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Compliance Behavior in Networks: Evidence from a  
Field Experiment†

By Francesco Drago, Friederike Mengel, and Christian Traxler*

This paper studies the spread of compliance behavior in neighbor-
hood networks in Austria. We exploit a field experiment that varied 
the content of mailings sent to potential evaders of TV license fees. 
The data reveal a strong treatment spillover: untreated households 
are more likely to switch from evasion to compliance in response to 
mailings received by their network neighbors. Digging deeper into 
the properties of the spillover, we find that it is concentrated among 
close neighbors of the targets and increases with the treated house-
holds’ diffusion centrality. Local concentration of equally treated 
households implies a lower spillover. (JEL C93, D12, D85, L82, 
L88, Z13)

Interacting with individuals and firms that are suspected of violating laws is an 
important challenge for many governmental agencies and regulators. Over the 

past decade, a significant body of research has experimentally tested numerous strat-
egies to improve efficacy in such interactions (see, e.g., Kleven et al. 2011; Dwenger 
et al. 2016; Shimeles, Gurara, and Woldeyes 2017 on mailing campaigns to enforce 
taxes and other payments). While progress has been made in understanding what 
type of enforcement strategies work, it is less understood if and how such interven-
tions generate spillovers on untreated actors within a given social or economic net-
work (Rincke and Traxler 2011; Pomeranz 2015; Brollo, Kaufmann, and La Ferrara 
2017). Gaining more knowledge of how treatment-induced information diffuses 
among friends, neighbors, or coworkers—thus influencing the behavior among a 
broader population—is important from a policy perspective; it enables authorities 
to target enforcement interventions to maximize their overall impact (i.e., direct 
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effects plus spillovers on the untreated population) and offers, as we are going to 
show, a new perspective on the debate about “concentrated” versus “widely spread” 
enforcement actions.

This paper exploits a large administrative dataset and a large-scale field exper-
iment to study spillovers from enforcement mailings in neighborhood networks 
in Austria. We explore how communication among neighbors affects the compli-
ance decision of untreated households. Our analysis addresses the policy questions 
from above and contributes to the growing literature on information transmission 
in networks (e.g., Banerjee et  al. 2013, 2019; Alatas et  al. 2016; BenYishay and   
Mobarak 2019).

We build on an experiment that tested different strategies to enforce compliance 
with TV license fees (Fellner, Sausgruber, and Traxler 2013). The experiment intro-
duced exogenous variation in the treatment of 50,000 potential license fee evaders. 
In a baseline treatment, households received a mailing that asked them why they 
were not paying fees. In a threat treatment, the mailing communicated an immi-
nent inspection and emphasized possible financial and legal consequences from 
noncompliance. Relative to a control group that did not receive any mailing, the 
two mailing treatments significantly increased compliance. Mediated by a higher 
perceived detection risk, the threat triggered the largest effect (Fellner, Sausgruber, 
and Traxler 2013).

This paper now studies the treatments’ impact on the compliance behavior of the 
untreated population. Since neither receiving a mailing nor compliance is observ-
able to the other neighbors, behavior can only spread via treatment-induced com-
munication. We first explore communication patterns in a large online survey. The 
survey documents high communication frequencies among neighbors, especially 
in rural areas. The intensity of communication declines with the distance to the 
next neighbor—a pattern that matches with other studies documenting the role of 
geographic proximity for social interaction (e.g., Marmaros and Sacerdote 2006). 
Our survey further highlights people’s willingness to share information on TV 
license fee enforcement with their neighbors.

To test whether communication generates a spillover, we use precise microdata 
and geocoded information on the full population of small Austrian municipalities to 
compute neighborhood networks based on geographic distance. Motivated by the 
results from our survey, we assume two households are linked if they live within a 
distance of 50 meters.1 A network is composed of all households that are directly 
or indirectly linked. Identification of the treatment effects on untreated neighbors is 
achieved by the fact that conditional on the number of households covered by the 
experiment, the treatment of these “experimental households” varies exogenously. 
Several pieces of evidence offer ample support for this conditional independence 
assumption.

