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Abstract 15 

Visual perception of English letters involves different underlying brain processes 

including brain activity alteration in multiple frequency bands. However, shape 

analogous letters elicit brain activities which are not obviously distinct and it is 

therefore difficult to differentiate those activities. In order to address discriminative 

feasibility and classification performance of the perception of shape-analogous letters, 20 

we performed an experiment in where EEG signals were obtained from 20 subjects 

while they were perceiving shape analogous letters (i.e., ‘p’, ‘q’, ‘b’, and ‘d’). Spectral 

power densities from five typical frequency bands (i.e., delta, theta, alpha, beta and 

gamma) were extracted as features, which were then classified by either individual 

widely-used classifiers, namely k-Nearest Neighbors (kNN), Support Vector Machine 25 

(SVM), Linear Discriminant Analysis (LDA), Random Forest (RF) and AdaBoost 

(ADA), or an ensemble of some of them. The F-score was employed to select most 

discriminative features so that the dimension of features was reduced. The results 

showed that the RF achieved the highest accuracy of 74.1% in the case of multi-class 

classification. In the case of binary classification, the best performance (Accuracy 30 

86.39%) was achieved by the RF classifier in terms of average accuracy across all 

possible pairs of the letters.  In addition, we employed decision fusion strategy to exert 

complementary strengths of different classifiers. The results demonstrated that the 



performance was elevated from 74.10% to 76.63% for the multi-class classification and 

from 86.39% to 88.08% for the binary class classification. 35 

Keywords: Electroencephalography (EEG), Shape analogous letters, F-score, Support 

Vector Machine, Random Forest, k-Nearest Neighbors, Linear Discriminant Analysis, 

AdaBoost, Multi-Class Classification, Decision Level Fusion. 

 

1. Introduction 40 

Perception of letters has been crucial to Brain Computer Interface (BCI) based 

systems for augmenting communication in patients suffering from Parkinson’s disease, 

Amyotrophic Lateral Sclerosis (ALS), or other similar motor disabilities [1].  

Previous studies of letter recognition usually adopted an oddball paradigm of a 6×6 

speller [2]. In such design, the matrix comprising of English alphabets and symbols 45 

flickers row wise and column wise. When the highlighted row and column matched the 

desired alphabet which the subjects wanted to select, an evoked P300 potential is 

elicited in the brain, which can be detected in EEG signals. This evoked potential is 

time-locked to the display of flickering alphabet and not related to the visual perception 

of letter shape. Up to now, such perception of letter shape has been less studied and the 50 

classification of shape analogous letters should be further addressed.  

Several brain imaging modalities like Electroencephalography (EEG)[2], 

Magnetoencephalography (MEG)[3, 4], and functional Magnetic Resonance Imaging 

(fMRI)[5], have been used to study the underlying characteristics representing 

differential perception-induced activities between different English letters. In the case 55 

of word perception, it has been observed that the frontal, parietal and the occipito-

temporal regions in both hemispheres play a major role. Studies based on fMRI have 

shown that letter perception was relevant to a couple of brain regions that interact with 

each other to form a network [6-8].  Such brain regions are mostly located in the 

occipital regions and left temporal regions [9].  Moreover, repeated presentation of a 60 

letter leads to activation bilaterally in the posterior region of the brain [8]. The 

perception of different letter involves a broad spatial frequency spectrum. For shape 

analogues letters, this spatial spectrum is almost similar and hence discriminating the 



brain perception to these letters becomes a difficult and challenging task [10, 11]. Inter-

letter similarities based on Euclidean distance shows that four English letters; ‘p’, ‘q’, 65 

‘b’ and ‘d’, are the most similar shape analogues letters among all the 26 English letters 

[6, 12]. These four alphabets fall under a particular visual group consisting of a circle 

and line. Hence, these four letters were chosen for analysis in this study. 

