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Abstract—Early driver intention prediction plays a sig-
nificant role in intelligent vehicles. Drivers exhibit various
driving characteristics impairing the performance of con-
ventional algorithms using all drivers’ data indiscriminat-
ingly. This paper develops a personalized driver intention
prediction system at unsignalized T intersections by seam-
lessly integrating clustering and classification. Polynomial
regression mixture (PRM) clustering and Akaike’s infor-
mation criterion are applied to individual drivers trajecto-
ries for learning in-depth driving behaviors. Then, various
classifiers are evaluated to link low-level vehicle states to
high-level driving behaviors. CART classifier with Bayesian
optimization excels others in accuracy and computation.
The proposed system is validated by a real-world driv-
ing dataset. Comparative experimental results indicate that
PRM clustering can discover more in-depth driving behav-
iors than manually defined maneuver due to its fine ability
in accounting for both spatial and temporal information; the
proposed framework integrating PRM clustering and CART
classification provides promising intention prediction per-
formance and is adaptive to different drivers.

Index Terms—Driver behavior prediction, intelligent
vehicle, polynomial regression mixture (PRM), trajectory
clustering.

I. INTRODUCTION

R ECENT advancements of artificial intelligence (AI) have
stimulated the rapid development of industrial informat-

ics applications, especially in intelligent vehicles for smart cities
[1]–[3]. In particular, machine learning with big data has made
a great progress in perception and decision making enhancing
driving safety, convenience, and fuel efficiency for intelligent
vehicles [4]–[7]. A number of advanced driver assistance sys-
tems, e.g., adaptive cruise control and lane departure warning,
have been developed to augment drivers’ situation awareness
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accuracy and enhance decision-making capabilities by perceiv-
ing the environmental situation in real time, alerting drivers to
potential dangers, or even taking over certain driving tasks in
urgent situations. Despite all the effort and progress achieved
so far, there is still a long way to go to deploy driver assistance
system robustly and effectively in realistic traffic environment
to prevent majority of accidents.

In particular, critical challenges still remain in negotiating
traffic intersection safely in urban areas. This is because ma-
neuvering through interactions is a stressful task due to multiple
directions of movements along with the need to maximally
account for other drivers’ possible errors [8]. According to
the European Union (EU) community road accident database
CARE, intersection-related fatalities account for more than
20% in the EU during the last decade (2001–2010) [9]. This
is also the case in the United States, where an estimated 45%
of injury crashes and 22% of roadway fatalities are intersection
related [10]. It is also reported that in these accidents, driver’s
inability to correctly assess and/or observe the danger involved
in such situations [11] is a main contributing factor.

In the past decade, a number of research and development
efforts have been devoted to intersection decision support sys-
tems. For example, in [12], the problem of whether a driver
will stop safely or not given the traffic signal indication (i.e.,
compliant or violating behaviors) was considered, where the
binary classification problem was solved using discriminative
support vector machine (SVM) and generative hidden Markov
models based on three key features including range to inter-
section, speed, and longitudinal acceleration. In [13] and [14],
driver’s turning behavior recognition at a T intersection (e.g.,
straight driving, left turn, or right turn) was investigated using a
discriminant analysis (DA) and a long short-term memory based
recurrent neural network, where position, heading, and velocity
were chosen as features. In [15], a Bayesian network is drawn
to address the turning intent prediction at arbitrary intersections
by incorporating knowledge about the intersection layout using
contextual information extracted from a digital map. In addition
to academic research efforts, various projects have also been
seen in automotive sector. For example, in Europe, the InterSafe
project was created by the European Commission to increase
safety at road intersections [16]. In the U.S., the Intersection
Decision Support project [11] and the Cooperative Intersection
Collision Avoidance System project [17] were sponsored by the
Department of Transportation and universities to develop inter-
section collision avoidance systems and their demonstration.
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In contrast to the majority of preceding works where a generic
(or average) system for all drivers is built by treating individual
drivers’ data indiscriminately [18], we aim to develop a per-
sonalized system dedicated to intersection assistance. This is
done by observing that different drivers have distinct driving
preferences and characteristics even for the same maneuvers at
intersections. For example, for a multiple lane, some drivers
may prefer to drive in the inner lane while others prefer the
outer lane. Even for a single lane, an aggressive driver may ex-
hibit distinct turning patterns in comparison to a mild one. To
make the system better cooperate with individual drivers, the
personalized driving characteristics should be accommodated
in driving behavior recognition so that the so-called “adaptive
aiding” [1], [19] can be provided to the drivers at the right time
and in a proper manner.

To effectively accommodate driving characteristics, the per-
sonalized driving data of individual drivers are exploited includ-
ing high-level trajectories and low-level vehicle states, such as
velocity and heading. The proposed driver behavior prediction
system comprises two layers including offline behavior learn-
ing via high-level trajectories and online behavior prediction
via low-level vehicle states. The offline stage is different from
the existing work [20] where classifiers are trained by labeled
data. The proposed system comprises two steps. First, driving
behaviors are automatically learnt by dividing the trajectories of
a particular driver into various categories using clustering algo-
rithms, where the cluster number is optimized using the classical
Akaike’s information criterion (AIC) [21]. This clustering-aided
approach, in contrast to conventional ones where only a set of
manually defined maneuvers are considered [14], automatically
learns the driver behaviors using a purely unsupervised data-
driven approach. Owing to this step, the proposed behavior
prediction system is adaptive to different drivers and arbitrary
road intersections without manually labeling the historical data.
Second, based on the learnt driving behaviors represented by
different clusters, low-level vehicle state data including velocity
and heading in each cluster are drawn to build a mapping be-
tween low-level sensing data and high-level driving behaviors
using the classical classification and regression trees (CART)
algorithm. Then, in the stage of online prediction with the ad-
vent of new sensing data, the trained CART is drawn to predict
individual drivers’ behavior represented by different clusters.

