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Abstract—In this paper, we propose a medium access control
(MAC) design method for wireless sensor networks based on
decentralized coordinated reinforcement learning. Our solution
maps the MAC resource allocation problem first to a factor
graph, and then, based on the dependencies between sensors,
transforms it into a coordination graph, on which the max-
sum algorithm is employed to find the optimal transmission
actions for sensors. We have theoretically analyzed the system
and determined the convergence guarantees for decentralized
coordinated learning in sensor networks. As part of this analysis,
we derive a novel sufficient condition for the convergence of max-
sum on graphs with cycles and employ it to render the learning
process robust. In addition, we reduce the complexity of applying
max-sum to our optimization problem by expressing coordination
as a multiple knapsack problem (MKP). The complexity of the
proposed solution can be, thus, bounded by the capacities of the
MKP. Our simulations reveal the benefits coming from adap-
tivity and sensors’ coordination, both inherent in the proposed
learning-based MAC.

Index Terms—Medium Access Control, Q-learning, Coordi-
nation Graphs, Irregular Repetition Slotted ALOHA, wireless
sensor networks, POMDP, Max-sum algorithm

I. INTRODUCTION

Wireless sensor networks (WSNs) have drawn the attention
of the research community due to their wide applicability in
environmental monitoring and object tracking. The design of
efficient WSNs is challenging because of limitations associated
with their operation, such as their ad hoc deployment, dynamic
and self-configuring topology, uncertain and changing channel
conditions, large size and lack of a centralized point of con-
trol. Furthermore, sensors have limited computational power,
battery capacity and transmission range, traits that impose
bounded complexity in systems utilizing WSNs [1].

As shared wireless resources, such as the common commu-
nication channel, are restricted, it is necessary to orchestrate
the access of sensors to them. The design of a MAC pro-
tocol aims at improving the use of the common channel by
optimizing the transmission strategies of sensors. Due to the
irregular nature of communication and the need for efficient
utilization of the channel, contention-based MAC protocols are
traditionally preferred to the more conservative family of Time
Division Multiple Access protocols [1], [2]. However, when
sensors attempt to transmit their packets simultaneously, a
collision occurs, and their transmissions fail. This degrades the
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network’s efficiency both in terms of achieved throughput and
energy consumption, as sensors need to dedicate battery, mem-
ory and computational resources to re-transmitting lost pack-
ets. It is, thus, necessary to employ mechanisms for resolving
collisions. Furthermore, configurability and low complexity in
implementation are essential when designing MAC solutions
for resource-constrained, dynamic WSNs. These traits are in-
herent in probabilistically defined MAC protocols, while MAC
protocols that require a deterministic transmission plan impose
prohibitive memory requirements. In this work, we optimize
Irregular Repetition Slotted ALOHA (IRSA) [3], a state-of-
the-art probabilistic protocol that employs successive interfer-
ence cancellation (SIC) to resolve collisions. IRSA is ruled
by the employed degree distribution, a probability distribution
that describes how many replicas1 of the packets available to
each sensor should be transmitted in each frame. The work
in [3] proves that IRSA can approach optimal throughput in
asymptotic settings, by relating SIC to the process of iterative
erasure decoding of graph-based codes. Nevertheless, IRSA
performs poorly in dynamic environments. This is because
the theoretical analysis and optimization framework in [3]
do not take into account the network topology and channel
conditions, and assume frames of infinite duration. The latter
imposes unnecessary delays, as sensors need to wait for the
next frame to initiate a transmission and, therefore, renders
real-time communication impossible.

Reinforcement learning is often leveraged to equip MAC
protocols with adaptivity [1], [4], as it is well-suited for
deriving probabilistic policies based on the effect of sensors’
actions, such as collisions caused by transmission. However,
the application of reinforcement learning in WSNs faces
various challenges. Partial observability of the network’s state
and the lack of a centralized point of control call for de-
centralized solutions. Also, non-stationarity, due to the time-
varying channel conditions and network topology, as well
as decentralization, suggests that learning algorithms should
be model-free. The above characteristics motivated us to
base our modeling of WSNs on the decentralized POMDP
framework, which we appropriately modify to derive the
framework of Groupwise Dependent Decentralized POMDPs
(GDD-POMDPs). This framework views WSNs as groups of
sensors and accounts for MAC characteristics that relate to
inter-group independence and intra-group observability, which
are essential for proving that our learning algorithm is optimal.

The complexity that the aforementioned learning-related
challenges introduce can be reduced by exploiting the locality
of interaction inherent in WSNs, imposed by the restricted

1A replica is an identical copy of a packet.
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transmission range of sensors. Interactions of sensors imply
a need for coordination, particularly for MAC design where:
(i) decisions require information non-local to the sensors,
(ii) limited computational and battery resources prohibit cen-
tralized solutions, and, (iii) sensors have different character-
istics and degrees of observability and, thus, different per-
spectives on the resource allocation task. Coordination graphs
(CGs) [5] can be a useful tool for MAC design due to their
ability to leverage the structure of an optimization problem
by exploiting the observation that, often, only a few agents
interact with each other. This allows the decomposition of
a coordination problem into simpler problems without losing
optimality. In a CG, each node represents an agent, and agents
are connected to each other when there is a coordination
dependency, e.g., when a collision between packets occurs
in a MAC protocol. Each dependency is associated with a
group payoff function, which assigns a specific value to every
possible action combination of the involved agents. The global
payoff function of the network equals the sum of all group
payoff functions.

To deal with the drawbacks mentioned above of existing
MAC solutions, we formulate MAC design as a multi-agent
system, where agents learn how to transmit their packets
using reinforcement learning. Specifically, we assume that
each sensor is an agent aiming at maximizing the throughput
of the sensor network. Although our framework is presented
for MAC design, it is generic and can be employed, with
some adaptation, for other resource allocation problems in
WSNs. In order to avoid the sub-optimal performance that
independent learners are associated with [6], as well as the
complexity and impracticality of centralized solutions, we
adopt a coordinated learning approach, where we leverage the
particular structure of the coordination problem by employing
CGs. In our framework, sensors learn by using a Q-learning
based algorithm, where the global Q-function is decomposed
into a summation of Q-functions, each one corresponding to
a group in the CG. Our approach can be combined with a
variety of reinforcement learning algorithms, but Q-learning
proves to be a good choice, as it is a model-free and intuitive
algorithm that has already been successfully combined with
CGs [7]–[9]. In order to derive the optimal actions, max-
sum, an algorithm for approximate distributed probabilistic
inference, is applied to the CG. To the best of our knowledge,
this is the first attempt to optimize resource management in
sensor networks using coordinated learning. In particular, in
this work, we model our MAC optimization problem under
the IRSA protocol and design the degree distribution of IRSA.
Actions in our POMDP formulation correspond to the number
of replicas sent by each sensor. We follow the observation
in [3] that, in IRSA, transmissions can be represented by a
bipartite graph and employ this graph to derive the CG, which
is updated at the beginning of each frame. This approach
differs significantly from works where the connectivity of the
WSN is not provided but designed to improve inference [10].

As WSNs operate under restricted resources, we need to
reduce further and bound the complexity of coordination.
To achieve this, we formulate the optimization objective of
max-sum as a multiple knapsack problem (MKP) [11], where

sensors are removed from groups to satisfy the complexity
constraints. This is done by eliminating edges on the CG, while
constraints are controlled by the capacities of the knapsacks.
We should note that this formulation is generic and can be
used to achieve the desired balance between the sparsity of a
bipartite graph and the quality of approximate inference. By
appropriately redefining weights, the MKP can account for
different types of constraints, such as the battery lifetime of
sensors.

