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Water stress has adverse effects on crop growth and yield, where its monitoring plays a vital role in precision crop management.

This paper aims at initially exploiting the potentials of UAV aerial RGB image in crop water stress assessment by developing a

simple but effective supervised learning system. Various techniques are seamlessly integrated into the system including vegetation

segmentation, feature engineering, Bayesian optimization and Support Vector Machine (SVM) classifier. In particular, wheat pixels

are first segmented from soil background by using the classical vegetation index thresholding. Rather than performing pixel-wise

classification, pixel squares of appropriate dimension are defined as samples, from which various features for pure vegetation pixels

are extracted including spectral and colour index features. SVM with Bayesian optimization is adopted as the classifier. To validate

the developed system, a UAV survey is performed to collect high-resolution atop canopy RGB imageries by using DJI S1000 for

the experimental wheat fields of Gucheng town, Heibei Province, China. Two levels of soil moisture were designed after seedling

establishment for wheat plots by using intelligent irrigation and rain shelter, where field measurements were to obtain ground soil

water ratio for each wheat plot. Comparative experiments by three-fold cross-validation demonstrate that pixel-wise classification,

with a high computation load, can only achieve an accuracy of 82.8% with poor F1 score of 71.7%; however, the developed system

can achieve an accuracy of 89.9% with F1 score of 87.7% by using only spectral intensities, and the accuracy can be further

improved to 92.8% with F1 score of 91.5% by fusing both spectral intensities and colour index features. Future work is focused on

incorporating more spectral information and advanced feature extraction algorithms to further improve the performance.

Keywords: Area-wise classification; Support Vector Machine (SVM); Unmanned Aerial Vehicle (UAV); Wheat drought mapping.

1. Introduction

Water stress generally has significantly adverse effects on
crops such as closing stomata, reducing transpiration rate
and up-taking less carbon dioxide, which all inevitably
diminish crop growth and productivity resulting in less
biomass and yield.1 In addition, water scarcity has become
one of the top three global problems and in particular China
is a vast country with severe shortage of water. It is re-
ported that agriculture takes 62.06% of fresh water for the
arable land in the north region of China. Unfortunately, the

current irrigation efficiency in China is only about 52%,
well below advanced countries which can achieve an effi-
ciency of about 70%–80% of water usage. Therefore, there is
an urgent need to optimize irrigation scheduling and strat-
egy so that irrigation efficiency can be improved, i.e. sig-
nificantly reducing water usage while meeting crop needs
and maintaining crop productivity. It is evident that direct
or indirect crop drought assessment for the field of inter-
est is a prerequisite for optimizing irrigation strategy and
maximizing water-use efficiency.2 Consequently, this work
is focused on indirect wheat drought assessment by using
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machine learning approaches. Comparative experimental
wheat fields are carefully designed including wet wheat and
dry wheat, based on which both Unmanned Aerial Vehicle
(UAV) imageries and ground soil water ratio data are col-
lected for system construction and validation.

Various crop drought monitoring approaches are avail-
able in the literature, which can be broadly divided into di-
rect ground measurement based and indirect remote sens-
ing based approaches.3 Ground based approach is rela-
tively accurate, however, usually labour-intensive, time-
consuming, with a high cost, and so unable to meet the
actual needs for vast land areas. This is because a large
amount of uniform sampling points are required to cover a
large area of interest, and lab experimental test is further
required to determine the crop/soil water stress. As a re-
sult, there is a trend to adopt remote sensing technology to
timely infer drought information extracted from various in-
strumentation including electro-optical and radar sensors.

For example, satellites equipped with multispectral
camera can provide useful moisture information regarding
the soil and crop, where short-wave infrared bands are di-
rectly related to water absorption4and near-infrared band
is also closely related to plant water status.5 Although suit-
able for large area application, it is also acknowledged that
there are certain limitations for satellite based remote sens-
ing.6,7 First, the cost of satellite remote sensing is usually
high. Secondly, the spatial resolution of satellite imagery
is usually low, e.g. 10+ meters, leading to the problem of
mixed pixel and so not suitable for farmland of small or
middle scales. Thirdly, satellite can be easily affected by
environmental variations such as cloud. Moreover, the re-
visit time of satellite is usually fixed and not flexible.

