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Abstract

Autism spectrum disorder (ASD) encompasses a collection of complex neuropsychiatric disorders characterized by deficits
in social functioning, communication and repetitive behaviour. Building on recent studies supporting a role for
developmentally moderated regulatory genomic variation in the molecular aetiology of ASD, we quantified genome-wide
patterns of DNA methylation in 223 post-mortem tissues samples isolated from three brain regions [prefrontal cortex,
temporal cortex and cerebellum (CB)] dissected from 43 ASD patients and 38 non-psychiatric control donors. We identified
widespread differences in DNA methylation associated with idiopathic ASD (iASD), with consistent signals in both cortical
regions that were distinct to those observed in the CB. Individuals carrying a duplication on chromosome 15q (dup15q),
representing a genetically defined subtype of ASD, were characterized by striking differences in DNA methylation
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across a discrete domain spanning an imprinted gene cluster within the duplicated region. In addition to the dramatic
cis-effects on DNA methylation observed in dup15q carriers, we identified convergent methylomic signatures associated
with both iASD and dup15q, reflecting the findings from previous studies of gene expression and H3K27ac. Cortical
co-methylation network analysis identified a number of co-methylated modules significantly associated with ASD that are
enriched for genomic regions annotated to genes involved in the immune system, synaptic signalling and neuronal
regulation. Our study represents the first systematic analysis of DNA methylation associated with ASD across multiple brain
regions, providing novel evidence for convergent molecular signatures associated with both idiopathic and syndromic

autism.

Introduction

Autism spectrum disorder (ASD) encompasses a collection of
complex neuropsychiatric disorders characterized by deficits
in social interactions and understanding, repetitive behaviour
and interests and impairments in language and communica-
tion development. ASD affects ~1% of the population and con-
fers severe lifelong disability, contributing significantly to the
global burden of disease (1,2). Evidence from neuroimaging, neu-
ropathology, genetic and epidemiological studies has led to the
conceptualization of ASD as a neurodevelopmental disorder,
with etiological origins before birth (3,4). Quantitative genetic
analyses have shown that ASD has a strong heritable component
(5) with an emerging literature implicating rare single base-pair
mutations, chromosomal rearrangements, de novo and inherited
structural genomic variation and common (polygenic) risk vari-
ants in its pathogenesis (6-9). Despite the highly heterogeneous
role of genetic variation in ASD, studies of transcriptional (10,11)
and regulatory genomic variation (12) in post-mortem ASD brain
provide evidence for a highly convergent molecular pathology,
with individuals affected genetically defined subtypes of ASD
sharing the core transcriptional signatures observed in idio-
pathic autism cases.

There is increasing evidence to support a role for non-
sequence-based genomic variation in the aetiology of neurode-
velopmental phenotypes including ASD (13). The epigenetic
regulation of gene expression in the central nervous system
is involved in modulating many core neurobiological and
cognitive processes including neurogenesis (14,15), neuronal
plasticity (16) and memory formation (17,18) and is known
to be highly dynamic during human brain development (19).
The dysregulation of epigenetic mechanisms underlies the
symptoms of Rett syndrome and Fragile X syndrome, two dis-
orders with considerable phenotypic overlap with ASD (20-22),
and epigenetic variation has been recently associated with sev-
eral neurodevelopmental phenotypes including ASD (12,23-31).
Current epigenome-wide association studies of autism have
focused primarily on DNA methylation, the best characterized
and most stable epigenetic modification that acts to influence
gene expression via physical disruption of transcription factor
binding and through the attraction of methyl-binding proteins
that initiate chromatin compaction and gene silencing (32).
Despite finding evidence for ASD-associated methylomic
variation, however, these analyses have been constrained by the
analysis of small sample numbers and limited to the assessment
of peripheral tissues or a single brain region (12,23-29).

In this study, we present results from the most systematic
analysis of DNA methylation in ASD brain yet undertaken, quan-
tifying methylomic variation in patients with idiopathic ASD
(1ASD) in addition to patients with a duplication of chromosome
15911-13 (‘dup15q’), which represents the most frequent cytoge-
netic abnormality associated with ASD occurring in ~1% of cases

(33,34). From each donor, we profiled matched post-mortem tis-
sue from three brain regions—prefrontal cortex (PFC), temporal
cortex (TC) and cerebellum (CB)—previously implicated in the
pathophysiology of ASD. The frontal and temporal lobes, for
example, play a role in social cognition, and animal models
of ASD highlight cerebellar dysfunction (35-37). We find DNA
methylation differences in both groups of iASD and dupl5q
patients, with consistent patterns of variation seen across the
two cortical regions, distinct to those identified in CB. In addition
to identifying dramatic cis-effects of the dup15q duplication in
all three brain regions, we identify a significant overlap with
the core methylomic differences observed in idiopathic autism
iASD cases, reflecting findings from studies of transcriptional
variation (11) and histone modifications (12).

