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Abstract: Various indices are used for assessing vegetation and soil properties in satellite remote sensing applications. Some indices,
such as normalized difference vegetation index (NDVI) and normalized difference water index (NDWTI), are capable of simply differenti-
ating crop vitality and water stress. Nowadays, remote sensing capabilities with high spectral, spatial and temporal resolution are avail-
able to analyse classification problems in precision agriculture. Many challenges in precision agriculture can be addressed by supervised
classification, such as crop type classification, disease and stress (e.g., grass, water and nitrogen) monitoring. Instead of performing clas-
sification based on designated indices, this paper explores direct classification using different bands information as features. Land cover
classification by using the recently launched Sentinel-2A image is adopted as a case study to validate our method. Four approaches of
featured band selection are compared to classify five classes (crop, tree, soil, water and road) with the support vector machines (SVMs)
algorithm, where the first approach utilizes traditional empirical indices as features and the latter three approaches adopt specific bands
(red, near infrared and short wave infrared) related to indices, specific bands after ranking by mutual information (MI), and full bands of
on-board sensors as features, respectively. It is shown that a better classification performance can be achieved by directly using the selec-
ted bands after MI ranking compared with the one using empirical indices and specific bands related to indices, while the use of all 13
bands can marginally improve the classification accuracy than MI based one. Therefore, it is recommended that this approach can be ap-

plied for specific Sentinel-2A image classification problems in precision agriculture.

Keywords: Sentinel-2A, remote sensing, image classification, supervised learning, precision agriculture.

1 Introduction

Over the past few decades, satellite remote sensing
has been playing a crucial role in forest monitoring, dis-
aster management and agricultural applications/!3l. Vari-
ous satellites own different characteristics due to their
customized sensors. Remote sensing images may be pro-
duced by optical sensors with a good number of spectral
bands and require tailored analysis depending on specific
applications. The classification problems in agriculture
are mainly focused on monitoring crop status such as
crop vigour, water, grass and nitrogen stress in various
crop growing stages. Indices composed of various spectral
bands are very promising approach to extract useful in-
formation for stress monitoring. Some typical indices,
such as normalized difference vegetation index (NDVI)
and normalized difference water index (NDWI) have been
widely used in many areas such as land cover classifica-
tion and water stress monitoring. NDVI proposed by
Rouse et al has the ability to classify land covers in re-
mote sensing area, as well as vegetation vitalityl4. This

Research Article

Special Issue on Addressing Global Chagllenges Through Auto-
mation and Computing

Manuscript received March 13, 2018; accepted June 26, 2018;
published online September 27, 2018

Recommended by Associate Editor Jie Zhang
© The Author(s) 2018

@ Springer

index is defined by the reflectance of Red band and near
infrared (NIR) band since they sense very different
depths through vegetation canopies. Red channel locates
in the strong chlorophyll absorption region while NIR
channel has high vegetation canopy reflectance in this
arealsl. Thus, this index can be applied to classify land
covers. NDWI was proposed by Gaol®l to assess water
status by the combination of NIR and short wave in-
frared (SWIR) channel, since both are located in the high
reflectance plateau of vegetation canopies and sense simil-
ar depth in vegetation canopies. Absorption by vegeta-
tion liquid water near NIR is negligible, and weak liquid
absorption near SWIR is present. Therefore, canopy scat-
tering enhances the water performance. In the past, lots
of research has been conducted to link these two indices
with other indices of interest (e.g., vegetation water con-
tent (VWC)) to generate a classification map of land cov-
er or vegetation water status(719,