We find a pronounced spillover effect: untreated households, which were not part 
of the experimental sample, are more likely to switch from evasion to compliance 
in response to mailings received by neighbors in the same network. Our estimates 

1 We document that our main results are qualitatively robust to distance cutoffs up to 500 meters.
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suggest that sending one additional threat (baseline) mailing into a network 
increases each untreated evader’s propensity to comply by 7 (5) percentage points. 
A back-of-the-envelope calculation implies that 1,000 additional threat (baseline) 
mailings spread over 3,764 neighborhood networks would induce 68 (48) untreated 
households to start complying. While the comparison between direct and indirect 
treatment effects is complicated by different sample compositions, it is worth stress-
ing that the overall spillover is similar in magnitude to the direct treatment effect. 
Hence, the implied social multiplier is roughly two (and thus comparable to findings 
on social interaction in other domains; Glaeser, Sacerdote, and Scheinkman 2003; 
Bruhin et al. 2014), meaning that the diffusion process doubles the impact of the 
enforcement intervention.

The evidence on treatment spillovers turns out to be very robust. Only if we 
increase the distance threshold that defines a network link to above 500 meters or if 
we analyze treatment spillovers at the level of (fairly small) municipalities, do the 
effects vanish. The same holds for placebo tests that ignore the geographic structure 
within municipalities: allocating households from the same municipality to ran-
domly generated networks, we again obtain a null result. Our basic findings there-
fore highlight the crucial role neighborhood networks play in shaping the diffusion 
that underlies the spread of compliance. Moreover, we show that behavioral changes 
among targeted households are not necessary to induce compliance spillovers. While 
behavioral interdependencies (related, e.g., to the strength of social norms) do play 
some role, informational channels (e.g., the updating of risk perceptions) are crucial 
in shaping the indirect treatment effects.

To shed more light on the properties of the communication-induced spillover 
and the role of the network in the behavioral adaptation process, we approach 
three questions of significant policy relevance: (i) Which households are reached 
by the communicated information? (ii) Which households in the networks are 
“best  targeted” to maximize the spillovers? and (iii) Are spillovers higher when 
treatments are locally concentrated rather than broadly spread?

Regarding the first question, we find that the spillovers from the baseline 
treatment are mainly limited to first-order (i.e., directly linked) neighbors of 
treated households. For the threat treatment, the spillovers reach further into the 
networks. To address the second question, we study how network centrality of 
targeted households (the “injection points”) amplifies the spillovers. Consistent 
with our first finding and with theoretical models of diffusion (Banerjee et  al. 
2019), the data reveal strong, positive interactions with the treated households’ 
diffusion centrality. Hence, the network structure matters for the spillover beyond 
mere geographic proximity. From a policy perspective, this result means that 
targeting a network’s most “diffusion central” households will, ceteris  paribus, 
maximize the intervention’s indirect effects.

As for the third question, treatment concentration allows fewer households to 
learn about a mailing, but those that do are more likely to hear about it repeatedly. 
Which of these two effects dominates is ultimately an empirical question. The data 
show that local treatment concentration is associated with substantially smaller treat-
ment spillovers. The potential gains from repeated exposure to treatment-induced 
information are thus dominated by the “loss” from reaching fewer households. 
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Again, this finding has a straightforward policy implication: to maximize the spill-
overs, mailing campaigns should avoid local concentration.

Our study contributes to several important strands of literature. First, we 
advance the research on enforcement and compliance by linking it to the net-
works literature (Jackson 2008). Our results document that communication can 
mediate evasion and avoidance decisions not only within firm (Pomeranz 2015) 
or family networks (Alstadsæter, Kopczuk, and Telle 2018) but also within neigh-
borhood networks. The key innovation compared to earlier studies (e.g., Rincke 
and  Traxler 2011; Brollo, Kaufmann, and  La  Ferrara 2017)—and research on 
spillovers on geographically proximate agents more generally (e.g., Bayer, Ross, 
and Topa 2008; Kuhn et al. 2011)—is that we analyze different network struc-
tures to assess how the diffusion process induces the spillovers in an experimental 
setting. The network analysis, as well as the identification strategy, distinguishes 
the present paper from Rincke and Traxler (2011), who rely on an instrumental 
variable approach to identify enforcement spillovers from door-to-door audits. 
Moreover, the focus on indirect treatment effects differs fundamentally from 
Fellner, Sausgruber, and Traxler (2013), who solely explore the direct effects of 
the mailing intervention.