Numerous classifiers have been employed in machine learning studies to 

differentiate two or more groups or classes. Support Vector Machine (SVM) has been 70 

used in numerous fields like text categorization [13], remote sensing [14], neurological 

disorders [15], power fault diagnosis [16] and also in P300 speller [17-21]. An ensemble 

of SVM classifiers yielded high performance in P300 speller study [10, 22]. Linear 

Discriminant Analysis (LDA) has been used in P300 speller studies [23, 24]. A 

comparative study of different classifiers like SVM and LDA is done in [20] and 75 

reported that LDA gives better performance. K-Nearest Neighbor (kNN) has also been 

used in P300 studies and has yielded satisfactory results[25]. AdaBoost is also a popular 

classifier and has also been used in P300 speller studies [26, 27]. Random Forest (RF) 

classifier has also been widely used in P300 speller based study [28]. Therefore, based 

on the literature (mostly related to P300 speller), in this study, we have selected kNN, 80 

SVM, LDA, RF and ADA, to classify the perception of shape analogous letters. 

In this study, we investigated the perception of four shape analogous letter using 

power spectral based features using Power Spectral Density (PSD) from five different 

frequency bands. Using F-score based feature selection, we selected the relevant 

features distinguishing the perception of the shape analogous letters. Multi-class 85 

classification was then performed based on the selected features to classify the four 

analogous English letters. To obtain a deeper insight into the classification performance 

for different letter pairs, we also performed binary class classification for all 6 possible 

pairwise combination  

  90 



of the four letters. Finally, we also employed the decision level fusion strategy to 

further enhance the classifier performance for both multi-class and binary class 

classification. A comparative study of five classifiers is also shown in this paper using 

the post-hoc Tukey-Kramer test to identify the best classifier for both multi-class and 

binary class classification. 95 

2. Methodology 

The flowchart of the methodology adopted in this study is shown in Figure 1. The 

acquired EEG data were pre-processed and power spectral features from the five 

frequency bands, namely delta, theta, alpha, beta and gamma, were extracted. F-score 

based feature reduction technique was employed to select the relevant features with 100 

high discriminative power. The multi-class and binary classifications were then 

performed using five widely-used classifiers. Further, to enhance the classifier 

Figure 1.  Flowchart of the methodology used in this study. The acquired data is pre-processed and then 

power spectral features has been extracted. After dimensionality reduction classifiers were trained. The 

trained classifiers were then used to perform multi-class and binary class classifications 



performance, we employed a classifier combination using a decision-based fusion 

manner. 

2.1 Experiment Protocol 105 

A total of 20 subjects (12 females and 8 males; Mean Age: 23.1 and Standard 

Deviation: 3.1) recruited from the National University of Singapore participated in this 

study. The subjects were asked to refrain from any consumption of alcohol or caffeine 

substances for one day before the experiment. The subjects were also instructed to avoid 

any kinds of strenuous exercise before the experiment. A minimum 7 hours of sleep 110 

was instructed to the subjects for the night prior to the experiment. All subjects had a 

normal or corrected-to-normal vision. All subjects provided informed consent and were 

monetarily compensated for their participation. The study was approved by the 

Institutional Review Board of the National University of Singapore in accordance with 

the ethical standards of the 1964 Helsinki declaration and its later amendments.  115 

The whole experiment was divided into 2 sessions with an approximately 1-week 

gap between the sessions. The fours shape analogous letters: ‘p’, ‘q’, ‘b’ and ‘d’, were 

displayed to the subjects visually in a screen. The visual cues were presented for 0.2 

sec and then a fixation cross for 1.8 sec. Hence, the total time for each trial was 2 sec. 

In each session, a total of 120 trials were presented to the subjects. The trial sequences 120 

were randomized using optseq (http://surfer.nmr.mgh.harvard.edu/optseq). The 

stimulus was provided using Psychtoolbox in Matlab 2011a (Mathworks, USA). A 

detailed description of the experimental protocol can be found in [29].  

2.2 Data Acquisition 

Concurrent EEG-fMRI data acquisition was conducted at the Clinical Imaging 125 

Research Centre (CIRC) using a Siemens 3T Magnetom Prisma MRI scanner (Siemens, 

Erlangen, Germany) and an ANT amplifier with an MRI-compatible 64 channel 

Waveguard cap (Waveguard, ANT B. V., Netherlands). The fMRI data were not 

included in this paper. EEG signals were acquired at a 4KHz sampling rate using 64 



channels. The impedance was kept below 15 KΩ and the reference was the linked 130 

mastoids (M1 and M2). 

