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Abstract6

Crop growth model plays a paramount role in smart farming management, which not only provides quantitative7

information on crop development but also evaluates various management strategies. A reliable model is desirable but8

challenging due to the presence of unknown and uncertain parameters; therefore, crop model calibration is significant9

to achieve its potentials. This work is focused on the calibration of AquaCrop model by leveraging advanced Bayesian10

inference algorithms and UAV multi-spectral images at field scales. In particular, aerial images with high spatial-11

temporal resolutions are first applied to obtain Canopy Cover (CC) value by using machine learning based classification.12

The CC is then assimilated into AquaCrop model and uncertain parameters could be inferred by Markov Chain Monte13

Carlo (MCMC). Both simulation and experimental validation are performed. The experimental aerial images of winter14

wheat at Yangling district from Oct/2017 to June/2018 are applied to validate the proposed method against the15

conventional optimisation based approach by Simulated Annealing (SA). 100 Monte Carlo simulations show that the16

root mean squared error (RMSE) of Bayesian approach yields a smaller parameter estimation error than optimisation17

approach. While the experimental results show that: (i) a good wheat/background classification result is obtained for18

the accurate calculation of CC; (ii) the predicted CC values by Bayesian approach are consistent with measurements19

by 4-fold cross validation, where the RMSE is 0.0271 smaller than optimisation approach (0.0514); (iii) in addition to20

parameter estimation, their distribution information is also obtained in the developed Bayesian approach, reflecting21

the prediction confidence. It is believed that the Bayesian model calibration, although is developed for AquaCrop22

model, can find a wide range of applications to various simulation models in agriculture and forestry.23

Keywords: Unmanned Aerial Vehicle (UAV); Multispectral image; Machine learning; Model calibration; Bayesian24

inference25

1. Introduction26

Agricultural crop states are paramount for smart farming management and food security. A timely and accurate27

estimation of canopy states has become an effective approach for crop monitoring, irrigation decision-making and28

yield management [1, 2]. In this regard, a reliable crop model is desirable for crop state estimation. However, due29

to the presence of unknown and uncertain parameters in spatial distribution of soil properties and crop parameters,30

the prediction performance of crop model degrades significantly if model parameters are chosen inappropriately [3].31
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Consequently, model parameters need to be calibrated before its potentials being realised. To this end, the integration32

of crop models and remote sensing data are drawing ever-increasing research interest [4]. It is noted that the accuracy33

of remote sensing data plays an important role in enhancing the predictive power of the calibrated model. Therefore,34

remote sensing data of high spatial/temporal resolutions is desirable, and so UAV remote sensing is preferable in this35

regard.36

Crop model, quantitatively simulating crop physiological development, is defined by mathematical formulations37

driven by carbon, water, and light [4, 5]. Various crop growth models are developed for various semantic applications38

in the literature [6] such as World Food Studies (WOFOST), Crop Estimation through Resource and Environment39

Synthesis-Wheat (CERES-Wheat), Decision Support System for Agro-technology Transfer-Cropping System Model40

(DSSAT), APSIM, STICS, CropSyst and AquaCrop model. In particular, AquaCrop model [7], a water-driven crop41

model, possesses a number of fine properties over others in terms of simplicity, robustness and accurateness. Therefore,42

this model is drawing increasing attention in precision agriculture applications such as crop monitoring, irrigation43

management and yield prediction [8, 9].44

In terms of remote sensing data, different sensing platforms equipped with different sensors of various spa-45

tial/spectral resolutions are available in the literature such as satellite/manned-aircraft based [10] and Unmanned46

Aerial Vehicles (UAV) based ones [11]. Satellite/manned-aircraft remote sensing, although is suitable for large-scale47

applications, is usually constrained by its poor spatial resolution in farm-scale applications. UAV remote sensing, how-48

ever, is of low-cost, with a high resolution and good flexibility, and therefore has become an important complement49

to conventional remote sensing. It has been extensively applied to smart agriculture at field scales such as stress (e.g.50

disease, weed, drought) monitoring and crop parameter estimation [12, 13, 14].51

In crop model calibration, the measurements are usually chosen as the easily-accessible dynamic states such as52