Our findings point out how geographic information, which is readily available in 
many applications, could be incorporated in algorithms that are used to target audits 
or inspections. Rather than relying solely on a node’s isolated characteristics, one 
could account for the nodes’ positions within a network (e.g., to put more weight 
on highly diffusion-central actors while avoiding local concentration of targets). 
Geographic information should thereby be particularly relevant when enforce-
ment activities are local and geographically correlated (as is the case with many 
door-to-door inspections at households or firms; e.g., Olken 2007; Khan, Khwaja, 
and Olken 2016). The present paper has already spurred tax authorities and public 
finance researchers to start examining how nongeographic networks contribute to 
enforcement spillovers (see, e.g., Boning et al. 2018).

The results from this paper also speak to a much broader set of applications that 
might exploit neighborhood communication, e.g., to effectively seed fundraising 
(Landry et  al. 2006), technologies (Bollinger and  Gillingham 2012), and health 
programs (Miguel and Kremer 2004) or to improve the effectiveness of marketing 
campaigns (Aral and  Walker 2011). The relevance of geographic proximity will 
certainly depend on the type of communities (proximity tends to be more important 
in smaller municipalities) and on the types of issues considered (whether the issue 
is a relevant topic of conversation among geographic neighbors). Geographic net-
works have been shown to matter in such diverse domains as households’ energy 
consumption (Allcott 2011), blood donations (Bruhin et al. 2014), or the diffusion 
of knowledge of the tax code (Chetty, Friedman, and Saez 2013). Beaman et al. 
(2015), who study technology adoption, show that seeding based on geographic 
networks works fairly well. While seeding based on a complex model of elicited 
social networks increases spillovers, the geographic network approach is cheaper 
and easier to implement.

Finally, our results on local treatment concentration, which builds on an 
inbreeding homophily index (Coleman 1958; Currarini, Jackson, and  Pin  2009) 
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to capture whether neighbors are “similar” in terms of receiving the same  
treatment, relate to the literature on homophily (e.g., Jackson, Rodriguez-Barraquer, 
and  Tan  2012; Jackson 2016). We discuss that a local concentration of a given 
treatment translates into a higher level of congruence of, e.g., neighbors’ posttreatment 
beliefs. Random treatment assignment thereby ensures that, conditional on having 
neighbors in the experiment sample, their treatments (and thus local treatment con-
centration) vary exogenously. Unlike other dimensions of similarity, this measure 
is exogenous to unobserved household characteristics. We can therefore isolate 
the effect from similarity in treatment on the size of the spillovers. Our estimates 
show that local treatment concentration reduces the spillovers. The finding is in line 
with the idea that similarity of neighbors’ beliefs hampers social learning (Golub 
and Jackson 2012).

The remainder of the paper is organized as follows. Section I provides further 
information on the institutional background and the field experiment. Section II 
reports survey results on communication patterns among neighbors. Our main data 
are described in Section III. In Section IV, we present our basic results. Section 
V discusses additional results on the nature of diffusion in our setting. Section VI 
concludes.

I.  Background of the Field Experiment

A. License Fees

Obligatory radio and television license fees are a common tool to fund public 
service broadcasters. A typical license fee system is operated by Fee Info Service 
(henceforth FIS), a subsidiary of the Austrian public broadcasting company. 
In Austria, the Broadcasting License Fee Act prescribes that all “households” 
(including apartment-sharing communities, etc.) owning a TV or a radio must reg-
ister their broadcasting equipment with FIS. The authority then collects an annual 
license fee of roughly €230 per household.2 Households face an incentive to evade 
the fee because public broadcasting programs can be received without paying.

FIS takes several actions to enforce compliance. Using official data from 
residents’ registration offices, they match the universe of residents with data on 
those  paying license fees. Taking into account that 99  percent of all Austrian 
households are equipped with a radio or a TV, each resident not paying fees is 
flagged as a potential evader (unless another household member has been identi-
fied as paying). Potential evaders are then contacted by mail and asked to clarify 
why they have not registered any broadcasting equipment. Data on those who do 
not respond are handed over to FIS’s enforcement division. Members from this 
division personally approach households and make door-to-door inspections (see 
Rincke and Traxler 2011). A detected evader is registered and typically has to pay 
the evaded fees for up to several past months. In addition, FIS can impose a fine of 

2 The fee is independent of the number of household members and varies between states. In 2005, the year 
covered by our data, the fee ranged between €206 and €263.
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up to €2,180. If someone does not comply with the payment duty, legal proceed-
ings will be initiated.