Furthermore, we prove that our Q-learning based algorithm
converges to the optimal solution under the GDD-POMDP
framework. Thereafter, we derive a sufficient condition for the
convergence of max-sum, based on the work in [12], which
contains an analysis of the convergence of sum-product, an
algorithm that, along with max-sum, belongs in the family
of belief propagation algorithms. This condition permits us
to a priori evaluate whether max-sum will converge on a
specific CG. Due to this mechanism, coordinated learning
is rendered robust, as sensors can choose to coordinate only
when convergence is guaranteed, while independent learning
can be performed otherwise. In this way, sensors can re-
duce their energy consumption without degrading the overall
throughput. We believe that our analysis is an important step
towards addressing the convergence uncertainty inherent in
non-stationary learning environments.

To summarize, our main contributions consist in:
• a novel solution for adaptive resource allocation in WSNs

that requires minimum state information, where sensors
coordinate to maximize the network’s performance by
employing CGs. Our learning algorithm is based on Q-
learning and max-sum is applied on the CG to find the
optimal sensors’ transmission actions;

• the introduction of the GDD-POMDP framework, which
has convergence guarantees for coordinated decentralized
learning in sensor networks;

• the derivation of a sufficient condition for the convergence
of max-sum;

• a novel technique to ensure bounded computational com-
plexity of employing max-sum for coordination based on
an MKP formulation;

• the improvement of IRSA in terms of throughput for
small frame sizes.

The rest of the paper is structured as follows: Section II po-
sitions our work with respect to the related literature. Section
III presents the MAC design problem under IRSA, as well as
our optimization objective. In Section IV, an overview of CGs
and max-sum is provided. Section V describes the proposed
solution. Section VI introduces a technique for reducing its
complexity, and, in Section VII, we formulate the framework
of GDD-POMDPs and derive convergence guarantees for it.
Section VIII evaluates our solution and offers insights into
the effect of coordination and complexity. Finally, Section IX
consolidates our observations.

II. RELATED WORK

Due to the increasing need for efficient communication
over shared channels, contention-based MAC protocols have
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seen a continuous improvement in their performance, that
culminates in IRSA. The original Slotted ALOHA [2] is inap-
propriate for energy-constrained WSNs, as throughput cannot
exceed 0.37 [3]. Diversity Slotted ALOHA [13] improves
upon it by allowing sensors to transmit a pre-defined number
of replicas of their packets. Contention Resolution Slotted
ALOHA [14] manages to increase the achievable throughput
to 0.55 by employing SIC to retrieve collided packets. In
IRSA, the number of replicas is decided by sampling from
a probability distribution, which is optimized in [3] using
differential evolution so that throughput is increased. IRSA
shows that combining SIC with diversity in the behavior of
sensors, in the form of the number of transmitted replicas,
enables throughput to asymptotically approach 0.97, which is
significantly higher than the throughput achieved by previous
schemes. More recently, in [15], Multi-armed Bandits are
employed to optimize a prioritized version of IRSA in a non-
asymptotic setting. The main drawback of using Multi-armed
Bandits is that they are stateless, and, therefore, cannot capture
sensors’ characteristics, such as the battery level and the state
of their buffers. In our previous work presented in [4], IRSA
is optimized in a decentralized POMDP framework. However,
independence among agents was assumed in that work, which
may lead agents to converge to local optima.

Although traditional MAC solutions for WSNs are static
and designed a priori [1], [3], recent advances in reinforce-
ment learning have enabled adaptive resource management.
For example, deep reinforcement learning is employed in
[16], [17] for dynamic spectrum access, where classical Q-
learning is coupled with function approximation to address the
complexity arising due to the exponentially increasing learning
space of WSNs. However, deep reinforcement learning cannot
currently offer computationally feasible solutions for WSNs,
as convergence to optimal strategies is an open issue, while
training, which is required if the network conditions change
significantly, has to be performed offline and centrally due
to its computational complexity. Game-theoretic tools, such
as Nash Equilibria and Pareto optimality, are an alternative
approach to analyzing the learning dynamics in multi-agent
systems [16], [17]. Nevertheless, their application in WSNs is
problematic due to the existence of a large number of sensors,
the continuous and stochastic nature of decision variables,
and the restricted observability of agents. In order to ensure
convergence to efficient operating points, techniques such as
common training [16] require additional assumptions about the
behavior of agents.

Early approaches to solve problems using CGs entailed high
complexity due to adopting exact inference techniques, such as
variable elimination (VE) [8], the complexity of which scales
exponentially in the induced width of the graph. For example,
in [8], the Q-value function is first decomposed into a linear
summation of local functions and VE is employed to find the
optimal joint action using a cost graph. Similarly to some
extent to our robust learning approach, where independent
learning is performed if the sufficient condition indicates
that max-sum will not converge, in [18], coordination is
avoided based on the problem’s context, and VE is employed
otherwise. The complexity introduced by VE can be avoided

by adopting approximate inference algorithms for computing
the maximum a posteriori configuration [7], [19], as they
are anytime algorithms with limited communication overhead,
that scales linearly with the number of agents. Max-sum, an
approximate inference message-passing algorithm, is used in
[7] to choose the optimal actions in a sensor network that
employs Coordinated Q-learning for object tracking.

There are two major concerns when employing max-sum
for coordination: the lack of optimality guarantees and the
involved complexity. To overcome the fact that max-sum is
not guaranteed to converge on arbitrary graphs [20], in [21],
the bounded max-sum algorithm, a variant of max-sum with
bounded worst-case distance from the optimal solution, is
proposed. This algorithm reduces the coordination problem
to a tree-structure by eliminating some of the problem’s
constraints in order to guarantee convergence. Similar to our
work, the algorithm in [21] further attempts to reduce the com-
plexity of max-sum. To this end, two techniques are presented:
one for pruning dominated actions and a branch-and-bound
technique for reducing the search space. As this technique
aims at guaranteeing bounded quality of the solution, it differs
from our MKP formulation, which focuses on maximizing the
quality of the solution while ensuring bounded complexity.

Note that the behavior of max-sum on graphs with cycles is,
to date, a widely unexplored area. However, the “folklore” is
that failure of max-sum to converge leads to bad solutions,
whereas convergence has been experimentally validated to,
almost consistently, find the optimal maximum a posteriori
probability [22], [23]. In [12], sufficient conditions for sum-
product to converge are derived and, in [24], it is proven that,
if max-product converges, the solution is a neighborhood opti-
mum, i.e, it is optimal in the sub-space defined by the variables
involved in a group, and, thus, outperforms algorithms that
converge to local optima [24].

III. PROBLEM DESCRIPTION

Let us consider a network of C sensors collecting measure-
ments from their environment and transmitting them to the
core network for further process. The main bottleneck of this
operation is the occurrence of collisions, as transmissions are
performed through a common channel. In our work, time is
divided into frames comprised of D time slots. We also assume
that sensors have a buffer of finite size B, where packets
are stored. At the beginning of a frame, each sensor attempts
transmission of its packets in randomly selected slots, while
a source injects Ft number of packets into its buffer with a
probability pf . Without loss of generality, we assume that D
is constant and each sensor transmits at most one packet per
frame. The channel is characterized by its normalized traffic,
defined as G = C/D, which represents the average number of
attempted packet transmissions per time slot. The quality of
the MAC protocol is quantified by the normalized throughput
T , which is defined as the probability of successful packet
transmission per slot. When the transmission of a packet fails,
it stays in the buffer for future re-transmission. When the
number of stored packets exceeds the buffer capacity B, an
overflow occurs and packets are lost.