Leaf Area Index (LAI) in WOFOST [15], leaf nitrogen accumulation in WheatGrowth model [16], biomass and CC53

in AquaCrop [17]. As a key crop growth parameter, CC denotes the canopy percentage, which is defined as the54

fraction between plant foliage projection to horizontal surface and total ground area [18]. CC calculation, therefore,55

could be formulated as an image segmentation problem, where the pixels are classified into two classes including56

wheat and non-wheat. The proportion of wheat pixels in a given area can be treated as CC value. The commonly57

used approaches for CC calculation are threshold based and machine learning based approaches [19]. Threshold58

approach relies on a threshold of particular band or index [11]. This approach is relatively simple, however, is sensitive59

to environmental variations [20]. Machine learning approach instead relies on labelled data to segment the images60

without the requirement of a threshold. This approach usually results in better performance although at the expense61

of a relatively high computation/labelling workload [19]. Considering that computation cost is not a concern for offline62

crop model calibration, machine learning based approach is adopted in this work due to its better performance.63

The emerging model calibration methods integrating crop models and remote sensing data have become an effective64
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approach for estimating crop parameters and simulating crop dynamics. The dominant approach in the literature is65

optimization based model calibration [4]. In this approach, various optimisation algorithms are drawn to calibrate the66

model parameters by minimising the fitness (error) function, which is defined by the discrepancy between measurement67

data and predicted output by the model [4]. For example, particle swarm optimization (PSO) is adopted in [1] to68

calibrate AquaCrop model by using historical remote sensing data, based on which biomass and final yield are predicted69

before harvest. Moreover, other optimisation algorithms have also been employed such as simplex search algorithm,70

Least Squares Method (LSM), Genetic Algorithm (GA), Shuffled Complex Evolution (SCE-UA) [21, 22, 23]. The71

accuracy of SCE-UA is shown to be better than others, however, these algorithms may still easily get stuck in a local72

minima due to the complexity of the optimisation problem at hand. In addition, only a point estimate is returned in73

optimization approaches with no confidence information.74

Different from optimization approaches, Bayesian approach can infer the posterior distribution of uncertain param-75

eters based on available information. The main idea of Bayesian calibration is to derive the posterior distribution of76

model parameters of interest by integrating the prior information and measurement information by Bayesian rule. The77

literature on Bayesian calibration for agricultural applications is sparse compared against optimization approaches.78

Still natural history model and forest model are calibrated in [24, 25] respectively, where the uncertain parameters79

are estimated by applying Markov Chain Monte Carlo (MCMC) algorithm. However, this approach has received little80

attention in the community of smart farming, which is the main aim of this study.81

Winter wheat is one main crop in China (north China in particular), and therefore improving crop model simulation82

accuracy is significant for addressing the challenges in smart farming such as dynamic states prediction, irrigation83

management and yield prediction prior to harvest. Previous studies are mainly focused on optimisation approaches84

by using satellite or ground sensing data. In this approach, only point estimate of model parameters is available,85

where the confidence of the estimate is missing. However, very little literature information is available on model86

parameter estimation by Bayesian approach, particularly by assimilating UAV multispectral imagery at field scales.87

Consequently, the aim of this study is to calibrate AquaCrop model by assimilating UAV multi-spectral aerial imagery88

using Bayesian calibration. The developed approach is compared against the conventional optimisation based approach89

(e.g. simulated annealing in particular), where both Monte Carlo (MC) simulation and experimental verification are90

conducted. The main contributions of this work are summarized:91

(1) State-of-the-art UAV multi-spectral image by RedEdge camera and DJI S1000 UAV are drawn to work out the92

key measurement variable (CC) of AquaCrop model by machine learning classification;93

(2) Bayesian inference is drawn to integrate the AquaCrop model and remote sensing measurements so that the94

posterior distribution (instead of point estimate) of AquaCrop model parameters is obtained;95

(3) Both Monte Carlo simulation and experimental validation are performed to verify the developed Bayesian cali-96

bration against conventional optimization based approach, where a promising result is obtained in term of model97
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parameter estimation and CC prediction.98

2. Materials99

In this section, materials related to the experimental work in this study are introduced, which mainly consist of100

the experiment site for winter wheat and UAV-camera system for multi-spectral image acquisition.101

2.1. Experiment fields102

The experiment was conducted in Caoxinzhuang experiment field (latitude: 34o306′N , longitude: 108o090′E, 499m103

a.s.l.), which belongs to Northwest A&F University located in Yangling city, Shannxi Province, China (see Fig 1 for104

the location). The soil property in this study is loessal soil with organic content of 8.0%–15.0%. The climate in the105

experimental region is characterized by semi-humid and semi-arid with a mean annual temperature, precipitation of106

12.9oC, 635mm (especially from June to September), respectively.

latitude: 34°306´N, 
longitude: 108°090´E, 

499m a.s.l.

