

)
:
λj′ = λh if j = s

λj′ = λj
1−λh∑
h 6=s λ

h otherwise.

To verify this conjecture and confirm that this transition describes a competitive equi-

librium by symmetry, it suffices to verify (24) and (27) only for agent 1. In state s = 1, for

any λ ∈ ∆ε with λ = (λh, λ2, λ3) we obtain

V 1(1, λ) = 0 = 1− h

λhω
+
β

3

3∑
s′=2

V 1(s′, L(s′, λ)),

while in the other two states for any λ ∈ ∆ε we have

V 1(2, λ) = 1 +
β

3

3∑
s′=2

V 1(s′, L(s′, λ)),

V 1(3, λ) = 1 +
β

3

3∑
s′=2

V 1(s′, L(s′, λ)).

From the last two equations we see that V 1(2, λ) = V 1(3, λ) = 1

1− 2β
3

for all λ ∈ ∆ε. By

substituting this value into the first equation we obtain that V 1(1, λ) = 0 is equivalent to

the following.

1− h

λhω
+

2β

3− 2β
= 0⇔ λh =

h

ω

3− 2β

3
.

Under assumption (33) we have 1 > λh >
1
2 and therefore Equation (27) is satisfied. In

equilibrium, for all admissible initial conditions, we have λ(st) ∈ ∆ε for all st.

To illustrate the construction suppose initial conditions are s0 = 1 and θ2(s−1) =

θ3(s−1) = 1/2. The initial value of the welfare weights is given by λ(s0) = (λh,
1−λh

2 ,
1−λh

2 ).
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Since V h(s, λ) > 0 whenever s 6= h and, by construction, for all λ(st) along the equilibrium

path V h(h, λ(st)) = 0, the constructed transition function describes a Markov equilibrium.

It is easy to check that this equilibrium does not have finite support. To see this, consider

for instance a sequence of shocks for t = 1, 2, ... with st = 1 if t is odd and st = 2 if t is

even. It is easy to see that we must have λ3(st+1) = λ3(st)
1−λh

λh+λ3(st)
and hence

1

λ3(st+1)
=

1

1− λh
+

λh
1− λh

1

λ3(st)
,

which always diverges since λh >
1
2 . In the process, as λ3 → 0 it takes infinitely many

values.

The economic reason for the non-existence of finite support equilibria in this example is

as follows. Consider a sequence of shocks where shocks 1 and 2 alternate but shock 3 never

occurs. Agent 3 has positive endowments only in shock 3 but he will obviously have savings.

However along that sequence of shocks agent 3’s consumption will converge asymptotically

to zero. Since in each period a new “rich” agent is present, the returns to savings will be

so low that agent 3 cannot guarantee a non-decreasing consumption stream. Along this

sequence, his individual consumption will take infinitely many values. Note that the fact

that shocks alternate is crucial for this argument. Instantaneous Negishi weights remain

constant along a path where shock 2 is occurs every period.

5 Appendix

5.1 Proofs

Proof of Theorem 1

We first show that each Arrow–Debreu equilibrium allocation with limited pledgeability is

also an equilibrium allocation with intermediaries. Given the equilibrium Arrow–Debreu

prices (ρ(σ))σ∈Σ, set the prices of the tree equal to q(st) = 1
ρ(st)

∑
σ�st ρ(σ)d(σ) and the

prices of the tree options as

qst+1(st) =
1

ρ(st)
ρ(st+1)

(
q(st+1) + d(st+1)

)
(34)

for every st, st+1. It is then easy to see that the set of budget-feasible consumption levels is

the same for the budget set in (IE2) and for the budget set defined by (3) and (4). For any

h ∈ H, given an arbitrary consumption sequence (c(σ))σ∈Σ that satisfies (IE2), using (34)

we get

ρ(st)θst(s
t−1)(q(st)+d(st)) = ρ(st)(c(st)−eh(st))+ρ(st)

∑
st+1∈S

θst+1(st)
ρ(st+1)

ρ(st)
(q(st+1)+d(st+1))

for each st with t ≥ 1. Substituting recursively for the second term on the right-hand side

we obtain

ρ(st)θst(s
t−1)(q(st) + d(st)) =

∑
σ�st

ρ(σ)(c(σ)− eh(σ)) ≥ 0,
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that is, (4) holds. At the root node s0 we have

θh(s−)(q(s0) + d(s0)) =
∑
σ�s0

ρ(σ)(c(σ)− eh(σ)),

which is equivalent to (3). The reverse implication can be similarly shown.

