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Dear Editor,
The control of nonholonomic systems, like those
describing mobile robots, has attracted consider-
able research attention in recent decades due to
its theoretical and practical importance. Brock-
ett’s theorem states that nonholonomic systems
cannot be stabilized to an equilibrium point by
any source of smooth or continuous state feedback.
Additionally, the required accuracy of measuring
the system states is often unachievable in practice.
These factors introduce considerable difficulty to
the problem of controlling mobile robot and other
nonholonomic systems.

Several studies have addressed the output
feedback stabilization of uncertain nonholonomic
systems[1-3]. However, these studies require the
first subsystem of the considered system to be
linear and known, and the virtual control direc-
tions also need to be known. Some researchers
have attempted apply output feedback control
when the first subsystem has uncertain parame-
ters. One example uses a constructive observer
design to control a mobile robot model[1]. Re-
cently, a novel adaptive output feedback controller
for global stabilization of nonholonomic systems in
chained form was provided for a system with un-
known virtual control directions[4]. The effects of
non-vanishing external disturbances were not con-

sidered in the design of these controllers, although
most practical systems are affected by significant
external disturbances.

Several methods are available for solving the dis-
turbance problem[5-7]. In general, to reject the
external disturbances, the extended state observer
(ESO) [5] is used in active disturbance rejection
control. Additionally, the disturbance observer-
based control technique provides a promising ap-
proach to handle the system disturbances[6]. For
the mobile robot systems, good results for stabi-
lization and tracking control have been reported
when the nonholonomic constraints are precisely
known[8]. However, the presence of external dis-
turbances often introduces dynamic constraints
because of parameter uncertainties. To the best
of our knowledge, very few reports have proposed
output feedback for use in mobile robot systems
or other nonholonomic systems that require anti-
interference control.

Motivated by the above observations, this let-
ter proposes a robust output feedback controller
for use in mobile robot systems that suffer para-
metric uncertainties, deviation in the measured
angles, and non-vanishing external disturbances.
The proposed controller is designed to handle two
challenges in a nonholonomic system: the un-
known system parameters and the presence of non-
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vanishing external disturbance. First, these chal-
lenges are overcome by generalizing the distur-
bance as an extended state. Second, an ESO is
constructed with the gain from an off-line time-
varying Riccati matrix differential equation to es-
timate the unmeasurable states. These two strate-
gies yield a controller that applies time-varying
output feedback. The proposed robust controller
drives the system states to the origin asymptoti-
cally.

In the presence of parametric uncertainties and
non-vanishing external disturbances, the dynamics
of a unicycle-type mobile robot with angle mea-
surement errors can be described as

ẋc = p∗1vcos(θ + ε) + c0xc,

ẏc = p∗1vsin(θ + ε),

θ̇ = p∗2ω + d(t) (1)

where c0xc is the horizontal drift, p∗1 and p∗2 are
bounded unknown positive parameters determined
by the radius of the rear wheels, d(t) is the time-
varying external disturbance, and ε is a small
bias orientation. This letter assumes that d(t)
can be decomposed into d(t) = d1(t)d2(t), where
d1(t) �= 0 is known and bounded, and d2(t) is un-
known but ḋ2(t) ∈ l2, i.e., d(t) is a time-varying
disturbance that is relatively fast. The control
problem is steering the robot toward the origin
while not knowing the values of unknown param-
eters, the angle measurement error, or the direc-
tion and magnitude of an external disturbance. In-
deed, if the external interference, angle deviation,
and nonlinear drift are ignored, and all state vari-
ables are measurable, the model (1) is a classical
nonholonomic system. The second-order approxi-
mation of system (1) near θ = 0 is given by[1] as
follows

ẋl = p∗1

(
1− ε2

2

)
v + c0xl,

ẏl = p∗1(θlv + εv),

θ̇l = p∗2ω + d(t). (2)

If the coordinates are transformed as follows,
x0 = xl, x1 = yl, x2 = (θl + ε), u = ω, u0 = v,
the system can be rewritten as

ẋ0 = p∗1

(
1− ε2

2

)
u0 + c0x0,

ẋ1 = p∗1x2u0,

ẋ2 = p∗2u+ d(t). (3)

Evidently, this system is a third-order nonholo-
nomic system in chained form, and if the perturba-
tion ε is unknown, the state x2 is not measurable.

To handle the unknown parameters p∗1 and c0,
we can take u0 for the first subsystem of (3) as

u̇0 = −k1sgn(g0)x0 − k2u0, (4)

where g0 = p∗1
(
1− ε2/2

)
and the gains ki’s are

assigned such that the equation

s2 + (k2 − c0)s+ k1|g0| − k2c0 = 0, (5)

has two negative real roots. As g0 and c0 are
bounded, values of k1 and k2 that satisfy equa-
tion (5) are determined easily (if c0 is negative, we
can simply choose k1 = 0 and k2 > 0, i.e., neither
the sign of g0 nor the bounds of g0 and c0 need to
be known) The aforementioned design guarantees
that x0 and u0 are convergent to zero exponen-
tially and u̇0/u0 is measurable and bounded for
small perturbations ε.