Figure 1: Geographic location of the experimental field for winter wheat.

107

In this study, one cultivars named Xiaoyan 22 developed by Northwest A&F university was selected and planted108

at a line spacing of 16cm with a rate of 30 g seeds/m2 from 5/October/2017 to early June, 2018. Local standard109

practise was implemented for field management, in addition, twice irrigation was carried out on 10/December/2017110

and 13/March/2018 with no fertilizer. The meteorological data (one key input information of the AquaCrop model)111

can be downloaded from National Meteorological Information Center (http://data.cma.cn) and the basic soil data are112

also available on national Earth system Science Data Sharing Infrastructure (http://www.geodata.cn).113

2.2. Multispectral aerial image114

The area of the field is 5m by 10m and was investigated from 11/December/2017 to 23/May/2018, where eight115

UAV surveys were conducted to collect the aerial images. In this study, a five-band multi-spectral camera named116

RedEdge (MicaSense Company, Seattle, USA) is equipped on the commercial DJI Spreading Wings S1000 Octocopter117
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(DJI Company, Shenzhen, China) (see Fig 2). RedEdge camera outperforms conventional RGB camera in that:118

(1) RedEdge camera possesses extra Rededge and NIR bands, providing extra spectral information for vegetation119

classification; (2) calibration panel is adopted to calibrate the multispectral images, as a result, it is more robust120

against environmental (illumination) variations. The specifications of the UAV is referred to [26] and the weight,121

dimensions, image resolution of RedEdge camera are 135g, 5.9cm× 4.1cm× 3.0cm and 1280× 960 pixels, respectively.122

Figure 2: DJI S1000 with RedEdge Camera

In addition, RedEdge camera is fixed on a gimbal to attenuate the adverse effects of wind, so that high-quality123

images can be captured during the survey. The spectral information of RedEdge camera is displayed in Table 1. Multi-124

spectral images were obtained on winter wheat key developmental stages including tillering stage (11/December/2017125

and 28/December/2017), green-up stage (23/March/2018), jointing stage (01/April/2018 and 17/April/2018), anthe-126

sis stage (07/May/2018) and grain filling stage (15/May/2018 and 23/May/2018), respectively [27]. Each UAV aerial127

image is with the necessary information for camera calibration and image stitching. An image of a reflectance cali-128

bration panel was taken (at about 1m height) before and after each flight and used in the process of image calibration129

to account for the side effects of environmental variations. In addition, commercial Pix4Dmapper software of version130

4.2.27 is adopted to generate calibrated and georeferenced spectral reflectance data for CC calculation. The detailed131

process is omitted and can be referred to Section 2.3 of [11]132

Table 1: Spectral information of the RedEdge camera.

Band No. Name Center Wavelength Bandwidth Panel reflectance

1 Blue 475nm 20nm 0.57

2 Green 560nm 20nm 0.57

3 Red 668nm 10nm 0.56

4 NIR 840nm 40nm 0.51

5 RedEdge 717nm 10nm 0.55
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3. Methodologies133

In this section, the methodologies in this study are presented including CC calculation, wheat crop model and134

Bayesian calibration approach.135

3.1. CC calculation136

The calculation of CC is first discussed. In this study, UAV remote sensing data (e.g. five-band multispectral137

image) is preferred due to its high spatial/spectral resolutions. The overall process is displayed in Fig 3, where each138

element is detailed in the following subsections.

UAV 

imageries

Feature

determination

Random forest 

classifier

Classification 

Results

Data 

labelling

CC 

value

Figure 3: Overall framework for the canopy cover calculation.

139

3.1.1. Data labelling and spectral analysis140

In this study, CC calculation is formulated as a wheat/non-wheat two-class classification problem so that wheat141

pixel proportion can be calculated for the region of interest. One specific image acquired on 11/December/2017 is142

used as an illustration example. It is well known that supervised classification relies on labelled data for its training,143

which include wheat and non-wheat pixels in this study. In this work, wheat/non-wheat pixels are directly labelled144

for the five-band multispectral images in Matlab environment, where a sample image is displayed in Fig 4.

non-wheat
wheat
unlabel

Figure 4: Original (left) and labelled (right) winter wheat on 11/Dec/2017

145

The spectral characteristics of the wheat/non-wheat pixels are also analysed, where the mean spectral reflectance146

values are shown in Fig 5. It can been seen that the green peak phenomenon is observed for wheat (green) crop where147

the value of Green band is higher than that of Blue and Red bands. In addition, wheat pixels also have a higher NIR148
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reflectance value than non-wheat pixels. The spectral differences provides important information for discriminating149

wheat pixels from non-wheat pixels. Considering that there are only five spectral bands in the multispectral images,150

all available bands are used as the features for the classification task in Section 3.1.2. If a large number of (redundant)151

features are available, feature selection approaches in [28] can be drawn to reduce the computation load while preserving152

the performance.