We show next that an equilibrium allocation with intermediaries is a collateral con-

strained financial markets equilibrium allocation for a sufficiently rich asset structure J ,

constructed as follows. In addition to the tree, at each node there are S − 1 financial se-

curities. Security j = 1, .., S − 1 promises a zero payment in all states s = 1, ..., j and a

payment equal to 1 in the other states j + 1, ..., S.

Given any equilibrium with intermediaries, with consumption allocation (c̄h(st))h∈H,

prices q̄s(s
t), and portfolios (θ̄hs (st))h∈H of the tree options, for all s, st, let

k̄ ≡ sup
st

(
∑
s

q̄s(s
t) + d(st)) <∞.

Consider the following specification of the collateral requirements of the J = S−1 financial

securities:

k1
J+1 =

1

k̄
, k1

j = 0 for all j = 1, ..., J

kjj−1 = 1, kji = 0 for all i 6= j − 1, for all j = 2, ..., J

It suffices to show that a collateral constrained financial markets equilibrium exists with

the same consumption allocation (c̄h(st))h∈Hst∈Σ and tree prices q(st) =
∑

s q̄s(s
t). At this

equilibrium, the payoffs of the financial securities are:

fj(s
t) =

{
q(st)+d(st)

k̄
if st > j

0 otherwise.

and the securities’ prices

pj(s
t) =

1

k̄

S∑
s=j+1

q̄s(s
t), j = 1, ..., S − 1.

Consider then the following portfolio holdings for each agent h, and each node st : set

θh(st) = θ̄h1 (st), φh1−(st) = −k̄θ̄h1 (st), φh1+(st) = k̄θ̄h2 (st), φhS−1+(st) = k̄θ̄hS(st) and for all

other j = 2, ..., J − 1

φhj+(st) = k̄θ̄hj+1(st), φhj+1−(st) = −k̄θ̄hj+1(st).

It is easy to verify that these portfolio holdings, together with the above prices of the

tree and the securities, satisfy the collateral constraints, yield the consumption allocation

(c̄h(st))h∈Hst∈Σ and are so the consumers’ optimal choices. �
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Proof of Theorem 4

To construct equilibrium prices, set ρ(s0) = 1 and

ρ(st) = ρ(st−1)βπ(st−1, st) max
h∈H

uh′(st, λ(st))

uh′(st−1, λ(st−1))
.

Agent h’s first -order conditions for optimal consumption at some node st can be written

as follows:

βtπ(st)uh′(ch(st), st)− ηhρ(st) +
∑
σ:st�σ

µh(σ)ρ(st) = 0

µh(st)
∑
σ�st

ρ(σ)(ch(σ)− eh(σ)) = 0,

for multipliers ηh ≥ 0 (associated with the intertemporal budget constraint (3)) and µh(σ) ≥
0 (associated with the collateral constraint (4) at node σ). It is standard to show that for

summable and positive prices these conditions, together with the budget inequalities (3)

and (4) are necessary and sufficient for a maximum (see, e.g., Dechert (1982)). But then at

each st and for all agents h = 2, ...,H we have

u1′(c1(st), st)

uh′(ch(st), st)
=
η1 −

∑
σ:st�σ µ

1(σ)

ηh −
∑

σ:st�σ µ
h(σ)

,

which is equivalent to the first-order conditions of (22) if 1/λh(σ) = ηh−
∑

σ:st�σ µ
h(σ) for

all h, σ. It remains to be shown that the budget inequalities (4) as well as the market clearing

conditions are satisfied. The latter is obvious, given (22). Regarding the budget inequalities

we need to show that V h(st, λ(st)) = 0 if ,and only if,
∑

σ�st ρ(σ)(ch(σ)−eh(σ)) = 0. Since

for any agent h ∈ H, ρ(st+1)
ρ(st) = uh′(st+1,λ(st+1))

uh′(st,λ(st))
whenever V h(st+1, λ(st+1)) 6= 0, this follows

from the definition of V h. �

Proof of Theorem 5

To prove the result we need the following lemma.