For remote sensing applications, band information is
of paramount importance in the phase of satellite data
analysis and interpretation. The technical advances in
space science and sensor technologies enable new genera-
tion of satellite with multispectral sensors such as Sen-
tinel 2. The launch of Sentinel-2A is a key part of Global
Monitoring for Environment and Security Program sup-
ported by the European Space Agency and European
Commission ensuring a better data continuity than other
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relevant satellites, such as SPOT and Landsat satellite
series, due to its high spectral, spatial and temporal resol-
utions!l]. To obtain more retrieval information, its
multispectral instrument (MSI) is an important compon-
ent on this satellite as shown in Fig.1. The MSI holds an
anastigmatic telescope with three mirrors with a pupil
diameter of about 150 mm minimizing thermos-elastic dis-
tortions, and the optical design has been optimized to
achieve state-of-the-art imaging quality across its 290 km
field of view[l2l. MSI also features 13 spectral bands ran-
ging from visible, NIR to SWIR at different resolutions.
This configuration is selected as the best compromise
between user requirements and mission performance.
Four bands at 10m resolution meet the basic require-
ments for land classification. Six bands at 20m resolu-
tion provide additional information on vegetation detect-
ing. The remaining three bands at 60m contribute to at-
mospheric and geophysical parameters!2l. Sentinel-2A has
the revisit time of 10 days and the launch of Sentinel-2B
in March, 2017 shorten the revisit time into 5 days, which
means Sentinel-2 series have the shortest revisit time
among mainstream freely available satellites until now.

Fig. 1 Multi spectral imager view on sentinel-2A[12]

Satellite image processing usually involves image clas-
sification (e.g., land cover classification). The ever-in-
creasing computation power and advanced algorithm de-
velopment are making machine learning algorithms a
popular tool in satellite big data application. For ex-
ample, the support vector machines (SVMs) has been ap-
plied to solve remote sensing applications regarding un-
manned aerial vehicles hyperspectral image (HSI) classi-
fication and satellite image analysis. In comparison with
many existing classifiers such as neural network, SVMs
classifier can achieve a competitive performance even
with small training samples!3-16], This property is ex-
tremely attractive for precision agriculture applications,
since getting ground truth data is expensive, labour and
time-consuming, involving filed survey and lab experi-
ment test. Therefore, SVMs is selected to be the super-
vised learning tool to analyse Sentinel-2A image in our
study.

Features are vital in image classification. In the afore-
mentioned literature, most of the research is focused on
the NDVI or NDWI calculation and their usefulness in
land cover classification, water content evaluation, etc.,
by exploiting the specific spectral bands of satellites. Al-
though the NDVI and NDWI have been widely used due
to their simplicity along with clear physical meanings,
there still exist several limitations. For example, in land
cover classifications, NDVI usually saturates when veget-
ation coverage becomes dense (i.e., leaf area index (LAI),
the one-sided green leaf area per unit ground surface area,
reaches around 3) and no longer sensitive to vegetation
changesl). Although compared with NDVI, NDWI satur-
ates at a later stage, it also results in limited perform-
ancelfl. Besides, it is generally not an easy task to determ-
ine an appropriate threshold for index-based classifica-
tion approaches. To avoid the problems in index-based
classification approaches and further explore the poten-
tial of all the latest available capabilities of new satellites,
the benefit of using selected or even all spectral bands of
Sentinel-2A will be investigated using machine leaning
techniques in land cover classifications.

On the other hand, little has been done in the literat-
ure to classify Sentinel-2A images by using machine
learning methods and explore the benefits of the availab-
ility of more spectral bands of this satellite in classifica-
tion. Consequently, this paper will compare different fea-
ture selection approaches according to indices and differ-
ent bands. Four approaches are studied and compared
where in the first approach, NDVI and NDWTI are treated
as the features, in the second approach the three related
bands are directly adopted (Red, NIR, SWIR), and in the
third approach top seven bands after mutual information
(MI) band ranking are applied. Finally, all 13 bands
available on Sentinel-2A satellite are employed. Confu-
sion matrix can analyse the classification results among
four different approaches. It is expected that the better
classification performance can be achieved by directly ad-
opting the selected bands than only using indices and all
13 bands of Sentinel-2A can improve the classification
performance due to increased bands and consequently in-
formation. To be more exact, the main contributions of
the work are summarized.

1) The remote sensing images of the newly launched
Sentinel-2A satellite are exploited for the purpose of land
cover classification by using different features with super-
vised learning algorithm.

2) It is discovered that the approach based on selec-
ted bands using MI algorithm can increase the classifica-
tion accuracy than index-based and index-related ap-
proach. It can also obtain the comparative performance
as the one based on all bands available on Sentinel-2A
satellite.

