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Abstract—Awareness of driver workload (DW) plays a
paramount role in enhancing driving safety and convenience
for intelligent vehicles. The DW prediction systems proposed so
far learn either from individual driver’s data (termed personal-
ized system) or existing drivers’ data indiscriminately (termed
average system). As a result, they either do not work or lead
to a limited performance for new drivers without labeled data.
To this end, we develop clustering-aided approaches exploiting
group characteristics of the existing drivers’ data. Two clustering
aided predictors are proposed. The first is clustering-aided regres-
sion (CAR) model, where the regression model for the cluster
with the highest likelihood is adopted. The second is clustering-
aided multiple model regression model, where the concept of
multiple models is further augmented to CAR. A recent dataset
from real-world driving experiments is adopted to validate the
algorithms. Comparative results against the conventional average
system demonstrate that by incorporating clustering information,
both the proposed approaches significantly improve workload
prediction performance.

Index Terms—Classification and regression tree (CART), clus-
tering, multiple model, workload inference.

I. INTRODUCTION

RECENT years have witnessed an increasing interest in
developing advanced driver assistance systems (ADASs)

and in-vehicle information systems (IVISs) to enhance driv-
ing safety and convenience. ADASs can potentially improve
safety by augmenting drivers’ situation awareness accuracy
and alerting drivers to potential dangers [1]–[3]. While IVISs
bring convenience by offering real-time advice, instructions,
and entertainment through navigation system, music, etc. [4].
It was, however, reported that these functions, if not employed
appropriately, may increase driver’s distraction and work-
load [4]. This instead brings adverse effects such as annoying
the driver or even increasing the risk of traffic accidents.
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A promising solution is to monitor driver workload (DW)
in real time so that these functions can adapt to driver’s work-
load, i.e., providing “adaptive aiding” [4]–[6]. For instance,
an earlier collision warning signal can be provided to a driver
under high workload [5], [7]; HMI can also be optimized [8]
such as switching off certain functions under high workload. It
is prerequisite to accurately monitor DW in real time. Several
challenges, however, exist. First, DW is not directly mea-
surable. Second, various signals are available for workload
inference, however, it is unclear which feature combination is
most effective. Third, labeling DW is challenging, costly, and
time-consuming [9].

Due to its significance in enhancing safety and conve-
nience, DW prediction has been drawing increasing atten-
tion [10]–[13]. Researchers from different fields have devised
various algorithms to build an implicit mapping between diag-
nostic signals and DW. The existing approaches are catego-
rized into three classes according to the type of measurements
in mapping building, including physiological signals [11],
vision signals [12], and vehicle-related signals [6], [13]. Please
also refer to survey paper [10] for more information. The
DW prediction system (DWPS) can also be categorized into
“average systems” and “personalized systems” according to
different datasets for model construction. In average systems,
an average model is learned from existing drivers’ data indis-
criminately. While in personalized systems, a personalized
model dedicated to individual drivers is learned from individu-
als’ historical data. The personalized approach has been proved
to be more effective than an average model since personalized
driving characteristics have been accommodated [6].

In practical applications when a new driver starts to adopt
a DWPS, no historical data is available for the new driver. So
a personalized system is not applicable. One has to rely on an
average system, which may result in a limited performance
since the driving characteristics have not been accommo-
dated [14]. Therefore, this paper aims to tackle the problem
of workload prediction for new drivers so that user confidence
in DWPSs is not compromised due to the new user problem.

To maximally exploit existing drivers’ data, we develop
clustering-aided predictors exploiting group characteristics of
existing drivers. Fuzzy C-means (FCM) clustering is first
adopted to cluster existing drivers’ data. Then classification
and regression tree (CART) is drawn to learn classification
tree model (CTM) and regression tree model (RTM), where
data within a cluster is to train RTM and the clustered data is
to train CTM. Two clustering-aided algorithms are developed.
The first one is clustering-aided regression (CAR), where one
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Fig. 1. Conventional workload prediction systems.

RTM model is adopted for workload prediction using the clus-
ter with the highest probability from CTM. To attenuate the
effect of classification error, the concept of “multiple mod-
els” [15] is also applied by treating the likelihood from CTM
as weighting for each RTM. This leads to clustering-aided
multiple model regression (CAMMR).