With user-defined spatial-temporal resolutions, a low
cost and flexibility, UAV based remote sensing is drawing
ever-increasing research interest, and has become an impor-
tant complement for satellite and manned aircraft based
remote sensing.6 In this approach, different instrumenta-
tions (e.g. red-green-blue (RGB), multispectral, hyperspec-
tral and thermal cameras, and radar) can be installed on
UAV flying at different altitudes for various applications
including crop classification, estimation of agronomic pa-
rameters (e.g. leaf area index, biomass, nitrogen content,
plat density), disaster monitoring (e.g. pest, weed, disease,8

lodging and water stress3,9), among many others.
In particular, RGB imagery, due to its high spatial res-

olution, a low price and high accessibility, has recently at-
tracted much research interest and been applied to diverse
applications. For example, the problem of tomato detection
is considered10 by using UAV aerial RGB imageries, where
both spectral and spatial features are accommodated in
machine learning algorithm construction. Some other typ-
ical applications of RGB image for high-throughput stress
phenotyping in plants are referred to a recent survey pa-
per,11 where different classical machine learning algorithms
are discussed for different tasks. Recently, the popular deep
learning algorithms, due to its strong capability in auto-
matically extracting non-local features, have also been ap-
plied in precision agriculture. For example, Fully Convolu-

tional Network (FCN) and SegNet algorithms are applied
to aerial RGB image for semantic segmentation (crop and
weed discrimination),12,13 respectively. There is also a sur-
vey paper on the application of deep learning in precision
agriculture.14 It is noted, however, that no existing work
to date has exploited the potential of aerial RGB image in
crop water stress evaluation with experimental validation.

Consequently, this work focuses on developing a ma-
chine learning based crop drought mapping system by using
UAV remote sensing imagery. In particular, RGB camera
is chosen due to its high resolution, easy accessibility and
practicability in comparison with multispectral and hyper-
spectral cameras, where relatively complicated camera and
data calibration is required. The main steps of the devel-
oped system are summarized below.

(1) Data pre-processing: pre-process UAV imageries to
derive an orthomosaic image using the commercial
Agisoft software and crop the region of interest;

(2) Wheat pixel segmentation: segment wheat pixels
from background using the classical normalized ex-
cess green (NExG) index15 to attenuate the ad-
verse effects of soil pixels;

(3) Feature extraction and classifier training: extract
appropriate features for wheat pixels, and train
classification model.

(4) Deploy the learnt classifier to the field of interest
to generate a water stress classification map, based
on which follow-up treatment can be performed.

Compared to the existing machine learning approaches
on related topics (e.g. pixel-wise classification,16 deep learn-
ing based image labelling12,17), the developed system,
adopting pixel square and crop segmentation for pure vege-
tation pixels, can not only process a large number of aerial
survey imageries in an effective, efficient and robust way
but also do not rely on a large number of labelled train-
ing samples (e.g. deep learning based approach) which is
expensive and labour-intensive in precision agriculture ap-
plications.18

2. Materials

In this section, materials for wheat water stress map-
ping experiments are presented including study site, UAV-
camera system for airborne imagery acquisition and field
measurements for wheat drought ground truth data.

2.1. Study site: experimental wheat field

The study was carried out in the wheat fields (see, Fig 1)
of Gucheng Agrometeorological Experimental Centre of the
China Meteorological Administration in Dingxing County,
Hebei Province, North China Plain (latitude: 39o08′N ,
longitude: 115o40′E, 15.2 m a.s.l.)19,20 The region is of
warm temperate continental monsoon climate, where the
mean annual temperature, rainfall and hours of sunshine
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are 11.7oC, 528mm (mostly in June-September) and 2659
hours, respectively.20 18 wheat plots of size 4m × 2m with
soil depth of 3m are considered for soil water ratio experi-
ment. The wheat plots are well separated from each other
(to avoid horizontal water exchange) and underneath soil
(to avoid vertical water exchange) by using brick and con-
crete. The soil is typical Haplic Luvisol (FAO) with a pH
of 8.1 and a bulk density of 1.35 g×cm−3. The average
field moisture capacity (0-200cm depth soil underneath the
ground) is about 23%. The crop under investigation is win-
ter wheat (with growth duration 237-245 days) sowed in
early October of 2016 using drilling approach with seed rate
of about 260kg/hm2 (or equivalently 1.5×105 seedlings per
hm), where the parallel wheat row distance is 22cm. Con-
sidering that the main purpose of the study is to inves-
tigate the effect of water stress on winter wheat growth,
soil moisture is the key control variable while other treat-
ments (e.g. fertilizer) follow the standard of winter wheat
in this region.20 Soil moisture at seeding time for all wheat
plots are the same, which was about 80% of the field mois-
ture capacity. Two types of water treatments were then
performed from seedling establishment in March for winter
wheat plots, so that the soil moisture of dry wheat plots
and wet wheat plots are roughly within 40%-55% and over
80% of field moisture capacity, respectively. In particular,
for dry plots irrigation is implemented when soil moisture
level is below 40% of field moisture capacity; while for wet
plots irrigation is implemented when soil moisture level is
below 80% of the field capacity. In this process, neutron
moisture gauge is buried at the depth of 2 meters for each
plot to measure the soil moisture level. The UAV survey
was conducted on 9th, April, 2017, where the winter wheat
was in early jointing stage.