Results
Methodological overview

We quantified DNA methylation across the genome using
the Illumina Infinium HumanMethylation450 BeadChip (‘450K
array’) in 223 post-mortem tissue samples comprising PFC, TC
and CB dissected from 43 donors with ASD (including 7 patients
with dup15q syndrome and 36 patients with iASD) and 38 non-
psychiatric control subjects. After implementing a stringent
quality control (QC) pipeline (see Materials and Methods), we
obtained high-quality DNA methylation data from 76 PFC sam-
ples (n = 36 iASD patients, n = 7 dup15q patients, n = 33 controls),
77 TC samples (n = 33 1ASD patients, n = 6 dup15q patients, n = 38
controls) and 70 CB samples (n = 34 iASD patients, n = 7 dup15q
patients, n = 29 controls) (Supplementary Material, Table S1).
Our primary analyses focused on identifying differentially
methylated positions (DMPs) and differentially methylated
regions (DMRs) associated with iASD and dup15q, controlling for
cellular heterogeneity and other potential confounds, exploring
the extent to which signals were shared across idiopathic
and syndromic autism cases. Finally, we employed weighted
gene co-methylation network analysis (WGCNA) to undertake
a systems-level view of the DNA methylation differences
associated with both iASD and dup15q across the three brain
regions. An overview of our experimental approach is given in
Supplementary Material, Figure S1.

DNA methylation differences between iASD cases and
controls are consistent across cortical regions

No global differences in DNA methylation—estimated by averag-
ing across all Illumina 450K array probes (n =417 460) included in
our analysis—were identified between iASD patients and control
subjects in any of the three brain regions (PFC: iASD = 48.4%,
controls = 48.5%; TC: iASD = 48.4%, controls = 48.4%; CB:
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iASD = 46.4%, controls = 46.4%). We observed a robust positive
correlation between the estimated ‘DNA methylation age'—
calculated using an epigenetic clock based on DNA methylation
values (38,39)—and recorded chronological age for each of
the brain regions (PFC: r = 0.98, TC: r = 0.97, CB: r = 0.94)
(Supplementary Material, Fig. S2), with no evidence for differ-
ential ‘epigenetic aging’ in iASD patients (PFC: P = 0.10, TC:
P = 0.24, CB: P = 0.80). These findings indicate that ASD is not
associated with any systemic differences in DNA methylation
across the probes included on the Illumina 450K array in the
brain regions tested, reflecting findings in studies of other
complex neuropsychiatric phenotypes including Alzheimer’s
disease (40) and schizophrenia (41).

We next used a linear model including covariates for sex,
age, brain bank and neuronal cell proportions derived from
the DNA methylation data (except in the CB, as described
in the Materials and Methods) to identify iASD-associated
DMPs across the genome in each of the three brain regions.
The top ranked iASD-associated DMPs in each brain region
[PFC: cg08277486, which is located within CCDC144NL and
hypermethylated in patients compared to controls (P = 1.11e-06);
TC: cg08374799, which is located immediately upstream of ITGB7
and hypomethylated in patients compared to controls (P = 4.46e-
07); CB: cg01012394, which is located immediately upstream of
EYA3 and hypermethylated in patients compared to controls
(P = 1.01e-06)] are shown in Figure 1A, with a list of all DMPs
(P < 5e-05) detailed in Supplementary Materials, Tables S2—
S4. Of note, iASD-associated DNA methylation differences are
considerably more pronounced in both cortical regions (PFC:
n = 31 DMPs; TC: n = 52 DMPs) than the CB (n = 2 DMPs).
Hierarchical clustering of samples based on DNA methylation
levels at these cortical DMPs distinguishes relatively well
between iASD cases and controls in both PFC (Fig. 1B) and
TC (Fig. 1C). As reported in previous analyses of epigenetic
variation in the human brain (41,42), our data show that—
at a global level—the patterns of DNA methylation in the CB
are very distinct to the two cortical brain regions included
in this study (Supplementary Material, Fig. S3). Effect sizes at
iASD-associated DMPs are highly correlated between the two
cortical regions but not between cortex and CB [top 100 PFC
DMPs (PFC versus TC: r = 0.77, P = 3.06e-21; PFC versus CB:
r = 0.14, P = 0.18), top 100 TC DMPs (TC versus PFC: r = 0.81,
P = 2.48e-24; r = 0.17, P = 0.09) and top 100 CB DMPs (CB versus
PFC: r = 0.005, P = 0.96; CB versus TC: r = —0.03, P = 0.77)]
(Supplementary Material, Fig. S4). Given the striking consistency
of effects across cortical regions, we used a multi-level linear
mixed model (see Materials and Methods) to maximize our
power to identify consistent iASD-associated differences across
PFC and TC (Supplementary Materials, Fig. S5 and Table S5). We
identified 157 DMPs (P < 5e-05), with the top-ranked cross-cortex
iASD-associated difference (cgl14392966, P = 1.77E-08) being
located in the promoter region of PUS3 (+6bp) and upstream of
DDX25 (+1136bp) on chromosome 11q24.2. Using data from an
RNA-seq analysis of an overlapping set (n = 40, 25 iASD cases
and 15 controls) of samples (11), we explored the extent to
which genes annotated to these DMPs were also differentially
expressed in iASD cortex. Of the 111 DMPs annotated to a
gene, 20 (18.0%) were annotated to a transcript found to be
differentially expressed in iASD cortex (False Discovery Rate
(FDR) < 0.1) (Supplementary Material, Table S6), with an overall
negative correlation (r = —0.435) between DNA methylation and
gene expression effects sizes across these probe-gene pairs
(Fig. 1D).
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Dup15gq, a genetically defined subtype of ASD, is
associated with striking differences in DNA
methylation across an imprinted gene cluster within
the duplicated region