4

In IRSA, a sensor has the capability of transmitting a vari-
able number of replicas of a packet in the available time slots.
To choose this number, IRSA samples the degree distribution
Λ(x), a polynomial probability distribution describing the
probability Λl that a sensor transmits l replicas of its message
at a particular frame, which is formally expressed as:

Λ(x) ,
d∑
l=1

Λlx
l (1)

where d is the maximum number of replicas a sensor is
allowed to send. If one of the replicas is transmitted in a
collision-free slot, then the packet is successfully received.
Furthermore, IRSA substantially improves throughput by em-
ploying SIC [3], a technique that resolves collisions under
the rationale that, if two replicas collide, they might still be
recovered by removing the interference of a replica that has
previously been successfully received.

The objective of our optimization is to select the values Λl
in (1) so that the overall throughput T is maximized. As there
is a direct relationship between the achievable throughput and
the degree distribution, we express T in terms of Λ(x). This
dependence becomes obvious if one considers the waterfall
effect [3] in IRSA. According to this phenomenon, there exists
a threshold value G∗ for the channel load G, that depends
on Λ(x), above which transmission fails with a probability
bounded away from 0. Formally, the optimization objective
we aim to solve can be cast as:

Find: (Λ∗(x)) : arg max
Λ(x)

T (Λ(x)), s.t.
d∑
l=1

Λl = 1. (2)

Although SIC often successfully resolves collisions, it can
fail if there are too many of them. This happens because the
iterative algorithm employed gets stuck in cycles [3]. In IRSA,
this can be avoided if sensors indirectly avoid each other, by
transmitting a number of replicas that will result in the smallest
probability of collision, as slots are assigned to packets uni-
formly at random. Therefore, our work equips sensors with
the ability to coordinate their transmission policies in order to
avoid simultaneously sending too many (unresolved collisions)
or too few (underutilized channel) replicas. For example, in
Fig. 1a, sensors 1 and 3 choose to transmit 3 and 4 replicas
respectively, which are both large numbers considering a frame
of 5 slots, presented in Fig. 1b. In this frame, the transmission
will fail for all sensors, even though sensor 2 sent only one
replica. This could lead all sensors to send a small number
of replicas in the next frame and, thus, successfully transmit
their packets.

IV. COORDINATION GRAPHS AND THE MAX-SUM
ALGORITHM

The problem presented in Section III can be seen, on a
higher-level, as a group of agents that attempt to maximize
the overall throughput by coordinating their packet replica
transmissions. Specifically, each agent (sensor) i chooses an
individual action ai from a set Ai, and the resulting joint
action a = 〈a1, · · · , aC〉 generates a payoff f(a) for the
network. In our problem, action ai corresponds to the number

Sensor 1 Sensor 2 Sensor 3

Channel
D = 5

(a)

Sensor 1

Sensor 2

Sensor 3

Frame, D slots

(b)

Fig. 1: Transmission under IRSA: (a) a sensor network con-
sisting of three sensors that wirelessly transmit replicas of their
packets to a common channel, and (b) transmissions of replicas
in a frame.

of packet replicas sensor i sends and the payoff f(a) to the
overall throughput T . The aim of the coordination problem is
to find the optimal joint action a∗ that maximizes f(a). The
optimized Λ(x) of (2) can then be estimated from the history
of actions. An obvious approach to determine the optimal
action is to consider all possible joint actions and select the one
that maximizes f(a). However, this approach quickly becomes
impractical, since the joint action space grows exponentially
with the number of sensors.

Fortunately, coordination problems in WSNs exhibit the
property that the payoff matrix f(a) is sparse. This suggests
that each agent is affected only by the decisions made by a
small subset of the agents, as only sensors that collide have
to coordinate their actions. In this paper, we consider the use
of a CG to account for such dependencies. This allows us
to decompose the global payoff function f(a) into a linear
combination of group payoff functions, each involving only
a smaller number of agents. For example, a payoff function
involving the three sensors of Fig. 1 can be decomposed as
follows:

f(a) = f13(a1, a3) + f23(a2, a3) (3)

We can map function f(a) to a CG (N ,L), as the one
depicted in Fig. 2a. Each node in N represents an agent,
while an edge in L indicates a coordination dependency (a
collision that occurred in the previous time frame). Only
connected agents have to coordinate their actions at any
particular time instance. The global optimization problem is,
thus, recast as a number of local coordination problems, each
involving a subset of the total number of agents, that can
be solved distributively. Thus, agents can find their optimal
values independently of agents that do not participate in their
local coordination problem. Sparsity of the CG is directly
related to the complexity of coordination, as the computational
complexity of max-sum scales exponentially with the number
of variables on which the group payoff functions depend.
Edges in a CG represent dependencies and, thus, increase the
arity of group payoff functions. Note, however, that the number
of exchanged messages varies linearly with the number of
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agents. As such, the increase in complexity is not due to
communication overhead, but should be attributed to the
exponential growth of the search space [21].

Variable elimination is an approach to finding the optimal
joint action a∗ [5]. This algorithm eliminates the agents from
the graph one by one, and always finds the optimal joint
action. However, its execution time is non-deterministic, due
to its dependence on the order of elimination [19], as well as
impractical for large WSNs, as it increases exponentially with
the induced width of the CG [19]. To avoid the complexity
required to determine the optimal solution, in this work, we
adopt the use of the max-sum algorithm, which performs
approximate inference on the CG.

The coordination problem in Fig. 2a can be alternatively
represented using a bipartite graph, like the one presented in
Fig. 2b, where interactions (collisions) between agents (sen-
sors) are now explicitly drawn. In the bipartite representation,
nodes in the lower row are termed as variable nodes (VNs), and
correspond to sensors, while the upper row, consisting of the
check nodes (CNs), represents the shared network resources,
which in our case are time slots. Bipartite graphs offer
much richer problem representations than simple coordination
graphs, as they can represent k-ary (k ≥ 1) relationships.
Hereafter, we denote VNs with lower case letters, CNs with
uppercase, the set of CNs as F and the set of VNs as V .
Also, the neighborhood of a variable node i is denoted as
Ni = {I ∈ F , i ∈ NI} and the neighborhood of a check node
I as NI = {i ∈ V , I ∈ Ni}. If we express the dependencies
in terms of utilities, i.e. define a quantity uI(ai), where I ∈ F ,
that expresses the utility of agent i when interacting with other
agents, then we get the equivalent, interaction-based bipartite
graph, shown in Fig. 2c.

The max-sum algorithm can be applied on the bipartite
graph of Fig. 2c to solve the inference problem of finding
the value assignment of a set of variables that maximizes a
factored probability distribution. Consider |V | discrete random
variables xi for i ∈ V := {1, 2, · · · , |V |}, with xi taking
values in Xi and |Xi| the size of the space of variable’s i
values. Note that, in our problem formulation, the random
variable xi corresponds to the possible number of actions, i.e.
xi , ai and Xi = {1, · · · , d}. We are interested in calculating:

a∗ = arg max
a

p(a) = arg max
a

∏
I∈F

uNI (ai) (4)

≡ arg max
a

∑
I∈F

lnuNI (ai) (5)

where uNI is the utility function of CN I . Due to instabilities
arising from the multiplication of potentially small quantities,
the problem is formulated as a summation of logarithms.
During the application of the max-sum algorithm, variable and
check nodes exchange messages of the following form:

From VN j to CN I: µ̃j→I(aj) =
∑

J∈Nj\I
µJ→j(aj)

From CN I to VN i: µ̃I→i(ai) = max
aI\i

[
ln(uNI (aI))

+
∑
j∈I\i

µj→I(aj)
] (6)

Sensor 3

Sensor 1 Sensor 2

u13 u23

(a)

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5

Sensor 1 Sensor 2 Sensor 3

(b)

I

u1 u2

J

u3

i

Sensor 1 Sensor 2

j

Sensor 3

µi→I µJ→j

(c)

Fig. 2: Representing coordination in the sensor network: (a) the
simple coordination graph, (b) the interaction-based bipartite
graph (each check-node represents a slot), and (c) the utility-
based bipartite graph (each check node computes the utility
(uI ) of a variable node vi that belongs to group I).

where µ(·) corresponds to the current message and µ̃(·) to the
updated message, which will be used in the next iteration.