 

2.3 Pre-processing 

The pre-processing steps for this study have been customized to remove the common 

EEG artifacts as well as the gradient artifacts caused by a magnetic field [30].  Briefly, 135 

EEG signals were first up-sampled to 40 kHz to align the volumes of EEG and fMRI. 

To remove the MRI related artifacts Canonical Correlation Analysis (CCA) based 

method has been used [30]. The EEG signals were then down-sampled to 400Hz. The 

EEG data have then been segmented from the beginning of the visual cue to 1.5 seconds 

after the cue for each trial. A total of 240 trials were extracted (60 for each class). 140 

Movement and ocular artifacts were mitigated using Independent Component Analysis 

(ICA). 

2.4 Feature Extraction 

The filtered and epoched EEG signals were first transformed from the time domain 

to the frequency domain using fast Fourier transform. Next, the power for all the trials 145 

in each channel in 5 EEG frequency bands were extracted: delta (1–4 Hz), theta (4–8 

Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–40 Hz). A total of 62 x 5 = 310 

features for each epoch were extracted for classification. Dimensionality reduction was 

done using F-score. All features were first ranked based on F-score. Then a grid search 

was performed using 10% to 100% of all the features (10% step size) to obtain the 150 

optimum number of features that will yield the best performance. 



3. Classifiers 

In this study, we employed five widely used classifiers: Support Vector Machines 

(SVM) [31], k-Nearest Neighbors (kNN) [32, 33], Linear Discriminant Analysis (LDA) 

[34], AdaBoost-SAMME (ADA) [35] and Random Forest (RF)[36].   155 

3.1 k-Nearest Neighbor 

k-Nearest Neighbors (kNN) is a supervised classifier that works without a prior 

assumption about the distribution of the data. To classify an unknown data point, the 

kNN classifier calculates the distance of the data point with k nearest points and assigns 

the class based on majority [32, 37, 38]. In this study, we used the Minkowski distance 160 

to calculate the distance between the new data point and the k nearest points. 

3.2 Support Vector Machine 

Support Vector Machine (SVM) is a model-based learning algorithm where it 

implies a hyperplane to segregate the classes [31]. The hyperplane can be constructed 

using multiple kernel functions like linear, quadratic, polynomial and Radial Basis 165 

Function (RBF) [32, 39]. In this study, we have employed the RBF kernel as it yielded 

the best performance compared to the other kernel functions. If the data is not 

completely separable, a soft margin is inserted to increase the tolerance to 

misclassification and is denoted by parameter C. SVM is a binary classifier but can be 

extended for multi-class classification using one-versus-rest strategy, where prediction 170 

on testing datasets are based on the model built from training datasets. 

3.3 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) can be described as a classifier that optimizes 

the number of features that maximizes the ratio of the between-class variance to the 

within-class variance for all classes. It works on the assumption that each class has a 175 

Gaussian distribution [34, 40]. 



3.4 Random Forest 

Random Forest (RF) is an ensemble classifier. It uses a combination of Classification 

and Regression Trees or weak classifiers by using a subset of training data using a 

bagging approach. Hence, similar samples can be used multiple times during classifier 180 

training. The prediction of a new sample was done by taking the majority of votes in 

the ensemble of weak classifiers [41, 42].  

Let us consider M is the number of decision trees, x as the observations and C(x) as 

their class labels. For each decision tree, bootstrap samples X are drawn from the 

training data. A decision tree Tm is then built recursively by selecting the best division 185 

among m variables to obtain two sub-nodes until a leaf node is reached. Subsequently, 

the ensemble  {Tm}m
M  is given as an output. This process is iterated M number of 

times, which is equal to the number of decision trees. 