The duplication of human chromosome 15q11-13 (‘dup15q’)
is the most frequent cytogenetic abnormality associated with
ASD, occurring in ~1% of cases (33,34). In addition to the iASD
cases profiled in this study, we quantified DNA methylation
in PFC, TC and CB tissue from seven individuals with dup15q;
using an established method to identify copy number variation
(CNV) from Illumina 450K data (11), we confirmed dupl5q
status in each of the brain regions profiled in the seven
carriers (Supplementary Materials, Figs S6-S8). As with the
iASD patients, no global differences in DNA methylation
were identified between dup15q carriers and controls in any
of the three brain regions (PFC: dupl5q carriers = 48.5%,
controls = 48.5%; TC: dup15q carriers = 48.4%, controls = 48.4%;
CB: dupl5q carriers = 46.4%, controls = 46.4%). Again, we
observed a strong positive correlation between the estimated
‘DNA methylation age’ with recorded chronological age for
each of the brain regions (Supplementary Material, Fig. S2).
Although there was no evidence for differential ‘epigenetic
aging’ in dup15q patients compared to controls in either cortical
region (PFC: P = 0.06, TC: P = 0.45), there was a nominally
significant association in CB (P = 0.012) with dup15q carriers
characterized by decelerated epigenetic aging compared to
controls. Overall, these findings indicate that like iASD patients,
dupl5q carriers are not characterized by systemic differences
in DNA methylation across the probes included on the Illumina
450K array in the brain regions tested.

Using a linear model including covariates for sex, age, brain
bank and neuronal cell proportions derived from the DNA
methylation data (except in the CB as described in the Materials
and Methods), we identified numerous DMPs in dup15q carriers
in each of the three brain regions (Supplementary Materials,
Tables S7-S9 and Figs 9-11). As in our analysis of iASD, we used
a multi-level model (see Materials and Methods) to identify
consistent dupl5qg-associated differences across PFC and TC
(Fig. 2; Supplementary Material, Table S10). Using comb-p (43),
we also identified spatially correlated regions of differential
DNA methylation associated with dup15q status (Sidak cor-
rected P < 0.05) (Supplementary Materials, Tables S11-S14).
Our analyses revealed striking cis-effects on DNA methylation,
with the majority of significant DMPs (Fig. 2C; Supplementary
Materials, Figs S6-S8) and DMRs located within a ~7 Mb
cluster in the 15q11.1-13.2 duplication region. Despite these
strong cis-effects, however, sites within the 15q duplicated
region are not ubiquitously differentially methylated in CNV
carriers. Dup15q-associated DMPs were found to be focused
in a specific region within the duplication, with this dis-
crete differentially methylated domain including clusters of
probes that are both hyper- and hypo-methylated in carriers
(Fig. 2C;  Supplementary Materials, Figs S6-S8). Interestingly,
these DMPs overlap a genomically imprinted gene cluster within
the duplicated region containing transcripts monoallelically
expressed from either the paternal (SNRPN, snoRNAs) or maternal
(UBE3A, ATP10A) alleles. Although DMPs located in the dup15q
region are highly consistent across each of the three brain
regions, the overall pattern of dupl5g-associated variation is
more similar between the two cortical regions than between
cortex and CB (Supplementary Material, Fig. S12), reflecting
the patterns observed for iASD. Interestingly, despite the
large effects observed within the dupl5q region, a number
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Figure 1. DNA methylation differences at sites associated with idiopathic autism cluster cases and controls and are correlated with gene expression differences. Site-
specific changes in DNA methylation associated with idiopathic autism. (A) Shown are the top-ranked iASD-associated DMPs in PFC (cg08277486), TC (cg08374799) and
CB (cg01012394). A complete list of all iASD-associated DMPs (P < 5e-05) is provided in Supplementary Materials, Tables S2-S4. (B-C) Hierarchical clustering of samples
based on DNA methylation at iASD-associated DMPs in the cortex. Shown is the clustering of samples based on DNA methylation levels (red = low, yellow = high) at
iASD-associated DMPs (P < 5e-05) in (b) PFC and (c) TC. In both cortical regions, the two primary clusters are clearly aligned to disease status (PFC: cluster 1 = 77% iASD,
cluster 2 = 20% iASD; TC: cluster 1 = 92% iASD, cluster 2 = 22% iASD). (D) Effect sizes at iASD-associated DMPs are negatively correlated with gene expression level.
Shown is the relationship between DNA methylation difference (X-axis) and gene expression difference (Y-axis) for genes annotated to cortical DMPs identified in a