The enforcement efforts are reflected in the compliance rate: in 2005, around 
90 percent of all Austrian households had registered broadcasting equipment and 
paid a total of €650 million (0.3 percent of GDP; see Berger et al. 2016). The number 
of registered households is in constant flux. New registrations emerge from mailing 
campaigns, door-to-door inspections, as well as from unsolicited registrations. The 
latter originate from households that register, for instance, using a web form or by 
calling a hotline.

B. Field Experiment

Fellner, Sausgruber, and Traxler (2013) tested different enforcement strategies 
in a field experiment. In cooperation with FIS, they randomly assigned more than 
50,000 potential evaders, who were selected following the procedures described 
above, to an untreated control group or to different mailing treatments. All mailings, 
which were sent out during September and October 2005, included a cover letter 
and a response form with a prepaid envelope. The experiment varied whether or not 
the cover letter included a threat. The cover letter in the baseline mailing treatment 
simply clarified the legal nature of the interaction and asked why there was no 
registered broadcasting equipment at this household. In the threat treatment, the let-
ter included an additional paragraph that communicated a significant risk of detec-
tion and emphasized possible financial and legal consequences from noncompliance 
(see the online Appendix D).

Fellner, Sausgruber, and Traxler (2013) found that the mailings had a signifi-
cant impact on compliance. Most of the treatment responses occurred during the 
first weeks: within the first 50 days of the experiment, only 0.8 percent registered 
their broadcasting equipment in the control group. In the baseline mailing treat-
ment, the fraction was 6.5pp higher. The threat treatment raised the registration 
rate by one additional percentage point. Beyond 50 days, there were no observable 
differences in registration rates. Complementary survey evidence suggested that 
in comparison to the control group, all mailings had a strong positive impact on 
the expected detection risk. Relative to the baseline, the threat mailing further 
increased the expected sanction risk. This pattern is consistent with the larger 
effect of the threat treatment.

The present paper studies whether the treatments triggered any spillover effects 
on the untreated population that were not covered by the experiment. More spe-
cifically, we exploit the experimental variation to analyze whether the mailing 
interventions affected untreated neighbors of those who were targeted. Given that 
neither the intervention itself (receiving a mailing 3) nor the behavioral response 
(registering with FIS and starting to pay license fees) is observable to neighbors, 
communication is necessary for any spillover from treated households to untreated 

3 Similar as in other countries, the privacy of correspondence is a constitutional right in Austria. Violations are 
punished according to the penal code (§118).
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neighbors. In a first step, we will therefore discuss survey evidence on communi-
cation patterns.

II.  Communication among Neighbors

To study communication among neighbors, we ran a survey with a professional 
online survey provider. The company maintains a sample that is representative of 
Austria’s adult population. From this pool, we surveyed a subsample of almost 
2,000 individuals. Participants were asked about the geographic distance to and the 
communication frequency with their first-, second-, and third-closest neighbors in 
terms of geographical (door-to-door) distance. We also elicited the relevance of TV 
license fees in the communication among neighbors. Details of the survey are rele-
gated to online Appendix A.

The main findings from the survey are the following. First, the average inten-
sity of communication among neighbors is fairly high, averaging about 60 percent 
of the respondents’ communication intensities with their best friends from  
work/school. This finding is in line with other evidence suggesting that neighbors 
form an important part of people’s social capital. The International Social Survey 
Programme’s 2001 survey, for instance, shows that 11.2 percent of Austrians would 
turn to their neighbors as a first or second choice to ask for help in case they had 
the flu and had to stay in bed for a few days. Similar rates are observed for other 
central and northern European countries (e.g., Switzerland: 16.0 percent, Germany: 
9.4  percent, Great Britain: 10.6  percent). For southern European countries (e.g., 
Italy: 4.7 percent) and the United States (6.3 percent), the data document lower rates.