 

3.5 AdaBoost 190 

AdaBoost (ADA) is also an ensemble classifier using a boosting algorithm (unlike 

RF) that builds each weak classifier iteratively [35]. The classifier iteratively 

approximates the Bayes classifier. Initially, using an unweighted training sample, a 

classifier is built. Based on the error rate, the weights of the training data point are 

increased. These updated weights are used to build the second classifier. Using this 195 

process iteratively, the ensemble of classifiers is built. To extend from binary to multi-

class classification, the AdaBoost- Stagewise Additive Modeling using a  Multi-class 

Exponential loss function (ADA-SAMME) is used in this study [35]. 

Let us consider M as the number of decision trees, x as the data and C(x) as the class 

labels. For Adaboost, the observation weights are initialized using 200 

 

where i=1,2, N for each training sample, where each sample belongs to the class {𝑘 ∈

1,2, ⋯ 𝐾} Then an iterative process is run to optimize the decision tree and obtain the 

decision tree. In the iterative process, firstly, a decision tree Tm (x) is fitted with the 

, 
N

wi

1




training data using the weights wi. Then, the error is calculated using the following 205 

formula, 

𝑒𝑟𝑟𝑚 =
∑ 𝑤𝑖

𝑁
𝑖=1  · 𝐼𝐼 {𝑐𝑖 ≠𝑇𝑚(𝑥𝑖)}

∑ 𝑤𝑖
𝑁
𝑖=1

 , 

where ci is the class label of ith data. The parameter am is then evaluated using the 

formula 

𝑎𝑚 = 𝑙𝑜𝑔 (
1 − 𝑒𝑟𝑟𝑚

𝑒𝑟𝑟𝑚

) + 𝑙𝑜𝑔 (𝐾 − 1) 210 

The previously assigned weights are then updated and re-normalized to  

𝑤𝑖 ← 𝑤𝑖 · 𝑒𝑥𝑝 (𝑎𝑚 · 𝐼𝐼 {𝑐𝑖 ≠ 𝑇𝑚(𝑥𝑖)}), 𝑖 =  1, 2, ⋯ , 𝑁. 

This process is iterated to M number of times to obtain the trained classifier. 

3.6 Hyperparameter Optimization 

To optimize the classifier parameters and the number of features used to train the 215 

classifiers, we performed a grid-search for a wide range of the parameter values. The 

extracted features from the EEG signals were divided into 80% training and 20% testing 

datasets. The classifier parameter values and the percentage of the total number of 

features were selected one by one to evaluate the performance of the classifier using a 

5-fold cross-validation technique. For each fold, the training data is further divided into 220 

64% training data to train the model and the remaining 16% of the data for validation. 

The combination of the respective classifier parameter and the number of features, that 

yielded the highest performance, were selected for analysis. It should be noted that for 

RF, ADA, SVM and kNN there is one classifier parameter to be optimized, whereas, 

LDA has no parameter for optimization. Therefore, for LDA, only the number of features 225 

has been varied to obtain the optimum number of features. 

The number of features has been varied from 10% to 100% of all the features with a 

step size of 10%. In the case of ADA and RF, the number of decision trees was varied 

based on a percentage of the total number of features (310), i.e. from 10% to 100% with 

a step size of 10%. For instance, 10% of decision trees, shown in Figure 2, are 31 230 

decision trees (10% of the total number of 310). In other words, the number of decision 

trees is varied from 31 to 310 with a step size of 31. For SVM, log2 C parameter was 



varied from -5 to 17 with a step size of 2. For kNN, the value of k was varied from 1 to 

14 with a step size of 1.   

Figure 2. Heatmap of hyperparameters for (a) ADA; (b) KNN; (c) RF; (d) SVM; (e) LDA. 

The color bar for (a) to (d) indicates the average validation accuracy and the red dashed box 

indicates the optimal parameter combination for each figure. 



 Figure 2 shows the grid search results for all the five classifiers. It can be observed 235 

that ADA, RF and SVM, the classifier performance increases with the increase in the 

number of features. Therefore, the best performance was obtained using all the features. 

In the case of kNN, 70% of all the features gave the highest performance, followed by 

which the performance decreased. For ADA, 20% of the number of decision trees gave 

the best results and for RF, 90% of the decision trees gave the highest performance. In 240 

the case of kNN, there was no trend for the variation of the k parameter value. The best 

performance for kNN is obtained when k is three. In the case of SVM, the best 

performance is obtained for log2 C value of 13 (C=8192). In the case of LDA, the 

highest accuracy is obtained with all the features. These parameter values and the 

respective number of features that gave the best performance were used for the rest of 245 

the analysis in the paper. 