It is known that, for tree-structured graphs, max-sum con-
verges to the optimal solution within a finite number of
iterations [7]. Although it also empirically exhibits good
performance for graphs with cycles [7], [23], there are no
guarantees for convergence in this case. In Section VII, we
derive a sufficient condition for max-sum to converge for
arbitrary graphs and employ it to devise an optimal learning
algorithm, as failure to converge is generally associated with
solutions of bad quality [12], [22].

V. COORDINATED REINFORCEMENT LEARNING BASED
MAC

In this section, we map the problem, as presented in Section
III, and our underlying assumptions into the proposed learning
framework. In our formulation, each sensor is an agent that
interacts with its environment (channel and sensor network)
by performing actions (number of replicas to send), accepts
rewards (negation of number of packets in the transmission
buffer) and makes observations (number of packets in its
buffer). Partial observability in our framework arises due
to the inability of sensors to observe the underlying global
state of the network, denoted as s. Instead of employing the
framework of Belief MDPs [25], in our setting, we use an
approximation to beliefs based on a fixed history window
of size w. Therefore, agents’ state consists of a finite set of
successive observations. The mathematical formulation of this
finite-history POMDP for a sensor is:

Observation: ωt = bt

Action: at = lt
Reward: rt = −bt

State: ~ht = 〈ωt−w+1, · · · , ωt〉
where bt is the number of packets in the buffer at time t and
lt is the number of replicas to send. For the sake of simplicity,
we have omitted the sensor index from the above variables.
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This definition of rewards and observations only requires
information that is local to the sensors, in particular, the
number of packets in their buffers. Note that rewards can
implicitly provide information about the success of transmis-
sion, as packets are added to the sensors’ buffer due to a
packet arrival or stay in the buffer because of a transmission
failure. Simultaneously, rewards do not depend only on the
current success of transmission, but motivate sensors to avoid
an overflow of their buffers, as this would result in packet
loss. Similarly, for the observations, a sensor can discriminate
states based on how full its buffer is, which leads the sensor
to adapt its strategy to low and high data traffic.

Our goal is to compute a joint policy π∗(~h, a) that max-
imizes the total expected reward of all agents over a finite
horizon τ , termed as the optimal policy. Q-learning [26]
is an approach to determining π∗(~h, a), which employs the
following update mechanism to estimate the value of a history-
action pair:

Q(~ht, at) = (1−α)Q(~ht, at)+α[rt+γ max
a

Q(~ht+1, a)] (7)

where α is the learning rate, dictating how quickly new
acquired information overrides past one, and γ is the dis-
count factor, determining how much future information is
discounted. We henceforth refer to Q(~ht, at) as the Q-function
or Q-table.

Depending on the level of communication we allow be-
tween sensors, Q-learning can: (i) prohibit communication
and leave sensors to learn independently, and (ii) assume
perfect communication among sensors and, thus, solve the
problem jointly. Coordinated learning achieves a compromise
between these two extreme approaches by generally assuming
independence between agents and requiring communication
only when a collision occurs, i.e., based on the CG. Note that
communication in our setting happens off-line and messages
exchanged among sensors regard only their actions. Next,
we present an algorithm, based on Q-learning for POMDPs,
employed by each sensor to learn by coordinating its actions
using the max-sum algorithm. The process of finding the
optimal actions consists of the following steps:

1) At the beginning of each frame a bipartite graph, of the
form presented in Fig. 2b, is built based on the collisions
that occurred in the previous time frame.

2) The graph is converted to a utility-based representation
(Fig. 2c). In this graph, each VN is a sensor and each
CN involves its Q-function. This suggests that, in our
setting, the utility functions, as described in Section IV,
are mapped to the Q-functions, i.e. uNI (ai) , Ql(~hl, al),
where l ∈ L indicates the index of a group of sensors, L
refers to the set of groups, and I is the CN all sensors in
group l are connected to.

3) Max-sum is applied on the graph to distributively cal-
culate the optimal joint action of the global Q-function,
defined as:

a∗ = arg max
a

Q(~h, a) (8)

Note that, in the preceding equation, we dropped time index t,
as max-sum is performed independently for each frame. Thus,

the term ~h remains constant throughout the application of max-
sum. The groupwise decomposition of the global Q-function
is expressed as:

Q̂(~h, a) =
∑
l∈L

Ql(~hl, al) (9)

Based on (9), the update rule presented in (7) can be
expressed using Q̂(~h, a) as:∑

l∈L
Ql(~h

t
l , a

t
l) = (1− α)

∑
l∈L

Ql(~h
t
l , a

t
l)+ (10)

α[
∑
l∈L

rtl + γ max
a

Q̂(~ht+1, a)] (11)

Note that term maxa Q̂(~ht+1, a) cannot be further de-
composed into a sum of local discounted future rewards, as
this would require knowledge of the joint optimal action.
Therefore, we define:

a∗ = arg max
a

Q̂(~ht+1, a) (12)

max
a

Q̂(~ht+1, a) = Q̂(~ht+1, a∗) =
∑
l∈L

Ql(~h
t+1
l , a∗l ) (13)

where the last equality is due to (9).
The update mechanism for each group is thus:

Ql(~h
t
l , a

t
l) = (1− α)Ql(~h

t
l , a

t
l) + α[rtl +Ql(~h

t+1
l , a∗l )] (14)

where we employ max-sum to determine a∗l . We, then, perform
the optimal actions a∗ (or an exploratory action) and, based
on the received rewards, update the group Q-functions Ql.

VI. COMPLEXITY REDUCTION

A. Motivation

Despite exploiting locality of interaction, the application
of max-sum can still be prohibitive for energy-constrained
WSNs, if the CGs are not sparse enough. In particular, as the
channel load or frame size increases, collisions also increase
in number, especially at the beginning of the learning process,
when agents have not yet learned how to avoid transmitting
in a way that will lead to unresolved collisions. We are, thus,
still in need of techniques that will reduce the search space of
max-sum without affecting the quality of its solution.

We start with the observation that, often, a small fraction
of the original variables involved in a complex mathematical
problem is required to determine the optimal solution [11]. In
this paper, we use column generation [27], which exploits this
observation by expressing the problem as an integer program
and considering only a subset of its original variables. A
common approach is to formulate the optimization objective as
a multiple knapsack problem [11]. The intuition behind using
column generation is that an agent can, under circumstances,
ignore some of the agents it collided with, and still compute its
optimal action correctly. We can, thus, reduce the complexity
of the original problem by pruning some of the variables
involved in Ql.