RNA-seq study performed on an overlapping set of samples.

of DMPs (Supplementary Materials, Tables S7-S10) and DMRs
(Supplementary Materials, Tables S11-S14) outside the vicinity
of the duplication were also identified in each of the three brain
regions, suggesting that structural variation on chromosome
15 may influence regulatory genomic variation at other
chromosomal locations in trans. Using data from an RNA-
seq analysis of an overlapping set (n = 21; 6 dup15q cases
and 15 controls) of samples (44), we explored the extent to
which genes annotated to these DMPs were also differentially
expressed in dupl5q ASD cortex. Of the 699 DMPs annotated
to a gene, 139 (19.9%) were annotated to a transcript found
to be differentially expressed in dupl5q cortex (FDR < 0.1)
(Supplementary Material, Table S15), with an overall negative
correlation (r = —0.313) between DNA methylation and gene

expression effects sizes across these probe-gene pairs (Fig. 2D).
Of note, there was a significant difference in the correlation
(Fisher’s Z test, P = 0.007) between DNA methylation and gene
expression for loci within the dup15q region (r = 0.162) compared
to those elsewhere in the genome (r = —0.300).

Methylomic differences are shared between iASD and
dup15q carriers

Building on a recent analysis of gene expression (11) that
revealed a core pattern of cortical transcriptional dysregulation
observed in both iASD and dup15q carriers, we next examined
the extent to which disease associated DNA methylation
differences are shared between these two distinct subgroups
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Figure 2. The duplication of chromosome 15q is associated with distinct DNA methylation profiles in all three brain regions. (A) Manhattan plot of P-values from
a multi-level model used to identify consistent dup15q-associated differences across both cortical regions (PFC and TC). The majority of dup15q-associated DMPs
are located within the duplicated region. The line highlights a bonferroni significance threshold of P < 1.198 x 10~7. (B) Hierarchical clustering of samples based on
DNA methylation at dup15q-associated DMPs in the cortex. Shown is the clustering of samples based on PFC DNA methylation levels (red = low, yellow = high) at
dup15q-associated DMPs (P < 5e-05). (C) Cortical dup15q-associated DMPs are localized within a narrow region within the duplicated region. Shown is the distribution
of P-values across the dup15q region from our cross-cortex (FC and TC) model. DMPs are stratified by direction of effect (red = hypermethylated in dup15q ASD,
green = hypomethylated in dup15q ASD). Shown at the top are the estimated break-points for individual dup15q samples derived from PFC and TC DNA methylation
data for each individual donor. The dup15q differentially methylated domain includes clusters of probes that are both hyper- and hypo-methylated overlapping a
known imprinted gene cluster containing paternally expressed (green), maternally expressed (red) and biallelically expressed (blue) genes. (D) Effect sizes at dup15q-
associated DMPs are inversely correlated with gene expression level. Shown is the relationship between DNA methylation difference (X-axis) and gene expression
difference (Y-axis) for genes annotated to cortical DMPs identified in a RNA-seq study performed on an overlapping set of samples. The overall correlation between
DNA methylation is gene expression was —0.313, although there were striking differences between loci within the dup15q region (r = 0.162; coloured in blue) and
elsewhere in the genome (r = —0.300; coloured in black).

of autism patients. Effect sizes at iADS DMPs (P < 5 x 107°)
were significantly correlated between iASD and dup15q patients
(PFC: r = 0.86, P = 7.03e-10; TC: r = 0.9, P = 9.21e-20; CB:

patients (PFC: r = 0.48, P = 3.69e-21; TC: r = 0.76, P = 2e-294;
CB: r = 0.36, P = 2.58e-11) (Fig.3B); of note, although these
correlations were particularly strong for probes outside of

not tested because of the small number of significant DMPs)
(Fig. 3A). Likewise, effect sizes at dupl15q DMPs (P < 5e-05)
were found to be highly correlated between dup15q and iASD