4. Results 

4.1 Multi-class classification 

Five-fold cross-validation was employed to assess classification performance. The 

trials were divided into training and testing sets. We used 5-fold cross-validation 250 

Figure 3.  Average classification accuracy across all the subjects for multi-class classification of 

the shape-analogues letter perception for the five classifiers.  



technique to split the data into training and testing sets. All five classifiers were trained 

using the training set, which was followed by testing the classifier using the testing set. 

The classification accuracy obtained from the testing dataset is reported in this study. 

The mean classification accuracies averaging across all subjects for all classifiers are 

shown in Figure 3.  255 

The RF achieved a classification accuracy of 74.1%, which is the best among the 

classifiers. The SVM performed a comparable performance (72.8%) compared to the 

RF. ADA classifier performance the worst with a classification accuracy of 49.1%.  

Statistical analysis using one-way ANOVA test shows that there is a significant 

difference between the performance of the classifiers (p<0.001). To gain insight into 260 

the classifier performance, we performed the Post-hoc Tukey-Kramer test (as shown in 

Figure 4). It can be observed that both SVM and RF performed significantly better than 

the LDA and ADA (p<0.001). However, there is no significant difference between the 

RF and SVM. No significant difference was observed between the LDA and ADA. For 

kNN, a significant difference is observed with RF (p<0.05) but not with SVM.  265 

 SVM kNN LDA ADA RF 

SVM      

kNN      

LDA *** *    

ADA *** ***    

RF  * *** ***  

  

4.2 Binary class classification 

For binary classification, we evaluated all the possible pairs of the shape-analogues 

letters (totally six pairs: ‘p’ vs ‘q’, ‘p’ vs ‘b’, ‘p’ vs ‘d’, ‘q’ vs ‘b’, ‘q’ vs ‘d’ and ‘b’ vs 

‘d’). The average classification accuracies for each binary classification are shown in 270 

Figure 5. It can be observed that for binary classification LDA, ADA and RF give better 

performance than SVM and kNN. One-way ANOVA test shows that there is a 

significant difference between the performance of the classifiers (p<0.001), for all the 

*    

Figure 4. Post-hoc Tukey-Kramer test between all the classifier performances. The dark blue cells 
indicate significance with p<0.001 and the light blue cells indicate significance with p<0.05. The grey 

cells indicate no significance was observed. 

 

 

 

***    p<0.05 p<0.001 p>0.05 



6 cases. RF gives the highest classification accuracy for all the 6 classification cases 

(average classification accuracy=86.41%).  Post-hoc test shows that RF gives a 275 

significantly high performance (p<0.01) from kNN for all the cases. Compared to SVM, 

RF gives a significantly higher performance (p<0.05) for all the cases except ‘p’ vs ‘d’. 

No significant difference was obtained between LDA, ADA and RF classifier. The 

worst performance is obtained by kNN classifier (average classification accuracy is 

64.04%). 280 

4.3 Decision Level Fusion based Classification 

To enhance the performance of the classification, we employed the decision level 

fusion strategy. Among the five classifiers, three best classifiers were included for 

decision fusion (LDA, ADA and RF). The weighted consensus voting was utilized to 

fuse the outputs of individual classifiers[43]. A weight corresponding to the respective 285 

classification accuracy was assigned to each classifier. This manner was adopted for 

decision level fusion of both binary and multi-class classification conditions. Table 1 

shows the classification performance for both binary and multi-class classification 

obtained using decision level fusion strategy. Using bootstrapping technique, we 

Figure 5. Average classification accuracy across all the subjects for each binary class classification of 

the shape-analogues letter perception for the five classifiers.  



obtained the 95% confidence interval based on 5000 times of resampling. The lower and 290 

upper values of the interval are shown in Table 1 along with the mean accuracies. For 

comparison, the accuracy obtained using RF classifier (since RF achieved the highest 

classification accuracy for both binary and multi-class classification cases) is also 

shown.  