A recently collected dataset from real-world driving exper-
iments in 2013 [9] is adopted for algorithm validation.
Different approaches including conventional average regres-
sion without clustering (ARWOC) model and the proposed
CAR and CAMMR models are compared. Comparative results
demonstrate that by incorporating clustering information or
multiple models, the proposed CAR and CAMMR substan-
tially improve workload prediction performance. The idea of
clustering-aided approach or multiple models is not new, and
has been applied to position prediction and regression analysis
in [2] and [16]. However, to the best of our knowledge, these
techniques have not been exploited for workload prediction
and their integration is novel. More precisely, the contributions
of this paper are summarized as follows.

1) Several regression algorithms are compared to identify
a suitable one for DW prediction, where CART with
Bayesian optimization outperforms others.

2) For the first time, the concepts of CAR and CAMMR
are introduced to the problem of new DW prediction
accommodating group characteristics.

3) A dataset from real-world driving experiments is to
validate the proposed algorithms with promising results.

II. NEW DRIVER WORKLOAD PREDICTION

As discussed in the introduction, the existing workload
prediction systems are defined in Definitions 1 and 2, where
their diagrams are depicted in Fig. 1.

Definition 1 (Average System): In this system, an average
workload predictive model (or a model for all drivers) is
learned from all available drivers’ data indiscriminately. Then
this model is directly applied to new drivers.

Definition 2 (Personalized System): In this system, a per-
sonalized predictive model dedicated to individual drivers is
learned from individual drivers’ data rather than all drivers’
data.

A. Research Motivations

Different from conventional studies for average work-
load model construction [10], this paper considers new DW
prediction with the following definition.

Fig. 2. Clustering-aided predictors for new DW prediction: offline (upper
plot); online (lower plot); red blocks for CAR; and purple blocks for CAMMR.

Definition 3 (New User Problem): In this paper, denotes the
scenario where a new driver starts to adopt a DWPS and no
labeled data regarding the new driver is available.

It can be seen that for new user problem, the average system
can work but may lead to a degraded performance, since the
characteristics of individual drivers have not been effectively
accommodated [6]. While compared to average system the
personalized system is more accurate when sufficient labeled
individual data is available [14]. Unfortunately, labeling DW is
challenging, costly, and time-consuming [9]. Therefore, with a
limited or sparse dataset, it is difficult if not possible to learn
an accurate relationship and in turn provide a poor workload
prediction. To this end, clustering-aid approaches are proposed
to enhance workload prediction performance. Our main idea
is to cluster the existing drivers’ data into different groups and
identify a suitable group (or a weighting for each group) for
the new driver.

B. Clustering-Aided Approaches

Our clustering-aided approaches comprise offline training
and online execution. In offline training, clustering algorithms
are adopted to cluster the existing drivers’ data. Then CART is
further drawn to explore the data, resulting in CTM and RTM.
The data within a cluster is to train RTM, while the clustered
data is to train CTM. More specifically, RTM is to mapping
features with workload, and CTM is to classify samples into
different clusters with corresponding probabilities.

In online execution, features are first fed into CTM so
that the probability for each cluster is returned. Then two
clustering-aided predictors are developed. The first is CAR,
where only one RTM model corresponding to the cluster with
the highest probability is adopted. The concept of multiple
models is also augmented to CAR by treating the likeli-
hood from CTM as the weighting for each RTM, leading
to CAMMR. The overall diagram of the proposed clustering-
aided predictors is depicted in Fig. 2.

Theoretical properties of the proposed methods are also
discussed. Both CAR and CAMMR rely on clustering and
classification to accommodate the group characteristics. In par-
ticular, CAR only utilizes one regression model dedicated to
the cluster with the highest probability. While CAMMR, using



Fig. 3. Flowchart for clustering analysis.

the idea of multiple model [17], runs a number of regres-
sion algorithms simultaneously with different weightings for
each regression model. Consequently, CAR outperforms aver-
age model due to the introduction of group characteristics via
clustering analysis; while CAMMR can further improve the
robustness of CAR by accounting for the possible classifi-
cation error. It is also noted that the developed systems are
different from semi-supervised learning methods [18], [19].
This is because in semi-supervised learning methods unlabeled
data is adopted to either modify or reprioritize hypotheses
obtained from labeled data alone [18], while the developed
systems are focused on how to maximally exploit the labeled
data (i.e., existing drivers’ data) for new driver (i.e., unlabeled
data) workload prediction.