Lemma 1 Suppose that for all s, h, uh(c, s) satisfies the property that cuh′(c, s) is (weakly)

increasing in c. For any λ1, λ2 ∈ RH++, let λh = min[λh1 , λ
h
2 ], h = 1, ...,H; if λ 6= λ1 and

λ 6= λ2, for all h we have

uh′(s, λ)(Ch(s, λ)− eh(s)) > (35)

min
[
uh′(s, λ1)(Ch(s, λ1)− eh(s)), uh′(s, λ2)(Ch(s, λ2)− eh(s))

]
,

and

λhuh′(s, λ) < min
[
λh1u

h′(s, λ1), λh2u
h′(s, λ2)

]
. (36)
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Proof. Assume without loss of generality that λh = λh1 ≤ λh2 . Since λ < λ1 we must

have Ch(s, λ) > Ch(s, λ1) and so (35) follows from the assumption made on uh(.). Concav-

ity of uh(.) implies that λhuh′(s, λ) < λh1u
h′(s, λ1). To prove that λhuh′(s, λ) ≤ λh2uh′(s, λ2)

and therefore (36) holds, define λ̃ by λ̃h = λh ≤ λh2 and λ̃i = λi2 for all i 6= h. Since

λ̃huh′(s, λ̃) = λ̃iui′(s, λ̃), we must have λ̃huh′(s, λ̃) ≤ λh2u
h′(s, λ2). Furthermore, we have

λhuh′(s, λ) ≤ λ̃huh′(s, λ̃). Also one of the last two inequalities must hold strictly, so that

(36) follows. �

Proof of the theorem. Given an Arrow–Debreu equilibrium with limited pledge-

ability we can describe the equilibrium consumption allocation by the associated instan-

taneous weights λ(st), which are uniquely determined if we normalize the initial weights∑
h∈H λ

h(s0) = 1 and for all t > 0, all st, require that λ(st) ≥ λ(st−1) and λh(st) = λh(st−1)

for at least one agent h ∈ H.

It is a standard argument15 to show that for each l ∈ RH++,
∑

h l
h = 1 there exists an

Arrow–Debreu equilibrium with limited pledgeability with λ(s0) = l and some transfers at

t = 0. To prove the existence of a Markov equilibrium it suffices to show that the equilibrium

associated with any given, initial λ(s0) is unique. Suppose to the contrary that there exist

two equilibria with instantaneous weights λ1, λ2 with λ1(s0) = λ2(s0) but λ1(st) 6= λ2(st)

for some st. Define for each st and all h ∈ H, λh(st) = min(λh1(st), λh2(st)). Since both

λ1(st) and λ2(st) describe equilibria we must have λ(st) 6= λ1(st) and λ(st) 6= λ2(st) for

some st. Define recursively

vh(st) = uh′(st, λ)(Ch(st, λ)− eh(st)) + β
∑
s′

π(st, s
′)vh(st+1).

By Lemma 1 we have, for each st,

uh′(st, λ(st))(Ch(st, λ(st))− eh(st)) ≥

min
[
uh′(st, λ1(st))(Ch(st, λ1(st))− eh(st)), u

h′(st, λ2(st))(Ch(st, λ2(st))− eh(st))
]

and therefore vh(s0) ≥ 0. By the first-order conditions of the Negishi maximization problem

the terms λhuh′(s, λ) are identical across all agents h, for all s and λ, hence the Arrow–

Debreu prices in the two equilibria are given by ρi(s
t) = βtπ(st)λ1

i (s
t)u1′(st, λi(s

t)) for

i = 1, 2. Since the price of the tree is finite, prices are summable, each (βtπ(st)λhi (st)) is

also summable and so is (βtπ(st)λh(st)). Define ρ(st) = βtπ(st)λ1(st)u1′(st, λ(st)) for all

st.

Lemma 1 also implies λh(st)uh′(λ(st), st) ≤ min
[
λh1(st)uh′(st, λ1(st)), λh2(st)uh′(st, λ2(st))

]
for all st, with the inequality holding strict for some st. Therefore the allocation c(st) =

15Kubler and Schmedders (2003) show existence for all initial levels of tree-holdings, the same technique

can then be applied to all initial Negishi-weights.
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C(st, λ(st)) would have to satisfy

∑
st

ρ(st)

(∑
h∈H

(ch(st)− eh(st))− d(st)

)
> 0.

Since ρ is summable this contradicts feasibility and the equilibrium must be unique. �

Proof of Theorem 6

To prove existence we first show first show that there always exist S pairs (λ∗(s), λ
∗
(s))

such that the solution to (28) and (29) satisfy (30).

Lemma 2 There always exists λ∗(1), ..., λ
∗
(S) ∈ (0, 1)2S solving (28), (29) and (30).

To prove the lemma we need the following version of Brouwer’s fixed-point theorem (see

e.g. Zeidler (1985), Proposition 2.8).

Lemma 3 Let f : Rn → Rn be a continuous function such that

inf
‖x‖=r

n∑
i=1

xifi(x) ≥ 0, for some r > 0.

Then f has at least one zero, i.e. there is a x with ‖x‖ ≤ r and f(x) = 0.