Fig. 1. Location of the experimental wheat field.

2.2. UAV-camera system and UAV imagery

In this work, a commercial aircraft DJI S1000 (DJI com-
pany, Shenzhen, China) and a Sony NEX-7 camera consti-
tute a platform of low altitude UAV-camera system (see,
right plot of Fig 2). The specification of DJI S1000 is
referred to the work.21 The weight, resolution and focal
length of Sony NEX-7 are 560g, 6000×4000 and 16mm, re-
spectively. The camera setting is as follows: exposure time
(1/1250), ISO (200), WB RGB Levels (637, 256, 381), Field

of view (73.7 deg), light value (12.3). During the flight, the
camera was fixed on a gimbal, pointing vertically down-
wards.

Fig. 2. Wheat plots (left) and UAV-camera system (right).

The airborne campaign was conducted at about 20 me-
ters above the ground. A laptop installed with Ground Con-
trolling Station software was used to plan, monitor and con-
trol the autonomous UAV flight. The planned flight path,
flight velocity and camera triggering are designed so that
images with overlap and sidelap up to 75 % could be ob-
tained for the purpose of good stitching. 36 high-resolution
UAV images were obtained and stitched using commercial
software PhotoScan (Agisoft, Russia) so that an orthomo-
saic image (covering an area of 3540 m2) could be generated
as shown in Fig 3. The ground resolution of the orthomosaic
image is 0.454cm/pixel.

 

 

 

Fig. 3. Orthomosaic image derived by Agisoft PhotoScan.

RGB image for the Region of Interest (RoI) is man-
ually cropped from Fig 3 and shown in Fig 4, where 18
different wheat plots are analysed including 11 wet plots
and 6 dry plots. For the sake of simplicity, the left-column
plots are termed West 1 to West 6 from top to bottom,
similarly, the middle-column plot i and right-column plot i
are termed Middle i and East i, respectively.
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Fig. 4. RGB image of RoI cropped from orthomosaic image.

2.3. Field measurements of water ratio

Crop physiological parameters (e.g. crop water content,
leaf/stem water potential and sap flow22,23) are ideal in-
dicators for crop water status; while soil or substrate water
content, indicating water availability in the root zone, is
not always directly correlated with plant water status.23

In this work, as highlighted in Section 2.1, soil moisture of
different wheat plots are specifically designed into two lev-
els from seedling establishment stage in a well controlled
environment. The main focus of this work is on qualitative
classification11 rather than quantitative regression analysis
between drought level and various features. As a conse-
quence, soil moisture is chosen to indicate wheat drought
status for ground truth data labelling, although it is not
suitable for crop drought quantification.

To this end, the raw soil samples of each plot were col-
lected on 10th, April, 2017 at the depth of 10 cm and 20
cm respectively to attenuate measurement errors. It should
be noted that more sampling points are required for large
wheat plots or plots in natural fields due to the spatial in-
homogeneity of water distribution. After raw soil samples
were weighted by using Electronic Balances BS-423S, they
were then processed by using Drying Ovens DHG-9245A to
remove water and weighted again so that soil water ratios
were calculated by the ratio, where the final soil water ratio
was calculated by taking the average as shown in Fig 5.
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Fig. 5. Ground truth of soil water ratio for wheat plots.

It follows from Fig 5 that soil water ratios can be
broadly divided into two classes, e.g. high and low, and
consequently wheat plots are termed wet wheat plot and
dry wheat plot respectively depending on its correspond-
ing soil water ratio. Considering that only two levels of soil
water ratio are available in the dataset, supervised classi-
fication is considered. With more levels of soil water ratio,
regression analysis between wheat water stress and vari-
ous vegetation indices can also be performed, which will be
investigated in the future.

3. Method

There is no explicit relationship between UAV imagery and
soil water ratio, therefore their implicit relationship is to
be worked out by using data-driven approaches.24 Con-
sequently, in this paper, a machine learning based crop
drought mapping system is developed, which is validated
by high-resolution UAV remote sensing RGB imagery. The
complete flowchart of the proposed system is displayed
in Fig 6, which mainly consists of image preparation and
pre-processing, wheat pixel segmentation, training sample
construction including feature extraction, classifier training
and classification map generation. In the following subsec-
tions, key elements of the developed system are elaborated.

