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Abstract 

Nanotechnology is an emerging field in science and engineering, which presents 

significant impacts on the economy, society and the environment. The nanomaterials’ 

(NMs) production, use, and disposal is inevitably leading to their release into the 

environment where there are uncertainties about its fate, behaviour, and toxicity.  Recent 

works have demonstrated that NMs can penetrate, translocate, and accumulate in plants. 

However, studies about the effects of the NMs on plants are still limited because most 

investigations are carried out in the initial stage of plant development.  The present study 

aimed to evaluate and characterize the photochemical efficiency of photosystem II (PSII) 

of broad bean (Vicia faba) leaves when subjected to silver nanoparticles (AgNPs) with 



diameters of 20, 51, and 73 nm as well as to micrometer-size Ag particles (AgBulk). The 

AgNPs were characterized by transmission electron microscopy and dynamic light 

scattering. The analyses were performed by injecting the leaves with 100 mg L-1 aqueous 

solution of Ag and measuring the chlorophyll fluorescence imaging, gas exchange, 

thermal imaging, and reactive oxygen species (ROS) production. In addition, silver ion 

(Ag+) release from Ag particles was determined by dialysis. The results revealed that 

AgNPs induce a decrease in the photochemical efficiency of photosystem II (PSII) and 

an increase in the non-photochemical quenching. The data also revealed that AgNPs 

affected the stomatal conductance (gs) and CO2 assimilation. Further, AgNPs induced an 

overproduction of ROS in Vicia faba leaves. Finally, all observed effects were particle 

diameter-dependent, increasing with the reduction of AgNPs diameter and revealing that 

AgBulk caused only a small or no changes on plants. In summary, the results point out 

that AgNPs may negatively affect the photosynthesis process when accumulated in the 

leaves, and that the NPs themselves were mainly responsible since negligible Ag+ release 

was detected. 
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1. Introduction 

The use of nanomaterials (NMs) in commercial products has raised concerns about 

the impacts on the environment and human health as its commercialization preceded a 

regulatory framework dealing with their use, storage, and disposal (Lai et al., 2018). NMs 

behave differently to their respective bulk materials with macro- or microscopic 
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dimensions (Hulla et al., 2015). For example, when in nanometric dimensions, the 

available effective area of the material is increased so that the interactions with molecules 

changes (Bouwmeester et al., 2009; Dhar et al., 2015). Besides, materials in the 

nanometric scale show distinct effects of conductivity, reactivity and optical sensitivity 

as compared to ones in the bulk material (Nel et al., 2015). Based on that, NMs can 

generate adverse biological effects on living cells. Recent studies have proved the toxicity 

of nanoparticles (NPs) such as fullerene, carbon nanotubes, metal, and metal oxides in 

human cells, bacteria, and rodents (Sun et al., 2013; Yang et al., 2013). For instance, silver 

nanoparticles (AgNPs) induce adverse effects on ammonia oxidizing bacteria, 

compromising its nitrification ability (Beddow et al., 2014). They also can cause 

structural chromosomal aberrations in so far as the AgNPs reach the cell nucleus (Patlolla 

et al., 2012). It is estimated that more than 20 tons of AgNPs are produced annually only 

in the United States whereas global production is around 300 tons per year (Starnes et al., 

2015).  Antibacterial properties are one of the most appreciated characteristics of  AgNPs, 

so they are widely used in the manufacture of pharmaceuticals and personal care products 

(Starnes et al. 2015). 

In this scenario, the understanding of the interactions between NPs and plants is 

fundamental because plants are the basis of food chains and essential in all ecosystems. 

However the NPs impact on plants depends on their composition, concentration, size, and 

physicochemical properties as well as on the plant species. NPs can penetrate living plant 

tissues and migrate to different regions of the plant.  They may also be absorbed by plant 

roots and transported to the aerial part through the vascular system (Feichtmeier et al., 

2015). Studies have shown that NPs can inhibit plant growth and germination (Pradhan 

et al., 2015; Singh and Kumar, 2015). Additionally, NPs can be also transferred through 

the food chain causing a trophic magnification (Judy et al., 2011). 



Despite the research already reported involving  the interaction between NPs and 

plants, most of the studies have investigated the NPs effects at an early stage of plant 

development so that questions remain unanswered such the role of NP size (i.e., the role 

of the total surface area) as a phytotoxic parameter affecting the photosynthetic activity 

of higher plants. It is very important to understand how NP size alters the photosynthesis 

process such as evaluating the possible changes on CO2 assimilation rate, and 

photosystem II (PSII) efficiency for example. 

Chlorophyll fluorescence has been used as a precise and non-destructive technique 

for studying the photosynthetic efficiency, which provides an indicator of perturbation in 

plant metabolism and a good indicator of stress (Baker 2008).  

Higher plants are sensitive to the harmful potential of pollutants in which 

Vicia faba, Allium cepa, Tradescantia, Zea mays,  Nicotiana tabacum, Hordeum vulgare, 

and Crepis capillaris are among the most used plant species as bioindicators (Leme and 

Marin-Morales, 2009). Here, Vicia faba plants were chosen for investigating the 

physiological changes induced by AgNPs with different diameters and bulk silver 

(AgBulk) at a later stage of plant growth. Thus, the present study reports the toxicity 

dependence of  AgBulk (micrometer-size particles) and AgNPs with three different 

diameters (20, 51, and 73 nm) when internalized in Vicia faba leaves  using a well-

established toxic nanoparticle concentration of 100 mg L-1 (Kumari et al., 2009; 

Scherer et al., 2019). 