Second, the intensity of communication declines with geographic distance. This 
result, which is again consistent with other research documenting the important role 
of geographic proximity for social interaction (e.g., Marmaros and Sacerdote 2006), 
is depicted in Figure 1. Communication frequencies monotonically drop from first-, 
to second-, and third-closest neighbors. A similar correlation is observed when we 
explore variation in the door-to-door distance to the closest neighbor; the farther 
away this neighbor lives, the lower is the reported communication frequency. Once 
the distance surpasses 200 meters, communication levels drop. We will return to this 
point below.

Third, the positive link between geographic proximity and communication inten-
sity is systematically violated in larger, more urban municipalities. The survey 
evidence indicates that this is due to households living in apartment buildings. By 
definition, these households live very close to each other but, at the same time, 
communicate fairly infrequently with their neighbors.4 This problem does not seem 
to occur in more rural areas. The survey data show that in small municipalities, 
where apartment buildings tend to be smaller and less anonymous, the “closeness” 

4 For details, see the corresponding discussion of Figure A.3 in the online Appendix A. It is worth noting that 
the evidence supports arguments made by Jacobs (1961), who criticized the urban planning policy of the 1950s/60s 
with its emphasis on large apartment blocks—precisely because it prevents many types of social interaction 
common in smaller municipalities.
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of neighbors in apartment buildings is not aligned with lower communication fre-
quencies (see online Appendix A).

Fourth, concerning the content of communication among neighbors, we 
observe that, in general, TV license fees are a relatively uncommon topic, similar 
to neighbors talking about job offers or financial opportunities (see Figure A.5 in 
online Appendix A). However, the survey reveals that people are willing to pass on 
license-fee-related information to their neighbors once some relevant news arrives. 
For a scenario where a household receives a FIS mailing, which indicates a possible 
inspection, almost two out of three respondents say that they would share this infor-
mation with their neighbor and “warn” them (see Figure A.6 in online Appendix A). 
This seems reasonable, as field inspections are locally correlated. The evidence thus 
suggests that households are willing to initiate communication with their neighbors 
after receiving a mailing.

III.  Data

To evaluate the impact of the experiment on the nonexperimental population, we 
build on several unique sets of data provided by FIS. The first data cover the universe 
of all Austrian households and include precise address information from official 
residency data together with FIS’s assessment of the households’ compliance before 

Figure 1. Survey Results: Communication Frequency with Neighbors

Notes: Panel A presents frequencies of communication with the first-, second-, and third-closest neighbor (in geo-
graphical terms), respectively. Panel B illustrates communication frequencies with the first-closest neighbor for dif-
ferent distance ranges to this neighbor.
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the implementation of the field experiment. FIS derives this information—compliant 
or not (and thus potentially evading)—from data on all households paying license 
fees, data on past mailing campaigns and field inspections, as well as administrative 
data from the residents’ registration office.

A second dataset covers the population from the field experiment (a subset of the 
first data) and indicates the treatment condition to which households were assigned. 
The third dataset contains information on all incoming registrations—unsolicited 
registrations, responses to mailings, and detections in door-to-door inspections—
after the experiment. Using these data, we can observe behavioral changes in com-
pliance, in particular registrations among the population from the field experiment 
and unsolicited registrations among those not covered by the field experiment. Our 
analysis will focus on the latter population.

A. Sample

The survey documents that geographic proximity is positively correlated with 
communication frequencies among neighbors in small but not necessarily in large 
municipalities (see Section II). In line with this finding, we focus on municipalities 
with less than 2,000 households (corresponding to a population size of approxi-
mately 5,000—the cutoff for small municipalities in the survey). The restriction 
is further motivated by the fact that these jurisdictions are predominantly char-
acterized by detached, single-family houses. Less than 20 percent (5 percent) of 
households in these municipalities live in buildings with 3 (10) or more apartment 
units.5 For the geographical network approach introduced below, this is an import-
ant attribute.

