
Counting 4× 4 Matrix Partitions of Graphs∗

Martin Dyer† Leslie Ann Goldberg‡ David Richerby‡

20 June 2016

Abstract

Given a symmetric matrix M ∈ {0, 1, ∗}D×D, an M -partition of a graph G is a function
from V (G) to D such that no edge of G is mapped to a 0 of M and no non-edge to
a 1. We give a computer-assisted proof that, when |D| = 4, the problem of counting
the M -partitions of an input graph is either in FP or is #P-complete. Tractability is
proved by reduction to the related problem of counting list M -partitions; intractability
is shown using a gadget construction and interpolation. We use a computer program to
determine which of the two cases holds for all but a small number of matrices, which
we resolve manually to establish the dichotomy. We conjecture that the dichotomy also
holds for |D| > 4. More specifically, we conjecture that, for any symmetric matrix M ∈
{0, 1, ∗}D×D, the complexity of counting M -partitions is the same as the related problem
of counting list M -partitions.

1 Introduction

Let M be a symmetric matrix in {0, 1, ∗}D×D. An M -partition of an undirected graph G =
(V,E) is a partition of V into parts labeled by the elements of D (some of which may be
empty). The partition is represented as a function σ : V → D where σ(v) is the part of
vertex v. It satisfies the following property: For all pairs of distinct vertices u and v,

• Mσ(u),σ(v) ∈ {1, ∗} if (u, v) ∈ E and

• Mσ(u),σ(v) ∈ {0, ∗} if (u, v) 6∈ E.

Thus, if Mi,j = 0, no edges are permitted between vertices in parts i and j and, if Mi,j = 1,
then all edges must be present between the two parts. If Mi,j = ∗, there is no restriction on
edges between parts i and j. Note that self-loops play no role — the property applies only
to pairs of distinct vertices u and v.

M -partitions were introduced by Feder, Hell, Klein and Motwani [5, 6] to study graph
partition problems arising in the proof of the strong perfect graph conjecture, such as recog-
nising skew cutsets, clique-cross partitions, two-clique cutsets and Winkler partitions. A skew

∗Final author-prepared manuscript of http://dx.doi.org/10.1016/j.dam.2016.05.001. The research
leading to these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007–2013) ERC grant agreement no. 334828. The paper reflects only
the authors’ views and not the views of the ERC or the European Commission. The European Union is not
liable for any use that may be made of the information contained therein.
†School of Computing, University of Leeds, UK.
‡Department of Computer Science, University of Oxford, UK.

1

cutset of a connected graph G = (V,E) is a pair of disjoint, non-empty sets A,B ⊂ V such
that A∪B is a cutset (deleting the vertices in A and B disconnects the graph) and G contains
every possible edge between A and B. Skew cutsets correspond to M -partitions for

M =

A B C D

A ∗ 1 ∗ ∗
B 1 ∗ ∗ ∗
C ∗ ∗ ∗ 0
D ∗ ∗ 0 ∗

 .

The rows (and columns) correspond to parts A, B, C and D, respectively. Consider an M -
partition in which every part is non-empty. MA,B = 1 so G must contain every edge between
those two parts. The rest of the graph must be assigned to parts C and D but, with no
edges allowed between those parts, each of them must be a non-empty union of components
of G−(A∪B). Therefore, the partition corresponds to a skew cutset. Clique-cross partitions,
two-clique cutsets and Winkler partitions also correspond to M -partition problems for 4× 4
matrices M ; see [6] for both the definition of these problems and the corresponding matrices.

We study the problem of counting M -partitions, which was introduced by Hell, Hermann
and Nevisi [8].

Name. #M-partitions.

Instance. A graph G.

Output. ZM (G), the number of M -partitions of G.

Note that the matrix M is considered as a parameter and is not part of the input. For the de-
cision problem of determining whether an M -partition of some graph exists, it is conventional
to require every part to be non-empty since, otherwise, the problem is trivial whenever there
is a ∗ on the diagonal (as is the case above). Counting, however, includes all M -partitions
of the graph, including those where some parts may be empty. Hell, Hermann and Nevisi [8]
show that, for any 2× 2 or 3× 3 matrix M , the problem #M-partitions is either in FP or
is #P-complete. Our main result is an extension of this dichotomy to 4× 4 matrices.

Theorem 1. Let M be a symmetric matrix in {0, 1, ∗}4×4. Then #M-partitions is either
in FP or is #P-complete.

Thus, we completely resolve the complexity of counting M -partitions for 4 × 4 matrices,
including all the examples above.

We explain the criterion that determines whether #M-partitions is in FP or #P-
complete for a given symmetric 4 × 4 matrix M in the next section. Doing this requires
the related concept of list M -partitions, also due to Feder et al. [6]. Here, each vertex of the
input graph comes with a list of parts in which it is allowed to be placed. More formally, the
input to the problem is a graph G = (V,E) and a function L : V → P(D), where P(·) denotes
the powerset. An M -partition σ of G respects the function L if σ(v) ∈ L(v) for all vertices
v ∈ V . The counting list M -partitions problem is defined as follows.

Name. #List-M-partitions.

Instance. A graph G and a function L : V (G)→ P(D).

Output. The number of M -partitions of G that respect L.

2

The complexity of #List-M-partitions for all symmetric, square {0, 1, ∗}-matrices was
recently determined by Göbel, Goldberg, McQuillan, Richerby and Yamakami [7]: depending
on the structure of M , it is either in FP or is #P-complete.

The #M-partitions problem without lists is the special case of #List-M-partitions
where L(v) = D for every vertex v. Thus, there is a trivial polynomial-time Turing re-
duction from #M-partitions to #List-M-partitions. It is not known whether there is a
polynomial-time Turing reduction in the other direction. As such, the dichotomy for counting
list M -partitions does not necessarily translate into a dichotomy for counting M -partitions
without lists.

M -partitions are also known as trigraph homomorphisms. Trigraphs are a generalisation
of graphs, introduced by Chudnovsky [3], which allow ∗-edges. Thus trigraph homomorphisms
are a generalisation of the well-known graph homomorphism problem [10]. Dyer and Green-
hill [4] showed that, for any fixed graph H, the problem of counting homomorphisms from
an input graph G to H is either in FP or is #P-complete, depending on the structure of H.
The only polynomial-time cases are those where every component of H is either a complete
graph with a self-loop on every vertex or a complete bipartite graph with no self-loops. The
algorithm for the polynomial-time graph homomorphism cases is easily adapted to respect
lists so, for any graph H, the problems of counting homomorphisms to H with and without
lists have the same complexity [9].

We explain the criterion for the #List-M-partitions dichotomy from [7] in the following
section. It is more complex than the criterion for graph homomorphisms, and so are the
algorithms for the polynomial-time cases. Nonetheless, for every symmetric matrix M of
size up to 4 × 4, it is true that #M-partitions and #List-M-partitions have the same
complexity. We conjecture that this holds in general.

Conjecture 2. Let M be a symmetric matrix in {0, 1, ∗}D×D. Then #M-partitions and
#List-M-partitions have the same complexity.

Proving this conjecture appears considerably more difficult than routinely extending the
methods of Dyer and Greenhill [4], or even those of Bulatov’s far-reaching generalisation [1].
The difficulty arises from the fact that some of the most powerful techniques used in proving
those dichotomies do not seem to be applicable to the M -partitions problem.

1.1 The #List-M-partitions dichotomy

We now describe the complexity dichotomy for the #List-M-partitions problem, from [7].
The definitions and observation in this section are taken from that paper.

Definition 3. For any symmetric M ∈ {0, 1, ∗}D×D and any sets X,Y ∈ P(D), define the
binary relation

HM
X,Y = {(i, j) ∈ X × Y |Mi,j = ∗} .

The following notion of rectangularity was introduced by Bulatov and Dalmau [2].

Definition 4. A relation R ⊆ D ×D′ is rectangular if, for all i, j ∈ D, and i′, j′ ∈ D′,

(i, i′), (i, j′), (j, i′) ∈ R =⇒ (j, j′) ∈ R .

Definition 5. Given index sets X and Y , a matrix M ∈ {0, 1, ∗}X×Y is pure if it has no 0s
or has no 1s. M is ∗-rectangular if HM

X,Y is rectangular.

3

If M is a pure matrix with no 1s, then ZM (G) is the number of homomorphisms from the
graph G to the graph whose adjacency matrix is obtained from M by changing all ∗s to 1s.
If M is pure with no 0s, ZM (G) is the number of homomorphisms of the complement of G
to the graph whose adjacency matrix is obtained from M by changing all 1s to 0s and then
changing all ∗s to 1s. Thus, we sometimes refer to pure matrices as homomorphism matrices.

Definition 6. For any symmetric matrix M ∈ {0, 1, ∗}D×D, a set L ⊆ P(D) is M -purifying
if, for all X,Y ∈ L, M |X×Y is pure, where M |X×Y is the submatrix formed by restricting to
rows in X and columns in Y .

Definition 7. An L-M -derectangularising sequence of length k is a sequence D1, . . . , Dk with
each Di ∈ L such that:

• {D1, . . . , Dk} is M -purifying and

• the relation HM
D1,D2

◦HM
D2,D3

◦ · · · ◦HM
Dk−1,Dk

is not rectangular.

For brevity, we refer to a P(D)-M -derectangularising sequence as an M -derectangularising
sequence or as a derectangularising sequence of M .