Definition 1. The 0-1 MKP is: given a set of N items and M
knapsacks (M ≤ N), where each item has a value pj and a
weight wj , and each knapsack has a capacity ci, to select M
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disjoint subsets of items, that can be assigned to a knapsack
whose capacity is no less than the total weights of items in
it, so that the total profit of the selected items is maximized.
Formally:

max

M∑
i=1

N∑
j=1

pjxij (15)

subject to
N∑
j=1

wjxij ≤ ci, i ∈M = {1, · · · ,M} (16)

M∑
i=1

xij ≤ 1, j ∈ N = {1, · · · , N} (17)

xij ∈ {0, 1}, i ∈M, j ∈ N (18)

where xij =

{
1, if item j is assigned to knapsack i
0 otherwise

(19)

B. Multiple knapsack formulation of max-sum

In our setting, each Ql corresponds to a knapsack and each
agent to an item. Our objective is to determine al for each
group l ∈ L, so that the sum of the knapsacks, which denotes
the overall utility of the sensor network, is maximized. The
MKP will determine which agents to include in each Q-table.
Note that condition (17) must be modified in our case, as
agents can be included simultaneously in different knapsacks.
We, thus, replace (17) with

∑M
i=1 xij ≤ M, j ∈ N , which

forces an agent to be in a maximum of M knapsacks.
We define the value of an agent j in (15) as:

pj = max
aj

Qj(~hj , aj), aj ∈ {1, · · · , d} (20)

where d is the maximum allowed number of replicas. This
definition suggests that an agent is evaluated based on the
maximum value of its local Q-table, which can be interpreted
as the maximum contribution this agent expects to have to the
maximization of the group Q-table. Note that this is not equal
to Qj(~hj , a

∗
l [j]), i.e., the component of the globally optimal

solution that corresponds to agent’s j action. This is because
a∗l [j] is not the same with the action of j that maximizes its
local Q-table, as the effect that this action will have on the
different Ql agent j participates in, is not considered. Thus,
the solution provided by solving the MKP will not be globally
optimal and max-sum should still be applied.

In order to define the weights wj , we should measure how
the participation of an agent in the Q-function of a group
increases the computational complexity of applying max-sum.
In particular, in this paper, we measure complexity as the time
required until the convergence of max-sum. To determine this
time we make use of the fact that max-sum exhibits a linear
convergence rate, as we prove in Section VII. The convergence
rate is governed by |x∗ − x0|, where x∗ is the optimal value
assignment and x0 is the value max-sum is initialized with.
We, therefore, know that, the further from the optimal solution
max-sum starts, the more time it will need to converge. We
can, thus, define the weight as |x∗−x0|. Note that variables x∗

and x0 correspond to probability distributions over the agents’

decision variables, as they are the messages sent from check to
variable nodes during the application of max-sum. Formally:

x0 = µni (ai)

=
∑
I∈Ni

µI→i(ai), ai ∈ {1, · · · , d}, n = 0 (21)

x∗ = µni (ai)

=

n∑
I∈Ni

µI→i(ai), ai ∈ {1, · · · , d}, n = Nmax (22)

where n is the index of the max-sum iteration, and Nmax is the
maximum allowed number of iterations. With a slight abuse of
notation, we refer to the messages received by VN i as µi(ai).
Note that (22) is valid only when max-sum converges to the
optimal solution. Although restricting the number of iterations
in graphs with cycles can lead to sub-optimal solutions, if Nmax
is chosen to be appropriately high, it will not significantly
affect the quality of the solution. This is due to the empirical
observation that, if max-sum converges, this happens within
the first few iterations [23].

We calculate the distance between x∗ and x0 as their
Kullback - Leibler (KL) divergence, i.e:

wj = DKL(x∗||x0) =

d∑
i=1

x∗(i) log
x0(i)

x∗(i)
(23)

Our choice of the KL divergence was motivated by the
observation in [28] that this measure naturally describes the
lack of fit of an approximation of a distribution when prefer-
ences (beliefs) are expressed by a logarithmic function. The
employed max-sum algorithm is an example of such a case, as
beliefs are the logarithms of utilities. Furthermore, the additive
property of the KL divergence is useful, both for representing
the collective belief of agents, as well as for summing the
weights of the items in a knapsack to determine the total
weight assigned to it.

The value of x∗ in (22) could be found by employing
the max-sum algorithm, but the calculation of weights should
not require this. We, therefore, approximate x∗ based on the
system’s Gibbs free energy [29], an alternative approach to
finding the solution of (4). Instead of employing message-
passing, this solution computes the optimal probability distri-
bution x∗ by minimizing the KL divergence between x∗ and
the joint probability distribution, given by:

p(a) =
1

Z
exp

∑
I∈F

lnuNI (aNI ) (24)

where Z is a normalizing constant to ensure that p(·) sums to
1. Thus, x∗ can be found by solving the following optimization
problem:

min
∑
ai

q(ai) log p(ai)−
∑
ai

q(ai) log q(ai) (25)

where q(ai) =
∑
J∈Ni

µJ→i(ai) and p(ai) (26)

= − 1

Z
exp

∑
c∈Ci

lnuNI (aNI ) (27)
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Q1 Q2 Q3

Sensor 1 Sensor 2 Sensor 3

(a)

Q1 Q3

Sensor 1

(b)

Fig. 3: (a) Agents 1 and 3 have collided, so they participate
in each other’s Q-function. The MKP needs to decide whether
sensor 1 will be included in Q3. (b) We form the sub-graph
for calculating the weight of sensor 1 by assuming that Q1 is
independent from the messages from sensor 3.

Fig. 3 illustrates how the weight of an agent is determined.
In this example, when calculating agent’s 1 effect on Q3,
we ignore agent’s 3 effect on Q1, otherwise self-referentiality
would not allow us to solve the problem. As the weight of
an agent j depends on the knapsack j it is evaluated for, we
henceforth include both indexes when denoting a weight (wij),
and define wj as the average weight of agent j.

Finally, we define the capacity of a knapsack, i.e. the
time available to a Q-table to converge, based on the prob-
lem’s feasibility constraints. We know that, in general, ci ≥
minwij , ∀j ∈ N and wij ≤ max ci, ∀i ∈M. If a knapsack
violates the first constraint, it can be ignored because no items
can be added to it. Similarly, if an agent violates the second
constraint, then it does not fit anywhere, and can, therefore, be
eliminated. By sampling ci from the range [wji,

∑
j∈M wij),

we ensure that a Q-table can at least include the agent it is
associated with and that, not all the agents can fit in it.

C. Solving the MKP

We solve (15) by obtaining a tight bound on the optimal
solution using the Lagrangian relaxation method [30]. We do
not employ Branch-and-bound algorithms [11], although they
offer an exact solution to the MKP problem. This is because
their high computational complexity would defeat the original
purpose of reducing the complexity of coordination. Besides,
even if these algorithms were used, the final solution would
still have to be found by the max-sum algorithm, as explained
in Section VI-B.

The Lagrangian relaxation of (15) can be formulated as:

L(MKP, λ) = max

M∑
i=1

N∑
j=1

p̃jxij +M

N∑
j=1

λj (28)

where p̃j = pj − λj , j ∈ N , i ∈M (29)

Similarly to [11], we find the optimal dual variables λj
associated with the constraints in (17):

λj = pj − wj
pc
wc

if j < c, and 0 otherwise (30)

where c denotes the critical item. This corresponds to the first
item that does not fit in the knapsack, if we consecutively

insert items in decreasing order of value per weight unit, and
is formally defined as:

c = min
{
j :

j∑
i=1

wij |Ni| >
M∑
k=1

ck
}

(31)

where |Ni| denotes the number of neighbors of VN i. Note that
our definition of the critical item differs from the classical one
[11] due to the way that capacities are defined in our setting.