To the best of the authors’ knowledge, this paper is the first
attempt to integrate trajectory clustering and behavior classifier
to solve the problem of personalized driving behavior predic-
tion, particularly the proposed framework is validated by using
a recently collected dataset from real-world driving experiments
with promising performance. More precisely, the main contri-
butions are summarized as follows.

1) Trajectory clustering is adopted to learn individual
drivers’ behaviors from history trajectories resulting in
a number of in-depth maneuvers/behaviors without man-
ually labeling. Owning to this step, the proposed behavior
prediction system is adaptive to different drivers and var-
ious intersection layouts automatically.

2) Various classifiers for driving behavior prediction are
compared to identify a suitable one for the proposed

Fig. 1. Diagram of trajectory clustering aided personalized driver be-
havior prediction system: blocks in red are for offline behavior learning
and mapping construction, whereas blocks in light blue are for online
behavior prediction.

framework, where a CART classifier with Bayesian hy-
perparameter optimization outperforms others.

II. DRIVER BEHAVIOR PREDICTION

In order to achieve personalized driver behavior prediction,
two key problems should be addressed. The first one is how
to automatically label personal trajectory data since manual
data labeling is painful and inefficient. Another is how to build
the relationship between driving features and driver behaviors.
To overcome the first problem, trajectory clustering is adopted
to discover the in-depth behaviors for individual drivers in an
automatic manner. To deal with the second problem, supervised
learning is applied to predict driver behaviors by using vehicle-
related measurements.

In this paper, the information on driving behavior is mainly
grouped into two levels including “high-level trajectories” and
“low-level driving features.” In particular, “low-level driving
features” denote information related to vehicle dynamics (e.g.,
speed and heading, which are only functions of time), represent-
ing short-term (or instantaneous) driving behaviors [7]. Whereas
“high-level trajectories” denote vehicle trajectories (i.e., spatial–
temporal processes, which are essentially functions of both posi-
tion and time) reflecting drivers’ long-term behavior information
(e.g., driving preference and turning pattern).

In the proposed system, “high-level history trajectories” are
inputs of a clustering algorithm for offline learning that can
automatically learn drivers’ in-depth behaviors (e.g., driving
preference and turning pattern). While “low-level driving fea-
tures” are inputs of classification algorithm, which can predict
driver behaviors in real time. In the remaining part of this sec-
tion, the proposed personalized driver behavior prediction sys-
tem aided by trajectory clustering is briefly discussed, where its
overall diagram is shown in Fig. 1 including offline driving be-
havior learning and classifier construction and online behavior
prediction.

In the offline training layer, “high-level history trajectories”
of individual drivers are divided into different categories rep-
resenting various driving behaviors (e.g., straight driving, mild
turn, and aggressive turn) by using a clustering algorithm. The



trajectory clustering algorithm in this paper can consider spatial
and temporal information simultaneously. At the same time, the
clustering approach is adaptive to different drivers and any in-
tersection layouts (e.g., T junction and crossroad). Considering
that the length of trajectories is variable, the polynomial re-
gression mixture (PRM) clustering algorithm is adopted that is
independent of trajectory length by using a regression analysis
with an expectation maximization (EM) algorithm for parame-
ter learning. Trajectory clustering is to implement autotagging
of driving behaviors and adapts to each individual driver. Then,
CART classification models are trained to classify different driv-
ing behaviors by treating low-level vehicle states as the features
(e.g., speed and heading). In the online execution layer, observed
vehicle state data are classified into different clusters using the
trained CART model, where each cluster represents a particular
driving behavior. Based on the proposed framework, the driving
behaviors of individual drivers can be understood by the vehicle
and consequently “adaptive aiding” can be provided to the driver
at the right time and in a proper manner [1]. In the following
sections, each element of the framework is elaborated.

III. CLUSTERING FOR BEHAVIOR LEARNING

In this section, offline behavior learning is detailed for indi-
vidual drivers for the purpose of personalized behavior learning.
As highlighted in Section I, different from the existing works
where drivers’ behaviors at an intersection are manually de-
fined by a number of given maneuvers, e.g., continuing straight,
turning right, or turning left, this paper relies on clustering al-
gorithms to automatically learn driver behaviors by analyzing
the high-level history trajectory data of individual drivers. As a
result, this approach is adaptive to different drivers and arbitrary
road intersection layouts.

Clustering is an efficient way to discover hidden patterns
in the dataset by an unsupervised manner. Various clustering
algorithms are available, each of which has its own pros and
cons [22], [23]. For instance, center-based approaches, such
as k-means clustering, are simple but cannot directly handle
trajectories with various lengths. Whereas approaches such as
Gaussian mixtures cannot tackle trajectories measured at dif-
ferent time points or that contain missing observations. As a
consequence, trajectories with the same spatial pattern but in
opposite directions (or trajectories with similar spatial pattern
but with different velocities) may be misclassified into one clus-
ter [24]. Therefore, it is necessary to consider the characteristics
of a trajectory clustering problem in selecting an appropriate
algorithm. In comparison with common clustering problems,
trajectory clustering has its own characteristics that are summa-
rized as follows: trajectories usually have different lengths due
to their different time durations in the region of interest; and each
trajectory is a spatial–temporal process since it is essentially a
function of both position and time. As a result, two trajectories
with similar spatial pattern may have distinct temporal patterns
and so should not be categorized into one cluster.