Observation 8. If there is an i ∈ {1, . . . , k} such that Di = ∅ then the relation H =
HM
D1,D2

◦HM
D2,D3

◦ · · · ◦HM
Dk−1,Dk

is the empty relation, which is trivially rectangular. If there

is an i such that |Di| = 1 then H is a Cartesian product, and is therefore rectangular. It
follows that |Di| ≥ 2 for each i in a derectangularising sequence.

The complexity of #List-M-partitions is determined by the presence or absence of
derectangularising sequences. The following is [7, Theorem 9].

Theorem 9. Let M be a symmetric matrix in {0, 1, ∗}D×D. If there is an M -derectangular-
ising sequence, then the problem #List-M-partitions is #P-complete. Otherwise, it is in
FP.

Thus, our conjecture that counting M -partitions has the same complexity as counting list
M -partitions is the same as the following.

Conjecture 10. #M-partitions is #P-complete if M has a derectangularising sequence,
and is in FP, otherwise.

1.2 Our contribution

Our main contribution is a computer-assisted proof of Theorem 1. This establishes a di-
chotomy for #M-partitions for 4×4 matrices that is consistent with Conjecture 2. We also
show that Hell, Hermann and Nevisi’s dichotomy for 2 × 2 and 3 × 3 matrices is consistent
with our conjecture.

There are sufficiently few 2×2 and 3×3 {0, 1, ∗}-matrices that Hell, Hermann and Nevisi
were able to determine the complexity of #M-partitions for all such matrices by case
analysis. However, this approach does not seem feasible for larger matrices.

Recall that, for any symmetric matrix M ∈ {0, 1, ∗}D×D, #M-partitions is the special
case of #List-M-partitions in which every vertex of the input graph is given list D. So, if
#List-M-partitions is in FP, so is #M-partitions. By Theorem 9, this occurs precisely

4

when there is no M -derectangularising sequence. In Section 4, we give a method that can be
used to show that some 4× 4 matrices do not have M -derectangularising sequences.

In Section 5, we develop gadget-based techniques for showing #P-completeness of #M-
partitions for symmetric D×D matrices M . Given an input graph G, we attach a gadget Γ
to G. The parts of D into which the vertices of the gadget are placed determine the parts
into which the vertices of G can be placed. If we could restrict to favourable partitions of
the gadget, this would, in many cases, restrict G to be partitioned according to some proper
submatrix M ′ for which #M ′-partitions is known to be #P-complete by the work of Hell
et al. [8].

We do not know how to restrict to specific partitions of the gadget. However, by varying
the size of the gadget and using interpolation as follows, we are able to restrict to certain
classes of partitions. This is enough to prove hardness in all but a few cases, by showing
that we can use an oracle for #M-partitions to compute #M ′-partitions for some hard
submatrix M ′ of M . In more detail, let J(Γ, G) be the graph that results from attaching the
gadget Γ to the graph G. (In fact, we have two different ways of attaching the gadget, which
are described in Section 5; we do not need the details, here.) For a set S ⊆ D, let ZSM (Γ) be
the number of M -partitions of the gadget Γ where exactly the parts in S are non-empty. In
M -partitions of J(Γ, G), placing Γ in the parts in S restricts the vertices of G to being placed
in some set E(S) ⊆ D of the parts. We can write

ZM (J(Γ, G)) =
∑
S⊆D

ZSM (Γ)ZM |E(S)
(G) ,

where M |E(S) is the principal submatrix of M containing exactly the rows and columns with
indices in E(S).

The gadget Γ is just a clique or independent set of size k so ZSM (Γ) is a polynomial-time
computable function of M and k. Having computed these values, and also used the oracle to
compute ZM (J(Γ, G)), we can view the above equation as a linear equation in the “variables”
ZM |E(S)

(G). By varying the size of the gadget, we can obtain a system of equations of this
form, which we would hope to be able to solve. However, it is usually the case that there are
distinct subsets S1, . . . , Sr of D for which the functions ZSiM (Γ) for 1 ≤ i ≤ r are identical. In
this case, we cannot solve for the variables ZM |E(Si)

(G) individually but we can compute a
weighted sum of them. In most cases, it turns out that only one of these variables is a #P-
complete function. We can compute the weighted sum in polynomial time from the system of
equations, and then compute all but one of the terms of that sum in polynomial time (with
the assistance of the oracle, if needed), which allows us to compute a #P-complete function,
completing the reduction from the problem of computing that function to #M-partitions.

We prove Theorem 1 with the aid of a computer program that, for each symmetric matrix
M ∈ {0, 1, ∗}4×4 attempts to use the techniques of Section 4 to prove tractability and the
interpolation technique of Section 5 to prove intractability. This is described in Section 6.
The program resolves nearly all cases; the six exceptions (up to symmetries of the problem)
are dealt with separately in Section 7. Finally, in Section 8, we show that our dichotomy for
4× 4 matrices is consistent with our conjecture for the general case, Conjecture 10.

A similar computer-assisted proof could, in principle, be applied to 5 × 5 matrices, the
number of which is not excessive (at most 315 < 14, 400, 000, even before symmetries are
considered). Doing so requires automating more sophisticated handling of the sets of simul-
taneous linear equations and seems likely to result in a larger number of exceptional matrices
than the six 4× 4 matrices.

5

2 Preliminaries

Sets. We write P(D) for the powerset of D and D(k) for the set of k-element subsets of D.
For convenience, we often list the elements of small sets as tuples (e.g., ac for {a, c}). For any
natural number k, [k] denotes the set {1, . . . , k}.

Graphs. Since self-loops and parallel edges play no role in matrix partitions, we will assume
that input graphs do not have self-loops or parallel edges. Let Γ1

k be the k-vertex complete
graph and let Γ0

k be the k-vertex empty graph.1 Let #IS(G) and #Clique(G) be the problems
of determining, respectively, the number of independent sets and complete subgraphs of G.

Combinatorics. We write (n)k for the falling factorial n(n − 1) · · · (n − k + 1), taking
(n)0 = 1. {

n

k

}
=

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn

denotes a Stirling number of the second kind. The number of surjective functions from a set
of size n to a set of size k is k!

{
n
k

}
. We will use the following bounds on

{
n
k

}
:

For n ≥ k ln 2k, 1
2k

n/k! ≤
{
n

k

}
≤ kn/k!. (1)

To see this, consider{
n

k

}
=

k∑
j=0

(−1)k−j
jn

j!(k − j)!
=

k∑
j=0

(−1)k−jsj = S,

say. Now, s0 = 0, s1 > 0 and, for j > 1,

sj
sj−1

=
(j − 1)!(k − j + 1)!jn

j!(k − j)!(j − 1)n
=
k − j + 1

j

(
j

j − 1

)n
≥ 2,

if (1− 1/j)n ≤ (k − j + 1)/(2j). Now (1− 1/j)n ≤ e−n/k, using 1− x ≤ e−x and 1 < j ≤ k.
Also, (k − j + 1)/j ≥ 1/k for j ≤ k. Thus sj/sj−1 ≥ 2 if e−n/k ≤ 1/(2k), i.e. n ≥ k ln 2k.

Thus, for n ≥ k ln 2k, S is an alternating series with strictly increasing terms. It follows
that sk − sk−1 ≤ S ≤ sk. Equation (1) now follows, since sk−1 ≤ 1

2sk and sk = kn/k!.

Matrices. Let M be a symmetric {0, 1, ∗}-matrix with rows and columns indexed by a
finite set D. For the 4 × 4 case, we adopt the convention that D = {a, b, c, d} and we index
the rows (and columns) a, b, c and d from top to bottom (left to right).

For sets S, T ⊆ D, we write M |S×T for the submatrix of M obtained by restricting to the
rows in S and the columns in T . M |S denotes the principal submatrix M |S×S .

Given a symmetric D × D matrix M and another symmetric D′ × D′ matrix M ′ with
|D| = |D′| we write M ≡M ′ if there is a bijection ρ : D → D′ such that Mi,j = M ′ρ(i),ρ(j) for

all i, j ∈ D. It is clear that, if M ≡ M ′, then #M-partitions and #M ′-partitions have
the same computational complexity.

1This nonstandard notation allows us to talk about a graph Γτk for τ ∈ {0, 1}, simplifying the description
of our gadget construction.

6

We write M for the matrix obtained from M by swapping all 0s and 1s. Note that the
M -partitions of any graph G correspond directly to M -partitions of the complement of G.
Write M ≈ M ′ if M ≡ M ′ or M ≡ M ′. Again, if M ≈ M ′, then #M-partitions and
#M ′-partitions have the same computational complexity.

We say that a matrix M is easy if the problem #M-partitions is in FP and hard if it
is #P-complete.

3 2× 2 and 3× 3 matrices

Conjecture 2 is already known to hold for pure matrices. As we noted earlier, in this case
ZM (G) is the number of homomorphisms from G (or its complement) to a graph whose edges
correspond to the stars in M . The tractability criterion of Dyer and Greenhill [4, Theorem
1.1] for graph-homomorphism counting problems coincides with the tractability criterion for
the problem with lists [9, Theorem 4]. The condition stated in these works concerns the
graph H whose vertices are elements of D and whose edges (including self-loops) correspond
to the stars in M . The tractability condition is that each component of H is either a complete
graph in which every vertex has a self-loop or a complete bipartite graph in which no vertices
have self-loops. Bulatov and Dalmau [2, Theorem 12] showed that this condition is equivalent
to the condition that the relation HM

D,D is rectangular, which, in turn, is equivalent to the
condition that M does not have (∗ ∗∗ 0) or (∗ ∗∗ 1) or any permutation of these as a submatrix.