3) By considering the balance between time consum-
ing and classification accuracy, full bands approach can
be employed to achieve the higher accuracy in a small
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area. For large area, band selection after MI approach is
more applicable.

The remainder of this paper is organized as follows.
The problem under consideration is formulated in
Section 2, including data sources and problem statement.
The methodology is described in Section 3, including
overall procedure, ground truth labelling, feature selec-
tion and SVM classification algorithm. Classification res-
ults are compared in Section 4. Finally, conclusions with
future work are drawn in Section 5.

2 Materials and problem

This part focuses on data acquisitions and statement
of the classification problem for Sentinel-2A satellite im-
age in our case study. The data sources are introduced in
Section 2.1, including satellite information selection as
well as experimental site selection and then the problem
formulation is conducted in Section 2.2, where the basic
problem is briefly stated.

2.1 Data sources

Sentinal-2A satellite. Landsat8 and Sentinel-2A are
the most advanced satellites with freely available data for
long-term high-frequency remote sensing applications.
The former one was launched in 2013 with operational
land imager (OLI) sensor offering high quality multispec-
tral images at 15m, 30m, 100m and with a 16-day revis-
it timell” 19, The latter one consists of Sentinel-2A and
Sentinel-2B equipped with MSI capable of acquiring 13
bands information at different spatial resolutions (10m,
20m and 60m). The band wavelength information for
Landsat 8 and Sentinel-2A are drawn at central
wavelength (see Tables 1-2).

It follows from Tables 1 and 2 that compared with

Table 1 Spectral band information of Sentinel-2A

Table 2 Spectral band information of Landsat 8

Band Character Wavelength (um)  Resolution (m)
1 Blue 0.443 30
2 Blue 0.483 30
3 Green 0.563 30
4 Red 0.665 30
5 Near infrared 0.865 30
6 Shortwave infrared 1.610 30
7 Shortwave infrared 2.200 30
8 Panchromatic 0.590 15
9 Cirrus 1.405 30
10 Thermal infrared 10.9 100
11 Thermal infrared 12 100

Band Character Wavelength (um)  Resolution (m)
1 Coastal aerosol 0.443 60
2 Blue 0.490 10
3 Green 0.560 10
4 Red 0.665 10
5 Near infrared 0.705 20
6 Near infrared 0.740 20
7 Near infrared 0.783 20
8 Near infrared 0.842 10
8A Near infrared 0.865 20
9 Water vapour 0.945 60
10 Cirrus 1.375 60
11 Shortwave infrared 1.610 20
12 Shortwave infrared 2.190 20
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Landsat 8, Sentinel-2A is more popular due to its fine
properties including increased number of bands, shorter
revisit time, and higher spatial resolution. In particular,
Sentinel-2A provides more details in NIR band range and
SWIR band range, which is helpful for land cover classi-
fications in precision agriculture and forest monitoring
applications among many others. A drawback of Sentinel-
2A compared with Landsat 8 is without thermal infrared
bands. The spectral and spatial resolution as well as tem-
poral resolution determine the quality of spectral
imagel!8l. Consequently, Sentinel-2A satellite is selected
for solving remote sensing applications in our study.

All Sentinel-2A satellite images could be freely down-
loaded from Sentinel Hub, which was developed by
European Space Agency (https://scihub.copernicus.eu/).
Besides, freely available satellite information analysis
software sentinel application platform (SNAP) is also
provided, which in comparison with quantum GIS
(QGIS) and the environment for visualizing images
(ENVI), is specially customized for Sentinel series. This
software could read all the information that Sentinel
series can provide and export any data to other relative
analysis software in next steps.

Site selection. In supervised learning, groundtruth
data is the baseline that different approaches can be eval-
uated and compared with. To study and compare the per-
formance of different land cover classification algorithms,
an area that we often performs flight tests regularly is
chosen as an example site in this paper. The remote sens-
ing data of Sentinel-2A for the site of interest can be se-
lected on the aforementioned website and downloaded.
The basic information of this chosen field (see, Fig.2) in-
cluding location, spectral bands, pixel information, cloud
cover percentage is summarized in Table 3.