Considering the aforementioned characteristics, PRM clus-
tering is adopted, which can effectively handle the cluster-
ing problem with variable lengths while simultaneously taking

spatial and temporal information into account [24]. In addi-
tion, to determine the “optimal” cluster number, the classical
AIC [21] is adopted. In the following sections, some pivotal
elements of the trajectory clustering are elaborated.

A. Polynomial Regression Mixture (PRM)

PRM divides vehicle historical trajectories of a specific driver
into different clusters by minimizing the differences between
data and regression models. Let Y = {y1, . . . , yn} be a set of
the driver’s vehicle historical trajectories containing n trajec-
tories, where each trajectory yi (i = 1, 2, ..., n) is a sequence
of position measurements with length ni observed at a set of
time indexes xi (in this paper, trajectories represent historical
movement of a driver at unsignalized T junctions). The condi-
tional probabilistic model for cluster k (each cluster represents
a category of driving behavior) is represented by pk (yi |xi, θk ).
Therefore, probability density functions (PDFs) of all clusters
(i.e., all driving behaviors) can be given by the following:

p(yi |xi,Θ) =
K∑

k=1

αkpk (yi |xi, θk ) (1)

where Θ is the set of θk and αk (Θ = {θk , αk}). θk represents
parameters of the kth model (driving behavior) and αk repre-
sents the probability that the ith trajectory is assigned to cluster
k (driving behavior k) satisfying

∑K
k=1 αk = 1 with K being

the number of clusters.
1) Definition of Polynomial Model: A trajectory within a clus-

ter can be treated as the mean trajectory of the cluster added a
noise and the mean trajectory of a cluster can be obtained by (1).
Therefore, it is assumed that a trajectory yi can be represented
by a pth-order polynomial regression perturbed by a Gaussian
error when xi is given. The regression of yi on xi is given by
the following:

yi = Xiβ + εi (2)

where εi ∼ N(0, σ2I) is the Gaussian error, Xi is an ni × (p +
1) regression matrix, and β is regression coefficients, which is a
(p + 1)th vector. The pth-order regression matrix Xi evaluated
at xi is given by the following:

Xi =

⎡

⎢⎢⎣

1 xi1 x2
i1 . . . xp

i1

...
...

... . . .
...

1 xini
x2

ini
. . . xp

ini

⎤

⎥⎥⎦.

For different trajectories, the row number of Xi is different to
be adaptive to different trajectory lengths. The column number
of Xi is the same when the order p of polynomial regression is
determined. This step is to transfer a trajectory into a regression
form. The regression model (2) defines the conditional PDF of
yi given xi as N (yi |Xiβ, σ2I). Integrating (2) into the mix-
ture density (1) by incorporating dependence of this PDF on k,
represented by {βk , σ2

k}, which results in the following PRM:

p(yi |xi,Θ) =
K∑

k=1

αkN (yi |Xiβk , σ2
k I). (3)



The log-likelihood of trajectories set Y is computed by summing
up the conditional probability density of all n trajectories given
by the following:

log p(Y |X, Θ) =
n∑

i=1

log
K∑

k=1

αkN (yi |Xiβk , σ2
k I) (4)

where X = {X1, . . . , Xn} denote the set of known regres-
sion matrices, and Θ represents all unknown parameters
{βk , σ2

k , αk}. Equation (4) is used in the EM algorithm to derive
the model parameters based on maximum-likelihood estimation.

2) EM for Parameter Optimization: zi is the cluster member-
ship for trajectory yi , then the joint density of yi and zi can be
given by the following:

p(yi, zi |xi) = αzi
pzi

(yi |xi) = αzi
N (yi |Xiβzi

, σ2
zi

I). (5)

The overall log-likelihood function L can be obtained by sum-
ming up all n trajectories’ log joint density given by the
following:

L =
n∑

i=1

log αzi
N (yi |Xiβzi

, σ2
zi

I). (6)

E Step: Since cluster memberships zi are unobservable, poste-
rior p(zi |yi,xi) is used in the E step. The membership probabil-
ity p(zi |yi,xi) that the ith trajectory was generated from cluster
zi is calculated by the following:

wik = p(zi = k|yi,xi) ∝ αkpk (yi |xi)=αkN (yi |Xiβk , σ2
k I).

The posterior expectation of L in (6) is computed with respect
to the above-mentioned posterior given by

E[L|yi,xi] =
n∑

i=1

K∑

k=1

wik log αkN (yi |Xiβk , σ2
k I). (7)

M Step: In the M step, (7) is maximized with respect to the
parameters Θ = {βk , σ2

k , αk}, where the solution is given by
the following:

β̂k =

[
n∑

i=1

wikXT
i Xi

]−1 n∑

i=1

wikXT
i yi (8)

σ̂2
k =

∑n
i=1 wik ||yi − Xiβk ||2∑n

i=1 wik
(9)

α̂k =
1
n

n∑

i=1

wik . (10)

Remark 1: The computational complexity of the EM algo-
rithm is linear in the number of trajectories. In the initialization
phase, the membership probabilities are randomly sampled and
then the M step is started. E step and M step will be repeated
until a local maximum of log-likelihood is reached. However, in
practice, convergence is usually detected when the incremental
improvement ratio of log-likelihood drops below a threshold.