Blue Green Red RedEdge NIR
Bands
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0.2

0.3

R
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Wheat
Non-Wheat

Figure 5: Average spectral reflectance value for two classes over five bands.

153

3.1.2. Image classification154

Given labelled data in Section 3.1.1, a classifier is then required to perform the classification task so that new155

aerial images can be automatically classified for CC calculation. A number of classifiers can achieve this task such156

as Support Vector Machines (SVMs), neural network, nearest neighbour [10]. In this study, random forest classifier157

is employed due to its high efficiency and accuracy, where the hyper-parameters are further automatically tuned by158

Bayesian optimization [11]. The detailed algorithm is omitted, which is referred to [11, 29].159

wheat

non-wheat

Figure 6: Classification map by the random forest classifier.

In this work, 70% and 30% of the labelled pixels are for training and testing respectively, where the classification160

accuracy is calculated on testing dataset. The overall classification accuracy for the example image is 99%. The161

trained model is then applied to the original image, where the classification map is shown in Fig 6. Then CC value162
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can be calculated by the formula in Eq 1.163

CC = wp/(wp+ nwp). (1)

where wp and nwp denote the number of wheat and non-wheat pixels in the region of interest. Repeating the process,164

the CC measurement values with classification accuracy over time are displayed in Table 2.165

Table 2: Classification accuracy and canopy cover values over time

Acquisition Date Overall Accuracy (%) CC Measurement Value

11/12/2017 99 0.5896

28/12/2017 99.2 0.7182

23/03/2018 99.5 0.8983

01/04/2018 99.3 0.9319

17/04/2018 99.6 0.9225

07/05/2018 99.2 0.9124

15/05/2018 98.8 0.8726

23/05/2018 99.1 0.8155

3.2. Bayesian calibration for AquaCrop model166

This section further discusses crop growth model and calibration method. The overall framework of the developed167

Bayesian calibration for AquaCrop model is shown in Fig 7, which include AquaCrop function, Markov Chain Monte168

Carlo (MCMC) method and result analysis. In this work, the CC measurement in Section 3.1 is chosen as observation169

variable. Different elements of the proposed framework are detailed in the following sections.

AquaCrop-OS 

model

Sensitive 

parameters: 𝜽

Metrological data

Soil data

Crop data

Management data

MCMC method

Machine 

learning 

based CC

Posterior distribution of 

estimated parameters

Statistical 

analysis

Data preparation

Main Process

Results Analysis

Figure 7: Framework of the proposed Bayesian calibration approach for AquaCrop model.

170
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3.2.1. AquaCrop-OS model171

AquaCrop crop growth model is developed in [7], which makes a good balance between model complexity and172

model accuracy. It is a water balance based crop model simulating the interactions between weather, soil and crop173

growth. In particular, the CC determines the water transpiration amount at expansion, ageing, conductance and174

senescence stage, thus affecting the biomass production [30]. The crop’s daily aboveground biomass is generated by175

normalised crop water productivity (WP ∗) from AquaCrop model. Biomass yield was determined by WP ∗ and the176

ratio of crop transpiration (ETi) and reference evapotranspiration (ET0i) via Eq 2, and grain yield (Y ) is obtained by177

multiplying the harvest index (HI) by the biomass (Bi) as in Eq 3.178

Bi = WP ∗ ×
N∑
i=1

ETi
ET0i

, (2)

179

Y = Bi ×HI, (3)

where WP ∗ is the normalised crop water productivity in g/m2; ETi is daily crop transpiration in mm; ET0i is the180

daily reference evapotranspiration in mm; Bi is the cumulative biomass at ith day (ton/ha); HI is the harvest index;181

and Y is grain yield (ton/ha) at time i.182

To facilitate the model application, an open-sourced version (named AquaCrop-OS model) was later developed in183