From previous literature regarding NDVI and NDWI
calculation of Sentinel-2A[5, Red band is chosen as Band 4,
NIR band and SWIR band are selected as Band 8a and
Band 11 respectively to achieve the better performance.
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Fig.2 Site selected for the case study

Table 3 Details of test site image for the case study

Location Bands Pixel Cloud cover

52°45'37.5"N 1°17'11.7"W

52°45'01.4"N 1°15'01.2"W 13 250X123 1.1171%

2.2 Problems formulation

The core problem in this study can be formulated as a
classification problem, where indices or band information
are selected as the features for supervised classifier train-
ing and testing. The set of Sentinel-2A satellite image
pixels are denoted by & ={1,---,n}, where n denotes
,Tn) € R™? means
the pixel vector with d being bands or indices. Let
L={1,---,k} be a set of class labels and C = (c1, -,
¢n) be the classification map corresponding to the label.

the number of pixels, and © = (z1,- - -

Training samples can be generated by corresponding pixel
vector with the number of features d and a set of la-
belled data C' in the form of T = {(z1,¢1), -+, (Zr,cr)}
with 7 being the total number of training samples. Train-
ing samples will be adopted to train a classifier and a
classification map with corresponding classification per-
formance will be generated. The aim of this study is to
evaluate the performance of various classifiers under dif-
ferent sets of features, so that suitable features can be
identified for the land cover classification problem under
consideration.

3 Methodology
3.1 Overall procedure

The whole process of land cover classification using
satellite remote sensing images can be divided into two
stages including pre-processing and data analysis, as
shown in Fig.3. SNAP software is to pre-process the data
downloaded from Sentinel Hub and calculate the related
indices. Some specific classes could be labelled on the ori-
ginal data, then the NDVI and NDWTI data can be gener-
ated and exported as excel format from SNAP. The data
analysis stage is performed by Matlab using SVMs al-
gorithm with different feature inputs.

Resampling, atmospheric correction and subset selec-
tion are necessary in pre-processing satellite images. In
particular, resampling ensures that images of each band

Atmospheric
correction

Resampling

Classification Machine Label
results learning specific data

Training Testing

Fig. 3 Framework of machine learning based land cover
classification using Sentinel-2A image data including data
source, pre-processing, classification model training and result
analysis

have the same resolution and number of pixels. Subset se-
lection allows re-choosing specific areas of interests. At-
mospheric correction algorithms are based on the Atmo-
spheric/Topographic Correction for Satellite Imagery by
Richter20. This method performs atmospheric correction
according to libRadtran radiative transfer model that is
run to generate a large look-up table accounting for vari-
ous atmospheric conditions, solar geometries and ground
elevations.

This simplified model runs much faster than a full
model to invert the radiative transfer equation and to cal-
culate bottom-of-atmosphere reflectance. Therefore, all
gaseous and aerosol properties of the atmosphere are both
derived by the algorithm and aerosol optical thickness or
water vapor content are derived from the images respect-
ively. SNAP software offers a plug-in to make atmospher-
ic corrections termed Sen2Cor[2!, Atmospheric correction
is an integrated part in the process of Sentinel-2A satel-
lite image processing. Fig.4 provides the red, green and
blue (RGB) map of Sentinel-2A data for the selected site
after pre-process.

Fig.4 RGB image from Sentinel-2A for the chosen site after
atmospheric correction

3.2 Ground truth labelling

Groundtruth data is inevitable in supervised learning
tasks. In this study, labelling specific areas is achieved by
using SNAP software. This is because, the procedure is
convenient to realize than other satellite software due to
its compatibility with Sentinel-2A.

On the basis of the on-site experience and real time
unmanned aerial vehicle (UAV) photography on 5th,
January of 2017, the groundtruth of five classes (i.e., crop
(No. 1), tree (No. 2), soil (No. 3), water (No. 4), and road
(No. 5)) can be obtained and labelled as shown in Fig.5.
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The average reflectance over bands for different classes is
shown in Fig.6. It is noted that the reflectance differ-
ences at different bands lay the foundation for machine
learning based classification. It is obvious that five classes
are totally distinct in terms of NIR range and SWIR
range, which is the foundation to classify them under
multiple classifiers. The labelled classes on these images
could be exported to an excel file, along with location de-
tails and band details.