Training 
region

Classification 
map

Aerial 
images

Orthophoto

Otsu 
thresholding

NExG

Feature 
extraction

Wheat 
area

Soil moisture 
Ground truth

Classifier 
training

Region of 
interest

Noise 
removal

Spectral;
Colour indices;

Fig. 6. Flowchart of the proposed machine learning based crop
drought mapping system.

3.1. Image pre-processing

With a series of aerial imageries, commercial software Pho-
toScan is first adopted to generate an orthomosaic image
(see, Fig 3). Then orthomosaic image is processed using
Gaussian blur filter to reduce the effect of random noise.
On this basis, the region of interest (see, Fig 4) can be
cropped from orthomosaic image for the following wheat
pixel segmentation and other machine learning tasks.

3.2. Wheat segmentation

Different from conventional studies which evaluate wheat
water stress by assessing the status of soil, this paper di-
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rectly works on wheat. To this end, it is necessary to sepa-
rate wheat pixels from soil and residue background. This is
because the presence of soil pixels will bring adverse effects
on classification performance, and even if soil pixels im-
prove the classification accuracy for this dataset, it might
not generalize in other situations, where more explanations
are given in Section 3.3.2. Actually, in many precision agri-
culture applications including weed detection, disease mon-
itoring8 and crop drought assessment, it is a necessity to
extract vegetation (e.g. crops and weeds) from background
(e.g. soil, residues and shadows) so that subsequent anal-
ysis can be performed.25 A number of methods have been
developed for vegetation segmentation (see, a recent survey
paper26).

Crop segmentation is usually achieved by inspecting
the differences in spectral reflectance between vegetation
and soil pixels. Green plants usually show relatively low
values in Red and Blue bands while with a peak in Green
band in comparison to background pixels.26 However, ini-
tial studies demonstrate that non-normalised RGB values
were not suitable for this task, since they are directly
proportional to the total light reflected from a surface
and therefore highly sensitive to illuminating intensity.27

Instead different colour based vegetation indices are fre-
quently used in the literature. To ease understanding of
the notations, in this work, Red, Green and Blue denote the
digit number of RGB channels either in the range of [0, 255]
or [0, 1]; while red, green and blue denote the normalized
values (or chromaticity conversion) of Red, Green and Blue
by dividing Red, Green and Blue by (Red+Green+Blue).

There exist a number of vegetation indices to segment
crop from background, which are summarized in Table 1.
In this work, NExG is adopted due to its fine performance
via trial and error experiments, where visual inspection
is adopted to assess the vegetation segmentation perfor-
mance;33 NExG represents the difference of the divergence
of both red from green and blue from green. The prob-
ability histogram of NExG for ROI in Fig 4 is displayed
in Fig 7. It follows from Fig 7 that there are obvious two
peaks in NExG histogram, which correspond to wheat and
background pixels, respectively.

Fig. 7. Probability histogram for vegetation index NExG.

To remove background pixels from the RGB imagery
including road, soil and shelter above wheat field, it is nec-
essary to define an appropriate threshold for the one di-

mensional distribution in Fig 7. In this paper, the well
known Otsu’s thresholding method34 is adopted, which
finds the optimal threshold by maximizing the weighted
sum of between-class variances. The derived threshold is
0.245 and the corresponding wheat segmentation result is
shown in Fig 8.

Fig. 8. Wheat segmentation by Otsu’s thresholding: wheat pix-
els (white), background pixels (black).

Remark: In this work, a vegetation index is adopted
to segment wheat pixels from background pixels due to its
simplicity and generality. More advanced algorithms can
also be adopted to achieve this task such as unsupervised
clustering or supervised classification algorithms.26

3.3. Samples and feature extraction

Machine learning applications rely on training samples. In
this section, training samples with features for classification
model construction are detailed.

3.3.1. Samples

A vital step in image classification is to define appropriate
training samples, from which features can be extracted. In
remote sensing application for precision agriculture, there
are generally a large number of pixels (in particular for
images with a high spatial resolution) and pixel-wise clas-
sification is usually time-consuming in both offline training
and online classification. In addition, the features in pixel-
wise classification are usually limited to pixel values and
more representative features, e.g. texture feature, geomet-
ric feature and statistical feature, can not be effectively
defined (note: the recent deep learning based semantic seg-
mentation algorithm12 is also a promising approach to ac-
commodate spatial features, however, this approach is not
exploited due to the limited labelled data in this study). To
improve algorithm effectiveness, efficiency and robustness,
in this work, instead of conducting pixel-wise classification
a sample is defined by a pixel square of dimension k×k with
k being a pre-defined value based on trial and error test.35

Consequently, data volume can be substantially reduced
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Table 1. Various vegetation indices for crop segmentation.