2. Materials and Methods 

2.1 Silver nanoparticles  

PVP-coated AgNPs in aqueous solution (nanoComposix) with nominal 

diameters of 25, 50, and 75 nm were used. Silver microparticles (AgBulk) with 



diameters in the 5-8 μm range were also employed (Sigma Aldrich). The AgBulk 

aqueous solution was prepared by dispersing the powder in distilled water using 

ultrasonic agitation for 30 min. The concentration of the AgNPs and AgBulk was 

set at 100 mg L-1 in all experiments. 

 

2.2 AgNPs Characterization 

The characterization of the AgNPs was performed by transmission electron 

microscopy (TEM) with energy dispersive spectroscopy (EDS) using an FEI Tecnai G2 

microscope operating at 200 kV. AgNPs solutions were shaken by ultrasound during 10 

min to ensure the particles are dispersed and well mixed. A drop of this solution was 

deposited on a carbon film using a copper grid for microscopy and dried for 24 h before 

measurements. Analyses of morphology and particles diameter distribution were carried 

out using ImageJ software. 

The aqueous solutions containing the AgNPs with different diameters were also 

evaluated by dynamic light scattering (DLS) to obtain the hydrodynamic radius 

distribution and the polydispersity index (PDI). The DLS was performed in a Malvern 

ZetaSizer Nano ZS90 with a laser at 633 nm. The scattered light was monitored at 90 and 

173°. The measurements were performed in a glass cuvette with four polished faces and 

10-mm optical path. The AgNPs in aqueous solution were diluted in deionized water (3 

mg L-1) for these measurements (Bhattacharjee, 2016; Dorranian et al., 2013; Kass et al., 

2017). 

The study of the Ag+ ions released from the AgNPs in distilled water was 

performed, based on Besinis et al. 2014 (Besinis et al., 2014) with modifications. The 

experiments used dialysis tubing (Sigma-Aldrich) with molecular weight cut-off at 

12,000 Da (with an approximate exclusion diameter of 2.5 nm). 3 mL of AgNPs at 100 



mg L-1 filled the dialysis tubing; then, it was placed in a beaker containing 247 mL of 

distilled water, totaling 250 mL. The silver concentration in the filtrate solution was 

determined by collecting 25 mL of water from the beaker after 96 h and determining the 

Ag content in a Thermo iCAP 6300 Duo ICP OES (Thermo Fisher Scientific). The Ag+ 

concentration was determined considering the Ag content before ultrafiltration. 

 

2.3 Broad Bean Plants 

The Vicia faba seeds were sown in plastic pots containing a commercial substrate for 

horticulture and kept in a greenhouse with temperatures of 22/18 ºC day/night, humidity 

of 65/70% day/night, and a photoperiod of 12/12 h day/night with a luminous intensity of 

about 300 µmol.m-2.s-1 (Karuppanapandian et al., 2017). Experiments were performed on 

a minimum of 5 and a maximum of 10 plants per treatment conditional to the technique, 

providing a suitable statistic in the case of image analyses (Baker, 2008; Murchie and 

Lawson, 2013). 

In vivo analyses started 20 days after planting when the leaves to be analysed were 

completely expanded. The measurements were taken at zero time right before the solution 

injection (BI) in the second pair of leaves. All analyses were performed on the same 

leaves. The plants received the solution injection in the left leaf. The right leaf was kept 

as control, receiving the only an injection of distilled water, free of metallic particles. 

About 1.5 mL of solution was injected at the beginning of the central vein of each leaf. 

The solution was shaken in an ultrasonic bath for 5 min prior to injection into the plant. 

The measurements were performed daily (every 24 h) over a week until 168 h after the 

injection. It is worth pointing out that the nanoparticle injection process was chosen from 

others (pulverization, irrigation, etc), despite it being a non-natural way of how 



nanoparticles would enter leaves, because we aimed to investigate the direct relationship 

between photosynthetic efficiency and nanoparticle concentration inside leaves. 

 

2.4 Chlorophyll a Fluorescence Imaging 

Experiments to examine the influence of the AgNPs on the photosynthetic 

apparatus of in vivo plants were done in a Technologica CFImager, containing 1600 blue 

LEDs (470 nm), saturation pulse capacity of up to 6000 µmol m-2 s-1 and maximum 

continuous light intensity of 2000 µmol m-2 s-1. A progressive scanning CCD camera 

(AVT Stingray SXGA + 2/3”) was used to acquire the fluorescence images with a 

resolution of 696 x 519 pixels. This system is closed so that external brightness doesn’t 

affect the plant. Before the measurements, the plants were adapted to the dark for 30 min 

to ensure the opening of all reaction centers in the leaves. An optical filter selected the 

chlorophyll emission with a peak at 680 nm. The measurements were performed on the 

youngest fully expanded leaves. The protocol used to obtain the fluorescence kinetics was 

based on incident light intensity of 600 µmol m-2 s-1 and a long time (until 20 min) for 

light adaptation (Baker, 2008; Murchie and Lawson, 2013). 