Fig.5 Groundtruth labelling (in different colours) for classifier
training, where five different classes are defined including crop,
tree, soil, water and road. Color versions of the figures in this
paper are available online.

0.30 — T
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3 N4 ~_ ----Tree |
025 iv y \ Soil
020 L 0 // \ +Water_
SEe 10.9511.0011.05 \ ——Road
§ /
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0.05
0

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of bands

Fig. 6 Average reflectance for five labelled classes
3.3 Feature selection

In this study, four different sets of features are
defined, which will lead to four corresponding classifiers.
These features are detailed as below.

NDVI and NDWI. Index-based classification dir-
ectly treats NDVI and NDWI as features for classifier
model construction. As mentioned in Section 2, Band 4,
Band 8A and Band 11 are chosen as Red, NIR and SWIR
band, respectively.

Bandgsa — Bandy
NDV]= ——F— ——— 1
v Bandga + Banda (1)

Bandsa — Band1
NDWI = . 2
w Bandsa + Bandii @

According to the formula in (1) and (2), NDVI and
NDWI can be calculated easily from SNAP or Matlab
software. It is noted that although three different bands
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are involved in NDVI and NDWI, the spectral bands
based classifier has features with dimension 2.

Index related bands. NDVI and NDWTI involve
band information of Red, NIR and SWIR band, which
can specifically determine water stress and vegetation vi-
tality of classification problem. In order to avoid the
problems of index based classification (e.g., saturation
with a high canopy cover), the three aforementioned
bands will be selected as training features to detect
whether it will get a corresponding results compared with
index based or not. For this reason, the features of index
related classification consist of Band 4, Band 8A and
Band 11.

Mutual information based bands. Mutual inform-
ation is one of the feature scoring algorithms (for feature
selection) to calculate a score value for each feature to re-
flect its usefulness for classification probleml(!3: 22,

There are several scoring algorithms according to vari-
ous criteria such as Fisher scorel?3, minimum redund-
ancy maximum relevance (MRMR)R24, MI and their vari-
ants. In this work, MI approach is employed as the band
selection method due to its simpleness and computation-
al efficiency. In this approach, the individual spectral
band information and five labelled classes are conducted,
where the band is ranked by MI algorithm according to
the MI value. A higher value means a higher relevance.
The MI for discrete random variables Y and Z are defined
as below:

MI(Y,Z) = Zyeyzzezp(y’ 2)log (%) ¥

where Y denotes the features in supervised learning and Z
means the classes label. p(y,z) is the joint probability
distribution function of Y and Z, and p(y) and p(z) are
the marginal probability distribution functions of Y and
X, respectively. In MI approach, the Sentinel-2A bands
are ranked by their importance on the basis of MI scores
where the results are shown in Fig7. It can be seen that
different bands have various MI values and so different
differentiating abilities. In particular, Band 6 has the

1.4

1.2 -

1.0
0.8
3

0.6

MI value

0.4

0.2

0
1 2 3 4 5 6 7 8 9 1011 12 13

Number of bands

Fig. 7 Mutual information value for each band of Sentinel-2A
satellite
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highest MI value and Band 10 has the lowest MI value.

To visually compare the differentiating capability of
Band 6 and Band 10, the site generated maps by these
two bands are displayed in Fig.8. It can be seen that the
site map of Band 10 is mainly dominated by noise provid-
ing little useful information for land cover classification,
while the site map of Band 6 is much clearer and so has
the better classification capability. The reflectance value
of Band 6 and Band 10 for five labelled classes are also
given in Fig.9, which also shows that Band 10 has little
discriminating ability. Actually, the overall classification
accuracy by using Band 6 can reach to nearly 0.6. Adding
Band 10 as a new feature can marginally improve the
performance.