Formula Meaning Ref

NExG=2g-r-b normalized excess green index 15

ExR=1.3R-G excess red 28

NGRDI=(G-R)/(G+R) normalized difference index 27

CIVE = 0.44R - 0.81G + 0.39B + 18.787 Colour Index of Vegetation Extraction 29

G/(RaB(1−a)), a=0.667 Vegetative Index (VEG) 30

NExG-ExR Excess Green minus Excess Red 31

MExG = 1.262G-0.884R-0.311B Modified Excess Green Index 32

since k2 pixels are treated as one sample. It should also
be noted that a pixel square may contain both wheat pix-
els and soil pixels, where soil pixels have adverse effects on
classification performance. Consequently, wheat pixel seg-
mentation is necessary to attenuate the adverse effects.

The ground truth data for soil water rate is given in
Section 2.3, however, it is for each plot rather than specific
wheat pixels or pixel squares. In this paper, the training
samples along with their labels under wet and dry soil plots
are determined by Algorithm 1.

Algorithm 1: Steps to prepare samples

(1) Plot selection: The pixels in plots West 1, 2, Middle
1, 2 and East 1, 2 are chosen for wet wheat, and the
pixels in West 3, 4 ,5 and East 3, 4 , 5 are for dry wheat;

(2) Pixel square: The aforementioned regions are gridded
into pixel squares of dimension k × k with k = 19;

(3) Non-wheat pixel removal: For all pixel squares, only
these pixel squares where the wheat pixel proportion is
over 20% are kept as training samples.

(4) Sample label: The remaining pixel squares after non-
wheat pixel removal are automatically labelled using
the corresponding plot label.

Following Algorithm 1, a training dataset is defined,
which is used for feature extraction in the following sub-
section.

3.3.2. Feature extraction

With training samples prepared in Section 3.3.1, we fur-
ther define appropriate features to maximally represent
sample properties. Various features can be extracted from
a pixel square. Considering that this work is focused on
wheat drought mapping, features related to wheat density
(e.g. canopy cover, geometrics) are not to be learnt. This is
mainly because many factors may lead to the variation of
wheat density such as sowing density, wheat row spacing
among many others. Following this line of thought, two sets
of features closely related to wheat color and vigour are de-
fined including spectral intensities and Colour Index (CI)
features, summarized in Table 2. For the sake of simplic-
ity, only mean values of spectral bands and colour indices

for vegetation wheat pixels (excluding soil pixels) within a
square are defined as features.

Table 2. Various sets of features.

Spectral intensities (3) Colour Index features (7)

Red, Green, Blue ExR, CIVE, Green/Red (GoR),
NExG, NGRDI, VEG, MExG

Different features have different discrimination capa-
bilities in a given classification task. Therefore, it would be
interesting to assess the importance of different features.
Various algorithms can achieve this task.8 In this work, the
classical feature ranking algorithm is preferred due to its
simplicity and efficiency, where mutual information value36

between feature and class label is chosen as the criterion.

3.4. Classifier construction

With labelled training samples for wet and dry wheat, the
next step is to train a classifier that can label any new
samples automatically. Different classification algorithms
are available in the literature. In this work, the classifier
is determined by following the below two steps

(1) A built-in App termed “classificationLearner” in Mat-
lab is first used to quickly assess the performance of dif-
ferent classifiers, including Decision tree, Discriminant
analysis, Logistic regression, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN) and their vari-
ants. The most suitable one in terms of classification
accuracy using five-fold cross validation and computa-
tion time is identified.

(2) Hyperparameters of the classifier in Step (1) (e.g. ker-
nels and their related parameters in SVM) are further
optimized by using Bayesian optimization.37 For the
sake of completeness, a classifier with Bayesian hyper-
parameter optimization is summarized in Algorithm 2.
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Algorithm 2: Classifier with Bayesian hyperparameter
optimization

(a) Cross-validation partition: Given a
labelled dataset, randomly partition the dataset into
K disjoint folds of roughly equal size.

(b) Optimization problem: Define the hyperparameters
to be optimized as λ ∈ Ω, for each j = 1, 2, · · · ,K,
construct classification model with hyperparameters λ
to the other K − 1 parts and compute the classifica-
tion error Ej(λ) in predicting the jth part. The cross
validation error is defined by the following objective
function

f(λ) := CV (λ) =

K∑
j=1

Ej(λ)/K, (1)

and consequently the optimization problem is given by

λopt = arg min
λ∈Ω

f(λ). (2)

(c) Bayesian optimization: Different from grid search,
random search or manual tuning, Bayesian optimiza-
tion optimally suggests new parameters by sequentially
performing: 1. fitting a Gaussian process model Q for
data points {λi, f(λi)}, and also updating it with new
data points; 2. finding the new point for evaluation that
maximizes the acquisition function based on the poste-
rior distribution function Q.