Conjecture 2 is also known to hold for impure 2×2 matrices. In particular, Hell, Hermann
and Nevisi [8, Theorem 1] showed that for every impure symmetric 2× 2 matrix M , #List-
M-partitions is in FP, hence so is #M-partitions.

Hell, Hermann and Nevisi’s dichotomy [8, Theorem 10] shows that if M is a symmetric
impure 3 × 3 matrix then #M-partitions is #P-hard if M contains (∗ ∗∗ 0) or (∗ ∗∗ 1) (or
any permutation of these) as a principal submatrix. Otherwise, #M-partitions is in FP.
We will now show that this result is consistent with Conjecture 10, which we have already
shown to be equivalent to Conjecture 2. In one direction, if M contains one of these hard
principal submatrices then the rows and columns of this hard principal submatrix are an
M -derectangularising sequence, so Conjecture 10 also says that M is hard. In the other
direction, if M does not contain one of these hard principal submatrices then the following
lemma shows that M has no derectangularising sequence, so Conjecture 10 also says that M
is easy.

Lemma 11. Let M be an impure 3× 3 symmetric {0, 1, ∗}-matrix M with no principal hard
2× 2 submatrix. Then M has no derectangularising sequence.

Proof. Let D1, . . . , Dk be a sequence of subsets of D = {a, b, c}. By Observation 8, if |Di| < 2
for any i, the sequence cannot be derectangularising; if |Di| = 3 for any i, the sequence is not
derectangularising, since M |Di×Di = M is not pure. Thus, |Di| = 2 for all i.

Case 1. First, suppose that M has a non-principal hard 2× 2 submatrix: without loss of
generality, we may assume that M |ab×bc contains three ∗s and one 0. Since M is impure, at
least one of Ma,a and Mc,c must be 1: without loss of generality, assume that Ma,a = 1. In fact,
we must have M |ab×bc = (∗ ∗0 ∗) as, otherwise, every choice of Mc,c would leave M containing

a hard principal 2 × 2 submatrix. Therefore, M =
(

1 ∗ ∗
∗ 0 ∗
∗ ∗ x

)
and x ∈ {0, 1} since otherwise

M |ac would be hard. The two choices for x lead to matrices that are ≈-equivalent, so we may
assume that x = 0.

7

No derectangularising sequence can include {a, b} or {a, c} since M |ab and M |ac are im-
pure. This leaves only {b, c}, but HM

{b,c},{b,c} is the disequality relation on the set {b, c}.
Composing this with itself any number of times results in either equality or disequality, both
of which are ∗-rectangular. Thus, M has no derectangularising sequence.

Case 2. Finally, suppose that M has no non-principal hard 2× 2 submatrix. Let M ′ be
the pure matrix formed from M by replacing every 1 with a 0. M ′ does not have (∗ ∗∗ 0) or any
permutation of this as a submatrix. Equivalently, HM ′

D,D is rectangular and the graph whose
edges correspond to stars in M ′ has the property that every component is a complete graph in
which every vertex has a self-loop or a complete bipartite graph in which no vertices have self-
loops. There are only three elements in D so it is easy to see that M ′ has no derectangularising
sequence. Since anyM -derectangularising sequence is also anM ′-derectangularising sequence,
it follows that there is no M -derectangularising sequence.

4 Tractability via #List-M-partitions

For any symmetric D × D matrix M , recall that #M-partitions is the special case of
#List-M-partitions where the list of allowable parts for every vertex is D. Thus, if there
is a polynomial-time algorithm for #List-M-partitions, a polynomial-time algorithm for
#M-partitions is immediate.

By Theorem 9, #List-M-partitions is in FP if M has no derectangularising sequence.
Determining that a general symmetric matrix has no derectangularising sequence is co-NP-
complete [7, Theorem 10]. However, there are only finitely many 4 × 4 {0, 1, ∗}-matrices, so
hardness of the general problem is moot. By [7, Lemma 27], any matrix in {0, 1, ∗}4×4 that
has a derectangularising sequence has one of length at most 33,280 but it is not feasible to
try all such sequences. In this section, we show that, in some cases, it is simple to determine
that a 4× 4 matrix has no derectangularising sequence.

Lemma 12. Let M be a symmetric matrix in {0, 1, ∗}D×D such that, for every W ⊆ D(2),
at least one of the following holds:

1. There are S, T ∈W (not necessarily distinct) such that M |S×T is not pure,

2. W = {S, T}, S ∩ T = ∅ and M |S×T is pure and ∗-rectangular, or

3. M |⋃W is pure and has no derectangularising sequence.

Then #M-partitions is in FP.

Proof. If FP = #P, then #M-partitions is in FP for any matrix M . So we may assume
that FP 6= #P for the rest of the proof.

We prove the contrapositive. If #M-partitions is not in FP, then, by Theorem 9 and the
assumption that FP 6= #P, M has a derectangularising sequence. Choose such a sequence
D1, . . . , D` that contains the least possible number of distinct sets among the Di (i.e., a
sequence that minimises |{D1, . . . , D`}|). We show that none of the three properties holds for

W =
⋃
iD

(2)
i . By Observation 8, |Di| ≥ 2 for each i ∈ [`].

For property 1, consider any S ⊆ Di and T ⊆ Dj for any i, j ∈ [`]. M |Di×Dj is pure
because D1, . . . , D` is M -purifying, so M |S×T is pure. For property 3, suppose that M |⋃W is
pure, since there is nothing more to prove if it is not. Since |Di| ≥ 2 for each i,

⋃
W =

⋃
iDi.

Therefore, D1, . . . , D` is a derectangularising sequence of M |⋃W .

8

It remains to show that W does not have property 2. Suppose that W = {S, T} and
S ∩ T = ∅. If there were a Di with |Di| > 2, we would have |W | > 2, contradicting the
assumption that W = {S, T}. Thus, Di ∈ {S, T} for each i ∈ [`]. By the definition of
derectangularising sequence, M |S×S , M |S×T and M |T×T are all pure.

M |S×S and M |T×T must both be ∗-rectangular since, otherwise, S, S or T, T would be a
derectangularising sequence, contradicting the choice of D1, . . . , D`. If there is some i ∈ [`−1]
such that Di = Di+1 = S, then HM

S,S must be either the equality or disequality relation on S:
any other relation would either not be rectangular or would prevent the sequence D1, . . . , D`

from being derectangularising. Similarly, if we have Di = Di+1 = T for some i, then HM
T,T

must be equality or disequality on T .
There must be some i ∈ [` − 1] such that Di 6= Di+1. Without loss of generality, we

may assume that Di = S and Di+1 = T . Consider HM
S,T . If this were a matching or the

complete relation S × T , or if the projection onto its first and second columns were not S
and T , respectively, then D1, . . . , D` would not be derectangularising. The only remaining
possibility is that HM

S,T is not rectangular, i.e., M |S×T is not ∗-rectangular.

Given a 4× 4 matrix M , it is easy to check whether, for each of the 64 subsets of D(2), at
least one of the three properties of Lemma 12 holds. If this is the case, we may deduce that
M has no derectangularising sequence so is easy, even with lists.

5 Identifying hard matrices

For matrices M that are impure and, thus, not homomorphism matrices, we use a gad-
get construction and interpolation to “pick out” principal submatrices M ′ for which #M ′-
partitions is #P-complete. While we will be concerned with 4-element domains, the tech-
niques in this section could potentially also be applied to arbitrary domains D, perhaps as
part of a proof of a complexity dichotomy for all #M-partitions problems, by induction on
the size of the domain.

Given a Boolean value τ ∈ {1, 0}, a graph G and a positive integer k, let J0,τ (k,G) be
the disjoint union of G and Γτk. The “0” in the notation is to remind us that there are no
edges between G and the “gadget” Γτk (which is a complete graph if τ = 1 and a graph with
no edges if instead τ = 0). Also, let J1,τ (k,G) be the graph with vertex set V (G) ∪ V (Γτk)
and edge set E(G) ∪ E(Γτk) ∪ (V (G)× V (Γτk)). The “1” in the notation is to remind us that
all edges are present between G and the gadget Γτk.

The set of M -partitions of Jπ,τ (k,G) can be broken down according to the set of parts
S ⊆ D in which vertices of the gadget Γτk are placed. For example, consider the matrix

M =

a b c d

a 0 0 1 ∗
b 0 0 1 1
c 1 1 1 1
d ∗ 1 1 ∗

 (2)

and take π = τ = 0. In an M -partition of J0,0(k,G) in which the vertices of the Γ0
k are

all in part d, the vertices of G must be placed in parts a and d. Thus, the number of M -
partitions of J0,0(k,G) in which the Γ0

k is entirely within part d is equal to the number of
M |ad-partitions of G, which is the number of independent sets in G. If we could restrict

9

attention to only the M -partitions of J0,0(k,G) in which the Γ0
k is in part d, we could prove

#P-completeness of #M-partitions by reduction from counting independent sets which, in
the guise of monotone 2-SAT, was shown to be #P-complete by Valiant [12]. Unfortunately,
we do not know how to restrict partitions in this way but, in this section, we set up machinery
that nonetheless allows us to develop this idea into a method for proving hardness.

Definition 13. Let M be a symmetric matrix in {0, 1, ∗}D×D and let S ⊆ D. An M -
partition σ of a graph G is S-surjective if the image of σ is S. We write ZSM (G) for the
number of S-surjective M -partitions of G.

Given a set S ⊆ D, and a Boolean value π ∈ {0, 1}, let

Eπ(S) = {j ∈ D | ∀i ∈ S,Mi,j ∈ {π, ∗} } .