The relaxed problem can be subsequently decomposed into
a series of independent single knapsack problems of the form:

max

M∑
i=1

N∑
j=1

p̃jxij (32)

subject to
N∑
j=1

wijxij ≤ ci and xij ∈ {0, 1}, j ∈ N

(33)

The optimal solution of (32) can be calculated as:

z(L(MKP, λ)) =
∑

j∈J(λ)

p̃j +Mλ, (34)

where J(λ) = {j : pj/wj > λ} and λ =

N∑
j=1

λj . (35)

VII. OPTIMALITY ANALYSIS

This section begins by introducing GDD-POMDPs, which
map the properties of learning performed by WSNs into a
mathematical framework for decision making. Subsequently,
we derive guarantees for the convergence of coordinated Q-
learning in this framework. The proof consists of two parts.
First, we prove that the joint Q-function can be decomposed
into a sum of group Q-value functions. Since max-sum is
employed to choose the actions, we also have to ensure that
its solution is optimal. Therefore, in the second part of the
analysis, we derive a sufficient condition for the convergence
of max-sum.

A. The GDD-POMDP framework

Based on our solution, as presented in Section V, sensors
depend on each other only when their packets collide upon
transmission. Dependence among agents regards both actions
and states: two collided agents will have to coordinate their
actions due to sharing the same utility function, and, they will
also affect the state transition of each other. In our setting,
transition and observation independence is not guaranteed for
each agent (sensor). According to our formulation, it only
concerns agents belonging to different groups, i.e., sensors
whose packets have not collided. We refer to this framework
as GDD-POMDPs and ascribe to it the property of groupwise
observability [7].

Definition 2. A GDD-POMDP is defined as a tuple
〈M,S ,A, T,R,Ω, O,w, ξ0〉, where
M = {1, · · · , |M|} is the set of agent indices.
S = ×i∈MSi × Su. Si refers to the local state of agent
i. Su refers to a set of uncontrollable states that are
independent of the actions of the agents.
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A = ×i∈MAi, where Ai is the set of actions for each
agent.
Ω = ×i∈MΩi is the joint observation set.
T (s′|s, a) = Tu(s′u|su)·

∏
l∈L Tl(s

′
l|sl, su, al), is the tran-

sition probability function, where a = 〈ai, · · · , aM 〉 is
the joint action performed in joint state s = 〈si, · · · , sM 〉
and su is the current value of the uncontrollable state,
the transitions of which are not affected by the ac-
tions of sensors, but are controlled by external factors
(e.g. arrival/departure of sensors to/from a network).
The transition probability distribution of the network is
decomposable among groups of agents, indexed by l, with
l ∈ L, where L denotes the set of all groups. Note that
we employ model-free learning and, thus, do not require
a particular form for Tl. If k = |l| agents with indices
{i1, · · · , ik} are involved in a particular group l, then sl
denotes the state of group l, i.e. sl = 〈sl1, · · · , slk〉 and,
similarly, al = 〈al1, · · · , alk〉. This decomposition mod-
els the transition independence between agents belonging
to different groups.
R =

∑
i∈MRi(si, su, ai) is the immediate reward func-

tion. Thus, rewards are inherently local in this framework.
O(ω|s, a) =

∏
l∈LOl(ωl|sl, su, al) is the observation

probability function. This decomposition models the ob-
servation independence among groups.
w is the history window.
ξ0 is the initial state distribution at time t = 0.

Definition 3. GDD-POMDPs are said to have groupwise
observability if, ∀l ∈ L, the set of observations ωl =
〈ωl1, · · · , ωlk〉, made by agents belonging in group l, fully de-
termine the current uncontrolled state su, i.e., if ∀l, ∀ωl, ∃su:
Pr(su|ωl) = 1.

In our framework, this property implies that, given the joint
observation of a group l ∈ L, ωl, the observation and the
transition probability function of the group l do not depend
on actions and observations of agents in other groups.

B. Q-function decomposition
We base our analysis on [7], where the Q-function was also

proven to be decomposable into a sum of group Q-functions.
One notable difference between our setting and the one in
[7] is that our framework is not ND-POMDPs, as in our case
independence holds only for agents that do not belong in the
same group. Another difference is that, in [7], the reward has
the same decomposition as the Q-function and agents get their
rewards by evenly distributing the group reward, whereas in
our case rewards are individual to each sensor.

Theorem 1. For GDD-POMDPs with groupwise observabil-
ity, under basic assumption of Q-learning and by means
of update rule (14), Ql(~hl, al) converges to the optimal
Q∗l (

~hl, al) for all l ∈ L, and thus, policy π∗(~h) =

arg maxa
∑
l∈LQ

∗
l (
~hl, al) is globally optimal.

In order to prove the above theorem, we first establish that
a Q-function defined over states is decomposable. Then, we
prove that a Q-function based only on histories of observations
is also decomposable.

The Bellman equation for the global Q-function is:

Q(st, at) = R(st, at) + γ
∑

st+1,ωt+1

T tuT
tQt∗ (36)

Equivalently, for the group Q-functions:

Ql(s
t
l , a

t
l) = R(stl , s

t
u, a

t
l) + γ

∑
st+1
l ,ωt+1

l

T tuT
t
l Q

t∗
l , ∀l ∈ L

(37)
Recall that T tl cannot be further decomposed into a product

of individual probability functions due to the absence of
independence within a group.

In the case of Belief MDPs, we know that for the global
Q-function:

Q(bt, at) =
∑
s∈S

bt(s)Q(st, at) (38)

If we replace continuous beliefs with finite histories of
observations, then the above equations take the following
form:

Q(~ht, at) =
∑
s∈S

bt(s)Q(st,~ht, at) (39)

=
∑

sl∈Sl,su∈Su

bt(su, sl)Q(stl ,
~htl , a

t
l) (40)

(41)

We can thus treat histories as a substitute for states in the
Q-learning framework.

Lemma 2. In GDD-POMDPs, the global Q-function Q(st, at)
for any finite horizon τ is decomposable, that is:

Q(st, at) =
∑
l∈L

Ql(s
t
l , a

t
l) (42)

Proof. We prove the lemma by mathematical induction. For
t = τ − 1 we have by definition Q(st, at) = R(st, at) =∑
l∈L rl(s

t
l , a

t
l) and there is no future reward, as τ corresponds

to the last iteration. Assume that for 1 ≤ t ≤ τ − 1
the global Q-function is decomposable, i.e. Q(st, at) =∑
l∈LQl(s

t
l , a

t
l). Then, we have

Q(st−1, at−1) = R(st−1, at−1) + γ
∑
st, ωt

T t−1
u T t−1Q∗

=
∑
l∈L

rt−1
l + γ

∑
st, ωt

T t−1
u T t−1

∑
l∈L

Q∗l

=
∑
l∈L

[
rt−1
l + γ

∑
st,ωt

pt−1
u P t−1

l Q∗l

]
=
∑
l∈L

Qt−1
l

where the last equality is valid by the assumption of mathe-
matical induction.

Lemma 3. In GDD-POMDPs with groupwise observability,
the global Q-function Q(~ht, at) for any finite horizon τ is
decomposable, that is:

Q(~ht, at) =
∑
l∈L

Ql(~h
t
l , a

t
l) (43)
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Proof.