B. Optimal Cluster Number

It is usually challenging to determine the “optimal” cluster
number k∗ for PRM. In this paper, k∗ is derived using AIC [21],

which is an effective measure for assessing clustering model
quality. According to Akaike’s theory, the most appropriate
model has the smallest AIC value, where AIC is defined by
the following:

AIC = N ∗ log(det(
1
N

N∑

1

ε(t, θ̂N )(ε(t, θ̂N ))T ))

+ 2np + N ∗ (ny ∗ (log(2π) + 1)) (11)

where N is the number of samples, ε(t) is an ny -by-1 vector of
prediction errors with ny being the number of model outputs,
and θ̂N is the estimated parameters with np being its number.
After obtaining clustering configuration via PRM with different
cluster numbers, one can calculate the corresponding AIC val-
ues, where the cluster number k∗ corresponding to the smallest
AIC value is selected for each driver.

AIC is usually adopted to determine “optimal” cluster num-
ber for clustering problems where data have the same dimension
[25]. In this paper, vehicle trajectories in various clustering con-
figurations are generally with variable lengths and therefore AIC
value for each clustering configuration cannot be directly calcu-
lated. To solve the problem, trajectories of variable lengths are
transferred into a fixed number of parameters using a regression
analysis. Considering the characteristics of vehicle motion at a
T intersection, the constant acceleration model is adopted in x
and y directions, which correspond to a polynomial of order 2
given as follows:

x(t) = x0 + vx0t + 1
2axt2, y(t) = y0 + vy0t + 1

2ay t2

where x(t) and y(t) denote the longitudinal and latitudinal
movements with x0, vx0, ax and y0, vy0, ay representing the ini-
tial position, velocity, and acceleration in x and y directions.
After fitting trajectories using polynomials of order 2, each tra-
jectory can be represented by six coefficients x0, vx0, ax , y0,
vy0, and ay . As a result, AIC values can be calculated easily
under different clustering configurations.

In practice, however, the range of different coefficients may
vary a lot due to different physical meanings, consequently,
Z-score [26] is adopted to normalize the coefficients. In com-
parison with other normalization approaches, Z-score can retain
the shape properties of the original data such as skewness and
kurtosis. For a vector x, Z-score is defined by z = x−x̄

σ , where
x̄ and σ denote the mean and standard derivation of vector x,
respectively. The main steps for the optimized PRM clustering
are summarized in Algorithm 1.

IV. CLASSIFICATION FOR BEHAVIOR PREDICTION

In Section III, high-level driving trajectories are automatically
divided into different categories using the trajectory clustering
algorithm, where each trajectory category represents one kind
of driver behavior. The next step is to use a low-level vehicle
state to predict the driver behavior for real time applications.
With the rapid development of sensing technologies, nowadays
it is very easy to assess various vehicle state data characterizing
various maneuvers and driving patterns. In this paper, vehi-
cle speed and heading are chosen as the features due to the



Algorithm 1: Steps For PRM With Optimized Cluster
Number.

1. Given a user-defined maximum cluster number kmax;
2. Perform a series of PRM clustering under

i = 1, . . . , kmax resulting in PRM(1), . . . , PRM(kmax);
3. Calculate AIC value for each clustering configuration

using formula (11) resulting in AIC(1), . . . , AIC(kmax);
4. Optimal cluster number k∗ is determined by

k∗ = arg minkmax
i=1 AIC(i), where PRM(k∗) denotes the

optimal clustering configuration.

following main reasons: first, these measures are nonintrusive
and easily accessible via Inertial Measurement Unit (IMU) and
GPS sensors, and have a lower requirement on working con-
dition in comparison with other approaches such as computer
vision based ones; second, these features have been proved to be
effective in characterizing driving behaviors [13]. For instance,
a driver turning across traffic usually slows down and at the
same time steers the vehicle in an appropriate direction.

After features are defined, the driver behavior prediction is
then formulated as a classification problem building an implicit
mapping between vehicle state measurements and trajectory
clusters. In real-time applications with the advent of new sens-
ing measurements, the trajectory cluster representing various
driving behaviors can be predicted. In machine learning applica-
tions, it is generally not easy to select an appropriate algorithm
for the task of interest. Consequently, different classifiers are
first compared so that the most suitable one is identified.

A. Classifier Selection

Classifier selection is generally based on problem charac-
teristics, personal experience, and experimental comparison. In
this paper, a classifier is adopted to predict driving behavior in
real time so that suitable follow-up driving assistance can be
provided to the driver. In addition, the classifier should also be
simple and easy to certify by industry (e.g., white box model). A
number of classification algorithms are implemented and com-
pared in this paper, which include DA [27], (CART [28], naive
Bayes (NB) [29], SVM [30], and their variants. According to
the problem characteristics and experimental results mentioned
in Section V-E, CART with Bayesian parameter optimization
[31] outperforms others significantly and therefore is adopted
in the proposed framework. For the sake of completeness, the
CART algorithm is briefly introduced in the following section.

B. Classification and Regression Tree (CART)

CART is a popular nonparametric statistical classifier, which
can identify mutually exclusive and exhaustive subgroups of
a population whose members share certain common charac-
teristics that affect the dependent variable of interest. In this
approach, the data space is recursively partitioned into smaller
partitions using binary splitting according to certain splitting
rules (for node and threshold selection) until certain stopping
rules are reached. Then, a simple predictive model is fitted within

each partition. CART implicitly performs variable screening,
i.e., selecting the most discriminatory features at the top parts
of decision tree. Therefore, it can obtain better performance
for the driver behavior prediction in this paper, where features
(i.e., speed and heading) and labels (i.e., behavior categories)
have strong corrections. In addition, in comparison to other al-
gorithms (e.g., DA), CART does not require any assumptions
of linearity or data distribution. Due to its fine properties, such
as a simple structure, low computation load, and easy to inter-
pret, this approach has found wide applications [32], [33]. The
detailed algorithm is referred to [32] due to a lack of space,
where the pseudocodes are given as follows for the sake of
completeness.