 

Random Forest 
(Mean 

[Confidence 
Interval]) (in %) 

With Fusion 
Strategy (Mean 

[Confidence 
Interval]) (in %) 

Multi-class Classification 74.10 [69 79] 76.63 [73 80] 

   

Binary 
Classification 

p vs q 88.72 [82 94] 90.56 [86 95] 

p vs b 81.80 [73 89] 86.17 [81 91 

p vs d 81.71 [72 89] 86.28 [78 91] 

q vs b 87.94 [79 94] 88.10 [82 93] 

q vs d 87.83 [82 93] 86.33 [77 93] 

b vs d 90.38 [83 95] 91.08 [87 94] 

 295 

It can be observed from Table 1, for multi-class classification, decision level fusion 

strategy has improved the classification performance to 76.63% from 74.10%. For binary 

class classification, decision level fusion has been observed to improve the classification 

performance from 85.6% to 87.49% (average classification accuracy across all the 6 

cases). Except for ‘q’ vs ‘d’, the classification accuracy has improved using the decision 300 

level fusion strategy. However, we did not observe a statistically significant difference 

in performance between the RF and the fusion-based classifier for both binary and multi-

class classification cases. One possible explanation could be that individual classifiers 

made quite similar judgements in sample classification.  

Table 1. Average accuracy [confidence interval] for multi class and binary class classification using 

Random Forest classifier and decision level fusion strategy. The confidence interval is calculated   

 

 



4.4 Common Selected Electrodes and Frequency Bands 305 

We further analyzed the common electrodes and frequency bands that were selected 

after the F-score based feature reduction step. This will allow us to understand the 

specific electrodes and the frequency bands, that contributes to the classification 

performance.  

To identify the consistent electrode and frequency band, we selected the top 20% of 310 

the features after the F-score based feature reduction step. From these top 20 of the 

features, we calculated the number of times it has been common across the subjects. If a 

particular feature or band is common across more than 7 subjects, we selected it as a 

consistent electrode or frequency band. Figure 6 shows the consistent electrodes (Figure 

6(a)) and frequency bands (Figure 6(b)). It can be observed that the selected consistent 315 

electrodes are mainly located in the pre-frontal, lateral and parieto-occipital areas. In 

terms of the frequency band, the most consistent band is gamma, followed by theta and 

alpha.  

 



5. Discussions 320 

In this study, we performed both multi-class and binary class classification. The 

results clearly show that RF achieved the best performance in both the binary and multi-

class classification compared to the other classifiers. Therefore, RF proves to be a 

reliable classifier that excels in both multiple and binary class classifications. A similar 

conclusion was drawn in other machine learning studies. For example, a detailed 325 

comparative study of classifiers using 121 datasets showed that RF classifier performs 

the best [44]. Similar results were observed in an image recognition study where RF 

performed better than SVM [45]. Other studies in protein-localization pattern 

classification [46] and motor fault diagnosis [47] also observed similar results. The 

ensemble of classifiers comprising the RF classifier can be represented as a nonlinear 330 

function which allows better learning of the data[48]. Further, the bagging technique of 

the RF classifier helps to reduce variance and overfitting of the data. These properties 

enable the RF classifier to perform better than other classifiers. 

Letter perception depends on mapping the letters in a spatial frequency spectrum and 

then matching this template when that letter reappears. Even if the letter is combined 335 

with noises, the human brain performs low-pass and high-pass filtering to extract the 

spatial spectrum template matching with a particular letter [6, 49]. Such perception 

Figure 6. a) Common channels (marked with green) that are common for more than 7 subjects are shown. 

The common electrodes can be observed in the pre-frontal, frontal, left central and parietal regions.  

     b) The frequency band that is common across the number of subjects is shown. The gamma band 

is most common across the subjects (10 subjects) followed by theta and alpha band. 



activates different brain regions namely the fusiform gyrus, pre-central areas, inferior 

frontal gyrus located at the central and frontal brain regions. These activations are 

reflected in the spectral power of the EEG signals. In our study, such differences in brain 340 

activation were also observed for shape analogous English letters. Different activation 

levels in the brain allow segregating the spatial spectrum of the respective letters in the 

brain. The classification performance also was similar for all the letter pairs in case of 

binary classification. Therefore, our results clearly indicate that EEG spectral power 

features prove to be an effective feature to distinguish the perception of shape-analogous 345 

letters. 