III. CLUSTERING ANALYSIS

Clustering analysis is considered in this section with overall
framework in Fig. 3. Some key elements of the framework are
first elaborated in the following sections.

A. Diagnostic Signals

In this paper, several types of measurements available in
the dataset [9] are pooled together as diagnostic signals.
Specifically, they include driver-related physiological signals,
[e.g., electrocardiogram (ECG), skin conductance response
(SCR), body temperature (BT), heart rate (HR), and heart
rate variability (HRV)]), vehicle-related signals (e.g., GPS and
IMU measurements) and driving environment-related signal
(e.g., intensity of light). These features have been proved to
be able to effectively reflect DW [10].

B. Data Preprocessing

Features are usually measured in different frequencies and
with different ranges. So data preprocessing is usually involved
to achieve a better performance. Two preprocessing steps are
involved in this paper, including data resampling and nor-
malization, where resampling is to unify features’ length and
normalization is to improve algorithm efficacy. Z-score [20] is
adopted for data normalization, which can retain shape prop-
erties of the original data such as skewness and kurtosis. For
a vector x, Z-score is defined by z = (x − x̄)/σ with x̄ and σ

being mean and standard deviation (Std).

Algorithm 1: FCM Clustering With Optimized Cluster
Number

1. Given a user-defined maximum cluster number K;
2. Perform FCM clustering under cluster number i =

2, . . . , K resulting in FCM(2), . . . , FCM(K);
3. Calculate VRC rate for each clustering using formula (1)

resulting in VRC(2), . . . , VRC(K);
4. FCM(k∗) is the optimal clustering configuration, with

optimal cluster number k∗ = arg maxK
i=2 VRC(i).

C. FCM Clustering With Optimized Cluster Number

Then FCM clustering is adopted for clustering analysis due
to its fine properties including a better performance for over-
lapped data [2] by incorporating uncertain information [21].
Its detailed derivation is omitted due to a lack of space,
interested readers may refer to [6, Sec. III-B] for more infor-
mation. It is generally not easy to determine the cluster number
for FCM clustering, which in this paper is optimized by
using Calinski–Harabasz criterion, also termed variance ratio
criterion (VRC),

VRC(k) = SSB

SSW
× (n − k)

(k − 1)
(1)

where SSB and SSW denote overall between-cluster and
within-cluster variance, and k denotes cluster number. SSB

is defined by SSB = ∑k
i=1 ni||ci − m||, where ci and ni

denote the centroid and the number of data points in the
ith cluster, m is the overall mean of the sample data, and
|| • || denotes Euclidean distance. SSW is defined by SSW =∑k

i=1
∑

x∈Ci
||x − ci||, where x is a data point, Ci is the ith

cluster. It is shown in [22] that a larger VRC value means a
better data partition. So determination of the “optimal” cluster
number reduces to maximizing VRC(k) with respect to k. The
overall clustering algorithm is summarized in Algorithm 1.

IV. CLUSTERING-AIDED PREDICTORS

Clustering-aided predictors for new DW prediction are
detailed in this section. Before that some key elements are
first introduced.

A. Regression Model Selection

Our framework relies on regression analysis to build a map-
ping between diagnostic signals and workload. It is not easy
to select an appropriate algorithm. Therefore, different regres-
sion models are first compared using existing drivers’ data.
The algorithms contain six different categories, including lin-
ear regression [23], CART [24], support vector regression
(SVR) [25], Gaussian process regression (GPR) [26], ensem-
ble learning [27], and (deep) neural network [28] and their
variants. According to the results in Section V-G, CART with
complex structure outperforms others and so is adopted. The
CART model is briefly introduced in the following section.