Algorithm 2: Classification and Regression Tree (CART)
Model.

1. Given a sequence of examples S and a set of discrete
attributes A;

2. For each attribute ai ∈ A, the set of attribute values Ai

is partitioned into two disjoint subsets Ai
L and Ai

R , let
Xi denote all possible Ai

L ;
3. For each Ai

L ∈ Xi , calculate the Gini gain/mean
squared error (MSE) and select the variable
(Ãi

L,q = Ai
L ), which maximizes Gini gain or minimizes

MSE (Ãi
L,q is a spilt);

4. Send data S(Ãi
L,q ) to the “leaf node” and S(Ãi

R,q )
to the “right node”;

5. Recursively repeat the same process on these two
“nodes” until stopping rules are satisfied;

6. Return the CART model.

Remark 2: There are generally certain stopping rules in
CART to avoid its adverse effects, such as overfitting. In this
paper, one of the stopping rules is considered, i.e., the minimum
leaf size. A smaller leaf size may make the model more prone to
capturing noise in training data. In this paper, the determination
of minimum leaf size is transformed into the minimization of
the cross validation (CV) loss for CART, which is solved using
Bayesian optimization (BO) [31], [34] (see, Section V-C).

V. EXPERIMENTAL VALIDATION

In this section, experimental validation is conducted on the
proposed framework for driver behavior prediction at a T inter-
section. The experiments contain clustering for offline driver be-
havior learning and online driver behavior prediction. All afore-
mentioned elements of the proposed system are validated by
using the naturalistic real-world Intelligent Vehicle and Safety
System Group (IVSSG) dataset detailed in Section V-A. In the
offline phase, the determination of optimal cluster number for
individual drivers is investigated in Section V-B. This is to dis-
cover in-depth driving behaviors so that the system is adaptive to
individual drivers. Moreover, CART parameters are optimized
by BO in Section V-C. In addition, resubstitution and k-fold CV
methods are used to evaluate prediction performance. The proce-
dure of resubstitution and k-fold CV are explained in Section V-
D and prediction performance is presented in Section V-E. It is



TABLE I
SUMMARY OF DATASET

also noted that all algorithms in this paper are implemented in
MATLAB 2017a under Windows 7 Operation System and are
evaluated on a PC with the following configuration: Intel Core
i5-CPU at 3.20 GHz with 16 GB of RAM.

A. Naturalistic Driving Dataset

The IVSSG dataset was collected on public roads near
the Australian Centre for Field Robotics at the University of
Sydney [13], where the field of interest (FoI) is a T intersection.
During the experiments, three participants are guided to
perform approximately ten passes in six possible maneuvers
such as driving straight across the top of the interaction,
turning, and the intersection left or right. During the data
collection, drivers conducted different maneuvers following
their own habits and driving characteristics. The spatial plots
of data collected around the intersection for three participants
are shown in Fig. 3. In the experiments, global navigation
satellite system was used to record the vehicle position at a
frequency of 10 Hz. In addition, a strap-down IMU was adopted
to collect the vehicle inertial data, whereas vehicle’s wheel
encoders provided speed information. The frequency for both
inertial data and speed is 100 Hz. Moreover, in the dataset,
an extended Kalman filter has been adopted to fuse and filter
the raw data, where the filtered vehicle state estimates were
available at a rate of 100 Hz [13]. Once the data were collected,
a bounding box was created around the intersection to define
the FoI (i.e., the area only containing maneuvers traversing
the intersection of interest). The test duration, the number of
trajectories, and the number of observations for different drivers
are displayed in Table I. Moreover, the IVSSG dataset adopted
in this paper has been made open access and can be accessed
via http://its.acfr.usyd.edu.au/datasets/naturalistic-intersection
-driving-dataset/its.acfr.usyd.edu.au/datasets/naturalistic
-intersection-driving-dataset.

B. Behavior Learning via PRM Clustering

The first step of offline training is trajectory clustering for
driving behavior learning. In this paper, PRM discussed in
Section III is drawn to divide driving trajectories into differ-
ent categories representing various driving behaviors for indi-
vidual drivers. Different parameters should be specified in this
approach such as polynomial order, threshold of improvement
ratio in EM algorithm, and cluster number. In this paper, the
polynomial order is chosen to be 2. This is because driving
through a T intersection can be represented by the constant ac-
celeration model. Moreover, the threshold of improvement ratio
for parameter optimization is chosen 1 × 10−6 following the

Fig. 2. AIC values under different cluster number k for different drivers.

setting in [24]; whereas the optimal cluster number is deter-
mined using AIC value as discussed in Section III-B.

Considering that the T intersection under consideration con-
tains various maneuvers, the cluster number for AIC value cal-
culation ranges from 1 to 15 to accommodate various driving
patterns in the same maneuver and abnormal driving trajecto-
ries. The AIC values under different cluster configurations for
all three participants are shown in Fig. 2. It can be seen that
the “optimal” cluster numbers according to AIC values are 10,
10, and 9. Under this parameter setting, the clustering results
for three participants are displayed in Fig. 3, where each color
represents one type of trajectory category. Bold color lines of
clusters in longitude and latitude in Fig. 3 indicate the mean
trajectories of different clusters.

It follows from Fig. 3 that:
1) Although there are only six different maneuvers at a T

intersection, more than six types of driving behaviors are
learnt using the data-driven PRM clustering.