Matlab environment[8]. This open-sourced model can be easily integrated with other approaches for various applica-184

tions [9]. From a mathematics perspective, the dynamic system of AquaCrop model is a Markov process, where the185

future status at t+1 is only conditional on the current status at t rather than the past states [31]. Therefore, the186

model could be simplified into Eq 4.187

Xt+1 = F (Xt, θ),

Yt = G(Xt) + ξt,with ξt ∼ N(0, σ)
(4)

where F (.) represents the crop model operator and X presents the canopy states (e.g. biomass, canopy cover, root188

depth) on each simulated date. G(.) denotes the measurement model with measurement noise ξ being with zero mean189

and a proper covariance σ.190

3.2.2. Bayesian calibration method191

Bayesian estimation theory: the goal of Bayesian estimation is to update the probability distribution of the192

sensitive parameters by integrating observation and prior [25]. Different from optimisation approach which derives193

parameter estimation by minimizing the predefined objective function, Bayesian calibration derives the parameter194

posterior distribution. [32]. In particular, the posterior distribution P (θ|Y ) is proportional to the prior parameter195

distribution P (θ) times the measurement likelihood function P (Y |θ), which is given by196

P (θ|Y ) ∝ P (θ)× P (Y |θ),
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where Y is the observational data and θ represents the parameters to be estimated. To simplify the problem, the197

likelihood function is defined as the error between observations and simulated model outputs (see Eq 5). More details198

is given in Section 3.3.199

P (Y |θ) = P (E = Y − F (θ)) (5)

where F (.) denotes the function of crop model conditional on parameter θ, E means the error.200

201

Markov Chain Monte Carlo (MCMC): The MCMC process can effectively approximate the posterior distri-202

bution function (PDF). The fundamental principle of Markov Chain is that the current sample value (at time t) is203

based on the past sample (at time t−1), where determines whether the candidate is accepted or not with a probability.204

The Monte Carlo (MC) sampling method is implemented to accurately evaluate the posterior PDF for the parameters205

θ. The main purpose of MCMC is to generate a Markov Chain with a stable distribution of the target distribution.206

This method can gather a series of samples at random walk generating a Markov Chain for the goal of parameter207

distribution. Finally, one coverage chain with accepted parameters value will be achieved at an equilibrium status.208

Several sampling methods have been proposed to accept or reject new states, the most popular one is Metropolis209

Hastings (MH) sampling method [24, 25, 33].210

211

Delaying Rejection Adaptive Metropolis (DRAM): To increase MH sampling performance, two variants212

of MH algorithm named delaying rejection (DR) and adaptive metropolis (AM) were proposed. DR is capable of213

modifying the standard MH algorithm to improve the estimation efficiency as this method employs considerable given214

proposals and keep the reversibility in different stages [34]. In AM method, the covariance matrix of the Gaussian215

proposal distribution is adjusted during the operation using the past chain. It can be demonstrated that the ergodicity216

properties of the resulted samples still exist. AM is good at creating a Gaussian proposal distribution from the current217

point in MCMC by computing the covariance matrix of the chain. The illustration of DRAM is given in Algorithm218

1, where sd is a parameter that only relies on the state space dimension d where equilibrium is defined and ε is a219

constant bigger than zero. Id denotes the d dimensional identify matrix. t0 denotes the initial non-adaptation time220

and C0 is defined by our prior of the proposal covariance [34]. The combination of DR and AM can increase the221

candidate acceptance probability and effectively improve the efficiency reaching to Markov Chain equilibrium. The222

proof of DRAM realization is referred to [34, 35].223
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Algorithm 1: DRAM Algorithm

1 Initialization: Randomly select the initial parameters θ0 for a chain length ofM based on a symmetric transition

kernel.

2 Iteration: i = 1

3 Sampling:

for i = 0 to M -1

Construct Gaussian proposal

proposal mean = current θ

proposal covariance:

if i < i0, Ct = C0

else

Ct = sdCov(θ0,θ1,.......θi−1)+sdεId

Randomly select the first stage proposal candidate parameter θ∗

Sample u ∼ U [0,1]

If u < α = min { 1, P (θ∗)P (y|θ∗)
P (θi−1)P (y|θi−1) }

θi = θ∗

otherwise

Construct the second stage proposal θ∗∗

Sample u ∼ U [0,1]

If u < α = min { 1, P (θ∗)P (y|θ∗)
P (θi−1)P (y|θi−1) }

θi = θ∗∗

otherwise

θi = θi−1

i = i+1

4 Return to step 2
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3.3. Model calibration implementation224

DRAM method is implemented to obtain the crop parameter distribution by using remotely sensed data and225