Consequently, to select an appropriate set of features
by using the MI values, the bands with a higher MI value
can be sequentially added to the feature vector, leading
to classifiers with different number of features (or bands).
And the performance with a good accuracy can be
chosen. The classification performance value with respect
to the number of bands can be generated and analysed by
overall accuracy (the percentage of correctly classified
pixels) and average accuracy (the mean of the percent-
ages of correctly classified pixels for each class) line (see
Fig.10). By using this simple approach, it is discovered
that the classification overall accuracy adopting seven top
ranked bands (Band 6, Band 7, Band 8, Band 8A, Band 9,
Band 5 and Band 3) in Sentinel-2A can reach up to 95%.
Consequently, the aforementioned bands after MI ap-
proach are selected as the features.

Full bands. In this approach, all 13 bands available
on Sentinel-2A satellite will be used as the training fea-
tures. This is done to see whether all bands approach can
further improve the classification performance.

(b) Band 10

Fig. 8 Sample feature bands: (a) Band 6; (b) Band 10
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Fig. 9 Box plot for the five labelled classes: (a) Band 6; (b)
Band 10
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Fig. 10 Performance value with respect to number of bands
selected by Mutual Information approach

3.4 Classifier selection: SVMs

The land cover classification problem can be solved by
using supervised learning algorithms. In this paper, super-
vised classification builds the implicit relationship
between feature vector (four approaches of feature selec-
tion ) and target variable (five classes labels) by learning
from limited labelled training data. With the trained clas-
sification model, prediction can be made on new feature
data such that its class label can be determined. To avoid
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the problem of overfitting, the labelled data are usually
divided into training set and testing set using either the
approach of hold-out or cross-validation. Different classi-
fication algorithms have been developed in the literature
including decision trees, discriminant analysis, SVMs,
nearest neighbor, neural network, just to name a few(13, 14, 25],

The performance of several aforementioned classifica-
tion algorithms are compared by employing two indices
(NDVI and NDWI) as features, the comparison results
are shown in Table 4.

Table 4 Comparison of various classifiers

Classification methods Classification overall accuracy (%)

Decision tree 80.4
Discriminant analysis 85.0
Nearest neighbor 87.5
SVMs 88.0

According to the comparison results, SVMs obtained a
relatively high accuracy among all testing classifers. From
the literature review[!3-15 SVMs is also quite effective in
coping classification problem with a small dataset. In ad-
dition, SVM is one non-parametric statistical learning al-
gorithm, where no particular assumption should be made
on data distribution(26],

The principle of SVMs is introduced in [13], which is
also briefly introduced in this work for the sake of com-
pleteness. In this approach, a given training set
T ={(zi,c)|l <i <7} is projected into a Hilbert space
(higher than the original feature space) H by adopting a
mapping &(-) leading to T' = {((?(x))i, ¢;)|1 < i < 7} The
optimal hyperplane H, is to separate the original data on

«

2
the condition of the maximization of the margin ——— and

[l

the minimization of the sum classification error » 7_, &
meeting the constraint: ¢;(zjw+b)—1>0,1<:i<7 in
the following formulation:

w(w,€) = SlhwllP + K36 (4)
i=1

where ¢'s are the so-called slack variables and constant K
is regularization parameter which can control the shape of
the decision boundry. The optimization problem can be
built up and solved by the use of Lagrange multipliers a;:

T 1 n
max : Zai —3 Z asajeici{(P(x)i, P(x) ;) m
z:Tl 1,j=1 (5)
st Y aie; =0,0<a; <K, Vi€ [1,7].
i=1

Kernel function is employed2” to avoid the computa-
tion of the inner products in the transformed space
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(@(2)i, @(x)j) 1, s0 (P(x)i, P(x);)m = K(zi, 7). The de-
cision rule is formulated by

§(@) = (3 ik (51,0) +1) (©

where s;,1 < i < N; denote the support vectors. Different
kernels lead to different SVMs, where the commonly used
Kpoly(x,2) =
((z,2z) +1)?» and Gaussian kernel Kgauss(z,2) = exp

are polynomial kernel of order p,

(—y|lx — 2||*) with ¥ being a parameter inversely
proportional to the width of the Gaussian kernel(28 29],
SVMs is one promising approach to deal with satellite
different
mechanisms are available for multi-class classification. In

classification problem in our case but

this paper, Quadratic SVMs due to its simplicity and
effectiveness with 50% holdout validation is chosen based
on our previous experience, where its implementation is
conducted in Matlab using classifier learner with built-in
functions.