dup15q region (PFC: r = 0.80, P = 7.73e-31; TC: r = 0.85, P < 2.2e-
16; CB: r = 0.60, P = 1.35e-11), significant correlations were also
seen for dupl5qg-associated DMPs located in the duplicated
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Figure 3. Consistent DNA methylation differences are seen in iASD and dup15q patients. (A) Effect sizes at cortical iASD-associated DMPs are significantly correlated
between iASD and dup15q patients. Shown is the correlation in effect sizes for PFC (r = 0.86, P = 7.03e-10, left panel) and TC (r = 0.9, P = 9.21e-20, right panel). (B) Effect
sizes at dup15q-associated DMPs are highly correlated between dup15q and iASD patients. Shown is the correlation in effect sizes for PFC (across all probes r = 0.48,
P = 3.69e-21; probes outside of the dup15q region r = 0.80, P = 7.73e-31; left panel), TC (across all probes r = 0.76, P = 2e-294; probes outside of the dup15q region r = 0.85,
P < 2.2e-16; middle panel) and CB (across all probes r = 0.36, P = 2.58e-11; probes outside of the dup15q region r = 0.60, P = 1.35e-11; right panel).

region (PFC: r = 0.22, P = 8.4e-4; TC: r = 0.53, P = 8.59e-18;
CB: r = 0.22, P = 0.001). Hierarchical clustering of samples
based on DNA methylation values at iASD-associated DMPs
(P < 5 x 107°) shows that dupl5q carriers cluster together
with iASD cases (Supplementary Materials, Figs S13 and S14),
highlighting convergent methylomic signatures associated with
both idiopathic and syndromic forms of autism.

Cortical co-methylation modules associated with ASD
are enriched for immune, synaptic and neuronal
processes

We next used WGCNA (45) to characterize systems-level
differences in DNA methylation associated with ASD. We built
co-methylation networks using all ‘variable’ DNA methylation
sites (defined as those where the range of DNA methylation
values for the middle 80% of individuals was greater than
5%; N = 251 311) using cross-cortex (PFC and TC) data from
all donors (see Materials and Methods). WGCNA identified 61
co-methylation modules (Supplementary Material, Table S16),
and we used the ‘module eigengene’ (i.e. the first principal
component) for each module to explore differences between
controls (n = 29), individuals with iASD (n = 30), individuals
with dupl59 (n = 6) and a combined ASD group (n = 36).
We identified several co-methylation modules robustly asso-

ciated (FDR < 0.05) with at least one diagnostic category
(Table 1, Supplementary Material, Fig. S15). We tested whether
the genes annotated to probes in each ASD-associated co-
methylation module were enriched for specific gene ontology
(GO) pathways using a method that groups related pathways
to control for the hierarchical structure of the ontological
annotations (Table1 and Supplementary Material, Table S17),
identifying a number of pathways relevant to the known
aetiology of ASD. For example, the most enriched pathways
among genes annotated to probes in the ‘skyblue3’ module,
which was associated with both iASD (FDR = 0.0063) and the
combined ASD group (FDR = 0.0033), are related to immune
function (e.g. interleukin-1 beta production, P = 8.55E-20),
consistent with findings from genetic (46), transcriptomic (47)
and epidemiological data (48,49). Among genes annotated to
probes in the ‘darkorange’ module, which was also associated
with both iASD (FDR = 0.014) and the combined ASD group
(FDR = 0.01), the top-ranked pathways were related to synaptic
signalling and regulation, in particular phosphatidylinositol
3-kinase (PI3K) activity (P = 1.95E-08), which plays an important
role in synaptic formation and plasticity (50). Interestingly,
dysregulation of the PI3K signalling pathway has been associated
with neuropsychiatric disorders including schizophrenia (51,52)
and autism (53,54). Also of note, pathways enriched among
genes annotated to probes in the ‘pink’ module, which
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Module Module size Association GO ID Top-ranked GO terms GO term enrichment
(probes) (P-value)

skyblue3 398 iASD versus CTL (FDR = 0.0063) G0:0032611 Interleukin-1 beta production 8.55E-20
ASD (iASD + dup15q) versus CTL ~ GO:0045785  Positive regulation of cell adhesion 1.82E-19
(FDR = 0.0033)

darkorange 977 iASD versus CTL (FDR = 0.014) G0:0016307  Phosphatidylinositol phosphate 1.95E-08
ASD (iASD + dup15q) kinase activity
versus CTL (FDR = 0.01) G0:0007156 Homophilic cell adhesion 2.49E-08