(d) Optimized classifier: Stop the evaluation when cer-
tain stopping criterion (objective function evaluation
limit is chosen as 15 in this work) is satisfied and re-
turn the classifier with optimized hyperparameters.

Following Steps (1) and (2), an optimized classifier can
be developed, which can be used to assess the effect of dif-
ferent sets of features and can also be applied to classify
the region of interest for practical applications.

3.5. Performance evaluation

Metrics for performance evaluation are further discussed. In
the field of machine learning, True Positive (TP) denotes
the correctly predicted positive values; True Negative (TN)
denotes the correctly predicted negative values; False Pos-
itives (FP) represents the scenario that actual class is no
and predicted class is yes; and False Negative (FN) rep-
resents the scenario that actual class is yes but predicted
class is no. With these four parameters, various metrics can
be defined to evaluate model performance. For symmetric
datasets, Accuracy is a good measure, which is given by

Accuracy =
TP + TN

TP + FP + FN + TN
. (3)

To handle data with uneven class distribution, Preci-
sion, Recall and F1 score are also considered. In this work,
these values are first calculated for each class, and their

average values are chosen as the metrics. Precision, Recall
and F1 score for a specific class are defined by

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

F1 score =
2TP

2TP + FP + FN

. (4)

4. Results

In this part, experimental validation is performed for
the developed machine learning based crop drought map-
ping system. Following the results in preceding works33

and,16 SVM with Gaussian kernel Kgaussian = exp(−||x−
z||2/2σ2) is chosen as the classifier due to its fine perfor-
mance in terms of accuracy and computational time. All
the algorithms in this work are implemented in Matlab
2017a on Windows computer using Intel Core i7-6500U
CPU@2.5GHz with RAM 16GB.

It is also noted that in SVM classifier with Gaus-
sian kernel, two hyperparameters are optimized by using
Bayesian optimization including σ in Gaussian kernel and
BoxConstraint C (also termed cost parameter) penalizing
the misclassified points. The ranges for σ and C are within
[e−5, e5]. The maximum objective evaluations are chosen as
20 based on trial and error tests.

4.1. Pixel-wise classification

Pixel-wise classification is first considered for the purpose
of algorithm comparison (accuracy and computation time).
In this approach, spectral bands including red, green and
blue are directly treated as features. The histogram com-
parison between wet wheat samples and dry wheat samples
in term of spectral bands are displayed in Fig 9.

Fig. 9. Probability histogram of spectral bands for wet (upper
plots) and dry (lower plots) wheat pixels: upper plots from left
to right are for red, green and blue.

It follows from Fig 9 that the pixel-wise spectral in-
tensities between wet wheat pixels and dry wheat pixels
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have too much overlap, which will result in a poor classifi-
cation performance. The classification confusion matrix for
pixel-wise classification is displayed in Fig 10.
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Fig. 10. Confusion matrix for pixel-wise SVM classifier with
spectral bands.

In confusion matrix Fig 10, the diagonal cells in green
show the number/percentage of correct classification, while
the off-diagonal cells show the misclassification. The right-
most column presents the accuracy for each predicted class
(termed precision), the bottom row shows the accuracy for
each true class (termed recall). In particular, Precision, Re-
call and F1 score for Wet class are 84.6%, 94.8% and 89.4%;
and the ones for Dry class are 72.0%, 43.3% and 54.0%.
As a result, the average Precision, Recall and F1 score for
pixel-wise classification are 78.3%, 69.0% and 71.7%, re-
spectively. The cell at the right bottom shows the overall
accuracy, which for pixel-wise SVM classification is 82.8%.

4.2. Developed system

The developed system is further validated using the col-
lected dataset. The labelled areas are first gridded into cor-
responding pixel squares using Algorithm 1, so that various
sets of features can be extracted including spectral inten-
sities and CI features as discussed in Section 3.3.2. In the
following performance analysis, the popular three-fold cross
validation is used, which takes the problem of overfitting
into account.

4.2.1. Spectral features

Experimental results for SVM with spectral intensities are
first presented. It is noted that although the spectral bands
in this study are the same as pixel-wise classification, the
main difference is that original band values are used in
pixel-wise classification while mean values of spectral bands
for the vegetation pixels in a wheat square are used in
the developed system. The estimated cross-validation error
function values over various combinations of BoxConstraint
C and Gaussian kernel parameter σ are displayed in Fig

11. The confusion matrix of SVM with spectral intensities
is displayed in Fig 12.

Fig. 11. Estimated objective function value over various values
of BoxConstraint and Sigma.
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12.9%

89.9%
10.1%

Fig. 12. Confusion matrix for spectral intensities.