 

2.5 Gas exchange analysis 

 

 CO2 assimilation rate (A) analysis was assessed as a function of the internal CO2 

concentration (Ci) known as an A/Ci curve using an Infra-red gas analyser (CIRAS–1 

system (PP Systems, USA).  An incident light intensity of 1060 μmol m-2 s-1 was used and 

the CO2 varied from 50 to 1800 μmol m-2 s-1. All A/Ci curves were measured and analysed 

at 25 oC and the maximum carboxylation of Rubisco (Vc,max) and regeneration of RuBP 

(Jmax) rates were determined from the A/Ci curve following the methods of  (Bernacchi 



et al., 2001; Mcmurtrie and Wang, 1992). A/Ci curves were collected from five plants for 

each treatment at 72 h after the solution injection. The equipment analysed a leaf area of 

2.5 cm2 ( 1.78 cm  diameter).  

Measurements of the stomatal conductance (gs) versus time were performed before 

injection and every 24 h after injection during a week until 168 h. The CO2 was set at 400 

μmol m-2 s-1 and the light intensity at 300 μmol m-2 s-1. These values are similar to those 

in which the plants were maintained during germination and growth. The plants were 

adapted to the environmental lighting 1 h prior analyses. All gas exchange measures were 

performed on the abaxial leaf surface as it has a higher stomatal density. 

2.6 Thermography 

Thermal images were recorded with an infrared thermal camera (E6 FLIR Systems) 

which had lenses with a field of view of 45º x 34º, resolution of 320 x 240 pixels, thermal 

sensitivity < 0.06 ºC, and maximum frequency of 9 Hz. The FLIR Tools software was 

used in the analysis of the thermal images. 

 

2.7 Microscopic Analysis of Leaves 

The microscopic studies of the broad bean leaves were made in an Olympus - BX60. 

The stomatal density was determined with a 10x lens. The images were collected by a 

CCD camera (Olympus) with the resolution of 2592 x 1944 pixels and handled using the 

TSView 7.1 software. 

Leaf impressions were taken on the abaxial leaf surfaces using polysiloxane based 

Xantopren Heraeus (WEYERS and JOHANSEN, 1985). Immediately prior, Xantopren 

was mixed with the universal activator for mold curing. Then, the mixture was applied to 

the abaxial leaf surface and left to dry for about 1 min. The mold was removed from the 



leaves with the assistance of tweezers. After removal, a quick-drying and transparent nail 

polish was deposited on the mold. The film was removed and placed on a glass slide for 

the microscopic analysis. As this is a non-destructive approach, it was possible to study 

the leaves for one week. Impression were obtained and the stomatal density was analysed 

at zero time (BI), 24, 96, and 168 h after the solution injection into the leaves. 

 

2.8 Reactive Oxygen Species Analysis 

The study of the reactive oxygen species in broad bean leaves was done using the 

fluorescent marker 2',7' Dichlorofluorescin diacetate (H2DCF-DA) (Sigma Aldrich). 

H2DCF-DA is a probe capable of permeabilizing cells, being cleaved by intracellular 

esterases generating the anion (H2DCF-), which presents low fluorescent in its reduced 

stated, and then the H2DCF- may be oxized by the ROS forming a highly fluorescent 

molecule (DCF) in its oxidized state (Chen et al., 2010; Wen et al., 2016). Consequently, 

H2DCF-DA acts as an intracellular ROS indicator. Before introduction in the leaves, a 

H2DCF-DA stock solution was prepared with HPLC-grade ethanol (5 mM). The stock 

solution was diluted to 1 mM in 10 mM TRIS-HCl buffer. Later, the AgNPs and AgBulk 

diluted in distilled water were added to the solution (Baccelli et al., 2014; Grunberg and 

Taleisnik, 2015; Kyselakova et al., 2013; Zabala et al., 2015). 

 Broad bean leaves were treated with the H2DCF-DA solution by transpiration 

(Driever et al., 2009). The leaves were detached from the stem with a blade. This 

procedure was done with the stem submerged in water to avoid air bubbles that may 

interfere in the internalization procedure of the H2DCF-DA solution. Next, the solution 

was assimilated by the leaves by transpiration immersing only the petiole (stem 

connecting the leaf to the stalk) in the DCF solution for 2.5 h under red light (~ 650 nm) 

with the intensity of 50 μmol m-2 s-1. The red light was used to avoid the H2DCF-DA 



degradation that absorbs radiation in the 430-530 nm interval (Gomes et al., 2005). The 

leaves were removed from the H2DCF-DA solution and again subjected to red light with 

an intensity of 100 μmol m-2 s-1 for 30 min. Following, a CCD camera and an emission 

filter at 525 nm collected the ROS marker emission images from leaves. An LED was 

used as the excitation source operating at 470 nm. The excitation was applied on the 

leaves by a pulse lasting nearly 3 s to avoid the ROS marker degradation (Driever et al., 

2009). 

3 Results 

 

3.1 AgNPs Characterization 

Table 1 summarizes the characteristics of the AgNPs obtained from the TEM 

and DLS measurements. For nominal diameters (Dnominal) of 25, 50, and 75 nm, 

equivalent mean diameters (DTEM) of 20 ± 7, 51 ± 7, and 73 ± 5 nm were measured 

by TEM, respectively. The transmission electron micrographs, particle diameter 

distributions, and EDS spectra of the AgNPs are presented in Fig. 1. The 

nanoparticles with spherical shapes were uniformly distributed. EDS 

measurements confirmed silver as the chemical composition of the NPs. The 

observed Cu lines were originated from the copper grid used as a support during the 

microscopy analysis. Further, SEM analysis showed that AgBulk is composed by 

micrometric particles with irregular shape and sizes in the 0.8–3.0 µm range (Fig. 