Full Sample.—The sample restriction leaves us with 2,112 municipalities (out of 
2,380) with an average of 1,700 inhabitants, covering almost half of the Austrian 
population. We geocoded the location of each single household from these munic-
ipalities. In a few cases, we failed to assign sufficiently precise geographic coordi-
nates; we then excluded the affected parish (“Zählsprengel ”). With this procedure, 
we arrive at a sample of 576,373 households. Among these, one can distinguish 
three types: (I) potential evaders from the experimental sample, (II) potential evad-
ers who were not covered by the experiment, and (III) compliant households (not 
part of the experiment). Figure 3, which is further discussed below, gives an over-
view and illustrates the different types’ role in our research design.

Type I: Experimental Participants.—Our sample includes 23,626 households that 
were part of the field experiment. Summary statistics for these type I households, 
which will serve as “injection points” in our analysis of indirect treatment effects, are 
provided in Table 1. The table splits the experimental sample according to the three 
treatment groups: 1,371 households were in the untreated control group, 11,117 in 

5 Among municipalities with 2,000–3,000 households, the share jumps to 39 percent [15 percent].
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the baseline mailing, and 11,078 in the threat-mailing treatment. Consistent with 
Fellner, Sausgruber, and Traxler (2013), we observe three patterns: 

  • � The observables are balanced across the treatments; this holds for age, gender, 
as well as network characteristics (degree and Eigenvector and Diffusion 
Centrality; see below).6 

  • � The registration rates for the mailing treatments are significantly higher than in 
the untreated group. After the first 50 days of the experiment, 1.09 percent of 
all households in the control group registered for license fees. For the baseline 
mailing treatment, it was 7.01 percent. 

  • � The threat mailing has a stronger effect. Table 1 indicates a registration rate of 
7.65 percent.

Type II: Potential Evaders Not Covered by the Experiment.—In addition to the 
experimental participants, the sample includes 128,059 type II households that were 
classified as potential evaders at the time of the experiment. There are at least three 
reasons why these households were not part of the experimental sample. First, FIS 
excludes those that were “unsuccessfully” contacted with mailings in the past from 
future mailing campaigns. Second, all households that first appeared in the official 

6 Table 1 does not include any point estimates for the between-treatment-group difference. However, as is clear 
from the summary statistics, no variable turns out to be statistically different across the three groups. Note further 
that the high share of males is due to FIS’s procedure treating male individuals as household heads.

Table 1—Summary Statistics for Type I Households

Experimental condition

Control 
(no mailing) Baseline mailing Threat mailing

Registration rate 0.0109 0.0701 0.0765
(0.1041) (0.2553) (0.2659)

Ex ante compliance 0.3610 0.3628 0.3752
(0.4805) (0.4808) (0.4842)

Male 0.7644 0.7472 0.7588
(0.4245) (0.4346) (0.4278)

Agea 40.04 39.67 39.28
(13.00) (12.47) (12.11)

Degree 19.88 21.67 21.42
(52.09) (55.39) (55.83)

Eigenvector centrality 0.3075 0.3031 0.3051
(0.2399) (0.2415) (0.2431)

Diffusion centralityT=1 0.6443 0.6379 0.6372
(0.3776) (0.3790) (0.3798)

Diffusion centralityT=10 0.4392 0.4349 0.4337
(0.4785) (0.4771) (0.4775)

Number of households 1,371 11,177 11,078

Note: The columns present sample means (and standard deviations in parentheses) for the 
experimental sample, i.e., all type I households from the three treatment arms of the experi-
ment: Control, Baseline, and Threat Mailing. 

	 a	Information on age is only available for a subset of 2,778 households.
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residents’ registration record during the experiment’s setup time could not be 
included in the experiment (e.g., recently formed households). Hence, some type II 
households might be longtime evaders, others short-term evaders. Third, the classi-
fication of potential evaders is also based on information that was not available to 
FIS during the experiment’s setup phase (see below).