2) For different drivers, the number of driving behaviors
may be different due to their personalized driving char-
acteristics.

3) PRM clustering accounting for both spatial and temporal
information can discover more in-depth behaviors than
manually defined maneuvers.

Trajectories in a specific maneuver display a significantly
different temporal pattern (see, right column in Fig. 3). For in-
stance, in Fig. 3(c) and (d), trajectories within cluster 4 and
cluster 8 of driver 2 are the driving passes from south-east to
north-east while their speeds are different. More specifically,
turning speed of cluster 4 is faster than that of cluster 8. Dif-
ferent from manually defined maneuvers focusing on spatial
information, the proposed system considers both spatial and
temporal information when defining maneuvers. Therefore, tra-
jectories within cluster 4 and cluster 8 are divided into two
different clusters rather than one.

Remark 3: With a large amount of driving trajectories for
individual drivers, the PRM clustering can also be adopted to
discover abnormal driving. Without a clustering analysis, it is
challenging to define abnormal driving in trajectory big data.

http://its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset/its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset
http://its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset/its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset
http://its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset/its.acfr.usyd.edu.au/datasets/naturalistic-intersection-driving-dataset


Fig. 3. Each row is the results for a driver: left column is the trajectory clustering results; right column is the trajectory clustering results in longitude
and latitude and bold color lines are mean trajectories of clusters. (a) Driver1: Trajectory clustering in FoI. (b) Driver1: Clusters in longitude and
latitude. (c) Driver2: Trajectory clustering in FoI. (d) Driver2: Clusters in longitude and latitude. (e) Driver3: Trajectory clustering in FoI. (f) Driver3:
Clusters in longitude and latitude.

C. Optimized CART Classifier

The CART algorithm for driving behavior classification is
further discussed in this section. Generally speaking, the depth
of a tree can be controlled by min leaf size (MLS) and min parent
size (MPS), where MLS determines the minimum number of ob-
servation per leaf and MPS determines the minimum number of
observation per branch node. In this paper, these parameters are
optimized by minimizing the classification loss using the BO.
In BO, certain stopping rules exist, such as maximum number
of iterations and maximum running time. Considering that the
optimization process occurs in offline learning and so the run-
ning time is not the main concern, only the maximum number of
iterations is considered, which is chosen 30. The value of MLS
is searched among log scale in the range of [1,max(2, n − 1)],
where n is the number of observations. And MPS is determined
by the following:

MPS = max[M, 2 × MLS]
Fig. 4. Estimated objective function value under various minimum leaf
sizes.



TABLE II
CLASSIFICATION PERFORMANCE COMPARISONS AMONG DIFFERENT DRIVERS

where M is a fixed number in the CART model, which is
10 in this paper. Under this parameter setting, the relationships
between the estimated objective function values and various
minimum leaf sizes for driver 1 are shown in Fig. 4.

It follows from the figure that the optimal minimum leaf size
is 15.

D. Resubstitution and k-Fold CV

In this paper, two of the most popular metrics are used to
demonstrate algorithm performance, named the resubstitution
error [35] and the k-fold CV error [36]. In particular, the re-
substitution error is derived from training data, where a lower
resubstitution error means a better fitness for given data and re-
sults in a better accuracy. However, the resubstitution error is for
training data and may lead to the problem of overfitting. There-
fore, the CV error is also considered. In k-fold cross validation,
the original dataset is randomly divided into k subsets of equal
size and holdout method is repeated k times. For each time, one
of the kth subsets is retained for testing (i.e., testing set), and
the remaining (k − 1) subsets (i.e., training set) are used for
training. As a result, every data point appears in a test set only
once and appears in training set (k − 1) times. The final k-fold
CV error is the average of errors of each fold. The variance of
the resulting estimate is reduced with an increment of k. In this
experiment, tenfold CV is used for each participant following
the results in [37].

E. Prediction Performance

In this section, comparative experiments are conducted to
evaluate the performance of the classifiers of the proposed per-
sonalized system. Classifiers are to build up the relationship
between behavior categories and vehicle-related measurements,
so that the corresponding behavior category can be worked
out for new vehicle related measurements. In this paper, one
generic/unified framework is proposed, however, the proposed
framework can automatically (i.e., without any manual param-
eter retuning) generate a dedicated model for each of the three
drivers by using collected data of each driver. Considering
the characteristics of the real-time application, accuracy and
computation time are considered concurrently. As discussed in
Section IV-A, various classifiers are compared in this paper,
which include DA-based approaches, such as linear discrimi-
nant analysis (LDA) and quadratic discriminant analysis (QDA),
NB, and SVM. In particular, LDA is optimized by the Bayesian
parameter optimization. And the parameter setting of QDA fol-

TABLE III
AVERAGE PERFORMANCE FOR THREE PARTICIPANTS

lows [38], where δ = 0 and γ = 0. Similar to LDA, CART and
NB are also optimized using the BO. To identify a more suitable
SVM classifier, different kernel functions are considered in this
paper including linear, polynomial, and Gaussian kernel func-
tions. The representations of linear, polynomial, and Gaussian
kernel functions are shown as follows:

G(xi, xj ) = xT
i xj , (1 + xT

i xj )p and e−γ ||xi −xj ||2

where xi and xj denote two training samples. In the polynomial
kernel function, p is chosen 3 following the results in [39]. In
addition, following the results in [40], parameter γ = 1

2 and
penalty parameter C = 1 are selected. The method to implement
multiclass SVM is “One-vs-One,” in which approach K(K −
2)/2 binary classifiers are trained with K being the number of
classes. The final classification results are figured out by voting
through all binary classifiers, where the class owning the most
votes is selected.