Proof of Lemma 2 To show the existence of a solution of (28)-(30), we can substitute

out all V 1(s, λ(s̃)) and V 2(s, λ(s̃)) as well as all V 1(s, λ(s̃)) and V 2(s, λ(s̃)) for s 6= s̃. We

obtain a function f : (0, 1)2S → R2S , where each fi, i = 1, ..., S is the weighted sum of terms

of the form

u1′(s, λ(s̃))
(
C1(s, λ(s̃))− e1(s)

)
and u1′(s, λ(s̃))

(
C1(s, λ(s̃))− e1(s)

)
, (37)

where the weights on the terms involving λ(s) are positive (bounded away from zero) if,

and only if, there is an s′ with λ(s′) > λ(s) (recall that π(s, s′) > 0 for all s, s′). Similarly

each fi with i = S + 1, ..., 2S is a weighted sum of terms

u2′(s, λ(s̃))
(
C2(s, λ(s̃))− e2(s)

)
and u2′(s, λ(s̃))

(
C2(s, λ(s̃))− e2(s)

)
, (38)

where the weights on the terms involving λ(s) are positive if, and only if, there is an s′ with

λ(s′) < λ(s). We obtain that f(λ(1), λ(1), . . . , λ(S), λ(S)) = 0 precisely when there exists

a solution to (28) and (29) with

V 1(s, λ(s)) = V 2(s, λ(s)) = 0 for all s ∈ S.

To prove the lemma it therefore suffices to show that for sufficiently small ε > 0, there

exist x ∈ [ε, 1 − ε]2S with f(x) = 0. This result follows directly by applying Lemma 3

above to a slight modification of the function f(.). For x ∈ [ε, 1 − ε]2S , set gi(x) = fi(x)
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for i = 1, ..., S and gi(x) = −fi(x) for i = S + 1, ..., 2S and Extend the function g to the

whole domain R2S by setting it to a constant outside of [ε, 1−ε]2S which is chosen to ensure

continuity. All one needs to prove is the appropriate boundary behavior. Clearly, as some

λ(s) is sufficiently large or some λ(s) is sufficiently small, we have that
∑

i xigi(x) < 0

since each fi(x) is bounded above. The key is to show that if λ(s) is sufficiently small, or

if λ(s) is sufficiently large, we also have that some |gi(x)| becomes arbitrarily large. To

show this, note that in (38) the terms involving λ(s) have positive (and bounded away from

zero) weight whenever there is an s′ with λ(s′) < λ(s). If this is the case, clearly some

fi(x), i = 1, ..., S can be made arbitrarily small; if it is not the case, some λ(s′) becomes

arbitrarily close to 1 and we are in the case above. The argument for λ(s) is analogous. �

Proof of the theorem.

To prove the theorem it suffices to show that given λ∗, λ
∗

we can construct functions

V h(s, .) that have a unique zero.

If all agents’ relative risk aversion is below or equal to 1, the utility satisfies the gross

substitute property and the result follows from the proof of Theorem 5, since we showed

uniqueness of Markov equilibria. In order to prove the sufficiency of conditions 2. and 3.,

it is useful to define the following functions Ṽ h(s, λ) = 1
uh′(s,λ)

V h(s, λ) for h = 1, 2. Clearly,

V h(s, .) has a unique zero if, and only if, Ṽ h(s, .) does. We have

Ṽ 1(s, λ) = C1(s, λ)− e1(s) + β
∑

s′:λ∈[λ∗(s′),λ
∗
(s′)]

π(s, s′)
u1′(s′, λ)

u1′(s, λ)
Ṽ 1(s′, λ)

+β
∑

s′:λ>λ
∗
(s′)

π(s, s′)
u1′(s′, λ

∗
(s′))

u1′(s, λ)
Ṽ 1(s′, λ

∗
(s′)) (39)

Ṽ 2(s, λ) = C2(s, λ)− e2(s) + β
∑

s′:λ∈[λ∗(s′),λ
∗
(s′)]

π(s, s′)
u2′(s′, λ)

u2′(s, λ)
Ṽ 2(s′, λ)

+β
∑

s′:λ<λ∗(s′)

π(s, s′)
u2′(s′, λ∗(s′))

u2′(s, λ)
Ṽ 2(s′, λ∗(s′)) (40)

for all s with λ ∈ [λ∗(s′), λ
∗
(s′)].