It is worth noting that types  I and II households together account for a fourth 
of the total sample. This high fraction, which is well above the overall rate of 
noncompliance, reflects the fact that FIS’s method to identify potential evaders 
is imperfect and delivers many “false positives”: compliant households that are 
wrongly flagged as evaders.7 This point is also reflected in Table 1, which shows 
that the ex ante compliance rate (before the experimental intervention) among type I 
households was roughly 36  percent. A nonnegligible fraction of the mailing tar-
gets could therefore not respond by switching from evasion to compliance—a fact 
that we will exploit below (see Section IVE). Finally, note that the classification of 
potential evaders in the nonexperimental sample should be more accurate. For the 
geocoding procedure, we thoroughly cleaned the address data, which allowed us to 
eliminate many false positives within FIS’s database (see footnote 7). As a conse-
quence, the ex ante compliance rate in the type II sample should be considerably 
lower than in the type I sample.8

B. Geographical Networks

Our analysis studies whether potential evaders who were not covered by the 
experiment (type  II households) start to comply with license fees in response to 
experimental interventions (the treatment of type I households) in their geograph-
ical network of neighbors. We therefore focus on networks that cover at least one 
type I and at least one type II household. We call these the relevant networks. To 
derive geographical networks, we first compute Euclidean distances between all 
households in each municipality. Whenever the distance between two households ​i​ 
and ​j​ is below an exogenous threshold ​z​, we say there is a link between ​i​ and ​j​. A 
network then consists of all households that are either directly or indirectly linked. 
Households that are directly linked to ​i​ are referred to as ​i​’s first-order neighbors 
(FONs). Households one link farther away are referred to as second-order neigh-
bors (SONs). Figure 2 illustrates this approach and shows how it produces disjoint 
networks.

A reasonable choice for the threshold ​z​ can be motivated by the survey evidence, 
which suggests that communication frequencies with FONs decline sharply once the 
geographical distance exceeds 200 meters (see Figure 1). This suggests ​z  ≤  200​ 
meters. Note further that larger thresholds leave us with fewer but larger networks. 
This point is illustrated in Table B.1 in online Appendix B. The table displays the 
number of relevant networks as well as the number of different household types per 

7 For instance, FIS’s database frequently fails to account that households are already complying as they 
omit compliant household members (i.e., an individual who pays and one who does not are treated as different  
households), mainly due to typos in names and addresses.

8 Note further that cheaters, who were detected in field inspections before the experiment, are classified as 
type III households.
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network for different thresholds ​z​. For ​z  =  50​, we observe the largest number of 
relevant networks. Since this will facilitate any between-network analysis, we will 
use a threshold of 50 meters as a benchmark for our analysis. To assess the robust-
ness of our findings with respect to ​z​, we rerun all our main estimations for networks 
based on thresholds between 25 and 2,000 meters.

With a ​50​-meter threshold, we arrive at 3,764 relevant networks that were cov-
ered by the experiment. The networks come from 771 different municipalities and 
include about 68,000 households (of types I, II, and III; see Table B.1 in online 
Appendix B). Among these, there are 14,987 type II households. Summary statis-
tics for this group are provided in panel A of Table 2. The variable degree shows 
that the median (mean) type II household is linked to 6 (11) FONs who live within 
50 meters distance. Note, 33.04 percent (33.34 percent) of type II households have 
a FON treated with a baseline (threat) mailing in the experiment. Finally, the vari-
able registration rate indicates that 8 percent of type  II households unsolicitedly 
registered within 50 days after the experiment. This is more than twice the average 
registration rate among all nonexperimental potential evaders (i.e., type II house-
holds inside and outside of networks covered by the experiment; in this population, 
the registration rate is 3  percent).9 Below we will show that the higher registra-
tion rate can be explained by the presence of spillover effects from experimental to 
nonexperimental households in these networks.

Panel  B reports descriptive statistics at the network level. The network 
size, in the following denoted by ​​N​k​​​, has a median (mean) of 6 (18) house-
holds. For each network ​k​, we computed variables that measure the treatment 
coverage: ​​Total​k​​​ captures the rate of other households in the experiment sample 
divided by ​​N​k​​ − 1​. Similarly, ​​Base​k​​​, ​​Threat​k​​​, and ​​Control​k​​​ indicate the ratios of other 

9 One cannot directly compare these registration rates to those observed among type I households. As pointed 
out in Section IIIA, the latter sample contains a high fraction of households that were already complying before 
the experiment.