E1(S) is the set of parts in D that can be adjacent to every part in S; E0(S) is the set of
parts that can be non-adjacent to every part in S. These will be interesting to us because we
will proceed as follows in our reductions. Suppose that M |Eπ(S) is a hard matrix and that we
want to show that M is hard by reducing #M |Eπ(S)-partitions to #M-partitions. Then
we can take an instance G of #M |Eπ(S)-partitions and form the gadget Jπ,τ (k,G) for some
value of k. Then, if we can choose τ so that the gadget Γτk is always partitioned surjectively
into parts in S, we will have reduced #M |Eπ(S)-partitions to #M-partitions. Typically,
we cannot do this, but we will be able to do is to compute the number of M -partitions of
Jπ,τ (k,G) for lots of values of k. Using polynomial interpolation, we will be able to work out
the number of M -partitions of G which are consistent with an S-surjective partition of Γτk so
this will enable us to count the M |Eπ(S)-partitions of G (solving a hard problem) by using an
oracle for counting M -partitions. Thus, we will have proved that M is a hard matrix.

For π ∈ {0, 1}, we say that a principal submatrix M ′ of M is (M,π)-accessed by S if
M ′ ≡ M |Eπ(S). Note the equivalence — M ′ only has to be equivalent to M |Eπ(S) — it
doesn’t have to be M |Eπ(S). It is useful to define things this way because equivalent matrices
correspond to matrix partition problems of equivalent difficulty. Also, we will not be able to
separate them by interpolation, so we will have to consider them together.

To illustrate these definitions, consider the matrix M in Equation (2). Then E1({b, d}) =
{c, d} and E0({b, d}) = {a}. Thus, M |cd is (M, 1)-accessed by {b, d} and M |a is (M, 0)-
accessed by {b, d}. The matrix M |b is also (M, 0)-accessed by {b, d} since M |b ≡ M |a. Also,
E1({d}) = {a, b, c, d}. Thus, M itself is (M, 1)-accessed by {d}.

We say that a principal submatrix M ′ of M is accessible in the graph Jπ,τ (k,G) if there
is a set S ⊆ D such that ZSM (Γτk) > 0 and M ′ is (M,π)-accessed by S.

Continuing our example with S = {b, d} and M as in Equation (2), note that for any
k > 1, ZSM (Γ1

k) > 0 since an S-surjective M -partition of Γ1
k may place one vertex in part b

and the remaining vertices in part d. Thus, M |cd is accessible in J1,1(k,G) and M |a and M |b
are accessible in J0,1(k,G). Note that accessibility in Jπ,τ (k,G) depends on M , π, τ and
possibly k but it does not depend on G. Because of this, we may talk about accessibility in
Jπ,τ (k, ·). In fact, we will see later in Theorem 18 that accessibility will not actually depend
on k, provided that k > |D| (this is not obvious at this point but will be important).

We now begin to decompose ZM (Jπ,τ (k,G)) into more manageable units. The first step
is to break the sum up over the set S which is used to surjectively partition the gadget Γτk:

ZM (Jπ,τ (k,G)) =
∑
S⊆D

ZSM (Γτk)ZM |Eπ(S)
(G) . (3)

10

Now let
Ψπ = {S ⊆ D |M itself is (M,π)-accessed by S} .

The set Ψπ may be empty, depending on M . The reason that we have defined Ψπ is that
wish to use Equation (3) to show that M is a hard matrix — so we will use an oracle for
M -parititons to compute the left-hand side and we will hope to discover the solution to some
hard problem on the right-hand side. For this reason we don’t want M itself to be one of the
matrices M |Eπ(S) appearing on the right-hand side. To ease the notation, let Ψπ = P(D)\Ψπ;

Ψπ consists of all subsets S of D apart from those with M |Eπ(S) = M . From (3), we have

ZM (Jπ,τ (k,G)) −
∑
S∈Ψπ

ZSM (Γτk)ZM (G) =
∑
S∈Ψπ

ZSM (Γτk)ZM |Eπ(S)
(G) . (4)

Now we would like to collect the terms on the right-hand side of Equation (4), gathering
all terms with the same matrix M |Eπ(S), and taking these together. So, for any principal
submatrix M ′ of M , let

Cπ,τM ′ (k) =
∑
S

ZSM (Γτk) ,

Where the sum is over sets S ⊆ D such that M ′ is (M,π)-accessed by S. Thus, M ′ is accessible
in Jπ,τ (k, ·) precisely when Cπ,τM ′ (k) is positive. The quantity Cπ,τM ′ (k) corresponds roughly to
the coefficient of ZM ′(G) in (4) though we will have to be careful about over-counting. As a
first step, we can immediately rewrite the left-hand side of (4), combining the terms for all
S ∈ Ψπ, since these terms have a common factor of ZM (G).

ZM (Jπ,τ (k,G))− Cπ,τM (k)ZM (G) =
∑
S∈Ψπ

ZSM (Γk)ZM |Eπ(S)
(G) . (5)

Now, all of the matrices M |Eπ(S) such that ZM |Eπ(S)
(G) arises on the right-hand side of (5)

are proper principal sub-matrices of M . Since a proper principal sub-matrix M ′ is (M,π)-
accessed by S when M ′ ≡M |Eπ(S), the coefficient CπM ′ captures the contribution of the entire
equivalence class. Thus, we have

ZM (Jπ,τ (k,G))− Cπ,τM (k)ZM (G) =
∑
M ′

Cπ,τM ′ (k)ZM ′(G) , (6)

where the sum is over one element from each ≡-equivalence class of proper principal sub-
matrices M ′ of M .

We now explain the point of Equation (6). Corollary 19 will show that all of the coefficients
Cπ,τM ′ (k) can be computed in polynomial time (as a function of k). Also, the left side of (6)
can be computed in polynomial time with an oracle for computing ZM — we just use the
oracle twice to compute ZM (Jπ,τ (k,G)) and ZM (G). So if we can show that it is hard to
compute the right side of (6), then we can conclude that computing ZM is hard.

Since each M ′ is a proper principal submatrix of M , the complexity of computing each
ZM ′ is known from the dichotomy of Hell, Hermann and Nevisi [8] and is either in FP or is
#P-complete.

We begin with two straightforward cases in Lemmas 14 and 15. These cases do not require
interpolation, but we will handle these cases first and then explain the interpolation.

11

Lemma 14. Suppose that M is a symmetric matrix in {0, 1, ∗}D×D, that π and τ are Boolean
values in {0, 1}, and that k is some positive integer. If there is at least one proper hard
submatrix of M that is accessible in Jπ,τ (k, ·) and all such proper hard submatrices are ≡-
equivalent, then M is hard.

Proof. Suppose that, up to ≡-equivalence, M ′′ is the only hard proper submatrix that is
accessible in Jπ,τ (k, ·). Rearranging (6), we obtain, for any graph G,

ZM ′′(G) =
1

Cπ,τM ′′(k)

ZM (Jπ,τ (k,G))− Cπ,τM (k)ZM (G) −
∑

M ′ 6≡M ′′
Cπ,τM ′ (k)ZM ′(G)

 .

Since all the quantities Cπ,τM ′ (k) and ZM ′(G) are computable in FP (which follows since all M ′

are easy by assumption, and the coefficients Cπ,τM ′ (k) are constants) this gives a polynomial-
time Turing reduction from #M ′′-partitions to #M-partitions.

Lemma 15. Suppose that M is a symmetric matrix in {0, 1, ∗}D×D, that π and τ are Boolean
values in {0, 1}, and that k is some positive integer. Suppose that there is at least one proper
hard submatrix of M that is accessible in Jπ,τ (k, ·) that is ≡-equivalent to M0 = (∗ ∗∗ 0) and
that there is at least one proper hard submatrix of M that is accessible in Jπ,τ (k, ·) that is
≡-equivalent to M1 = (∗ ∗∗ 1). Suppose that every proper hard submatrix that is accessible is
either ≡-equivalent to (∗ ∗∗ 0) or to (∗ ∗∗ 1). Then M is hard.

Proof. Recall that #IS(G) and #Clique(G) are, respectively, the number of independent sets
and complete subgraphs in a graph G. Computing each of these is #P-complete [12] and they
correspond to #(∗ ∗∗ 0)-partitions and #(∗ ∗∗ 1)-partitions, respectively.

We first show that, for any fixed integers α and β, computing the function θα,β(G) =
α#IS(G) + β#Clique(G) is also #P-complete unless α = β = 0. Assume that α and β are
both non-zero as the result is trivial, otherwise. Observe that, for any graph G,

#IS(G+K1) = 2#IS(G)

#Clique(G+K1) = #Clique(G) + 1 .

Therefore,
θα,β(G+K1)− θα,β(G) = α#IS(G) + β ,

which is #P-complete to compute since α 6= 0. Thus, we have shown that computing θα,β(·)
is #P-complete.

Now rearrange (6) as in the proof of Lemma 14.

Cπ,τM0
(G)ZM0(G) + Cπ,τM1

(G)ZM1(G)

= ZM (Jπ,τ (k,G)) − Cπ,τM (k)ZM (G) −
∑

M ′ 6∈{M0,M1}

Cπ,τM ′ (k)ZM ′(G) ,

where the sum is over one element from each ≡-equivalence class of proper principal subma-
trices M ′ of M other than the equivalence classes of M0 and M1. Writing #IS(G) for ZM0(G)
and #Clique(G) for ZM1(G), and taking α = Cπ,τM0

(k) and β = Cπ,τM1
(k), we get

θα,β(G) = ZM (Jπ,τ (k,G)) − Cπ,τM (k)ZM (G) −
∑

M ′ 6∈{M0,M1}

Cπ,τM ′ (k)ZM ′(G) .