Q(~ht, at) =
∑
su,s

btu(stu)bts(s
t)
∑
l∈L

Ql(s
t
l , a

t
l)

=
∑
l∈L

[ ∑
su,sl

btl(s
t
u, s

t
l)Ql(s

t
l , s

t
u, a

t
l)
]

=
∑
l∈L

Ql(~h
t
l , a

t
l)

where the last equality arises from (42). Note that the decom-
position of beliefs is valid due to Lemma 3.

Theorem 1 is a direct result of Lemmas 2 and 3.

C. Convergence analysis of the max-sum algorithm
In this section, we derive a sufficient condition for the

convergence of max-sum, based on the analysis in [12],
where sufficient conditions for the sum-product algorithm were
formulated. The intuition behind the proof is that the update
mechanism for the messages can be expressed as a mapping
in the vector space of messages. Thereafter, the conditions
under which this mapping is a contraction can be derived, so
that convergence to a fixed point is guaranteed. Our analysis
can be applied to arbitrary graphs and depends on both the
structure of the graphs and the involved utility functions. The
derived sufficient condition can be used during learning in
the following way: after the CG is formed, and before max-
sum is employed, we evaluate the condition. If it is false, we
can decide to avoid coordination for the current iteration and
employ independent learning, otherwise, we can proceed with
coordination.

We start by formulating the max-sum update equation,
initially presented in (6) as:

µ̃I→i(ai) = max
aNI\i

[
ln(uNI (a)) + hNI\i(a)

]
(44)

where we expressed everything in terms of messages from
check to variable nodes and defined:

hNI\i(a) ,
∑

j∈NI\i

∑
J∈Ni\I

µJ→j(aj) (45)

To simplify the notation, we denote the utility function
uNI (aNI ) as uNI (a) and messages hNI\i(aNI\i) as hNI\i(a).
The following theorem is the main tool employed by our
analysis:

Theorem 4. (Banach’s fixed-point theorem) Let f : X → X
be a contraction of a complete metric space (X , d), where
d represents the distance metric. Then, f has a unique fixed
point x∞ ∈ X and ∀x ∈ X , the sequence x, f(x), f2(x), · · ·
obtained by iterating f converges to x∞. The rate of conver-
gence is at least linear to d(f(x), x∞), since d(f(x), x∞) ≤
Kd(x, x∞) for all x ∈ X , where K satisfies 0 ≤ K < 1 and
d(f(x), f(y)) ≤ Kd(x, y), ∀x, y ∈ X .

As suggested by Lemmas 1 and 2 in [12], in order to prove
that the message update equation is a contraction, we bound its
derivative. Directly taking the derivative of (44) would result
in a trivial bound, we thus re-parameterize messages in terms
of a monotonically increasing function:

νI→i(ai) = eµI→i(ai) (46)

The derivative of (46) can be calculated as:

∂ν̃I→i(ai)

∂νJ→j(yj)
= e

maxaNI\i

(
QNI (a)+hNI\i(a)

)
1Nj\I(J)1NI\i(j)

(47)

≤ emaxaNI\i
QNI (a)+ maxaNI\i

hNI\i(a)
1Nj\I(J)1NI\i(j)

(48)

= e
maxaNI\i

QNI (a)
e

maxaNI\i
hNI\i(a)

1Nj\I(J)1NI\i(j)
(49)

We define:

AI→i,J→j = e
maxxNI\i

QNI (a)
1Nj\I(J)1NI\i(j) (50)

BI→i(ν) = e
maxaNI\i

hNI\i(a) (51)

Note that we have absorbed all ν-dependence in the term
BI→i(ν), while term AI→i,J→j captures the structure of the
bipartite graph, as well as the effect of the utility functions.
In order to bound (49), we employ the following theorem:

Theorem 5. (Theorem 2 in [12]) Let f : IRm → IRm be
differentiable and suppose that f ′(x) = B(x)A, where A has
nonnegative entries and B is diagonal with bounded entries
|Bii(x)| ≤ 1. If the spectral radius of matrix A is strictly less
than 1, then for any x ∈ Rm, the sequence x, f(x), f2(x), · · ·
obtained by iterating f converges to a fixed point x∞, which
does not depend on x.

If we assume that hNI\i(x) is normalized in the range (0,1),
we can bound BI→i(ν) as:

sup |BI→i(ν)| ≤ e (52)

This bound corresponds to a worst-case analysis, where mes-
sages from all nodes involved in (50) are vectors with all their
elements, except for one, set to 0. In addition, the index of the
non-zero element must be the same for all nodes. Although this
situation may arise, we expect that the messages exchanged
in reality are more uniform. We also anticipate that, the more
nodes are involved in (50), the less probable it is that agents
agree on the maximum index. In Section VIII-C, we present
a heuristic that significantly refines this bound.

If we multiply all elements of matrix AI→i,J→j by the
bound on the right-hand side of (52) and form matrix
ĀI→i,J→j with the new elements, then, based on Theorems 4
and 5, we derive the main result of our convergence analysis:

Theorem 6. If the spectral radius of matrix ĀI→i,J→j is
strictly smaller than 1, then the max-sum algorithm converges
to a unique fixed point irrespective of the initial messages.
Furthermore, the rate of convergence is at least linear to
d(f(x), x∞).

VIII. SIMULATIONS

A. Simulation Setup

To evaluate the proposed solution, we first examine its
performance on a toy network with frames of size C = 10
and channel load G ∈ [0.1, · · · , 1]. We set the buffer size
to B = 3, the maximum number of replicas d to 8 and the
maximum number of max-sum iterations Nmax to 10. In each
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frame, a sensor accepts a new packet with a probability of
0.5. Regarding the learning parameters, we define a constant
exploration rate ε of 0.05, a learning rate α of the form
0.9αib, where αb is a constant dictating the rate of decay and i
denotes the number of visits of the current history-action pair.
Furthermore, we employ a constant value for γ. Parameters αb
and γ were tuned for different ranges of G, and we observed
that a value of γ = 0.4 and αb = 0.4 is optimal for G ≤ 0.6,
while γ = 0.98 and ab = 0.98 works best for high loads.
Finally, we employ a fixed window w of 4 observations.
Unless stated otherwise, performance is averaged over 1000
Monte Carlo trials. Confidence intervals are calculated based
on 20 independent experiments with 97.5% confidence level.
To prove the superiority of our solution to traditional MAC,
we compare its performance with an IRSA protocol where
Λ(x) = 0.25x2 + 0.60x3 + 0.15x8, which proved superior
to other commonly used distributions [3] as well as with our
previous method, presented in [4].

B. Throughput evaluation

The purpose of our evaluation is twofold. First, we aim to
prove that learning-based protocols surpass in performance the
current state-of-the-art random access protocol, IRSA. Second,
we want to draw insights into how coordinated learning
compares with independent and centralized approaches. In
Fig. 4, we observe that all learning-based methods improve
upon IRSA in terms of the normalized throughput, and, thus,
confirm the necessity of adaptive solutions. In addition, we
observe that the throughput achieved by the proposed, coordi-
nated approach, is higher than the independent learning case,
and lower than the centralized solution for G < 0.8. This result
was anticipated, as agents that coordinate their actions using
the max-sum algorithm converge to neighbourhood optima, in
contrast to independent agents that get stuck in local optima.
In contrast, a centralized approach solves the problem in the
original, joint space, Q-learning can thus converge to the
global optimum. Note that, due to memory restrictions, we
were not able to apply the centralized solution on networks
with frame size larger than D = 5.