It can be calculated from Fig 12 that the average Pre-
cision, Recall, F1 score and accuracy for SVM with spectral
intensities are 89.0%, 86.6%, 87.7% and 89.9%, respectively.

4.2.2. CI features

The performance of CI features is further evaluated. It is
noted that CI features are also applied to pixel-wise clas-
sification, however, the result is not presented. This is be-
cause the results in Section 4.1 and 4.2.1 have shown that
pixel-wise classification is not suitable for wheat drought
mapping due to its poor performance and high computa-
tion load. The confusion matrix of SVM with CI features is
displayed in Fig 13. It follows from Fig 13 that the average
Precision, Recall, F1 score and accuracy for SVM with CI
features are 91.5%, 90.9%, 91.2% and 92.6%, respectively.



August 16, 2019 18:38 water˙US

Machine Learning Based Crop Drought Mapping System by UAV Remote Sensing RGB Imagery 9

Wet Dry Precison
Target Class

Wet

Dry

Recall

O
ut

pu
t C

la
ss

SVM (CI)

5795
66.5%

290
3.3%

95.2%
4.8%

355
4.1%

2279
26.1%

86.5%
13.5%

94.2%
5.8%

88.7%
11.3%

92.6%
7.4%

Fig. 13. Confusion matrix for CI features.

4.2.3. Spectral+CI features

In this part, CI features and spectral intensities are pooled
together as the features for SVM classifier of the developed
system. The confusion matrix for SVM with both Spectral
and CI features is displayed in Fig 14. Similarly, it follows
from Fig 14 that the average Precision, Recall, F1 score and
Accuracy are 91.4%, 91.5%, 91.5% and 92.8%, respectively.
In addition, the top three features identified by the mutual
information based feature ranking approach in Section 3.3.2
are GoR, NGRDI, ExR, respectively.
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Fig. 14. Confusion matrix for spectral and CI features.

The performance comparison between pixel-wise clas-
sification and the developed systems with various sets of
features are summarized in Table 3.

It follows from Table 3 that the proposed region-wise
classification substantially outperforms the pixel-wise clas-
sification in terms of Accuracy, Precision, Recall, F1 score
and computation time. CI features obtain a better perfor-
mance than spectral intensities due to the increased fea-
ture dimension for data representation. In addition, by aug-
menting CI features with spectral intensities, performance
metrics except Precision can be further improved to some
extent.

4.3. Application to ROI

The developed system in Section 4.2.3 is also applied to the
whole ROI for visual assessment. The ROI is first gridded
into corresponding pixel squares using Algorithm 1 so that
features can be extracted for the wheat pixels within the
square. The time for feature calculation and classification is
about 2.5 sec and 0.25 sec, respectively. The classification
map is displayed in Fig 15. To make the result more inter-
pretable, the corresponding ground truth map for different
plots is also displayed. It can be visually seen from Fig 15
that the ratio of yellow pixels is very high in dry plots and
very low in wet plots and so the classification result is very
positive. 

 

 

Classification map

Fig. 15. Left: ground truth; Right: result with background pix-
els (blue), wet pixels (cyan) and dry pixels (yellow).

5. Discussion

Crop water stress monitoring plays a key role in intel-
ligent irrigation system and precision crop management.
Conventional drought monitoring mainly relies on satel-
lite equipped with multispectral equipment. In this regard,
a very popular index, Normalized Difference Water Index
(NDWI), has been proposed by using NIR band and short-
wave infrared band directly related to water absorption.4

Although suitable for large scale applications, satellite re-
mote sensing may not be suitable for small-scale farmland
due to its low spatial resolution and fixed revisit time. UAV
based remote sensing is now drawing increasing attention
and has become an important complement to satellite re-
mote sensing in various areas including precision agricul-
ture due to its user-defined spatial, spectral and temporal
resolutions.6 Consequently, this work exploits the potential
of UAV in wheat drought monitoring.

Regarding crop water stress monitoring, most of the
existing studies rely on multispectral and thermal cam-
eras.9,23,38 This is because crop water stress generally has
effect on spectral reflectance and crop temperature. How-
ever, little work has been done on RGB camera for crop
stress monitoring, which is the focus of this work. RGB
camera, in comparison with multispectral or thermal cam-
era, is easily accessible, much cheaper, with a high spatial
resolution and requires simple data preprocessing.39 With
fewer spectral bands in comparison to multispectral cam-
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Table 3. Performance comparisons for systems with various sets of features.