To construct the Kalman filter observer for sub-
system x, we introduce another transformation
ζ1 = (1/p∗1p

∗
2)x1, ζ2 = (1/p∗2)x2 and find that

ζ̇1 = ζ2u0,

ζ̇2 = u+ (1/p∗2)d(t). (6)

Using the change of variables for a nonholo-
nomic system z1 = ζ1/u0, z2 = ζ2 and further
letting z3 = d̄(t) = (1/p∗2)d2(t), we have the fol-
lowing dynamics

ż1 = − u̇0

u0
z1 + z2,

ż2 = u+ d1(t)z3,

ż3 = ˙̄d(t) = h(t). (7)

Notbly zi is not available in the design of con-
troller because the parameters p∗1 and p∗2 are un-
known. Conversely, p∗1p

∗
2z1 is an available signal

in the controller design. Let z = [z1, z2, z3]
T , the

dynamics can be rewritten into the following com-
pact form

ż = A(t)z + C2u+ C3h(t), (8)

where A = [−u̇0/u0, 1, 0; 0, 0, d1(t); 0, 0, 0], C2 =
[0, 1, 0]T , C3 = [0, 0, 1]T . The extended state
Kalman observer can be given as follows[9]

˙̂z = A(t)ẑ + C2u− PC1C
T
1 ẑ, (9)

where the observer gain P (t) is updated by the fol-
lowing time-varying Riccati differential equation{

Ṗ = PAT (t) +A(t)P − PC1C
T
1 P + I,

P (0) = P0 > 0, C1 = [1, 0, 0]T .
(10)

This Riccati differential equation is solvable.
The observation error variables are defined as ei =
zi − ẑi, i = 1, 2, 3, so the error dynamics satisfies

ė =
(
A(t)− PC1C

T
1

)
e+ PC1z1 + C3h(t). (11)
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Let σ1 = ẑ2 − α1, we get

ż1 = − u̇0

u0
z1 + z2

− u̇0

u0
z1 + e2 + σ1 + α1, (12)

˙̂z2 = d1(t)ẑ3 − p21(t)ẑ2 + u, (13)

˙̂z3 = −p31(t)ẑ3, (14)

where p21(t) and p31(t) are the corresponding ele-
ments of the matrix P (t).

Although the term z1 is unknown, the term
p∗1p

∗
2z1 is measurable. Applying the backstepping

method to the equations (12)–(14), we determined
that there exist proper (large) positive constants
K, L1 and L2 such that the controller defined by

α1 = −Kp∗1p
∗
2z1, (15)

u = −d1(t)ẑ3 + p21(t)ẑ2 +Kp∗1p
∗
2

u̇0

u0
z1

−L1sgn(σ1)K|p∗1p∗2z1| − L2σ1. (16)

can drive the states z1, e, σ1 to zero and z3 and
ẑ3 are bounded. Furthermore, it follows that the
states ζ1, ζ2 and x1, x2 converge to zero. This con-
vergence also ensures that the (xl, yl, θl) converges
to the equilibrium (0, 0,−ε).

Theorem 1. For system (2), if the
non-vanishing disturbance d(t) satisfies d(t) =
d1(t)d2(t), where d1(t) �= 0 is known and bounded,
d2(t) is unknown, but ḋ2(t) ∈ l2, the unknown pa-
rameters p∗1 and p∗2 are positive and bounded, and
the controller is set as (15)–(16), then all signals in
the closed-loop system are bounded and (xl, yl, θl)
converges to the equilibrium (0, 0,−ε).

Numerical results. We assumer that p∗i ∈
[0.9, 1], ε ∈ [0, 1] and d(t) = 0.5e−t − 1. To il-
lustrate the response of the closed-loop system,
Figure 1 shows the results of a simulation with
the system and design parameters set to p∗i =
1, ε = 0.1, c0 = −0.2, k1 = 0, k2 = 1,
K = 3, L1 = 4, L2 = 5 and the initial condi-
tions as (xl(0), yl(0), θl(0) + ε)=(1, 1,−1), ẑ(0) =
[0,−1, 0]T , P (0) = diag{0.1, 0.2, 0.3},

Notably the non-vanishing external disturbance
d(t) = 0.5e−t − 1 will make exiting control meth-
ods inapplicable to this mobile robot system even
if all state variables are measurable. However,
the aforementioned controller is effective with our
combination of the ESO and dynamic observer
techniques. The simulation results show the ne-
cessity of considering non-vanishing external dis-
turbances in the control design as well as the ef-
fectiveness of the proposed method.
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Figure 1 Responses of the closed-loop system.
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