12

Thus, we have reduced the #P-hard problem of computing θα,β(·) to the problem of
evaluating the right-hand side, which can be done in polynomial time with an oracle for
#M-partitions. We conclude that #M-partitions is #P-complete.

Lemmas 14 and 15 give us a tool for identifying some hard matricesM . However, neither of
these lemmas helps with our example matrix (2). To make progress, we will use interpolation.
First, in Theorem 18, we will show that the value of ZSM (Γτk) is very constrained — there are
only a few possible values, depending on k. Further, in Lemma 20 we will show that these
values are linearly independent as functions of k. We will later use this fact to prove hardness
by interpolation.

Definition 16. Let f`,s(k) = (k)` (s− `)!
{
k−`
s−`
}

.

f`,s(k) is the number of ways that a set of size k can be partitioned into s parts, the first `
of which have size exactly 1 and the remaining s− ` of which have size at least 1.

Definition 17. Let M be any symmetric matrix in {0, 1, ∗}D×D. Let τ ∈ {0, 1} be a Boolean
value. For S ⊆ D, let `(M,S, τ) = |{i ∈ S |Mi,i = τ ⊕ 1}|. Let

E(M, τ) = {S | `(M,S, τ) = |S| or there are distinct i, j ∈ S with Mi,j = τ ⊕ 1} .

Intuitively, E(M, τ) is the set of subsets S of D that will not be useful for S-surjectively
partitioning the gadget Kτ

k (as long as k > |D|). For example, if there are distinct i, j ∈ S
with Mi,j = τ⊕1 then we can’t simultaneously use parts i and j, so an S-surjective partition is
impossible. We will see below that an S-surjective partition is also impossible if `(M,S, τ) =
|S|. The following theorem shows that as long as S 6∈ E(M, τ) the number of S-surjective
M -partitions of Γτk is a simple function of k.

Theorem 18. Let M be any symmetric matrix in {0, 1, ∗}D×D and suppose S ⊆ D and
τ ∈ {0, 1}. If S ∈ E(M, τ) then, for all k > |D|, ZSM (Γτk) = 0. Otherwise, for all k > |D|,
ZSM (Γτk) = f`(M,S,τ),|S|(k).

Proof. Case 1. Suppose there are distinct i, j ∈ S with Mi,j = τ ⊕ 1. Then no M -partition
of any Γτk can place elements in both parts i and j. Thus, for any k, there are no S-surjective
M -partitions of Γτk, so ZSM (Γτk) = 0.

Case 2. Suppose we are not in Case 1. Let S′ = {i ∈ S |Mi,i = τ⊕1} so `(M,S, τ) = |S′|.
In any S-surjective M -partition of any Γτk, every part in S′ must contain exactly one vertex.

Case 2a. If S ∈ E(M, τ) then |S′| = |S|, so for all k > |D| ≥ |S′|, we have ZSM (Γτk) = 0.
Case 2b. Otherwise, S /∈ E(M, τ). Let ` = `(M,S, τ) < |S|. Now, for any k > |S|,

ZSM (Γτk) = f`,|S|(k). To see this, note that there are (k)` ways to choose one vertex of Γτk to
place in each part in S′. This leaves the remaining k − ` vertices to be surjectively placed in
the |S| − ` parts in S \ S′. There are (|S| − `)!

{
k−`
|S|−`

}
ways of doing this.

Since f`,s(k) can be evaluated in polynomial time (as a function of k), we obtain the
following corollary.

Corollary 19. For any symmetric matrixM in {0, 1, ∗}D×D and any S ⊆ D, the S-surjective
M -partitions of complete and empty graphs can be counted in polynomial time.

Lemma 20. Suppose |D| ≥ 2. Then there is a full rank matrix F satisfying the following
properties.

13

• The columns of F are indexed by the pairs (`, s) with 0 ≤ ` < s ≤ |D|.

• The rows of F are indexed by
(|D|+1

2

)
distinct values k1 < k2 < . . ., all of which are

greater than |D|.

• For each row ki and each column (`, s), the corresponding entry in F is f`,s(ki).

Proof. Let d = |D| and let U = {(`,m) | 0 ≤ ` < d and 1 ≤ m ≤ d− `}. For (`,m) ∈ U , let
φ`,m(k) = f`,`+m(k). The stated properties of the matrix F indicate that the function φ`,m
maps every row index k to the entry in row k and column (`, ` + m) of F . Let Φ = {φ`,m |
(`,m) ∈ U}.

We will show that the functions in Φ (which correspond to the columns of F) are linearly
independent (as functions of k). To do this, we define a strict ordering < on functions in Φ.
Then we will show that for any φ ∈ Φ, the function φ cannot be expressed as a linear
combination of the functions in {φ′ ∈ Φ | φ′ < φ}, because it grows too fast as k increases.
Then we will also be able to conclude that

(
d+1

2

)
row indices can be chosen so that the matrix

F has full rank, and the other properties in the statement of the lemma are satisfied.
We first define the ordering on the

(
d+1

2

)
functions in Φ. We do this by defining a lex-

icographic ordering on the set U of column indices, and then ordering the functions in Φ
accordingly. For (`′,m′) and (`,m) in U , we say that (`′,m′) < (`,m) if one of the following
is true:

• m′ < m, or

• m′ = m and `′ < `.

We use the natural induced order on functions: φ`′,m′ < φ`,m if and only if (`′,m′) < (`,m).
For convenience, let Φ`,m = {φ ∈ Φ | φ < φ`,m}. We will show that φ`,m is not in the span

of Φ`,m, for all (`,m) ∈ U . We start by deriving bounds on φ`,m(k). If k is an integer that is
at least `+m ln 2m, then, from Equation (1), we have

φ`,m(k) = (k)` m!

{
k − `
m

}
=

{
≤ (k)` m!mk−`/m! = (k)` m

k−`,

≥ (k)` m! 1
2m

k−`/m! = 1
2(k)` m

k−`.

Now k` ≥ (k)` ≥ (k − `)` = k`(1− `
k)
` ≥ k`(1 − `2/k) ≥ 1

2k
` if k ≥ 2`2. So, if k ≥

2`2 +m ln 2m, then

φ`,m(k) = (k)` m!

{
k − `
m

}
=

{
≤ (k)` m

k−` ≤ k` mk−`,

≥ 1
2(k)` m

k−` ≥ 1
4k

` mk−`.
(7)

Now, we wish to show that φ`,m is not in the span of Φ`,m. The claim is trivial if ` = 0
and m = 1 since Φ0,1 = ∅, so suppose otherwise. Consider any function ψ in the linear span
of Φ`,m. We will show that ψ is not equal to φ`,m. Clearly, we can assume that ψ is not
identically 0 since φ`,m is not identically zero. By the definition of linear span, there are real
numbers βφ, not depending on k, so that ψ(k) =

∑
φ∈Φ`,m

βφφ(k). First suppose m′ ≤ m− 1

for all φ`′,m′ ∈ Φ. Plugging in (7), we will show that, if k is sufficiently large, then

ψ(k) ≤
∑

φ∈Φ`,m

βφk
d(m− 1)k ≤ βΦk

d(m− 1)k < 1
8k

`mk−` ≤ 1
2φ`,m(k), (8)

14

where βΦ =
∑

φ∈Φ`,m
|βφ| > 0. Note that βΦ depends on ψ, ` and m but not on k. Now (8)

holds if k ≥ 2`2 + m ln 2m (for the final inequality) and 8βΦm
`kd(1 − 1/m)k < 1 (for the

strict inequality). The latter inequality is true if kde−k/m < 1/(8βΦm
`). Now kd ≤ ek/2m

if k/(ln k) > 2dm, which is true if k > 4m2d2 (since ln k <
√
k for all k ≥ 1). So, if k >

max(2`2 + m ln 2m, 4m2d2), the condition becomes ek/2m > 8βΦm
`, i.e. k > 2m ln(8βΦm

`).
So, if k > max(2`2 +m ln 2m, 4m2d2, 2m ln(8βΦm

`)), then ψ(k) < 1
2φ`,m(k), so ψ 6= φ`,m.

In the general case, let Φ′ = {φ ∈ Φ`,m | φ < φd,m−1} and Φ′′ = {φ`′,m ∈ Φ`,m | `′ < `}.
Thus

ψ(k) =
∑

φ∈Φ`,m

βφφ(k) =
∑
φ∈Φ′

βφφ(k) +
∑
φ∈Φ′′

βφφ(k).

Now, using the proof of (8) above,∑
φ∈Φ′

βφφ(k) < 1
2φ`,m(k),

if k > max(2`2 + m ln 2m, 4m2d2, 2m ln(8βΦ′m
`)), where βΦ′ =

∑
φ∈Φ′ |βφ|. Also, using (7)

again, ∑
φ∈Φ′′

βφφ(k) < βΦ′′k
`−1mk−` < 1

8k
`mk−` ≤ 1

2φ`,m(k),

provided that we also have k > 8βΦ′′ , where βΦ′′ =
∑

φ∈Φ′′ |βφ|. Thus if

k > k′ = max(2`2 +m ln 2m, 4m2d2, 2m ln(8βΦ′m
`)), 8βΦ′′), (9)

we have ψ(k) < φ`,m(k), and so ψ 6= φ`,m.