S1 in the supplementary materials). 

 The AgNPs with the diameter of 20 and 51 nm released 0.30 and 0.04% of Ag+ 

regarding the Ag total, respectively (Table 1). An Ag+ concentration below of the limit of 

quantification (LOQ) was detected for the 73-nm AgNPs. Therefore, the Ag+ liberation 

in distilled water was diameter-dependent as a result of the larger total surface areas of 



the smaller AgNPs  (Wang et al., 2014). These data are in accordance with previous 

studies that observed that the AgNPs-PVP are stable in aqueous solution, releasing less 

than 1% of Ag+ species (Cvjetko et al., 2017; Nallanthighal et al., 2017; Scherer et al., 

2019). PVP strongly binds to the nanoparticles surface avoiding aggregation 

(Nallanthighal et al., 2017).  

Higher hydrodynamic diameters (Dhydrodynamic) were measured when compared 

with the respective ones determined by TEM (DTEM) (Table 1). In fact, Dhydrodynamic is 

usually higher than DTEM because DLS assess the total diameter provided by the AgNPs 

along with ions and molecules (layers) adsorbed on the surface nanoparticles 

(Bhattacharjee, 2016; Dorranian et al., 2013; Kass et al., 2017)(Bhattacharjee, 

2016)(Bhattacharjee, 2016)(Bhattacharjee, 2016) . The AgNPs are monodisperse in the 

aqueous medium since the polydispersity index (PDI) is in the 0.06–0.17. A sample is 

defined highly monodisperse when the PDI ≤ 0.1, nearly monodisperse for values 

between 0.1 and 0.7, and highly polydisperse for values > 0.7 (Stetefeld et al., 2016). 

Besides, although PVP as a neutral polymer should lead to a net surface charge close to 

zero in the AgNPs-PVP, the zeta potential data revealed that the nanoparticle surfaces 

were negatively charged for ions or structures attached to them after synthesis (Cvjetko 

et al., 2017; Michalke and Vinković-Vrček, 2018).  

 

3.2 Plant bioassays 

Chlorophyll fluorescence imaging was used for investigating the effects of the 

AgNPs on plant metabolism of mature leaves. The maximum quantum efficiency 

(Fv/Fm), operating efficiency of PSII (Fq'/Fm'), and non-photochemical quenching 

(NPQ) were determined. Figure 2 shows representative images of Fv/Fm in which 

distilled water was injected in the left leaf (control), while an aqueous solution containing 



20-nm AgNPs at 100 mg L-1 was injected in the right leaf. BI is the leaf image collected 

before injection. The application of AgNPs induced a significant reduction in  Fv/Fm 

values after 24 h in the whole leaf. However, Fv/Fm recovered to the originally values 

after 168 h, and similar values to the ones related to the control leaf.  

Figure 3 indicates that the Fv/Fm alteration was AgNPs diameter-dependent. Fv/Fm 

was reduced to a greater extent by decreasing the nanoparticle diameter. Furthermore 

AgBulk produced no significant change in Fv/Fm. Figure 4 presents the percentage 

variation of Fv/Fm regarding the control leaf for different times.  

The quantum efficiency of PSII under light-adapted conditions (Fq'/Fm'), was 

affected by both the AgBulk and AgNPs (Fig. 5). The decrease in the Fq'/Fm' values were 

greatest with the application of the smallest particles.  In addition, the 20-nm AgNPs 

induced a more rapid  reduction in Fq'/Fm', while a gradual reduction was observed for 

the 51-nm and 73-nm AgNPs  and AgBulk.  

The chlorophyll imaging showed that values of NPQ show increased in the leaves 

containing the AgNPs (Fig. 6). So, NPs caused an increase in the dissipation of light 

energy by non-photochemical ways rather than photochemical processes. The AgNPs 

with diameters of 20 and 51 nm induced a change in the NPQ after 24h. 

It is worth noting that, at the end of the measurements, small spots of necrosis on 

the leaf surface could be noticed by visual inspection for the leaves submitted to the 

AgNPs, which the leaf damage was AgNPs diameter-dependent. However, necrosis 

occurred more pronounced on the abaxial side of the leaf as can be seen in Fig. 7, while  

almost no visible damage can be seen  on the adaxial side of the leaf.  

Gas exchange analysis was also carried out to better characterize the AgNPs effects 

on the photosynthetic activity of the leaves, evaluating the alterations on the CO2 



assimilation rate caused by AgNPs. Fig. 8 shows the A/Ci curve where it can be observed 

that the CO2 assimilation rate (A) is drastically reduced due to the AgNPs into the leaves. 

The data show that AgNPs of 20 nm promoted the highest reduction while leaves 

submitted to the AgBulk behaved similarly to the control leaves. Although the AgNPs of 

51 nm and 73 nm also altered the CO2 assimilation, both nanoparticles induced similar A 

reduction. 