To quantitatively evaluate the prediction performance, resub-
stitution error and CV error are adopted. In particular, resubsti-
tution error is the error for classifying training dataset and CV
error is the error for classifying testing dataset in CV. The com-
parative results for three participants are shown in Table II. In
addition, the average resubstitution error and CV error are also
calculated and summarized in Table III. The algorithm with the
best performance is highlighted in bold.

The following conclusions can be drawn from Tables II and
III. First, regarding accuracy, CART+BO algorithm obtains the
minimum resubstitution error and CV error for each driver,
where the average resubstitution and CV errors are 0.0328 and
0.0371, respectively. Second, regarding computation time, DA-
based approaches (e.g., LDA+BO and QDA), optimized CART,
and NB+BO substantially outperform SVM classifiers and are
all suitable for real-time application.

Considering accuracy and computation time concurrently,
CART with BO obtains the best performance among the con-



sidered classifiers and consequently chosen as the classifier in
the proposed personalized driving behavior prediction.

VI. CONCLUSION

This paper proposes a trajectory clustering aided personal-
ized driver intention prediction system for early driver inten-
tion prediction at an unsignalized intersection to enhance driv-
ing safety and efficiency. Different from some existing studies
where only manually defined maneuvers are considered using
classification algorithms, this paper seamlessly integrates un-
supervised clustering and supervised classification so that the
proposed system is adaptive to individual drivers. The proposed
system comprises offline training and online implementation.
In offline training for personalized driving behavior learning,
high-level driving trajectories are learnt using PRM clustering,
leading to a set of trajectory clusters representing various driv-
ing behaviors. Then, a mapping between low-level vehicle state
(e.g., speed and heading) and trajectory clusters is built using
a classification analysis. In particular, a number of classifiers
are compared, where CART with Bayesian parameter optimiza-
tion outperforms others in terms of accuracy and computational
load and consequently chosen as the classifier in the proposed
framework. In online application, the optimized CART model
is drawn to divide new samples into various trajectory clusters
representing different diving behaviors.

The proposed framework is validated using a recently col-
lected dataset (i.e., IVSSG dataset) from real-world driving ex-
periments of different drivers. Regarding trajectory clustering
analysis, the proposed framework can provide in-depth driving
behavior analysis than manually defined maneuvers and is also
adaptive to individual drivers. Regarding driving behavior pre-
diction, the proposed framework adopting CART with Bayesian
parameter optimization as the classifier obtains promising driv-
ing behavior prediction performance in terms of resubstitution
error, CV error, and computation load.

This paper is mainly focused on developing an adaptive driv-
ing behavior prediction system and demonstrating its feasibility
using recently collected real-world experimental datasets. In the
future, a sliding window containing a short feature interval will
be considered to improve the robustness of the system. Online
learning will also be accommodated into the framework consid-
ering that drivers’ driving style and patterns in executing various
maneuvers may change over time. With the advent of personal-
ized driving big data, the proposed framework can also perform
abnormal driving detection.
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tion for driver intention estimation at road intersections,” in Proc. IEEE
Conf. Intell. Veh. Symp., 2011, pp. 583–588.

[16] K. C. Fuerstenberg, “A new European approach for intersection safety–
The EC-project INTERSAFE,” in Proc. 8th Int. IEEE Conf. Intell. Transp.
Syst., 2005, pp. 432–436.

[17] I. Phase, “Cooperative intersection collision avoidance system limited to
stop sign and traffic signal violations (CICAS-V),” Res. Innov. Technol.
Admin., U.S. Dept. Transport., Washington, DC, USA, Phase I Final Rep.,
2008.

[18] V. A. Butakov and P. Ioannou, “Personalized driver/vehicle lane change
models for ADAS,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4422–
4431, Oct. 2015.

[19] W. B. Rouse, “Adaptive aiding for human/computer control,” Hum. Fac-
tors, J. Hum. Factors Ergonom. Soc., vol. 30, no. 4, pp. 431–443,
1988.

[20] A. Doshi and M. Trivedi, “On the roles of eye gaze and head dynamics in
predicting driver’s intent to change lanes,” IEEE Trans. Intell. Transport.
Syst., vol. 10, no. 3, pp. 453–462, Sep. 2009.

[21] I. Tomasic, A. Andersson, and P. Funk, “Mixed-effect models
for the analysis and optimization of sheet-metal assembly pro-
cesses,” IEEE Trans Ind. Inform., vol. 13, no. 5, pp. 2194–2202,
Oct. 2017.

[22] C. Sung, D. Feldman, and D. Rus, “Trajectory clustering for motion pre-
diction,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 1547–
1552.

[23] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and
Applications, vol. 20. Philadelphia, PA, USA: SIAM, 2007.

[24] S. J. Gaffney, “Probabilistic curve-aligned clustering and prediction with
regression mixture models,” Ph.D. dissertation, , Dept. Comput. Sci., Univ.
California, Irvine, CA, USA, 2004.

[25] S. Ragothaman, S. Narasimhan, M. G. Basavaraj, and R. Dewar, “Un-
supervised segmentation of cervical cell images using Gaussian mixture
model,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops,
2016, pp. 70–75.

[26] E. Kreyszig, Advanced Engineering Mathematics. Hoboken, NJ, USA:
Wiley, 2010.



[27] M. Kan, S. Shan, H. Zhang, S. Lao, and X. Chen, “Multi-view discriminant
analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 188–
194, Jan. 2016.