B. CART Model

In CART model, the classification and regression model is
trained by building a binary decision tree according to certain



Algorithm 2: CART Model
1. Given a sequence of examples S and a set of discrete

attributes A;
2. For each attribute ai ∈ A, the set of attribute values Ai

is partitioned into two disjoint subsets Ai
L and Ai

R, let Xi

denote all possible Ai
L;

3. For each Ai
L ∈ Xi, calculate the Gini gain/Mean Squared

Error (MSE) and select the variable (Ãi
L,q = Ai

L) which

maximizes Gini gain or minimizes MSE (Ãi
L,q is a spilt);

4. Send data S(Ãi
L,q) to the “leaf node” and S(Ãi

R,q) to the
“right node”;

5. Recursively repeat the same process on these two
“nodes” until stopping rules are satisfied;

splitting rules (for node determination and threshold selection)
based on feature variables. The detailed algorithm is referred
to [29], where the pseudocodes are summarized in Algorithm 2
for the sake of completeness.

Remark 1: There are generally certain stopping rules in
CART to avoid its adverse effects such as overfitting. In this
paper, one of the stopping rules is considered, i.e., the mini-
mum leaf size. A smaller leaf size may make the model more
prone to capturing noise in training data. The determination
of minimum leaf size is transformed into the minimization of
the cross validation (CV) loss for CART. And the optimality
problem is solved by using Bayesian optimization [30].

C. Clustering-Aided Predictors

As depicted in Fig. 2, two clustering-aided algorithms are
proposed in this paper, including CAR and CAMMR, which
are detailed as below.

1) CAR Algorithm: As depicted in Fig. 2, given a new sam-
ple, its cluster information can be first determined by CTM.
The predicted class with the highest probability from CTM
takes the following form:

ŷ = argy=1,...,k∗ min
k∗

∑

i=1

P̂(i|x)C(y|i) (2)

where k∗ is class number, P̂(i|x) is the posterior probability
of class i given observation x, and C(y|i) is the cost of mis-
classification, where the default form is C(y|i) = 1 for y �= i
and C(y|i) = 0 for y = i. Suppose the predicted class is ŷ
for a given sample, one can derive CAR algorithm, where one
RTM for cluster ŷ, RTM(ŷ), is used for workload prediction.
The DW of CAR algorithm is determined by the following
regression model:

DW ∼ RTM
(
ŷ
)
. (3)

2) CAMMR Algorithm: To attenuate the adverse effects of
classification error, we further apply the concept of multiple
models. In this approach, a number of predictive models are
run in parallel and the ultimate predicted value is a weighting
of each predictive model.

It follows from (2) that the posterior probability P̂(i|x)
for each class i is also generated, which can be used

to calculate the weighting for each predictor. Suppose
RTM(1), . . . , RTM(k∗) are k∗ regression models correspond-
ing to different clusters, and w1, . . . , wk∗ are their weighting
derived from CTM algorithm using the formula

wi = P̂(i|x)
∑k∗

i=1 P̂(i|x) , i = 1, . . . , k∗. (4)

One can derive CAMMR, where the DW of CAMMR algo-
rithm is determined by the following regression model:

DW ∼
k∗

∑

i=1

RTM(i)wi. (5)

Remark 2: Only one RTM is adopted in CAR and a paral-
lel of RTMs with corresponding weighting wi are adopted in
CAMMR. So CAMMR is more robust against the classifica-
tion error of CTM, however, this is at the price of a higher
computational cost. This observation will be demonstrated in
Section V-G.

V. EXPERIMENTAL VALIDATION

In this section, experimental validation is considered, where
all algorithms are implemented in MATLAB 2017a under
Windows 7 Operation System and are evaluated on a PC with
the following configuration: Intel Core i5-CPU at 3.20 GHz
with 16 GB of RAM.

A. Driving Dataset

The dataset for algorithm validation is from real-world
driving experiments of about 30 min with ten participants
of various background, which was collected by Human–
Computer Interaction (HCI) Laboratory, University of Stuttgart
in 2013 [9]. In the experiment, driver-related physiological
signals (i.e., skin conductance response, heart rate, skin tem-
perature, and ECG recorded at 128 Hz) and vehicle-related
measurements (i.e., GPS position and speed recorded at 1 Hz,
and acceleration recorded at 12 Hz) are measured along with
environment-related signals (i.e., light intensity) via cameras.

Two webcams were available to record the driving scenario
and the driver at 29 frames/s. After the driving test, each
participant was required to perform a post-hoc video rating
evaluating the perceived workload in the range of 0 (no work-
load) and 1000 (maximum workload). This method is also
termed subjective rating approach [12], which is a common
approach to deriving workload ground truth data. Data extrap-
olation has also been done by Harbluk et al. [12] to create a
uniformed dataset at 128 Hz.