Now we will show how to choose
(
d+1

2

)
row indices k1, k2, . . ., so that F has full rank, and

the other properties in the statement of the lemma are satisfied. Order the columns of F
according to the ordering < defined above. We will choose the row-indices k1, k2 inductively,
using the invariant that F i, which the sub-matrix defined by the row-indices k1, . . . , ki and
the first i columns in U , has full rank. The base case, i = 1, is trivial — for concreteness,
take k1 = d + 1. Now consider the inductive step, and the choice of ki+1. Let (`,m) denote
the (i+ 1)st pair in U . Since F i has full rank, there is exactly one linear combination of the
first i columns of F i that agrees with the (i+ 1)st column on the rows with indices k1, . . . , ki.
Thus, there is only one possible linear combination ψ in the linear span of Φ`,m that that
agrees with φ`,m on k1, . . . , ki. Now, use (9) to choose k′ so that φ`,m(k) > ψ(k) for k > k′,
and set ki+1 = min(ki, dk′e) + 1. This completes the inductive step, and the proof.

At this point is helpful to recall our construction of the graph Jπ,τ (k,G) from G. It also
helps to recall Equation (3).

ZM (Jπ,τ (k,G)) =
∑
S⊆D

ZSM (Γτk)ZM |Eπ(S)
(G) .

We know from Theorem 18 that, for any matrix M |Eπ(S) corresponding to an element S of

the sum, either S ∈ E(M, τ) in which case the function ZSM (Γτk) is identically zero (assuming
k > |D|) or S /∈ E(M, τ) in which case it is identically the function f`(M,S,τ),|S|(k) (as a
function of k). Let

S(`, s,M, τ) = {S ∈ P(D) \ E(M, τ) such that |S| = s and `(M, s, τ) = `} .

15

S(`, s,M, τ) is the set of sets S ⊆ D such that ZSM (Γτk) = f`,s(k). Thus, we can rewrite
Equation (3) for k > |D| as

ZM (Jπ,τ (k,G)) =
∑

0≤`<s≤|D|

f`,s(k)
∑

S∈S(`,s,M,τ)

ZM |Eπ(S)
(G) . (10)

Now the point is that the f`,s(k) entries are linearly independent functions of k by
Lemma 20. We will see in the proof of Theorem 21 that we will be be able to choose suffi-
ciently many values of k, evaluate the left-hand side ZM (Jπ,τ (k,G)) for each of these using an
oracle for #M-partitions and then interpolate to compute each “coefficient” of f`,s(k) on
the right-hand side. That is, we show how to compute each value

∑
S∈S(`,s,M,τ) ZM |Eπ(S)

(G).

If computing one of these values (for an input G) is a hard problem, then we will have proved
that #M-partitions is also #P-complete.

Before we proceed it will help to rewrite (10) one last time, splitting the sum over principal
submatrices of M . For 0 ≤ ` < s ≤ |D|, let

Aπ,τM (`, s) = {M |Eπ(S) | S ∈ S(`, s,M, τ)} .

Aπ,τM (`, s) is just the set of matrices M ′ such that the coefficient of f`,s(k) in (10) has a ZM ′(G)
term. As before, we will need to deal with equivalences between matrices. Let Aπ,τM (`, s)/≡
be the set containing one matrix from each ≡-equivalence class of Aπ,τM (`, s). For each matrix
M ′ in Aπ,τM (`, s)/≡, let

nM ′(`, s) = |{S ∈ S(`, s,M, τ) |M |Eπ(S) ≡M ′}| .

nM ′(`, s) is just the number of times that a term ZM ′′(G) arises in the coefficient of f`,s(k)
where M ′′ ≡M ′. Now, for k > |D| we can rewrite Equation (10) as

ZM (Jπ,τ (k,G)) =
∑

0≤`<s≤|D|

f`,s(k)T π,τM,`,s(G) , (11)

where

T π,τM,`,s(G) =
∑

M ′∈Aπ,τM (`,s)/≡

nM ′(`, s)ZM ′(G) . (12)

Theorem 21. Let M be any symmetric matrix in {0, 1, ∗}D×D. Suppose that there are `
and s satisfying 0 ≤ ` < s ≤ |D| and Boolean values π and τ in {0, 1} such that, up to
≡-equivalence, Aπ,τM (`, s) contains either

• exactly one hard proper principal submatrix of M ; or

• exactly two hard proper principal submatrices of M and these are (∗ ∗∗ 0) and (∗ ∗∗ 1).

Then #M-partitions is #P-complete.

Proof. First, let’s go back to Equation (11). Let ∆ =
(|D+1|

2

)
. Note that M , π and τ are all

fixed. Consider a graph G. In the proof we will consider the quantities T π,τM,`,s(G) to be a set
of ∆ “variables” indexed by the pairs (`, s). We will compute the values of these variables by

16

making multiple evaluations of ZM (Jπ,τ (k,G)) for different values of k (using an oracle for
#M-partitions).

It will help to have an enumeration of the ∆ pairs (`, s) with 0 ≤ ` < s ≤ |D|, so let
(`j , sj) be the j’th such pair (for 1 ≤ j ≤ ∆). Choose ∆ distinct values k1, . . . , k∆, which
meet the requirements of Lemma 20. Let F be the ∆×∆ integer matrix whose (i, j)’th entry
Fi,j is f`j ,sj (ki).

Using an oracle for #M-partitions, we can compute the entries of a length-∆ column
vector Z whose i’th entry is ZM (Jπ,τ (ki, G)).

Let T be a length-∆ column vector whose j’th entry is the j’th variable T π,τM,`j ,sj
(G). Then

Equation (11) gives the system of equations Z = FT .
Lemma 20 shows that F has full rank so F can be inverted, and we can compute all of

the variables T π,τM,`,s(G) using F−1Z = T and using the #M-partitions oracle to compute

the values of Z.
By Equation (12), each variable T π,τM,`,s(G) is a sum of terms, each of which is a constant

multiple of ZM (G) or of ZM ′(G) for some proper principal submatrix M ′ of M . If exactly
one of these submatrices M ′ is hard, we can use the polynomial-time algorithms for the
other problems ZM ′′ (M ′′ 6≡ M ′) to compute ZM ′(G) in polynomial time. If exactly two
of the submatrices M ′ are hard and these are (∗ ∗∗ 0) and (∗ ∗∗ 1), we can similarly compute
α#IS(G) + β#Clique(G) in polynomial time for constants α, β ≥ 1, which is #P-complete
by Lemma 15. In both cases, we conclude that #M-partitions is #P-complete.

We could, in fact, go further and consider the equations (12) for different values for ` and s
as a system of linear equations in variables ZM ′(G) for principal submatrices M ′ of M . This
system may be underdetermined so it might not be possible to solve for all the terms ZM ′(G)
that appear; however, we do not necessarily need to. We can still deduce #P-completeness
for any matrix M for which we can solve the equations for at least one variable ZM ′(G) where
M ′ is a hard proper principal submatrix. Similarly, we can still deduce #P-completeness for
any matrix M for which we can solve the equations for a linear combination of ZM ′(G) and
ZM ′′(G) where M ′ and M ′′ are equivalent to (∗ ∗∗ 0) and (∗ ∗∗ 1).

It turns out that this extension of our technique is not necessary for 4× 4 matrices, apart
from one exceptional case which we resolve by hand; but this extension would be required to
extend the technique to larger matrices.

Theorem 21 allows us to show that our example matrix is hard. Recall that the matrix is

M =

a b c d

a 0 0 1 ∗
b 0 0 1 1
c 1 1 1 1
d ∗ 1 1 ∗

and consider again the graph J0,0(k,G) for some k > 4 and some G. For S ∈ {a, b, d, ab, ad}
we find that S 6∈ E(M, 0) so there are S-surjective M -partitions of Γ0

k. Thus, we have

S a b d ab ad

ZSM (Γ0
k) f0,1 f0,1 f0,1 f0,2 f0,2

E0(S) abd ab ad ab ad
M |E0(S) hard easy hard easy hard

17

Equation (11) gives

ZM (J0,0(k,G)) = f0,1(k)T π,τM,0,1(G) + f0,2(k)T π,τM,0,2(G) ,

where

T π,τM,0,1(G) = ZM |abd(G) + ZM |ab(G) + ZM |ad(G)

T π,τM,0,2(G) = ZM |ab(G) + ZM |ad(G) .

T π,τM,0,1(G) contains two terms that are partition functions of hard matrices so is not useful

to us but T π,τM,0,2(G) contains only one (ZM |ad , which counts independent sets). Therefore, by
Theorem 21, #M-partitions is #P-complete. Given an oracle for ZM , we could obtain the
value of T π,τM,0,2(G) by interpolation and, from that, we could compute ZM |ad .

6 The computer-assisted dichotomy

So far, we have seen three techniques for determining the computational complexity of the
#M-partitions problem for a given matrix M . If M is pure, #M-partitions is a graph
homomorphism problem, so M is hard if, and only if, it has a 2 × 2 submatrix containing
exactly three ∗s. For impure M , Lemma 12 allows us to identify a class of tractable matrices
and the techniques of Section 5 allow us to identify a class of hard matrices. We were unable
to prove that the last two cases cover all impure 4 × 4 matrices, so we wrote a computer
program to check all such matrices, as follows.