Following Bernacchi et al., (2001) and Mcmurtrie and Wang (1992), the maximum 

carboxylation rate of Rubisco (Vcmax) (Figure 9 (a)) and the maximum electron transport 

rate (Jmax) [i.e., the maximum regeneration rate of the RuBP] (Figure 9 (b)) were 

determined. Vcmax was reduced in the presence of both AgNPs and AgBulk, indicating 

that carbon fixation was reduced by the Ag-containing solutions. However, a diameter-

dependent behavior was observed, in which AgNPs reduction was statistically higher than 

AgBulk. The Jmax values also significantly decreased in the presence of AgNPs, whereas 

the AgBulk did not induce a statistically significant reduction in relation to the control. 

The CO2 assimilation rate (A) was also monitored as a function of time as presented 

in Fig. 10. The results show a drastic reduction of A 24 h after the AgNPs injection, 

especially for 20 nm where a decrease of 73% was detected. However, the A value 

remained almost constant for all AgNPs injected leaves after the initial reduction during 

the first 48 h. However, a small decrease was induced by AgBulk, but the CO2 

assimilation rate  recovered to values similar to those of the control leaves after 120 h. 

Stomatal conductance (gs) results ( Fig. 11) revealed that Ag-containing solution 

reduced gs and the reduction was higher for smaller particles. As previously observed for 

the other parameters, the AgNPs of 20 nm induced the greatest effect. However, gs in the 



leaves containing AgBulk, which initially reduced after the injection, was recovered after 

120 h.  

Aiming to eliminate any hypothesis of a relation between the changes in the gas 

exchange and stomatal density, optical microscopy measurements were performed and 

the stomatal density of the leaves submitted to the AgNPs was determined. The shows 

that the stomatal density values were not statistically different among all analyzed leaves 

(i.e., leaves submitted to the AgNPs of 20, 51 and 73 nm as well as AgBulk), which a 

value in the 35 to 45 stomata/mm2 range was obtained (Fig. S2 in the supplementary 

materials). In fact, this behavior was already expected, since the injection of the Ag 

particles in the leaves was carried out when they were already fully expanded. 

 Thermal images of the leaves were collected and the leaf temperature was 

determined and monitored as a function of the time. The results revealed that both AgBulk 

and AgNPs did not significantly alter the leaf surface temperature (Fig. S3 in the 

supplementary materials), except for the AgNPs of 20 nm which induced an increase in 

the temperature after 144 h of the injection process. A representative image of the 

temperature elevation observed in the leaf with AgNPs of 20 nm after 168 h is shown in 

the Fig. S4 in the supplementary.  

The ROS production stimulated by the presence of the silver particles in the leaves 

was measured. Fig. 12 shows the representative images of the DCF (a fluorescent marker 

generated by the ROS formation in the leaves) as a function of the Ag particle size. The 

data revealed an increase in ROS generation due to Ag particles where the ROS 

production was higher for smaller particles. All Ag-containing solutions induced 

statistically significant increases in ROS production compared to control leaves, which a 

quantitative analysis of ROS marker emission promoted by the presence of Ag is 



presented in Fig. 13. These results demonstrated that the ROS production increased with 

the decrease of the particle diameter. A percentage rise of 17 ± 3, 33 ± 3, 40 ± 5, 101 ± 

19 % of the ROS production was promoted by the AgBulk,  AgNPs of 51, 73, and 20 nm, 

respectively.  It is important to stress that the control leaves received only a fluorescent 

marker and water.  

4 Discussion 

In brief, the results demonstrated that silver particles, especially in nanometric 

dimensions, may be toxic when internalized and accumulated in Vicia faba leaves, 

impairing photosynthesis and, in some cases, causing the death of leaf tissue due to the 

production and accumulation of ROS in the leaves. Additionally, the data also showed 

that the particle diameter was an important factor of toxicity as all studied parameters 

were particle-size dependent, which the highest effects induced by the smallest particles. 

It is worth pointing out that the AgBulk induced small phytotoxic effects but, in most 

cases, the leaves were able to recover. 

The AgNPs put the plants under stress conditions, decreasing the CO2 assimilation rate 

and altering the functioning of photosystem II (PSII). Meanwhile, NPQ values increased 

significantly, revealing that Ag particles induced an increase in the energy dissipation in 

PSII, an expected photoprotective response in the chloroplast for plants under stress 

conditions (Demmig-Adams and Adams, 1992). It is well established that, under stress 

conditions, a reduction of the rate of linear electron transport as well as a decrease in the 

accumulation of H+ in thylakoid lumen may be induced by the reduction of CO2 

assimilation, which limits the demand for NADPH and ATP. In this condition, the NPQ 

and the downregulation of linear electron flow at cytochrome b6/f can be significantly 

increased as a photoprotective response in the chloroplast, protecting the electron 

transport chain against over-reduction (Joliot and Johnson, 2011).  



Our data indicated that the observed effects were probably highly correlated with the 

presence of intracellular reactive oxygen species (ROS). Although ROS can be generated 

by AgNPs or Ag ions, the present findings indicated that the ROS are mainly produced 

by the interaction of O2 with the AgNPs surface since negligible silver dissolution was 

determined (see Table 1). (Nallanthighal et al., 2017). As recently demonstrated in a paper 

published by our research group, Ag ions play as a minor contributor to the toxicity of 

the PVP-coated AgNPs when released at concentrations lower than 1% (Scherer et al., 

2019). Consequently, a minimal contribution of Ag+ toxicity is expected. Furthermore, 

Qian et al (2013) recently demonstrated that AgNPs can induce more intense oxidative 

stress than Ag ions (Qian et al., 2013). By analyzing the effects of AgNPs and Ag ions 

on the expression of antioxidant enzymes in A. thaliana, it was observed that the 

expression of various antioxidant enzyme genes increased upon exposure to the low 

concentration of AgNPs while Ag ions did not significantly change the transcription of 

antioxidant enzymes (Qian et al., 2013).  