Tan 2697 iASD versus CTL (FDR = 0.032) G0:0005694 Chromosome 2.40E-11
ASD (iASD + dup15q) versus CTL ~ GO:0007156 Homophilic cell adhesion 1.17E-10
(FDR = 0.029)

honeydew1 123 iASD versus CTL (FDR = 0.034) G0:0051639  Actin filament network formation 1.97E-20
ASD (iASD + dup15q) versus CTL ~ G0O:0010893 Positive regulation of steroid 7.41E-15
(FDR = 0.03) biosynthetic process

green 6305 ASD (iASD + dup15q) G0:0043565 Sequence-specific DNA binding 7.24E-38
versus CTL (FDR = 0.047) GO:0003700  Sequence-specific DNA-binding 1.33E-29

transcription factor activity

blue 19109 ASD (iASD + dup15q) G0:0050919 Negative chemotaxis 8.20E-06
versus CTL (FDR = 0.025) G0:0016301 Kinase activity 8.55E-06

pink 4595 dup15q versus G0:0097458  Neuron part 3.41E-15
CTL (FDR = 0.00046) G0:0014069 Postsynaptic density 1.87E-10

lightsteelbluel 297 dup15q versus G0:0007156 Homophilic cell adhesion <2.79E-99
CT (FDR = 0.012) GO:0005509  Calcium ion binding 2.79E-99

A full list of GO pathways enriched among genes annotated to the Illumina 450K probes in each module is given in Supplementary Material, Table S17.

was associated with dupl5q carriers (FDR = 0.00046) were
related to pathways important in neurons (P = 3.41E-15) and
postsynaptic density (P = 1.87E-10). A full list of all significant
pathways for each of the co-methylation modules is given in
Supplementary Material, Table S17.

Discussion

In this study, we quantified DNA methylation in 223 post-
mortem tissue samples isolated from the PFC, TC and CB
dissected from 43 donors with ASD and 38 non-psychiatric
control subjects. To our knowledge, this represents the most
systematic analysis of DNA methylation in ASD using disease-
relevant tissue and the first to compare variation identified
in idiopathic and syndromic forms of ASD. We report ASD-
associated DNA methylation differences at numerous CpG
sites with more pronounced effects in both cortical regions
compared to the CB. This finding is consistent with previous
gene expression studies illustrating that ASD-related molecular
changes are substantially smaller in the CB compared to the
cortex (11).

Although structural variation on chromosome 15 was found
to be associated with striking cis-effects on DNA methylation,
with a discrete differentially methylated domain spanning an
imprinted gene cluster within the duplicated region, variation in
DNA methylation associated with autism in the cerebral cortex
was highly correlated between iASD and dup15q patients. These
results suggest that there are convergent molecular signatures in
the cortex associated with different forms of ASD, reinforcing the
findings from a recent study of gene expression (11) and H3K27ac
(12) undertaken in an overlapping set of samples. Interestingly,
a recent study reported partially overlapping peripheral blood

DNA methylation signatures across 14 different Mendelian pae-
diatric neurodevelopmental syndromes (55).

Co-methylation network analyses highlighted systems-level
changes in cortical DNA methylation associated with both
iASD and dupl5q, with associated modules being enriched
for sites annotated to genes involved in the immune system,
synaptic signalling and neuronal regulation. Our results
corroborate findings from other DNA methylation (26,30,31)
and gene expression analyses (10,44) that have concluded
that ASD-related co-methylation and co-expression modules
are significantly enriched for synaptic, neuronal and immune
dysfunction genes. Finally, we used existing RNA-seq data on
an overlapping set of samples to show a remarkable overlap of
cortical ASD-associated DMPs with differential gene expression.
Future studies should focus on further understanding the
transcriptional consequences of the observed associations and
testing whether these associations are causal or a consequence
of disease and/or medication.

This study has several strengths. Our epigenome-wide anal-
ysis of ASD is, to our knowledge, the largest post-mortem cohort
so far and included tissue from three brain regions that have
been previously implicated in the pathophysiology of ASD. This
contrasts with previous studies that have been undertaken on
much smaller numbers of samples and focused on only one
or two brain regions. The inclusion of both iASD patients and
dup15q carriers in our analyses enabled us to explore evidence
for convergent molecular signatures associated with both idio-
pathic and syndromic forms of autism.

Despite this being the first study to quantify DNA methyla-
tion across three different brain regions from both idiopathic and
syndromic ASD patients and controls, this study has a number of
important limitations that should be considered when interpret-
ing the results. First, DNA methylation was quantified using the
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[llumina 450K array; although this is a robust and highly reliable
platform with content spanning regulatory regions associated
with the majority of known annotated genes, it interrogates DNA
methylation at a relatively small proportion of sites across the
whole genome. Second, because epigenetic processes play an
important role in defining cell-type-specific patterns of gene
expression (56,57), the use of bulk tissue from each brain region is
a potential confounder in DNA methylation studies (58). Despite
our efforts to control for the effect of cell-type diversity in
DNA methylation quantification in our analyses using in silico
approaches, this approach is not suitable to estimate the neu-
ronal proportion in the CB and cannot inform us about disease-
relevant DNA methylation changes specific to individual brain
cell types. Of note, our general findings are in line with those
reported by Nardone and colleagues (26) that interrogated DNA
methylation in cell-sorted cortical neurons (from 16 ASD cases
and 15 controls). Third, we were limited by the availability of
post-mortem brain tissue, and the average age of the cases—
especially the seven dupl5q carriers—was lower compared to
the controls. We, therefore, included ‘age’ as a covariate in all
analyses to minimize potential confounding. Fourth, there is
increasing awareness of the importance of 5-hydroxymethyl
cytosine (5-hmcC) in the human brain (59), although this mod-
ification cannot be distinguished from DNA methylation using
standard bisulfite-based approaches. It is plausible that many
of the ASD-associated differences identified in this study are
confounded by modifications other than DNA methylation. To
date, no study has evaluated the role of genome-wide 5-hmC in
ASD, although recent studies from our group quantified levels
of 5-hmC across the genome in human cortex and CB (60) and
across neurodevelopment (61).