4 Classification results

At first, classification by using one index (i.e., NDVI
or NDWI) is performed. NDVI performs well in landcov-
er classification, specially for vegetation/non vegetation
area and vitality/non vitality status. NDWI is good at
classifying water status under different levels. For our
case, there are five classes to be classificied, hence, NDVI
and NDWTI indices are not a good solution to directly
make a classification. It is discovered that one index res-
ults in very poor result (NDVI classification accuracy
with SVMs: 76.2%; NDWTI classification accuracy with
SVMs: 35.7%), so that the result analysis is omitted due
to lack of space. This is mainly due to the fact that one
feature is not enough for the land cover classification
problem with five different classes in this study. Con-
sequently, only the classification methods with relatively
satisfying performance are presented in this paper. In this
section, the algorithms discussed in Section 3 are imple-
mented, particularly the performance of four different fea-
ture selection methods are evaluated by using confusion
matrix (see, Figs.11-14). In the confusion matrix plot,
the rows correspond to the predicted class (i.e., output
class), and the columns show the truth class (i.e., target
class). More explanations on confusion matrix will be giv-
en where necessary.

4.1 Index based approach

This part mainly focuses on the analysis of NDVI and
NDWTI based classification. The confusion matrix for this
approach is given in Fig.11. In Fig.11, the diagonal cells
in green show the number and percentage of correct clas-
sification. For example, 1226 samples are correctly classi-
fied as crop corresponding to 45.6% of all samples. The



T. X. Zhang et al. / Potential Bands of Sentinel-2A Satellite for Classification Problems in Precision Agriculture 23

Confusion matrix
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Fig. 11 Indices based classification results
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Fig. 12 Indices related bands based classification results

off-diagonal cells show where the mistakes come from.
For example, in the first row, 46 of tree samples are in-
correctly classified as crop corresponding to 1.7% of all
samples and 6 of soil samples are misclassified as crop to
0.2%. The rightmost column shows the accuracy for each
predicted class, while the bottom row shows the accur-
acy for each true class. For example, out of 1278 (1226+
46+6) crop prediction, 95.9% are correct and 4.1% are
wrong; out of 1258 (1226+32) crop samples, 97.5% are
correctly predicted as crop and 2.5% are wrongly pre-
dicted as tree. The cell at the right bottom shows the
overall accuracy, which for this algorithm is 87.7%.

The result shows that classification based on empiric-
al or semi-empirical approach has a relatively high accur-
acy. This is mainly due to the fact that NDVI can effect-
ively reflect vegetation status and NDWI is valid for wa-
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Fig. 13 MI bands based classification results
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Fig. 14  All bands based classification results

ter content evaluation. Both of them can partly capture
the main characteristics of the land covers of interest. It
should also be noted that the main misclassification is
that soil is misclassified as tree and road. This is mainly
because there is little chlorophyll in tree in winter and
consequently poses challenges in distinguishing between
tree, soil and road.

4.2 Index related bands approach

Instead of using empirical or semi-empirical indices in
satellite remote sensing as in Section 4.1, the specific rel-
evant bands including Red, NIR and SWIR are directly
adopted as features for supervised classification in this
part. The classification results are shown in Fig. 12, where
the overall accuracy is 93.2%. Different from index-based
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classification where specific mathematical operations are
performed on the three bands, machine learning al-
gorithm can automatically build the relationship between
the three bands and class label by learning from labelled
training samples. Comparing the performance of these
two approaches, one can discover that classification by
directly using Red, NIR, SWIR band is more effective
than NDVI, NDWI based classification. Therefore, classi-
fying Sentinel-2A spectral images by using selected bands
along with machine learning techniques is an effective ap-
proach.