A review of the literature confirms that AgNPs may induce an overproduction of ROS, 

which damages the structures of chloroplasts, lipids, and DNA macromolecules (Karami 

Mehrian and De Lima, 2016; Qian et al., 2013; RASTOGI et al., 2019; Syu et al., 2014). 

In addition, the ROS overproduction triggered by the AgNPs may also damage 

chloroplasts, inhibit plant growth, and reduce plant cellular viability (Karami,Reza, and 

Fatemeh 2015; Oukarroum et al. 2013; Qian et al. 2013; Sosan et al. 2016).  

The observed changes in the physiological status of the Vicia faba may be the 

result of a series of factors. For instance, a reduction in the number of thylakoids or 

photosynthetic pigments can result in a decrease in the photosynthetic yield (Kirchho et 

al., 2000; Vinit-dunand et al., 2002). It was demonstrated that AgNPs induced a decrease 

of the total chlorophyll content in A. thaliana seedlings after 2 weeks of exposure (Abdel-



Azeem and Elsayed, 2014; Qian et al., 2013). This study also reported that, after treatment 

with AgNPs, the chloroplasts were slightly flatter, the grana lamellae became thinner and 

ambiguous, and the distance between the thylakoid membranes became wider (Abdel-

Azeem and Elsayed, 2014; Qian et al., 2013).  In fact, the AgNPs can inhibit the 

chlorophyll biosynthesis, which will reduce the photosynthetic efficiency and provoke an 

imbalance in the water content in the leaves (Abdel-Azeem and Elsayed, 2014; Qian et 

al., 2013). Consequently, it is expected a reduction in the rate of stomatal conductance, 

resulting in a lower rate of gas exchange and a consequent reduction in CO2 assimilation 

(Soil et al., 2012; Sosan et al., 2016). In addition, it may not be ruled out that direct effects 

of AgNPs on stomatal conductance can reduce the CO2 assimilation, decreasing the 

photosynthetic efficiency.  Furthermore, a reduction in the photosynthetic activity will 

usually be related to an increase in the NPQ, since a portion of the absorbed light energy 

which should be used to drive photosynthesis is dissipated as heat.  

It is well known that oxygen-dependent metabolic processes, such as aerobic 

respiration (which occurs in mitochondria), photosynthesis (in chloroplasts) and 

photorespiration (in peroxisomes) lead to the production of ROS. However, singlet 

oxygen (1O2), for example, is generated almost entirely in PSII, in chloroplasts (Resende 

et al., 2003). As the lifetime of 1O2 is very small, its active sites are probably close to 

where they are produced (Rehman et al., 2013; Resende et al., 2003). Thus the effects 

induced by 1O2 initiate mainly inside the chloroplasts (i.e., close to PSII). Differently, the 

other ROS species, such as O2
•-, H2O2, and OH•, are generated in chloroplasts, 

mitochondria, and peroxisomes. However, the literature suggests that the greatest amount 

of these ROS is generated by the electron transport chain (ETC) in both chloroplasts and 

mitochondria. For example, the formation of H2O2 via ETC is about 4 mol m- 2 s- 1 while 

only 10 µmol m-2 s-1 is produced in the peroxisomes, in the photorespiration pathway 



(Barbosa et al., 2014; Foyer and Shigeoka, 2011). Nevertheless, it is important to point 

out that the literature also indicates that the mitochondria are the main ROS generators in 

heterotrophic cells, being a minor contributor to the total ROS production in 

photosynthetic cells (Barbosa et al., 2014; Queval et al., 2008). Therefore, considering 

that the majority of ROS generated in plants under stress conditions comes from 

chloroplasts, our results indicated that AgNPs have effectively acted in this chloroplasts 

as AgNPs induced the production and accumulation of ROS in the leaves.  

It is important to note that the AgNPs caused a reduction of the PSII efficiency. 

However, the observed reduction was not so strong, as Fv/Fm does not reach a value 

lower than 0.6, decreasing just about 12% in relation to the control leaves for the smallest 

diameter tested. The observed Fv/Fm Fv/F decrease may be attributed to ETC 

deactivation, which entails a sequence of events, leading to the reduction to the ATP and 

NADPH production in the light phase of photosynthesis, compromising the operation of 

the Calvin cycle and reducing the carbon fixation, and, consequently, producing a lower 

content of glycosides and starch. In addition, previous studies carried out by our research 

group studies demonstrated that metal nanoparticles can suppress the Chl emission by 

transferring the excited electron of Chl to the metal surface (Falco et al., 2015, 2011; 

Queiroz et al., 2016).  Thus, the NPs may be inhibiting the electron transport chain, 

inducing an increase in the energy dissipation by non-photochemical pathways and 

consequently reducing the photochemical activities of the plants (Barazzouk et al., 2005; 

Falco et al., 2011; Vinit-dunand et al., 2002). In spite of contributing, this effect is 

possibly not the decisive event for the cellular death observed in the necrotic parts of the 

leaves. Most likely, the main cause for cell death (necrosis) was the ROS production and 

accumulation as ROS are able to kill cells by oxidizing them. 