[28] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and
Regression Trees. Boca Raton, FL, USA: CRC Press, 1984.

[29] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam filtering with
naive Bayes—Which naive Bayes?” in Proc. 3rd Conf. Email Anti-Spam,
2006, vol. 17, pp. 28–69.

[30] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

[31] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization
of machine learning algorithms,” in Proc. Adv. Neural Inf. Process. Syst.,
2012, pp. 2951–2959.

[32] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “The cart decision
tree for mining data streams,” Inf. Sci., vol. 266, pp. 1–15, 2014.

[33] I. Guyon and A. Elisseeff, “An introduction to variable and feature selec-
tion,” J. Mach. Learn. Res., vol. 3, no. Mar., pp. 1157–1182, 2003.

[34] A. D. Bull, “Convergence rates of efficient global optimization algo-
rithms,” J. Mach. Learn. Res., vol. 12, pp. 2879–2904, Oct. 2011.

[35] P. Gupta and T. Dallas, “Feature selection and activity recognition system
using a single triaxial accelerometer,” IEEE Trans. Biomed. Eng., vol. 61,
no. 6, pp. 1780–1786, Jun. 2014.

[36] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-fold
cross validation in prediction error estimation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 32, no. 3, pp. 569–575, Mar. 2010.

[37] L. Wang, Z. Zhang, H. Long, J. Xu, and R. Liu, “Wind turbine gearbox
failure identification with deep neural networks,” IEEE Trans Ind. Inform.,
vol. 13, no. 3, pp. 1360–1368, Jun. 2017.

[38] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York, NY, USA:
Springer, 2001.

[39] D. J. Sebald and J. A. Bucklew, “Support vector machine techniques for
nonlinear equalization,” IEEE Trans. Signal Process., vol. 48, no. 11,
pp. 3217–3226, Nov. 2000.

[40] C. Gold and P. Sollich, “Model selection for support vector machine
classification,” Neurocomputing, vol. 55, no. 1, pp. 221–249, 2003.

Dewei Yi (S’16) received the B.Eng. degree in
software engineering from Zhejiang University
of Technology, Zhejiang, China, in 2014, the
M.Sc. (with distinction) degree in computer sci-
ence from the Department of Computer Science,
Loughborough University, Loughborough, U.K.,
in 2015, and the Ph.D. degree in cognitive ve-
hicles from the Department of Aeronautical and
Automotive Engineering, Loughborough Univer-
sity, Loughborough, U.K., in 2018.

Since 2018, he has been a Postdoctoral Re-
search Associate with the Centre for Autonomous Systems, Loughbor-
ough University. His current research interests include personalized driv-
ing assistance, autonomous vehicle, vehicular network, and advanced
driver assistance systems.

Dr. Yi was the recipient of the grant of China Scholarship Council.
He was also the recipient of the CommAgility MSc Project Prize for best
wireless communication project in 2015.

Jinya Su (M’16) received the B.Sc. degree
in mathematics from the School of Mathemat-
ics and Statistics, Shandong University, Wei-
hai, China, in 2011, and the Ph.D. degree
in autonomous systems from the Department
of Aeronautical and Automotive Engineering,
Loughborough University, Loughborough, U.K.,
in 2016.

Since 2015, he has been a Research Asso-
ciate with the Centre for Autonomous Systems,
Loughborough University. His research interests

include Kalman filter and machine learning and their applications to au-
tonomous systems, such as intelligent vehicle and agricultural informa-
tion system.

Dr. Su was the recipient of the Best Student Paper Award at the
19th International Conference on Automation and Computing (2013),
the IEEE-IES Student Paper Travel Award at the 17th International Con-
ference on Industrial Technology (2016), and the Annual ICI Prize from
the Institute of Measurement and Control in 2016. He was the recipi-
ent of the prestigious Chinese Government Award for Outstanding Self-
financed Students Abroad in 2015.

Cunjia Liu (M’16) received the B.Eng. and M.Sc.
degrees in guidance, navigation, and control
from Beihang University, Beijing, China, in 2005
and 2008, respectively, and the Ph.D. degree in
autonomous vehicle control from Loughborough
University, Loughborough, U.K.

From 2011, he was a Research Associate
with the Department of Aeronautical and Au-
tomotive Engineering, Loughborough University,
where he was appointed as a Lecturer in flight
dynamics and control or unmanned vehicles in

2013 and a Senior Lecturer in 2018. His current research interests in-
clude optimization-based control, disturbance-observer based control,
Bayesian information fusion, and their applications to autonomous ve-
hicles for flight control, path planning, decision making, and situation
awareness.

Wen-Hua Chen (M’00–SM’06–F’17) received
the M.Sc. and Ph.D. degrees from Northeast
University, Shenyang, China, in 1989 and 1991,
respectively.

From 1991 to 1996, he was a Lecturer and
then an Associate Professor with the Depart-
ment of Automatic Control, Nanjing University of
Aeronautics and Astronautics, Nanjing, China.
From 1997 to 2000, he held a research posi-
tion and then a Lecturer in control engineering
with the Centre for Systems and Control, Uni-

versity of Glasgow, Glasgow, U.K. In 2000, he moved to the Department
of Aeronautical and Automotive Engineering, Loughborough University,
Loughborough, U.K., as a Lecturer, where he was appointed as a Pro-
fessor in 2012. As a Professor in autonomous vehicles, he is currently
mainly working on the development of unmanned autonomous systems.
His research interests include the development of advanced control, sig-
nal processing, and decision making methods and their applications in
aerospace engineering.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