To summarize, the model inputs are composed of phys-
iological signals (i.e., ECG, SCR, BT, HR, and HRV),
vehicle-related signals (i.e., speed of GPS, GPS latitude,
GPS longitude, GPS altitude, longitudinal acceleration, lat-
eral acceleration, vertical acceleration, GPS bearing, and GPS
accuracy), and light intensity. The model output is workload
from subjective rating by each driver. Therefore, the dimen-
sion of input and output data are n-by-15 and n-by-1 with
n being sample number. After data synchronizing, the total
data size for all ten drivers is 2 298 870 with a sampling rate



TABLE I
VRC OVER CLUSTER NUMBER IN VARIOUS CVS

of 128 Hz. More details about the dataset (e.g., format) are
referred to [9]; the dataset can also be freely accessed via
www.hcilab.org/research/hcilab-driving-dataset.

B. k-Fold Cross Validation

To effectively exploit the limited driving data, k-fold
CV [31] is adopted. Since we have driving data of ten partic-
ipants, tenfold CV is used. More precisely, in each CV one
out of ten participants is selected as the new driver and the
reminding nine participants are assumed to be existing drivers
whose data are used for model training.

C. FCM Clustering With Optimal Cluster Number

FCM clustering with optimal cluster number is first expe-
rienced. The fuzzy overlap controller is chosen m = 2
by following [21]. Since tenfold CV is adopted, the train-
ing/testing sets and consequently division of clusters for
existing drivers’ data differ in each time. The VRC values
under different cluster numbers in different CVs are summa-
rized in Table I. It can be seen that the optimal cluster numbers
for different CVs are 2, 3, 5, 2, 3, 2, 3, 3, 3, and 2, respectively.

D. Regression Algorithm Selection

Regression algorithm selection is further considered, where
the candidate algorithms include linear regression, CART
decision tree, SVR, GPR, ensemble learning, (deep) neural
network, and their variants. Particularly, simple tree, medium
tree, and complex tree are variants of CART, where the
maximum number of splits are 4, 20, and 100, respectively.

To evaluate their performance, the widely used metrics
including mean absolute error (MAE) and R-squared are
adopted, where MAE measures prediction accuracy and R-
squared evaluates data fitting quality. Moreover, both training
time and prediction speed are compared. The comparative
results are summarized in Table II.

It follows from Table II that: 1) CART with complex tree
outperforms others in terms of MAE and R-squared; 2) train-
ing time of CART is very short, only slightly longer than
linear regression; and 3) prediction speed of CART is the
fastest among the four types of regression models. Considering
the prediction performance along with training and prediction
time, CART model with complex tree structure is adopted for
subsequent algorithm/system design.

TABLE II
PERFORMANCE OF DIFFERENT REGRESSION ALGORITHMS

E. Feature Reduction and Selection

Feature reduction can generate a simple (i.e., with fewer
model parameters) but effective (e.g., high accuracy and good
generality) model, especially for the scenario where only a
limited number of labeled samples are available [32]. Various
dimension reduction algorithms can achieve this task such as
feature selection and feature transformation [33]. In this paper,
only feature selection is considered, since feature transfor-
mation will make features’ physical meanings lost. Different
types of feature selection algorithms are available in the liter-
ature such as filter methods, wrapper methods, and embedded
methods [32]. In this paper, filter method is adopted due to
its simplicity, efficiency, and independence of the regression
algorithms.

In particular, the classical minimum redundancy and maxi-
mum relevance (MRMR) in [34] is adopted, which considers
the relevance between features and label, and feature redun-
dancy concurrently. Each feature is first ranked by MRMR
and the top features are selected for prediction model con-
struction. Feature ranking and prediction performance under
different numbers of top features are displayed in Table III. It
follows from Table III that the prediction model by using all
features results in the best performance. The possible reasons
are: 1) feature dimension is not very high; 2) each feature has
certain usefulness in predicting DW; and 3) different features
reflect different aspects of workload and little feature redun-
dancy exists. Therefore, all 15 features are still adopted in the
following results.