Fig. 5 exhibits the benefits of coordination in terms of
convergence rate and achieved throughput. We observe that
coordinating agents converge early to higher throughput than
independent agents, which converge slowly and experience
oscillations. Although convergence of multi-agent reinforce-
ment learning algorithms is a largely unexplored area, Fig.
5 is in accordance with our expectations: when sensors act
independently, they learn in an uncertain environment and,
thus, require more learning iterations. In contrast, agents
that coordinate learn more steadily and converge to a well
performing solution within a few iterations.

C. Robustness evaluation

We evaluate robustness of learning based on the sufficient
condition presented in Section VII. In Fig. 6, we present the
probability of convergence of the max-sum algorithm, mea-
sured as the percentage of times that the condition indicated
a possible failure to converge (‖ĀI→i,J→j‖ > 1). We observe
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Fig. 4: Achieved throughput comparison of vanilla IRSA
and three learning-based IRSA designs.
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Fig. 5: Convergence rate of Coordinated and Independent
agents for channel traffic G = 0.3.

that convergence is less likely to be guaranteed for higher
G. Additionally, this figure presents how convergence varies
with the Q-table initialization: the values of all entries of the
local Q-tables of sensors are initialized by randomly sampling
in the interval [−B − c,−B + c], where B is the capacity
of the buffer of agents and c is a constant that was chosen
to have very low (c = 0.01) or very high (c = 4) value.
Note that this initialization of the Q-tables corresponds to a
uniform distribution with mean equal to B and variance given
by 4c2/12. We observe that higher randomization weakens the
convergence guarantees.

In order to gain further insights into how convergence
depends on the CG realizations encountered during learning,
we separately evaluate the spectral radius of matrix AI→i,J→j
and the bound of matrix BI→i. In Fig. 7, we present how the
spectral radius of AI→i,J→j evolves with learning iterations.
In particular, we calculate its moving average for a window
of 70. We observe that the spectral radius in general increases
with learning time for low (G = 0.2), intermediate (G = 0.5)
and high (G = 0.7) channel loads. Also, it is significantly
higher for intermediate channel loads. Both these observations
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can be justified by closely examining (50): matrix AI→i,J→j
has mostly zero entries, denoting the absence of collisions.
Also, the number of collisions tends to decrease as the learning
process proceeds, due to agents learning how to avoid each
other, and increase with the channel load. However, the non-
zero entries acquire higher values as the learning process
proceeds, due to agents becoming more certain of which
actions are optimal. In addition, collisions are more common
for high G, thus Q-tables, as well as the matrix AI→i,J→j ,
have lower entry values, as collisions likely lead to failure to
transmit and thus, lower rewards. Note that this is only evident
for high loads (G = 0.7). As indicated in Fig. 4, throughput
is optimal for both G = 0.2 and G = 0.5, the lower values
for G = 0.2 can be, therefore, attributed to the higher sparsity
of the coordination graph.

In Fig. 8, we evaluate how the bound of BI→i differs from
the worst-case scenario, based on a heuristic evaluation. In
particular, our simulations indicate that sensors tend to send
different number of replicas for different frames for medium
channel load (G ∈ [0.4, 0.5, 0.6]), in order to efficiently exploit
the available slots, while they all agree to send a few replicas
(1 or 2) when the channel load is high (G = 0.7). Based on
these observations, we evaluate the bound of (52) using the
current messages of check nodes, and observe that it takes
significantly lower values than the worst-case analysis. It is
worth noting that this heuristic evaluation gives lower values
for G = 0.7 than for G = 0.5, as, with increasing sizes of
the Q-tables, it is less likely that all agents associated with a
Q-table will agree on a common action.

D. Complexity

Fig. 9 exhibits the benefits of our complexity reduction
technique, which we measure as the average number of agents’
collisions. We observe that throughput is low when complexity
reduction is not employed, as the learning algorithm exhausts
the time budget before a good policy is found. We can,
thus, conclude that the reduction in complexity achieved is
particularly significant for high channel loads (G ≥ 0.6),
where collisions are frequent and lead to CGs of low sparsity.
Finally, in Fig. 10, we present the time complexity of the
different techniques employed in our solution. Note that, in
these simulations, learning was rendered robust by employing
the sufficient condition derived in Section VII, we therefore
avoid cases that would require exhausting the number of
message-passing iterations. Furthermore, by employing the
MKP complexity reduction technique, CGs become more
sparse and, therefore, significantly reduced time is required
for coordination. It is, thus, anticipated, that the computation
time of max-sum would have been much higher, had these two
techniques not been employed. We observe that calculating the
condition for robustness is the main bottleneck of the operation
and time complexity increases significantly with the channel
load G.

Finally, we perform an experiment that examines how
our solution performs for different WSN topologies. Fig. 11
presents the throughput and time required for learning for
two types of networks: a fully-connected (simple) WSN with
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Fig. 6: Evaluation of the sufficient condition for robust-
ness for different channel loads and different initialization
for the local Q-tables.
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Fig. 7: The evolution of spectral radius of matrix A with
the learning iterations for varying G.

C = 16 and D = 20, and a WSN with sensors clustered
into 4 clusters of the same size. We assume that sensors can
collide only with sensors within their cluster. From Fig. 11,
we observe that, in a fully-connected network, learning is
significantly slower, as the time budget is exhausted at 100
learning iterations. This suggests that the complexity of coordi-
nation is high due to CGs not being sparse enough. Regarding
throughput, the clustered network achieves significantly higher
performance, which can be attributed to: (i) experiencing more
learning iterations in the same time period, and, (ii) coordi-
nation being more important, as clustering dependencies are
persisting, whereas dependencies that arise due to collisions
may change at each learning iteration. We base this conclusion
on the observation that learning in the fully-connected network
achieves lower throughput, even when the time budget is
not exhausted (LE < 100). Note that the complexity of
our solution does not depend on the number of clusters, but
increases with the size of the clusters. Due to the locality of
interaction in WSNs, it is natural to decompose the network
into clusters that operate independently from each other. The
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Fig. 9: Number of collisions sensors experience upon
transmission and achieved throughput for Coordinated
agents before and after reducing complexity using the
MKP technique.

sizes of these clusters should remain small compared to the
size of the network and their value is dictated by practical
limitations of sensors, such as their transmission power. We
also simulated networks consisting of clusters of 4 sensors,
channel load G = 0.8 and C ∈ {160, 320, 480}, and confirmed
that the achieved throughput remained approximately 0.56 in
all cases.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a MAC solution for WSNs based
on coordinated reinforcement learning, where the max-sum
algorithm is applied on CGs, used to describe the dependen-
cies among sensors, to find the optimal actions. We derived
a technique for bounding complexity based on a multiple
knapsack formulation, as well as convergence guarantees for
our Q-learning based algorithm in our framework, which we
termed as Groupwise-Dependent Decentralized POMDP. Our
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average throughput for a fully-connected network (sim-
ple) with 16 sensors, and a clustered one with 4 group of
sensors with 4 sensors each for G = 0.8

simulations confirm that coordination is beneficial in terms
of throughput and convergence rate, when compared with
classical MAC, as well as solutions employing independent
learning. Furthermore, coordination must exploit structural
properties, as well as complexity reduction techniques, so that
computational complexity does not prohibit learning. Our cur-
rent solution implicitly promotes energy efficiency by reducing
the complexity of coordination and ensuring robustness of the
learning process. As part of future work, we plan to investigate
how energy efficiency can be explicitly considered in our
framework. This will necessitate adjusting the modeling of the
POMDP and the optimization objective to directly minimize
energy consumption or maximize the lifetime of the WSN.
Also, weights and capacities of our MKP will need to be
reformulated to account for other typical constraints in WSNs,
such as the battery lifetime of sensors.
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