AquaCrop model in both theoretical and experimental way. The error distribution is assumed to Gaussian with zero226

mean and a proper variance, thereby the likelihood function in this study is formulated as227

p(Y |θ) =

N∏
i=1

1√
2πσ2

exp

{
(yi − ŷi(xk, θ))2

2σ2

}
, (6)

where N is the total observation number and the yi − ŷi(xk, θ) is the error between the measurement of dynamic228

states yi and modelled states value by employing the crop model operator F (.). The variance (σ2) can be predefined229

or estimated along with model parameters [35].230

4. Systematic validation231

In this section, different model validation approaches including Monte Carlo simulation and real-world experiments232

are conducted to assess the performance of the developed Bayesian calibration against the conventional optimization233

based approach. In particular, in MC simulation the parameters to be calibrated are used to assess the performance;234

while in real-world experiment, the measurable canopy cover is adopted to assess the performance.235

4.1. Monte Carlo simulation verification236

Numerical Monte Carlo simulations are firstly conducted to evaluate the parameter estimation performance. Fol-237

lowing the exiting literature [17, 36, 37], variance-based Extended Fourier Amplitude Sensitivity Test (EFAST) is238

adopted to identify the sensitive parameters of AquaCrop model under different stresses. Then a ten-dimensional239

parameter vector, highly sensitive to CC and biomass, are selected240

θ = [sti, pse, wp, cgc, ccx,mat, eme, kcb, cdc, pop]T . (7)

The parameter definition and prior interval information are shown in Table 3. The default parameter values in241

AquaCrop-OS model are set to be truth.242

To represent the noisy observation, the groundtruth CC data is added with a Gaussian measurement noise with243

zero mean and a variance of 0.00052. The time period of simulation is consistent with the experiment period, which244

is from 05/October/2017 to 05/June/2018 and the data acquisition interval is 10 days. The simulation iteration is set245

as 5000, besides, 100 Monte Carlo experiments with random initial value and random noises is performed to test the246

robustness of both Bayesian and optimisation based calibration methods.247
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Table 3: Sensitive parameters with prior information for Monte Carlo simulation.

Parameters Prior Information Meaning

sti (10,20) Minimum growing degree days (degC/day) required for full biomass production

pse (0.5,1) Upper soil water depletion threshold for water stress effects on canopy senescence

wp (30,40) Water productivity normalized for ET0 and C02 (g/m2)

cgc (0.005,0.02) Canopy growth coefficient

ccx (0.82,0.98) Maximum canopy cover fraction

mat (1000,2500) Growing degree days from sowing to maturity

eme (60,100) Growing degree days from sowing to emergence

kcb (0.77,1.43) Crop coefficient when canopy growth is complete but prior to senescence

cdc (0,0.02) Canopy decline coefficient

pop (65000,85000) Number of plants per hectare

4.2. Experimental evaluation248

In addition to MC simulation for parameter estimation, experimental validation is further considered. In this249

case, the time-series CC values learnt from multi-spectral image are used to estimate the uncertain parameters of250

AquaCrop-OS model. In order to test the capability of the developed algorithm, the prior information in Table 3 is251

reduced by increasing the uncertain parameter ranges as shown in Table 4. The iteration is also increased to 6000 to252

guarantee the convergence, this is because different from MC simulation fewer number of measurements are available253

in real-world experiments. The remaining settings of MCMC algorithm are the same as MC simulation.254

Table 4: Sensitive parameters with prior information for experimental evaluation.

Parameters Prior Information Parameters Prior information

sti (3,20) mat (1500,3250)

pse (0.35,1.85) eme (30,250)

wp (5,40) kcb (0.5,2.8)

cgc (0.004,0.02) cdc (0,0.06)

ccx (0.82,0.99) pop (65000,95000)

5. Results255

This section presents the comparative results. For MC simulation, parameter estimation performance is quantified256

in terms of mean estimation and root mean squared error (RMSE). While in experimental evaluation, RMSE is firstly257

calculated for CC estimation, and the estimated parameter posterior distributions are also shown.258
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5.1. Results of MC simulation259

Monte Carlo analysis with random initial values and various noises is first performed for both Bayesian and260

optimization approaches. For each MC simulation of the Bayesian approach, a Markov chain is constructed by using261