The number of distinct symmetric 4 × 4 {0, 1, ∗}-matrices is modest: at most 310 =
59, 049. Thus, from a computational point of view it is not necessary to do anything to
reduce the search space. However, it turns out that the methods described above are not
enough to determine the complexity of #M-partitions for all symmetric 4 × 4 matrices.
Recall that M1 ≈ M2 if M1 ≡ M2 or M1 ≡ M2 (i.e., M1 can be transformed into M2

by permuting D and possibly exchanging 0s and 1s). Since #M1-partitions and #M2-
partitions are computationally equivalent when M1 ≈ M2, it suffices to consider only one
matrix from each ≈-equivalence class. This minimises the set of matrices that the program
fails to resolve.

To do this, we associate each 4× 4 symmetric matrix M with the string

w(M) = Ma,aMb,bMc,cMd,dMa,bMb,cMc,dMa,cMb,dMa,d ∈ {0, 1, ∗}10 .

The program generates 4×4 matrices in the lexicographic order induced by taking 0 < 1 < ∗.
For each matrix M , we check whether w(M ′) < w(M) for any matrix M ′ ≈ M . If there
is such an M ′, we have already considered a matrix equivalent to M so we do not need to
consider it again.

For each matrix M that survives (i.e., for the lexicographically first member of every
≈-equivalence class), we apply the following tests. The correctness of these tests will be
explained below.

1. If M is pure (contains no 0’s or no 1’s)

(a) If M contains a 2 × 2 submatrix with exactly three ∗s then #M-partitions is
#P-complete.

18

(b) Otherwise, #M-partitions is in FP.

2. Otherwise, if the test of Lemma 12 shows that M has no derectangularising sequence
then #M-partitions is in FP.

3. Otherwise, for each proper principal submatrix M ′ of M , we can determine whether M ′

is easy or hard using the characterisations of Hell, Hermann and Nevisi [8] and Dyer
and Greenhill [4]. The program now does the following for each π, τ ∈ {0, 1}, and each
0 ≤ ` < s ≤ |D|, using the notation of Section 5. It computes the elements of Aπ,τM (`, s),
up to ≡-equivalence and makes the following conclusions.

(a) If this set contains exactly one hard proper principal submatrix of M then #M-
partitions is #P-complete.

(b) If this set contains exactly two hard proper submatrices of M and these are (∗ ∗∗ 0)
and (∗ ∗∗ 1) then #M-partitions is #P-complete.

4. If none of the above tests resolves the complexity of #M-partitions, output the matrix
as having unknown complexity.

The program resolves the complexity of #M-partitions for all but six ≈-equivalence
classes of matrices. These six are handled in the next section; all turn out to be hard.

We conclude this section by justifying the correctness of the program. If M is pure then
#M-partitions is equivalent to a homomorphism-counting problem so the correctness of
Step 1 follows from the dichotomy theorem of Dyer and Greenhill [4]. Now consider Step 2.
If M has no derectangularising sequence then #List-M-partitions is in FP by Theorem 9.
Since #M-partitions is just the special case where every vertex has list D, #M-partitions
is also in FP. Finally, the correctness of Step 3 follows from Theorem 21.

7 The last six matrices

In this section, we despatch the six matrices that our program could not resolve.

7.1 Bipartite problems

LetG = (U, V,E) be a bipartite graph and let its bipartite complement be the graph (U, V, (U×
V) \ E). Note that the bipartite complement of G depends on the partition (U, V) and not
just on the vertices and edges of G. A bipartite clique in G is a set S ⊆ U ∪ V such that
G contains an edge between every vertex of S ∩U and every vertex of S ∩V . Note the trivial
case that S is a bipartite clique in G if S ⊆ U or S ⊆ V .

Counting bipartite cliques in a bipartite graph is #P-complete. This is because a bipartite
clique in G is an independent set in G’s bipartite complement and counting independent sets
in a bipartite graph is #P-complete [11]. The problem of counting bipartite cliques remains
#P-complete when the input is restricted to be a connected bipartite graph. To see this,
note that counting non-trivial bipartite cliques (with at least one edge) is inter-reducible
with the problem of counting all bipartite cliques (since the number of trivial ones is easy
to compute). But the number of non-trivial bipartite cliques in a graph is the sum of the
numbers of non-trivial bipartite cliques in each component.

19

Lemma 22. #M-partitions is #P-complete for

M =

a b c d

a 0 0 ∗ ∗
b 0 0 1 ∗
c ∗ 1 0 0
d ∗ ∗ 0 0

.
Proof. The problem of counting bipartite cliques in a connected bipartite graph reduces im-
mediately to counting M -partitions. Consider a connected bipartite graph G with vertex
bipartition (U, V). Since G is connected, any M -partition of G either

• assigns vertices in U to parts a and b and assigns vertices in V to parts c and d, or

• assigns vertices in U to parts c and d and assigns vertices in V to parts a and b.

In each case, the vertices in parts b and c form a bipartite clique because Mb,c = 1 whereas
the other relevant entries of M are all stars.

So the M -partitions in each case are in one-to-one correspondence with the bipartite
cliques of G. Therefore, ZM (G) is twice the number of bipartite cliques in G.

Lemma 23. #M-partitions is #P-complete for M ∈ {M1,M2,M3}, where

M1 =

a b c d

a 0 0 ∗ ∗
b 0 0 0 ∗
c ∗ 0 1 1
d ∗ ∗ 1 1

 M2 =

a b c d

a 0 0 ∗ ∗
b 0 0 0 ∗
c ∗ 0 1 ∗
d ∗ ∗ ∗ 1

 M3 =

a b c d

a 0 ∗ ∗ ∗
b ∗ 0 0 ∗
c ∗ 0 1 ∗
d ∗ ∗ ∗ 1

 .

Proof. In all three cases M ∈ {M1,M2,M3} we will show how to reduce from the #P-complete
problem of counting independent sets in a bipartite graph to counting M -partitions.

Let G be a bipartite graph with vertex bipartition (U, V). For an integer k > 4, construct
Gk from G by adding a set W of k new vertices and adding all edges between distinct vertices
w and v where w ∈ W and v ∈ V ∪W . Note that Gk is not bipartite because the vertices
of W form a complete subgraph.

This complete subgraph is the same as the gadget Γ1
k that we have already considered, so

it will be useful to apply Theorem 18 to all 3-element sets S ⊆ D. The outcomes for k > 4
are:

S abc abd acd bcd

ZSM1
(Γ1
k) 0 0 f1,3(k) 0

ZSM2
(Γ1
k) 0 0 f1,3(k) 0

ZSM3
(Γ1
k) 0 f2,3(k) f1,3(k) 0

By Theorem 18, no set S with |S| 6= 3 has ZSM (Γ1
k) = f1,3(k). The exact value of ZSM (Γ1

k) as
a function of k for such a set S will not be important in the following interpolation argument.

Now consider S ⊆ D so that ZSM (Γ1
k) = f`,|S|(k). Let ZW 7→SM (G) denote the number of

M -partitions of G in which every vertex of U is assigned a part in E0(S) and every vertex of V
is assigned a part in E1(S). This is the number of M -partitions of G that can be combined

20

with an S-surjective M -partition of the k-clique on W to get a valid M -partition of Gk. We
will use interpolation as in the proof of Theorem 21. Suppose k > 4. Using the table above
and noting the value f1,3(k) in the acd column, we can write

ZM (Gk) = f1,3(k)Z
W 7→{a,c,d}
M (G) +

∑
0≤`<s≤4,
(`,s)6=(1,3)

∑
S⊆D,
|S|=s

1ZSM (Γ1
k)=f`,s(k) f`,s(k)ZW 7→SM (G) ,

where 1ZSM (Γ1
k)=f`,s(k) is the indicator for the event that ZSM (Γ1

k) = f`,s(k) – we know from

Theorem 18 that, if this event does not hold, then ZSM (Γ1
k) = 0.

As in the proof of Theorem 21, Lemma 20 guarantees that the f`,s(k) values are linearly
independent. So, by varying k and using an oracle for #M-partitions to compute the left-

hand side, we can compute the coefficient of f1,3(k), which is Z
W 7→{a,c,d}
M (G). So, to finish the

proof, we just need to show that computing Z
W 7→{a,c,d}
M (G) is #P-hard.

Z
W 7→{a,c,d}
M (G) is the number of M -partitions of G in which every vertex of U is assigned to

a part in E0({a, c, d}) = {a, b} and every vertex of V is assigned to a part in E1({a, c, d}) =
{c, d}. But note that edges are forbidden between part b and part c so there is a one-to-
one correspondence between these partitions of G and the independent sets of G. (Vertices
assigned to these parts are in the corresponding independent set.) The result follows, since
computing independent sets of a bipartite graph G is #P-hard.

The proof of the following lemma is similar in spirit but with more details to track.

Lemma 24. #M-partitions is #P-complete for

M =

a b c d

a 0 0 ∗ ∗
b 0 0 1 ∗
c ∗ 1 1 ∗
d ∗ ∗ ∗ 1

 .

Proof. Let G be a bipartite graph with vertex bipartition (U, V). For any integer k > 4,
construct Gk from G as follows. The vertices of Gk are U ∪ V ∪W ∪ {xc, xd}, where |W | = k
and W , xc and xd are new vertices. The edges are as follows (see Figure 1):

• every edge (x, y) for x ∈ {xc, xd}, y ∈ V ∪W ;

• every edge (v, w) for v ∈ V , w ∈W ;

• every edge (v, v′) for distinct v, v′ ∈ V ;

• every edge (xc, u) for u ∈ U ;

• every edge (u, v) where u ∈ U , v ∈ V and (u, v) /∈ E(G).