F. Optimized CART Model

After CART is chosen as the regression model in
Section V-D, it is further optimized by Bayesian parameter
optimization. In this paper, the maximum number of itera-
tions is chosen 30, the value of minimum leaf size is searched



TABLE III
MRMR FEATURE RANKING AND PERFORMANCE UNDER DIFFERENT

SETS OF TOP FEATURES

Fig. 4. Workload prediction error histogram for participant 2 under ARWOC,
CAR, and CAMMR.

among log-scaled in the range of [1, max(2, n − 1)] with n
being the number of observations. The depth of the tree can
be controlled by maximal number of decision splits, min leaf
size (MLS), and min parent size (MPS). In this paper, MPS
is determined by MPS = max[M, 2 ∗ MLS], with M being a
fixed number of 10. The exemplary results are omitted due to
a lack of space and are available upon request.

G. Average System Versus Clustering-Aided Systems

In this section, the proposed CAR and CAMMR are exper-
imented against a baseline average system using all existing
drivers’ data indiscriminately (termed ARWOC). In the aver-
age ARWOC system, one driver is treated as the new driver
and the remaining nine drivers are treated as the existing
drivers, where the optimized CART algorithm is directly
learned by using the nine existing drivers’ data indiscrimi-
nately.

Without loss of generality, the workload prediction error
histogram for participant 2 under three different approaches
are depicted in Fig. 4 as an illustrating example. Along with
prediction error histogram, two classical metrics for regression
analysis are also calculated, including MAE and Std, where
MAE assesses the average prediction performance and Std
assesses the stability of the algorithm.

TABLE IV
MAE COMPARISONS FOR DIFFERENT APPROACHES

It follows from Fig. 4 that CAR and CAMMR substan-
tially outperform conventional ARWOC without clustering
information in terms of accuracy (MAE) and stability (Std).
For example, the MAE/Std of CAR (139/190) and CAMMR
(132/185) are much smaller than that of ARWOC (200/260).
The comparative statistical results in term of MAE for all par-
ticipants and the average prediction speed (observations per
second) are summarized in Table IV.

The following observations can be drawn from Table IV.
1) Except drivers 5 and 10, CAR and CAMMR signifi-

cantly outperform the ARWOC, which demonstrates that
by incorporating group characteristics of training data,
workload prediction performance can be improved.

2) CAMMR using the concept of multiple models outper-
forms CAR in term of prediction accuracy.

3) CAR and ARWOC have a similar computation time,
while CAMMR takes a longer time than the other two
approaches, but is still valid for real time applications.

To summarize, the proposed clustering-aided algorithms
including CAR and CAMMR significantly outperform the
conventional average system ARWOC in term of prediction
accuracy. While CAMMR obtains a better performance than
CAR algorithm, however, this is at the price of a slightly
higher computation load. Consequently, users can make a
choice between the proposed CAR and CAMMR systems
depending on the priority of accuracy or computation cost
according to different application scenarios.

VI. CONCLUSION AND DISCUSSION

Precise workload prediction for new drivers is challeng-
ing due to its nonmeasurability and a lack of personalized
data. This paper addressed the issue by maximally exploit-
ing the existing drivers’ data. Specifically, clustering is first
employed to cluster the existing drivers’ data. Then the sim-
ilarity between a new driver and existing driver cluster is
exploited by using classification. Two clustering-aided predic-
tors are proposed including CAR with one suitable regression
model and CAMMR where a series of regression models for
each cluster are run in parallel with corresponding weightings.

The proposed clustering-aided approaches are validated
by a recent dataset from real-world driving experiments.
Comparative experimental results against a baseline average



system demonstrate that by incorporating clustering informa-
tion, the workload prediction performance can be significantly
improved. Besides, the concept of multiple models can miti-
gate the effect of classification error, but inevitably at the price
of a slightly higher computation cost.

This paper mainly focuses on proposing a new frame-
work for new DW prediction considering the limitations of
existing approaches in handling new user problem. The fea-
sibility of the framework is initially demonstrated using a
small real-world driving dataset. It is believed that with more
labeled drivers’ data, particularly with diverse background,
and more advanced learning algorithms, the performance of
the proposed approaches can be substantially improved. The
following aspects are identified for further development.

1) Label information can be incorporated into FCM so that
better clustering results can be obtained.

2) Incremental learning can be possibly drawn to adopt to
new input data over time.

3) Semi-supervised learning can be possibly drawn to
reduce the burden of ground truth data labeling.
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