MCMC, based on which the parameter estimation is calculated as the mean of the chain. Then mean parameter262

estimation of the 100 MC simulations are calculated to asses the algorithm stability. On this basis, the estimation263

error is defined by the following formula.264

Eopt =
|popt − pt|

pt
∗ 100%, Ebay =

|pbay − pt|
pt

∗ 100%

where Eopt and Ebay denote the parameter estimation errors by optimisation and Bayesian methods, respectively. popt265

and pbay represent the average calibrated parameters with pt being the ground truth. The parameter estimations and266

their error percentages are shown in Table 5.267

Table 5: Mean of the estimated parameters and errors for 100 MC runs against ground truth via various methods

Parameters Bayesian (error%) Optimisation (error%) Groundtruth

sti 12.7658(6.38) 14.8735(23.9) 12

pse 0.7066(2.41) 0.7172 (3.94) 0.69

wp 34.3915(2.05) 35.6457 (5.77) 33.7

cgc 0.0126 (0.82) 0.0125 (0.05) 0.0125

ccx 0.9625(0.26) 0.9539(0.63) 0.96

mat 1736 (2.14) 1845 (8.54) 1700

eme 82.0408 (2.55) 84.0569 (5.07) 80

kcb 1.0154 (3.29) 1.0649 (1.42) 1.05

cdc 0.0102 (1.90) 0.0100 (0.07) 0.01

pop 75239 (0.3185) 75933(1.240) 7500

It follows from Table 5 that in term of parameter estimation Bayesian approach outperforms optimization approach268

for all parameters except cgc, kcb, and cdc. The performance is further quantified by using RMSE for the 100 MC runs,269

where the results are displayed in Table 6. Similarly, it can be seen that Bayesian approach outperforms optimization270

approach for all parameter estimation in term of RMSE except the parameter eme.271

14



Table 6: RMSE of 100 Monte Carlo simulations via different methods

Parameters Bayesian Optimisation Parameters Bayesian Optimisation

sti 0.9814 4.0684 mat 60.3164 411.1170

pse 0.0309 0.1361 eme 67.2370 65.1902

wp 0.9066 3.6541 kcb 0.0513 0.1942

cgc 0.0001 0.0004 cdc 0.0002 0.0031

ccx 0.0038 0.0317 pop 1745 6075

5.2. Results of experimental validation272

In this section, experimental validation is conducted to further evaluate the performance. In particular, the key273

state CC is adopted to validate the calibration accuracy. In order to avoid the problem of overfitting, k-fold cross274

validation is adopted for the time-series data. The 8 experimental CC values are divided into k=4 disjoint folds of275

equal size, where k-1 folds are for training and the remaining 1-fold is for testing [38]. Considering the particular276

characteristics of the calibration problem in this study that observation data of the key stages should be preserved for277

calibration, the dataset is divided into the particular k folds as shown in Fig 8. For example, when k = 1 is chosen278

for validation, the remaining ones are then for calibration so that the parameters can be estimated along with the279

predicted CC values. This process is repeated for all four calibration/validation combinations.

K = 1

Temporal CC data

K = 2 K = 3 K = 4

X axis

Time Line

Figure 8: Conceptual explanation of K-fold cross validation datasets.

280

5.2.1. Markov Chain and Parameter Estimation281

An example (k = 2, 3, 4 folds for calibration and k = 1 fold for validation) is illustrated in this part. In Bayesian282

parameter estimation, the aim is to estimate the posterior probability distribution of parameters given observations283

rather than a point estimate. By eliminating the burn-time (10% of the samples) in Markov Chain, it can be seen284

from Fig 9 that all Markov chains converge to the corresponding equilibrium. Therefore, the posterior probability285

density distribution of each parameters is reliable.286

From the Markov Chain samples, the posterior distribution for each parameter can be represented by a histogram.287

The normalized probability density of each estimated parameter with original prior information (red line) is displayed288
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Figure 10: Normalized probability distribution of each parameter using k = 2, 3, 4 folds data for calibration.

in Fig 10. It can be seen that the uniform prior distribution has been transformed into posterior distribution by289

integrating the measurements into the AquaCrop crop model. From the distributions, parameter estimate (e.g. mean,290

mode) can be derived and more importantly the confidence of parameter estimation can also be quantified. The291

confidence rule is that the less spread the distribution is, the more reliable the parameter estimation is. However, the292

optimization based approach can only provide a point estimate without confidence information (see, Fig 11).293

It can also be seen from Fig 10 that pse and pop are with a large variance. There exist several possible reasons.294

First, it may be due to the lack of calibration data in the sensitive growth stages. Secondly, the number of observations295

may be not enough for the estimate of 10 dimensional parameter vector. The estimated parameters for both Bayesian296

(e.g. mean value) and optimization (e.g. point estimate) methods are calculated and shown in Table 7, which are297

used for CC prediction in Section 5.2.2.298
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Figure 11: Simulated Annealing based parameter point estimate.