Approach Pixel-wise
(Spectral)

Pixel Square
(Spectral)

Pixel Square
(CI)

Pixel Square (Spec-
tral + CI)

Accuracy 82.8% 89.9% 92.6% 92.8%

Precision 78.3% 89.0% 91.5% 91.4%

Recall 69.0% 86.6% 90.9% 91.5%

F1 score 71.7% 87.7% 91.2% 91.5%

Computation high low low low

era, the advantage of high spatial resolution of RGB camera
is exploited in this work by integrating vegetation segmen-
tation and machine learning techniques.

In the developed drought mapping system, various
classical techniques are integrated including crop segmen-
tation, feature extraction, Bayesian optimization and SVM
classifier. In particular, the main novelty lies in spatial
grouping of pixels into feature units of pure vegetation pix-
els on a field crop. In comparison to conventional pixel-
wise classification,7,16 the developed area-wise classifica-
tion takes wheat spatial information (i.e., wheat pixels
within a wheat square is more likely to share the same
drought status) into account. As a result, the developed
system not only improves the classification performance in
terms of Precision, Recall, F1 score and Accuracy, but also
substantially reduces the computation load due to the sig-
nificantly reduced data volume. In particular, the accuracy
of the developed system with spectral intensities is 89.9%
with F1 score of 87.7%, which is much better than pixel-
wise classification with an accuracy of 82.8% and F1 score
of 71.7%.

This work also investigates how to improve the clas-
sification performance via feature engineering by generat-
ing a number of color indices from original R-G-B bands.
CI features obtain a better performance with (i.e. Accu-
racy of 92.6% and Recall of 90.9%) than original R-G-B
bands. This is because CI features with a higher dimension
can better represent data properties. In addition, the com-
bination of spectral and CI features can further improve
the classification performance (i.e. Accuracy of 92.8%) al-
though the improvement is marginal. This is because there
may be data redundancy when a large number of features
are generated.

To summarize, it can be concluded that remote sens-
ing RGB imagery of a UAV flying at a low altitude (e.g.
20m) can provide valuable information for wheat drought
assessment. The main reason is that wheat grew in dry soil
condition will reflect different RGB reflectance from the
wheat grew in wet soil condition and the differences can be
effectively learnt by machine learning algorithms.

Although the results are very positive, there are still
certain limitations in the experiment design and room for
further improvement. For example, the dataset in this work
is relatively small (e.g. single UAV flight), datasets of dif-
ferent growing stages (or even different crops) are more
desirable. Then new algorithms should be developed to ac-
count for the temporal and crop information. Deep learning
algorithms12 are alternatives to conventional classifier (e.g.

SVM) so that deep and non-local features automatically
learnt from big data can be effectively leveraged. In addi-
tion, to perform a more reliable and robust crop drought
mapping (especially for early drought monitoring), spectral
bands such as NIR and Short-wavelength for water absorp-
tion should be further considered. To this end, we are plan-
ning to adopt the state-of-the-art multispectral RedEdge
camera (MicaSense, Seattle, USA; with five wide-bands in-
cluding Blue, Green, Red, RedEdge and NIR),8 based on
which the cost Vs accuracy trade-off between RGB and
multispectral approaches can be analysed. In applying mul-
tispectral camera, performing image calibration would also
be a vital step to make the results more consistent under
various conditions, since camera parameter setting and en-
vironmental variations would affect image digital number.
Experiments should be further designed so that wheat un-
der different levels of drought stress is available so that a
regression analysis can be conducted between spectral in-
dices and soil water content.

6. Conclusions

In this work, a machine learning based crop drought map-
ping system is developed by integrating crop segmentation,
feature engineering, Bayesian optimization and classifica-
tion algorithms. To validate the effectiveness of the devel-
oped system, an experiment has been carefully designed to
generate wheat plots under two different levels of soil mois-
ture condition. High-resolution UAV remote sensing RGB
imageries are collected by using DJI-S1000 with Sony NEX-
7 camera along with corresponding ground water ratio data
for different wheat plots. Comparative cross-validation ex-
perimental results show that

(i) Pixel-wise classification is not suitable for wheat
drought mapping due to the non-uniformity of
spectral information of wheat leaf and high com-
putation load.

(ii) The developed system, relying on pixel square for
vegetation feature extraction, outperforms pixel-
wise classification in terms of Accuracy, Precision,
Recall, F1 score and computation time.

(iii) The accuracy of the developed crop drought stress
mapping system with spectral intensities is 89.9%,
and the accuracy can be further improved to 92.8%
by fusing both spectral and colour indices features.
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