To conclude, we identified widespread differences in DNA
methylation associated with iASD, with consistent signals in
both cortical regions that were distinct to those observed in
the CB. Individuals carrying a duplication on chromosome 15q
(dup15q), representing a genetically defined subtype of ASD,
were characterized by striking differences in DNA methylation
across a discrete domain spanning an imprinted gene cluster
within the duplicated region. In addition to the striking cis-
effects on DNA methylation observed in dupl5q carriers,
we identified convergent methylomic signatures associated
with both iASD and dupilSq, reflecting the findings from
previous studies of gene expression and H3K27ac. Our study
represents the first systematic analysis of DNA methylation
associated with ASD across multiple brain regions, providing
novel evidence for convergent molecular signatures associated
with both idiopathic and syndromic autism and highlighting
potential disease-associated pathways that warrant further
investigation.

Materials and Methods

Post-mortem brain tissue from autism cases and
controls

Tissue samples for this study were acquired from the Autism
Tissue Program brain bank at the Oxford UK Brain Bank for
Autism (www.brainbankforautism.org.uk), Harvard Brain and
Tissue Bank (https://hbtrc.mclean.harvard.edu) and the National
Institute for Child Health and Human Development Eunice
Kennedy Shriver Brain and Tissue Bank for Developmental
Disorders. (http://www.medschool.umaryland.edu/btbank/). All
subjects were de-identified prior to acquisition, and all samples
were dissected by trained neuropathologists, snap-frozen and

stored at —80°C. A total of 223 samples obtained from 95 individ-
uals were included in this study with up to three brain regions
from each individual donor: dorsolateral or medial PFC [corre-
sponding to Brodmann area 9 and denoted as ‘prefrontal cortex’
(PFC)], superior temporal gyrus [corresponding to BA41, BA42 or
BA22 and denoted as ‘temporal cortex’ (TC)] and cerebellar ver-
mis (CB) (Supplementary Material, Fig. S1). Further information
about the samples is given in Supplementary Material, Table S1.
Genomic DNA was isolated from ~100 mg of each dissected
brain region using a standard phenol-chloroform extrac-
tion method and tested for degradation and purity before
analysis.

DNA methylation profiling and data QC

All samples were randomized with respect to phenotypic status,
age, sex and brain bank to avoid batch effects throughout all
experimental procedures. Genomic DNA (500 ng) from each
sample was treated in duplicate with sodium bisulfite using
the Zymo EZ DNA Methylation-Lightning Kit™ to minimize
potential bisulfite-related biases (Zymo Research, Irvine, CA,
USA). Genome-wide DNA methylation was quantified using
the pooled bisulfite-converted DNA samples and the Illumina
Infinium HumanMethylation450 BeadChip (‘450K array’) (Illu-
mina, San Diego, CA, USA), scanned on an Illumina HiScan
System. Illumina GenomeStudio software was used to extract
signal intensities for each probe, generating a final report
that was imported in to the R statistical environment 3.0.2
(www.r-project.org) (62) using the methylumi (63) package. Data
QC and pre-processing were performed using the wateRmelon
package as described previously (64). Multidimensional scaling
plots of sex chromosome probes were used to check that the
predicted sex corresponded with the reported sex for each
individual, and comparison of 65 single nucleotide polymor-
phism (SNP) probes on the array confirmed that matched tissues
were sourced from the same individual. Stringent filtering of
the pre-normalized Illumina 450K data was performed. First,
we removed the 65 SNP probes, cross-reactive probes and
probes overlapping polymorphic CpGs containing an SNP with
minor allele frequency of >5% within 10 bp of the single base
extension position as detailed in the Illumina annotation file
and identified in recent publications (65,66). Second, CpG sites
with a detection P-value of >0.05 in 1% of samples identified
by the pfilter function within the wateRmelon R package were
removed. Third, polymorphic SNP control probes (n = 65) located
on the array were used to confirm that matched cortex and CB
tissues were sourced from the same individual. The final data
set consists of a total of 417 460 probes from 76 PFC samples
(n = 36 iASD patients, n = 7 dup15q patients, n = 33 controls),
77 TC samples (n = 33 1ASD patients, n = 6 dup15q patients, n = 38
controls) and 70 CB samples (n = 34 iASD patients, n = 7 dup15q
patients, n = 29 controls) (Supplementary Material, Table S1) was
normalized with the dasen function of the wateRmelon R package
and then batch-corrected with the ComBat function of the ComBat
R package (67). For the dup15q samples, their duplication status
and breakpoints were confirmed by genotyping (11) and further
validated by CNV calling from the 450K DNA methylation data
using R package ChAMP (68).