4.3 MI selected bands approach

The results by using top bands selected by MI ap-
proach is displayed in Fig.13. It is obvious that the crop
classification by MI approach is accurate than index
based approach (only 97.5%) and index related band
based approach (98.5%). Additionally, other samples clas-
sification results are all over 90% (Tree: 92.9%; Soil:
96.2%; Water: 91.9%; Road: 91.4%). Moreover, the over-
all classification accuracy at the right bottom is 95.8%,
which is higher than that index based approach (87.7%)
and index related bands based approach (93.2%). This
means that by adopting more informative bands in Sen-
tinel-2A satellite, the land cover classification perform-
ance can be improved.

4.4 Full bands approach

It should be noted that there are 13 spectral bands on
Sentinel-2A satellite, which provides a great amount of
information for remote sensing applications. It would be
of interest to verify whether full band information can
further improve the performance or not. To this end, all
13 bands are further treated as features for classification
in the fourth approach, where the classification results are
shown in Fig.14. It can be seen from Fig.14 that the
overall accuracy increases to 97.9% from 95.8%.
Moreover, the misclassification rates between soil class
and tree class also reduce obviously. This demonstrates
that incorporating more related band information can fur-
ther improve the classification performance, however, the
improvement is marginal.

4.5 Further discussions

Comparing these different classification algorithms
with different spectral features, the following observa-
tions can be drawn:

1) Classification by using indices related bands outper-
forms the empirical or semi-empirical indices based ap-
proaches in terms of overall accuracy from 87.7% to
93.2%. This is mainly due to the increased one dimen-
sion information (i.e., certain information has been missed
by the reduced-order transformation from three dimen-
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sions to two dimensions).

2) Different bands have different differentiating abilit-
ies (reflected by the mutual information), and classifica-
tion by using selected top bands (seven bands in this
work) via MI approach can further improve the classifica-
tion performance (93.2% — 95.8%). This again is due to
the increased information in the additional bands. MI is
an effective approach to identify the most differentiating
bands in a large number of features.

3) Classification by using all 13 bands available on
Sentinel-2A satellite can further improve the classifica-
tion performance. However, the marginal performance im-
provement is at the expense of using additional six bands
in comparison with MI based approach. The substan-
tially increased number of bands usually require extra
data transmission and storage, which may be not neces-
sary or desirable for certain applications.

4) In practical applications, in addition to classifica-
tion accuracy, other performance indices such as data
volume, training and classification time should also be
considered. In this case, an appropriate number of bands
with a satisfying performance may be more desirable, and
dimension reduction (e.g., MI information based feature
selection) may provide a promising solution to this prob-
lem.

Overall speaking, machine learning based classifica-
tion by using the spectral bands of Sentinel-2A satellite is
one promising solution for agriculture remote sensing ap-
plications (i.e., land cover classification including crop
classification), in particular the approach based on fea-
ture selection by using mutual information is recommen-
ded.

5 Conclusions and future work

This paper develops a novel approach to analyse satel-
lite remote sensing images, particularly Sentinel-2A satel-
lite images using machine learning techniques. Four fea-
ture selection methods applying to classification problem
are studied and compared here, namely index-based clas-
sification (NDVI, NDWI), index related band based clas-
sification (Band 4, Band 8A, Band 11), MI scored band
based classification (Band 6, Band 7, Band 8, Band 8A,
Band 9, Band 5 and Band 3) and all available bands
based classification. By using a case study of land cover
classification with five classes, it is shown that the meth-
od employing all available bands of Sentinel-2A satellite
result in the best performance while the use of MI scored
bands with highly relevance also yields quite promising
results. Overall the classification methods directly using
specific relevant bands with supervised learning outper-
form the classic index based classification methods. Some
limits of the index based classification could be removed
by the direct use of spectral bands of Sentinel-2A. The
proposed method can also be applied to forest vegetation
monitoring, vegetation physiological status detecting and
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irrigation decisions/30: 31,

Future work on this direction is summarized in the
following aspects:

1) In addition to spectral band information, other
types of information may also be considered, such as tex-
ture information.

2) More advanced classification algorithms can be con-
sidered, such as random forest and their variants.
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