The ETC deactivation by AgNPs changes the electron flow between PSII and PSI, 



may also induce the energy transfer from excited Chl to the O2 molecules, promoting 

molecular oxygen in the ground state (3O2 – triplet state) to the excited state (1O2 – singlet 

state) 1O2, a very reactive ROS. Then, the singlet oxygen may cause degradation in protein 

D1, at a rate higher than the antioxidative defense responses of the plant (Keren et al., 

1997; Kojima et al., 2007). Protein D1 is part of the structural construction of PSII and 

its degradation due to oxidative stress leads to irreversible degradation of thylakoids, 

followed by chloroplasts and consequent cell death (Aroz et al., 1994; Lupínková et al., 

2004). This is the same route of action used by herbicides, which act as deactivators of 

ETC in chloroplasts, inhibiting photosynthesis and degrading D1 protein due to the 

oxidative stress induced by the accumulation of 1O2  (Altha and Orlani, 2007; Fuerst and 

Norman, 2013; Qian et al., 2013). However, other species of ROS may be formed due to 

the presence of AgNPs in fava leaves and may be contributing concomitantly to oxidative 

stress. The AgNPs that have become negatively electrified by the ETC deactivation can 

provide electrons for the creation of ROS radicals, which can be formed by the successive 

transfer of electrons from AgNPs to O2, combined with the protons available in the 

chloroplasts. Thus, besides the generation of singlet oxygen, the AgNPs may be favouring 

the accentuated generation of superoxide radicals, hydrogen peroxide as well as hydroxyl 

radicals. This phenomenon may have occurred in the mitochondria simultaneously, but 

less intense. For instance, the AgNPs can act as a toxic agent in the mitochondria due 

to the ROS production (Hsin et al., 2008) because the ROS may damage cell 

membrane, disrupt the ATP production pathway and DNA replication, and change 

gene expression (Moreno-Garrido et al., 2015).  

Several studies have reported an increase in the activities of antioxidant enzymes 

as well as non-enzymatic antioxidants in plants submitted to metals, suggesting the 

involvement of the antioxidative defense system of plants in response to the stress caused 



by several metallic particles (Felici et al., 2014; Kumar et al., 2014; Sharma et al., 2016; 

Srivastava and Pandey, 2014). However, the action of the antioxidative defense system 

of plants, in response to the oxidative stress induced by the NPs, may be not enough to 

promote a tolerance to the accumulation of the NPs in the plants (Sharma et al., 2012), 

especially depending on the size of AgNPs as demonstrated in the present study. 

Additionally, although NPs internalized into the cells play a major contribution to the 

phytotoxic effects in the leaves, the side effects induced by the AgNPs located among the 

cells should not be ruled out. For instance, AgNPs may limit the nutrients` mobility, 

acting as physical barriers, blocking the vessels and veins, which transport water and 

nutrients from the soil to the leaves, as well as blocking the stomata and, consequently, 

affecting the leaf gas exchange.  

In summary, the present study provides further information on the 

phytotoxic and cytotoxic of AgNPs in Vicia faba leaves, demonstrating an 

increment in toxicity with decreasing NPs diameter likely due to their 

internalization in the tissues. This effect may be related to the fact that small NPs 

can reach regions where larger particles are not able to reach. Addtionally smaller 

NPs provide  a much larger total surface area that enables a more effective 

interaction with the plant cells, generating increased ROS and enhancing damage 

of the cells (Feizi et al., 2013; Wang et al., 2015). Recent studies have observed 

that the cellular interaction with the AgNPs and ROS generation are higher as 

smaller is the NPs diameter (Carlson et al., 2008; Scherer et al., 2019). The small 

particle diameter and larger total surface area may permit NPs to move through the 

cell wall pores and reach the plasma membrane (Samberg et al., 2011). In fact, the 

uptake, translocation, and accumulation of AgNPs in cells depends on the particle 

size and plant cell structure and permeability (Carlson et al., 2008; Li et al., 2015).  



 

 

3.2 Conclusion 

The present study demonstrated that AgNPs induced alterations on the 

photochemical efficiency of PSII, stomatal conductance (gs), and CO2 assimilation rate 

of Vicia faba leaves. The effects were diameter-dependent because they increased with a 

reduction of the AgNPs diameter as well as small or no change were induced by AgBulk.  

These effects are a result of the higher total surface area of the smaller 

nanoparticles, being more toxic and reactive for the cells at a fixed concentration. 

The data revealed that AgNPs caused a decrease in the stomatal conductance (gs), CO2 

assimilation, and photosynthetic activity of the leaves as well as an increase in the non-

photochemical quenching (NPQ), possibly due to the overproduction of ROS induced by 

AgNPs as a negligible Ag+ release was caused by the NPs. In addition, the results also 

suggest that the electrons of the excited chlorophylls could be transferred to the metal 

surface of the NPs, deactivating the electron transport chain, which implies the reduction 

of photosynthetic yield associated with an oxidative stress, increasing the ROS 

generation. The results also demonstrated that AgNPs caused small spots of necrosis on 

the leaf surface as a result of the oxidative damage caused by the ROS overproduction. 