Identification of autism-associated differential
methylation

All statistical analyses were conducted using R statistical pack-
age (version 3.1.1). Analyses were performed to test for DMPs and
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DMRs associated with disease status for each brain region. The R
package Cell EpigenoType Specific (CETS) mapper (69) designed for
the quantification and normalization of differing neuronal pro-
portions in genome-wide DNA methylation data sets was used to
estimate brain cellular heterogeneity in cortex (both PFC and TC)
samples. CETS-based neuronal cell composition estimate was
not applied on the CB samples given the known high proportion
of non-NeuN-expressing neurons in this brain region (41,69).
To model the effect of sample-specific variables, we performed
linear regression for each probe using age, gender, brain bank,
CETS (for PFC and TC but not CB) and diagnosis as independent
variables. We also applied a linear mixed effect (LME) model
framework for samples with data from multiple cortical regions
to identify consistent differential ASD-associated DNA methyla-
tion markers across the cortex. The individual donor identified
was treated as a random effect, and age, gender, brain bank,
CETS, brain region and diagnosis were treated as fixed effects.
All disease-associated DMPs identified and reported have to
pass the ‘discovery’ threshold of P < 5e-05 and/or the stringent
experiment-wide significance threshold of P < 1.198 x 1077.
ASD-associated DMRs were identified using the Python module
comb-p (43) to group spatially correlated DMPs (seed P < 1.00E-
03, minimum of two probes) at a maximum distance of 300 bp in
each analytical group. Significant DMRs were identified as those
with at least two probes and a corrected P < 0.05 using Sidak
correction (70).

Weighted gene correlation network analysis

For the co-methylation network analyses, modules of co-
methylated probes were identified using the WGCNA package in
R (45), and a network was constructed for cross-cortex samples.
For each network, the input probe set was pruned to remove
probes with minimal variability across samples. We required
that each probe have a minimum range of methylation values
of 5% within the middle 80% of samples, resulting in 251 311
probes for cortex. In the cross-cortex network, to enrich for
modules relating to diagnosis, we regressed out the effect of CET
score and age after fitting a linear model for each probe with
diagnosis, age, sex, cortical region, CET score and brain bank as
independent variables. A signed network was constructed using
the biweight mid-correlations between probes with a soft power
of 7. This network was generated blockwise, using the WGCNA
function blockwiseModules with the following parameters:
maxBlockSize = 15 000, mergeCutHeight = 0.1, deepSplit = 4 and
minModuleSize = 100. For each module, a linear mixed effects
model was fit between its eigengene and diagnosis, age, sex,
cortical region, batch, CET score and brain bank as fixed effects
with individual ID as a random effect. This LME model was fit
for three subsets of samples: (iASD + dup15q) versus control,
iASD versus control and dup15q versus control.

Gene ontology pathway analysis

[lumina UCSC gene annotation, which is derived from the
genomic overlap of probes with RefSeq genes or up to 1500 bp
of the transcription start site of a gene, was used to create a test
gene list from the probes identified in the disease-associated
modules for pathway analysis. Where probes were not anno-
tated to any gene (i.e. in the case of intergenic locations), they
were omitted from this analysis; where probes were annotated to
multiple genes, all were included. A logistic regression approach
was used to test if genes in this list predicted pathway mem-
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bership, while controlling for the number of probes that passed
QC (i.e. were tested) annotated to each gene. Pathways were
downloaded from the GO website (http:/geneontology.org/)
and mapped to genes, including all parent ontology terms. All
genes with at least one 450 K probe annotated and mapped
to at least one GO pathway were considered. Pathways were
filtered to those containing between 10 and 2000 genes. After
applying this method to all pathways, the list of significant
pathways (P < 0.05) was refined by grouping to control for the
effect of overlapping genes. This was achieved by taking the
most significant pathway and retesting all remaining significant
pathways while controlling additionally for the best term. If the
test genes no longer predicted the pathway, the term was said to
be explained by the more significant pathway, and hence these
pathways were grouped together. This algorithm was repeated,
taking the next most significant term, until all pathways were
considered as the most significant or found to be explained by a
more significant term.

Supplementary Material

Supplementary Material is available at HMG online.
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