Assume that agents have identical CRRA preferences. Then the term uh′(s′, λ)/uh′(s, λ)

is independent of λ. Therefore λ only enters Ṽ 1(s, λ) through the term C1(s, λ), which

is clearly increasing in λ, and through the term π(s, s′)u
1′(s′,λ

∗
(s′))

u1′(s,λ)
Ṽ 1(s′, λ

∗
(s′)), which is

also increasing in λ since u1′(s, λ) is decreasing in λ. Therefore the function Ṽ 1 must be

monotonically increasing and has a unique zero. Finally, if there is no aggregate uncertainty,

the term uh′(s′, λ)/uh′(s, λ) is simply equal to 1 and the same argument as for identical

CRRA preferences shows the monotonicity of Ṽ h(s, .). �
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5.2 Further details on Section 3.3

Derivation of Equation (14). At each date t ≥ 2 in state 1 the price q2(1) of the tree

option paying in state 2 is determined by agent 1’s first-order condition, since agent 2 is

constrained in that state in his holdings of that asset.. On the other hand, in state 2 the

consumption of both agents is the same as in the subsequent date in state 2, hence both

agents are not constrained in their holdings of the tree options paying in state 2 and its

price is determined by the first-order conditions of any of them. We obtain

q2(1)u′(h + εd− q2(1)(1− 2ε)) =
β

2
(q1(2) + q2(2) + d)u′(d(1− ε) + q1(2)(1− 2ε)) (41)

q2(2)u′ (d(1− ε) + q1(2)(1− 2ε)) =
β

2
(q1(2) + q2(2) + d)u′(d(1− ε) + q1(2)(1− 2ε)) (42)

From (42) we obtain for t > 1 that

q1(1) = q2(2) =
β(q1(2) + d)

2− β
(43)

and therefore

q1(2) + q2(2) + d =
2(q1(2) + d)

2− β
.

Substituting this expression into equation (41) we obtain (14).

Derivation of Equation (19). At t = 1 agent 1’s first order conditions with respect

to the tree option paying in state 2 still determine its price in state 1 since agent 2 is

constrained in that state

q2(1; 1)u′(h−q1(1; 1)ε−q2(1; 1)(1−ε)) =
β

2
(q1(2)+q2(2)+d)u′(d(1−ε)+q1(2)(1−2ε)). (44)

The expression for the price change in (19) is obtained by differentiating (44) with respect

to ε, evaluated at ε = 0, when q2(1; 1), q1(2) and q1(1; 1), q2(2) are at their steady state

values before the intervention, given respectively by q0
1(2) for the first two and by

β(q01(2)+d)
2−β

for the last two. Noting that dq1(1;1)
dε ε

∣∣∣
ε=0

= 0, since the price q1(1; 1) also changes with ε

but the expression is evaluated at ε = 0, we get (19).

Derivation of Condition (21). From equation (14) we find that q0
1(2) can be written

in terms of u′h and u′d,

q0
1(2) =

βd
2−βu

′
d

u′h −
β

2−βu
′
d

.
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Substituting this expression and (15) into (20) we obtain that this condition is equivalent

to A
B > 0, where

A =

4
u′h
u′d

[
1 + d

u′′d
u′d

+
u′h
u′d

]
− 2β

[
2 + (4 + 3d

u′′d
u′d

)
u′h
u′d

+ 2
(
u′h
u′d

)2

+ d
u′′h
u′d

]
+

β2

u′du′h + (3 + 2d
u′′d
u′d

)
u′h
u′d

+
(
u′h
u′d

)2

+ d

u′′h
u′d(
u′
h

u′d

)2 + (3 + d
u′′h
u′d

)


and

B =

[
−2
(
u′h
u′d

)2

+ β

(
u′h
u′d

+
(
u′h
u′d

)2

+ d
u′′h
u′d

)]
[4
(
u′h
u′d

)2

+ β2(1 + (2 + d
u′′d
u′d

)
u′h
u′d

+
(
u′h
u′d

)2

+ d
u′′h
u′d

)− 2β((2 + d
u′′d
u′d

)
u′h
u′d

+ 2
(
u′h
u′d

)2

+ d
u′′h
u′d

)]

It can then be easily seen that, since all marginal utilities are evaluated at positive numbers,

which remain bounded away from zero as β → 0, for sufficiently small β we have A
B > 0 if

1 + d
u′′(d + q0

1(2))

u′(d + q0
1(2))

+
u′(h− q0

1(2))

u′(d + q0
1(2))

< 0.
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Figure 1: Constrained inefficient region

43



Agent 1

Agent 1

Agent 2

Agent 2

Lambda

Lambda

V

V

State 1

State 2

Figure 2: Finite support equilibrium

44