Table 7: Estimated parameters by both Bayesian and optimization methods

Parameters Bayesian Optimisation Parameters Bayesian Optimisation

sti 17.3898 19.7103 mat 2096 2518

pse 1.1206 0.8055 eme 123.3688 171.1030

wp 13.7527 11.8404 kcb 1.2902 2.7902

cgc 0.0117 0.0135 cdc 0.0055 0.0059

ccx 0.9221 0.9267 pop 79900 65117

5.2.2. CC estimation299

The CC estimation over the whole growth season by using both Bayesian and SA optimization approaches is300

conducted, where the results under different datasets for calibration are displayed in Fig 12. In particular, the301

coloured lines denote the estimated CC curve for each day.302

It can be seen that both approaches can obtain a relatively smooth CC estimate. However, in comparison to303

SA optimization approach, Bayesian approach obtains a more reliable results when different calibration datasets are304

adopted. However, when k = 1, 2, 4 folds data are chosen for calibration, optimization based approach leads to a poor305

CC estimate, which substantially deviates from groundtruth data. The main reason is that optimization approach306

aims at minimizing the error between measurement data and model output data, which will result in poor performance307

(e.g. local minima due to the complex optimization problem, poor generalization due to the problem of overfitting)308

when inappropriate observations are chosen. While if no sufficient dataset is available for Bayesian approach, one can309

easily observe this by inspecting the parameter estimation confidence (e.g. the spread of the parameter distribution).310
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Figure 12: Canopy cover estimation of Bayesian method(left) and optimisation method(right) using different calibration k dataset

Compared to field observations, it can also be seen that Bayesian calibration, building a predictive model by fusing field311

observations and crop growth model, can also provide CC prediction for days when field observation are unavailable.312

5.2.3. Regression analysis313
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Figure 13: Comparison of estimated CC and validation CC in 2017-2018 year.

The CC estimation against ground truth CC data for different approaches under different datasets for calibration314

is also displayed in Fig 13. X-axis and y-axis represent the ground truth validation data and the estimated CC values;315

the red and blue points represent the estimated CC by using MCMC Bayesian and SA optimization approaches. It316

can be visually seen that the results of Bayesian approach are closer to y = x line than SA optimization approach.317

The RMSE values are also summarised for two approaches in Table 8. It can also be seen that MCMC Bayesian318

approach results in a smaller RMSE value (in comparison with validation CC) than SA optimization approach.319
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Table 8: Summary of optimisation and Bayesian based calibration: regression results

Method Sensor Dynamic States RMSE

Bayesian RedEdge Camera Canopy Cover 0.0271

Optimisation RedEdge Camera Canopy Cover 0.0514

6. Conclusion and future work320

This study introduces a Bayesian framework to assimilate UAV remote sensing images into AquaCrop model so321

that a more reliable crop model is obtained for crop monitoring. High spatial/spectral multispectral images are first322

used to calculate the canopy cover by using supervised classification algorithms. Then the remote sensing information323

is accommodated by Markov Chain Monte Carlo so that the posterior parameter distributions are obtained. Then a324

systematic validation is conducted, which include Monte Carlo simulations to assess parameter estimation performance325

and experimental 4-fold cross validation to evaluate canopy cover prediction performance. The Bayesian approach is326

also compared against the widely used optimization based approach. Comparative results show that both approaches327

are capable of estimating sensitive parameters and predicting canopy cover with a high accuracy. However, only point328

estimate is obtained by optimization approach, while Bayesian approach can return parameter posterior distribution329

reflecting estimation confidence. Bayesian approach also obtains a smaller root mean square error for parameter330

estimation and canopy cover prediction than optimization based approach. In addition, Bayesian approach is less331

sensitive to the selection of data points for calibration. Although the results are very promising, there is also room for332

further improvement, which are summarized as below.333

(1) This work is mainly focused on algorithm development and its initial validation by using a small field, algorithm334

validation by large fields will be more convincing;335

(2) More advanced Bayesian inference algorithms can be developed to further improve the performance (e.g. reducing336

the computation load).337
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