The subgraph induced on W is an independent set, so it is the same as Γ0
k. We now apply

Theorem 18 to all 2-element sets S ⊆ D. The outcomes for k > 4 are:

S ab ac ad bc bd cd

ZSM (Γ0
k) f0,2(k) f1,2(k) f1,2(k) 0 f1,2(k) 0

21

xc

xd

W

U

V

Figure 1: The construction of Gk, used in the proof of Lemma 24, shown with k = 5. The
dotted lines U–V denote the complement of G’s edge relation between U and V ; the shading
of V indicates a clique on those vertices.

By Theorem 18, no set S with |S| 6= 2 has ZSM (Γ0
k) = f0,2(k) as a function of k.

Now consider S ⊆ D so that ZSM (Γ0
k) = f`,|S|(k) for some ` < |S|. Let Gk −W denote

the subgraph of Gk induced by all vertices other than those in W . Let ZW 7→SM (G) denote the
number of M -partitions of Gk −W in which every vertex of U is assigned a part in E0(S)
and every other vertex is assigned a part in E1(S). As in the proof of Lemma 23, each such
M -partition of Gk −W extends to ZSM (Γ0

k) M -partitions of Gk, so we can write

ZM (Gk) = f0,2(k)Z
W 7→{a,b}
M (G) +

∑
0≤`<s≤4,
(`,s)6=(0,2)

∑
S⊆D,
|S|=s

1ZSM (Γ0
k)=f`,s(k) f`,s(k)ZW 7→SM (G) .

As in the proof of Theorem 21, Lemma 20 guarantees that the f`,s(k) values are linearly
independent. So, by varying k and using an oracle for #M-partitions to compute the left-

hand side, we can compute the coefficient of f0,2(k), which is Z
W 7→{a,b}
M (G). So to finish the

proof, we just need to show that computing Z
W 7→{a,b}
M (G) is #P-hard.

Z
W 7→{a,b}
M (G) is the number of M -partitions of Gk − W in which every vertex of U is

assigned to a part in E0({a, b}) = {a, b, d} and every vertex in V ∪ {xc, xd} is assigned to a
part in E1({a, b}) = {c, d}.

Note that the edges between vertices in V add no further restriction on the parts assigned
to vertices in V , since M |cd contains no zeroes. Vertices xc and xd are not adjacent, so one
of them is assigned to part c and the other to part d.

In the first case, xc is assigned to part c and xd is assigned to part d. Vertices in U are
adjacent to part c and not to part d. Since they are not adjacent to part d, and we already
know (from above) that they are not assigned to part c, each must be assigned to part a
or b. So we have selected M -partitions in which vertices in U are assigned to parts a or b and
vertices in V are assigned to parts c or d. This counts independent sets in G, with parts b
and c corresponding to being in the independent set (all edges between these parts must exist
in Gk, which corresponds to an independent set in G).

In the second case, xc is assigned to part d and xd is in part c. Vertices in U are adjacent
to part d and not to part c so they can only be in parts a and d. Since U is an independent set

22

and Md,d = 1, at most one of its vertices is in part d. We can count all such M -partitions in
polynomial time by considering each possible vertex u ∈ U that might be assigned to part d
and assigning the rest to part a. The vertex in part d restricts its non-neighbours in V to be
assigned part c. The rest of the vertices in V can be assigned to either c or d.

In conclusion, computing ZM (·) enables us to compute Z
W 7→{a,b}
M (G). But computing

Z
W 7→{a,b}
M (G) enables us to count independent sets of G. Since counting independent sets of

a bipartite graph is #P-hard, so is counting M -partitions.

7.2 A matrix proved hard by solving simultaneous linear equations

Recall the definition of T π,τM,`,s(G) from (12). In Section 5, our gadgets were large cliques
and independent sets and we used interpolation on the number of vertices in the gadget
to compute ZM ′(G) for some submatrix M ′ such that #M ′-partitions is #P-complete.
Our final case is a matrix M where this technique only allows us to compute the linear
combinations T π,τM,`,s(G) =

∑
i αiZMi(G) where, although each subproblem #Mi-partitions

is hard, we do not have enough independent linear equations to compute any single term
ZMi(G). The solution is to use a similar gadget to generate an extra linear equation that
allows us to solve for a hard ZM ′ .

Lemma 25. #M-partitions is #P-complete for

M =

a b c d

a 0 ∗ ∗ ∗
b ∗ ∗ 0 ∗
c ∗ 0 ∗ 1
d ∗ ∗ 1 ∗

 .

Proof. We show how to reduce #M |abd-partitions to #M-partitions. The matrix M |abd
is hard by Hell, Hermann and Nevisi’s characterisation of the hard 3 × 3 matrices [8]: the
principal submatrix M |ad = (0 ∗

∗ ∗) is hard.
First, consider J1,0(k,G) and the set of M -partitions in which the vertices of the Γ0

k appear

in exactly two parts, corresponding to the term T 1,0
M,0,2(G). Note that every pair of parts is

possible, except for {c, d}:

S ab ac ad bc bd

E1(S) bd cd bcd ad abd

M |E1(S) easy easy easy hard hard

Thus, noting that M |ab = M |ad = (0 ∗
∗ ∗), there is a polynomial-time-computable function

p(G) (corresponding to the “easy” entries of the above table) such that

T 1,0
M,0,2(G) = p(G) + ZM |abd(G) + ZM |ad(G) . (13)

Second, consider J1,0(k,G + x) where G + x denotes the union of G and a new isolated
vertex x. We again consider M -partitions of this graph in which vertices of the Γ0

k appear in
exactly two parts and we divide up these partitions according to the part in which the new
vertex x appears. If the vertices of the Γ0

k are in parts S ⊂ D and x is in part i, then the
vertices of G must be in some subset of the parts P (i, S) = E0({i}) ∩ E1(S). The possible
combinations are as follows.

23

i a b c d
S bc bd ab ad bd ac ad ab ac ad bc bd
P (i, S) ad abd bd bcd abd c bc bd d bd ad abd
M |P (i,S) hard hard easy easy hard easy easy easy easy easy hard hard

This gives a second equation,

T 1,0
M,0,2(G+ x) = p′(G) + 3ZM |abd(G) + 2ZM |ad(G) , (14)

where, again, p′(G) is a polynomial-time computable function.
As in the proof of Theorem 21, we can compute T 1,0

M,0,2(G) and T 1,0
M,0,2(G + x) by inter-

polations on k, using an oracle for #M-partitions. Thus, we can solve (13) and (14) for
ZM |abd(G) (and ZM |ad(G), which is also #P-hard), completing the reduction.

8 The dichotomy for 4× 4 matrices

Finally, we establish Theorem 1 and show that Conjecture 10 holds for 4× 4 matrices.

Theorem 26. Let M be a symmetric matrix in {0, 1, ∗}4×4. Then #M-partitions is #P-
complete if M has a derectangularising sequence, and is in FP, otherwise.

Proof. The conjecture is already know to hold for pure matrices (see Section 3).
The impure matrices covered by Lemma 12 have no derectangularising sequence, so are

easy by Theorem 9.
For the matrices proved hard via Theorem 21, the computer program finds a hard principal

submatrix of size either 2 × 2 or 3 × 3. If the 2 × 2 submatrix M |S is hard, then S, S is a
derectangularising sequence; if the 3×3 submatrix M |T is hard then, by Lemma 11, M |T has
a derectangularising sequence, and this is also derectangularising for M .

For each of the six matrices proved hard in Section 7, it is easy to check that {a, b}, {c, d}
is a derectangularising sequence.

9 Acknowledgements

We thank the referees for useful suggestions. We thank John Lapinskas for spotting an error
in an earlier proof of Lemma 20 and the journal staff, who were willing to make the changes
at a late stage.

References

[1] A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM,
60(5):34:1–34:41, 2013.

[2] A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting constraint
satisfaction problem. Inform. Comput., 205(5):651–678, 2007.

[3] M. Chudnovsky. Berge trigraphs and their applications. PhD thesis, Princeton University,
2003.

24

[4] M. Dyer and C. Greenhill. The complexity of counting graph homomorphisms. Random
Struct. Algorithms, 17(3–4):260–289, 2000.

[5] T. Feder, P. Hell, S. Klein, and R. Motwani. Complexity of graph partition problems.
In Proc. 31st ACM Symposium on Theory of Computing (STOC 1999), pages 464–472.
ACM, 1999.

[6] T. Feder, P. Hell, S. Klein, and R. Motwani. List partitions. SIAM J. Discrete Math.,
16(3):449–478, 2003.

[7] A. Göbel, L. A. Goldberg, C. McQuillan, D. Richerby, and T. Yamakami. Counting
list matrix partitions of graphs. In Proc. 29th Conference on Computational Complexity
(CCC 2014), pages 56–65. IEEE, 2014. Full version: ArXiv CoRR abs/1306.5176.

[8] P. Hell, M. Hermann, and M. Nevisi. Counting partitions of graphs. In Proc. 23rd
International Symposium on Algorithms and Computation (ISAAC 2012), volume 7676
of LNCS, pages 227–236. Springer, 2012.

[9] P. Hell and J. Nešetřil. Counting list homomorphisms and graphs with bounded degrees.
In J. Nešetřil and P. Winkler, editors, Graphs, Morphisms and Statistical Physics, vol-
ume 63 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 105–112, 2004.

[10] P. Hell and J. Nešetřil. Graphs and Homomorphisms. Oxford University Press, 2004.

[11] J. S. Provan and M. O. Ball. The complexity of counting cuts and computing the
probability that a graph is connected. SIAM J. Comput., 12(4):777–788, 1983.

[12] L. G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

25