We observed that the classification performance enhanced for decision level fusion 

strategy compared to the best individual classifier performance (RF in our case) for 

both binary and multi-class classifications. Due to different properties of different 

classifiers, the misclassification trials vary from one classifier to another. For instance,  350 

although the RF gave high performance, the trials misclassified by RF might be 

correctly classified by other classifiers. Decision-based fusion strategy provides the 

solution as it takes the advantages of different classifiers and improves the classification 

accuracy through the majority voting [50-53]. 

Apart from the decision fusion strategy, fundamental properties of the classifiers 355 

(like the optimization of the classifiers), also play a major role in the performance. For 

instance, multiple trees in RF classifier enhances the performance and decreases the 

chance of over-fitting of the data [41, 54]. A similar observation has been made in our 

study. In Figure 2(c), we can observe that for RF, the classification performance 

increases with the increase in the number of trees. Such observations were not made for 360 

kNN classifier. In the case of kNN, the testing samples are assigned based on the nearest 

neighbours. Hence, increasing the number of nearest neighbours will increase the 

chance to be misguided by outliers. 

The common electrodes that were selected after the feature reduction step across the 

subjects are mainly located in the pre-frontal, lateral and parieto-occipital areas. The 365 

visual complexity of the letters is processed in the occipital regions [4]. In addition to 

the visual areas, the sensorimotor areas, mainly in the left hemisphere, has been 



previously reported to be engaged in letter perception [8]. This left sensorimotor region 

is also useful to discriminate the perception of shape analogous letters in our study. The 

visual processing capability of the parietal region is a well-known fact and has been 370 

found to be involved in letter perception [55, 56]. For letter identification, it has been 

found that stored motor program of a letter in the brain which determines the trace of 

writing the alphabet, is important for letter perception [8, 57]. In case of similar letters, 

we can also infer that beyond the shape and visual features of the letter, the subjects 

rely on the stored motor pattern in the brain that is required to write that specific letter.  375 

The gamma frequency band was found to contribute most to the accuracy followed 

by theta and alpha bands. Gamma band has been observed in retrieving and forming 

object representation [58, 59]. Both gamma and alpha bands have been observed to be 

dominant during letter perception [60]. The activity in the motor cortex for letter 

perception is observed in the alpha band [61]. The theta band has been observed to 380 

govern several cognitive processes [62]. Theta band oscillations are also responsible 

for visual perception [63]. Theta stimulation in the right parietal has shown to enhance 

global visual processing in the brain [64]. These three bands also show high 

discriminating power across the subjects.      

6. Conclusions 385 

In this study, we aimed at classifying the perception of shape analogues English 

letters based on EEG signals. Our approach provides an alternative method for 

classifying letter perception in the brain using features based on actual brain activation 

during the letter perception compared to the traditional P300 speller, where the flickering 

of the desired letter in a speller is identified. Furthermore, in contrast to the large and 390 

distinct P300 signal, the focus of this study is on the more challenging task of classifying 

the perception of four lowercase English letters with highly similar visual characteristics 

(consisting of a line and circle). We used spectral power features from all the five 

frequency bands and then F-score to select relevant features for classification. We 

obtained 74.1% classification accuracy across all the subjects. In the case of binary 395 

classification, we obtained 85.60% classification accuracy (averaged across all the six 



classification problems). Based on post-hoc Tukey-Kramer test, RF gave the best 

performance for both the binary and multi-class classification. Using the decision level 

fusion strategy, we further enhanced the classification performance to obtain 76.63% 

and 87.49% for multi-class and binary classifications, respectively. These results show 400 

that using power spectral features, the perception of shape-analogous English letters can 

be classified using the RF classifier. In future, we aim to investigate the real-time 

classification of perception of similar shape English letters. 
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