In summary, the results demonstrated that AgNPs might negatively affect the 

photosynthesis activity when internalized and accumulated in the leaves, revealing that 

AgNPs were responsible for the side effects since negligible Ag+ release was detected. 
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Figure and Table Captions 

Table 1. Nominal diameter of nanoparticles provided by the manufacturer (Dnominal), 

diameter determined by transmission electron micrographs (DTEM), hydrodynamic 

diameter (Dhydrodynamic), polydispersity index (PDI), zeta potential of the AgNPs in 

aqueous solution, and Ag+ liberation (in % of the initial mass) from PVP-coated AgNPs 

in distilled water. Limit of quantification (LOQ). 

Fig. 1. Transmission electron micrographs; B) Particle diameter distribution; C) 

EDS Spectra for the AgNPs. The Cu lines are due to the copper grids used in the 

microscopy measurements of the nanoparticles. 

Fig. 2. Representative chlorophyll fluorescence images of Fv/Fm ratio as a function of 

time after injection of solution. The right leaf is the control (water injection), while the 

left leaf received a solution with 20-nm AgNPs at 100 mg L-1.  

Fig. 3. Fv/Fm as a function of time for leaves injected with water (control) and injected 

with: (A) AgBulk, (B) 73-nm AgNPs, (C) 51-nm AgNPs, and (F) 20-nm AgNPs. 100 mg 

L-1 was used in all Ag-containing solution.  Data represent the mean ± standard error. 

*Statistically significant difference (t test, p <0.05, n = 5). 

Fig. 4. Fv/Fm reduction with respect to the control leaf for different times. Data represent 

the mean ± standard error. 

Fig. 5. Fq'/Fm' as a function of time for leaves injected with water (control) and injected 

with: (A) AgBulk, (B) 73-nm AgNPs, (C) 51-nm AgNPs, and (D) 20-nm AgNPs. 100 mg 

L-1 was used in all Ag-containing solution. Data represent the mean ± standard error. 

*Statistically significant difference (t-test, p <0.05, n = 5). 



Fig. 6. NPQ as a function of time for leaves injected with water (control) and injected 

with: (A) AgBulk, (B) 73-nm AgNPs, (C) 51-nm AgNPs, and (D) 20-nm AgNPs. 100 mg 

L-1 was used in all Ag-containing solution. Data represent the mean ± standard error. 

*Statistically significant difference (t-test, p <0.05, n = 5). 

Fig. 7. Adaxial (upper) and abaxial (bottom) leaf surfaces. Right leaf is the control leaf 

(water injection) while left leaf represents the leaf injected by a solution of AgNPs of 20 

nm at 100 mg L-1. 

Fig. 8. CO2 assimilation rate (A) as a function of the internal CO2 concentration (Ci) 

determined 72 h after the injection of the Ag-containing solutions at 100 mg L-1 in the 

leaves. Data represent the mean ± standard error. 

Fig. 9. Vc, max (a) and Jmax (b) measured in the leaves injected with Ag-containing 

solutions at 100 mg L-1. Data represent the mean ± standard error. * Significant 

difference (t-test, p <0.05, n = 5).  

Fig. 10.  CO2 assimilation rate (A) as a function of the time in the leaves submitted to: () 

H2O, () AgBulk, () AgNPs 73 nm, () AgNPs 51 nm, and () AgNPs 73 nm. A 

concentration of 100 mg L-1 was used for all Ag-containing solution. Data represent the 

mean ± standard error. 

Fig. 11.  gs  as a function of time for leaves injected with water (control) and: (A) AgBulk, 

(B) 73 nm AgNPs, (C) 51 nm AgNPs, and (D) 20 nm AgNPs. A concentration of 100 mg 

L-1 was used for all Ag-containing solution. Data represent the mean ± standard error. 

*Statistically significant difference (t-test, p <0.05, n = 5).  

Fig. 12.  Representative fluorescence images of the ROS marker as a function of the Ag 

particle diameter. The images were collected 3 h after the leaves to be exposed to the Ag-



containing solution at 100 mg L-1 with H2DCF-DA at 1mM.  The control leaf was 

exposed to the H2DCF-DA and water. 

Fig. 13.  Fluorescence intensity of the ROS marker as a function of the diameter of the 

Ag particles. The emission intensities are the average intensity obtained from six leaves 

images collected for each treatment. Data represent the mean ± standard error. * 

Significant difference in relation to the control sample (t-test, p <0.05, n = 6).   

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table 1. W.F. Falco et al 

Dnominal 

(nm) 

DTEM 

(nm) 

Dhydrodynamic   

(nm) 

PDI Z 

 (mV) 

Ag+ 

(%) 

25 20±7 76 ± 27 0.14 -11 0.30 

50 51±7 84 ± 32 0.17 -16 0.04 

75 73±5 116 ± 34 0.06 -13 < LOQ 

 

 

  



Highlights 

 

Phytotoxicity of AgNPs on plants of Vicia faba were tested  

Vicia faba leaves were exposed to different AgNPs dimensions (20, 51, and 73 nm) 

AgNPs were able to affect the photosynthetic activity of plants 

AgNPs caused alterations on PSII activity, stomatal conductance, and CO2 

assimilation  

Phytotoxic effects increased with decreasing AgNPs diameter 
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