Figure 2. Illustration of Geographical Networks

Note: The figure presents an example of two disjoint networks for a distance ​z  =  50​ meters.

https://pubs.aeaweb.org/action/showImage?doi=10.1257/app.20170690&iName=master.img-000.jpg&w=299&h=163
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households targeted with a baseline, a threat mailing, and untreated experimental 
households, respectively. (For a numerical example, see Figure 3.) Using ​(​N​k​​ − 1)​ 
as denominator assures that the treatment rates vary between zero and one.10 Table 2 
shows that from the perspective of a type II household in an average network, 45 
percent of the other households in a network were covered by the experiment; 21, 
22, and 3 percent of the other network members were in the baseline, threat, or 
control treatment, respectively.11 While these numbers also reflected the small con-
trol group from the original experiment, it is important to note that 528 networks 
(14 percent of all networks) contain at least one untreated experimental household 

10 Our estimates focus on the responses of type II households. Computing treatment rates relative to ​​N​k​​​ would 
impose an upper bound (at ​(​N​k​​ − 1) / ​N​k​​​ ) which mechanically varies with the network size.

11 The high treatment ratios reflect our focus on (relevant) networks with at least one experimental household. 
The small share of households in the control group is a result of FIS’s pressure to keep the untreated group fairly 
small.

Table 2—Summary Statistics for Relevant Networks, z = 50 Meters

Mean SD Median 1st  quarterile 3rd  quarterile

Panel A. Household level (14,987 type II households)
Degree 11.11 22.22 6 4 11
FON in experiment 0.54 0.50 1 0 1
FON w/base 0.33 0.47 0 0 1
FON w/threat 0.33 0.47 0 0 1
FON w/control 0.08 0.26 0 0 0
SON in experiment 0.12 0.33 0 0 0
SON w/base 0.06 0.25 0 0 0
SON w/threat 0.07 0.25 0 0 0
SON w/control 0.01 0.09 0 0 0

Spatial distance to closest neighbor…
  … in experiment 95.94 143.86 45.06 2.27 113.18
  … w/base 291.01 734.07 84.54 32.27 240.34
  … w/threat 315.89 739.32 90.67 34.15 270.87
  … w/control 678.53 1,081.36 295.58 114.66 732.02

Registration rate 0.08 0.27 0 0 0

Panel B. Network level (3,764 networks)
Network size (Nk) 17.98 45.48 6 3 14
Treatment rates:
  Totalk 0.45 0.33 0.40 0.39 0.67
  Basek 0.21 0.28 0.10 0.00 0.33
  Threatk 0.22 0.29 0.10 0.00 0.33
  Controlk 0.03 0.11 0.00 0.00 0.00

Network w/Controlk > 0 0.14 0.35 0.00 0.00 0.00

Panel C. Municipality level (771 municipalities)
Population 1,790 1,006 1,570 1,060 2,365
Labor income 27,250 2,172 26,936 25,977 28,333
1- or 2-family dwellings 0.82 0.14 0.84 0.75 0.92
Average age 47.95 1.55 47.92 46.85 48.97
Non-Austrian citizens 0.05 0.04 0.04 0.02 0.07
Catholic 0.89 0.10 0.91 0.86 0.95
Voter turnout 0.76 0.07 0.77 0.72 0.81

Notes: Panel A presents summary statistics at the household level for all potential evaders in the non-experimental 
sample (type II households) that are located in networks with at least one experimental participant (type I house-
hold). Panel B reports (unweighted) network level statistics for these relevant networks. Panel C considers several 
municipality characteristics (unweighted, at municipality level). FON and SON abbreviate First- and Second-Order 
Neighbors, respectively. Spatial distance is measured in meters.
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(i.e., ​​Control​k​​  >  0​). As we further discuss below, these networks are important for 
the identification of our main model.

Panel C of Table 2 presents summary statistics for census data at the municipal-
ity level. An average municipality (with a relevant network) is populated by 1,790 
inhabitants with a mean labor income (wages and salaries) of €27,250; 82 percent of 
households live in single- and two-family homes. Household heads are on average 
48 years old. The fraction of non-Austrian citizens is low (5 percent), and a large 
majority of the population is Catholic (88 percent). We also observe a high voter 
turnout at the 2006 national elections (77 percent on average).

IV.  Spillover Effects

This section studies the indirect effects from the experiment on the nonexperimental 
population. We want to identify whether and how a type II household’s probability 
to register for license fees changes in response to the experimental interventions in 
their neighborhood networks. Recall that in our setting neither the treatment nor 
compliance behavior is publicly observable (see Section IB). Any spillovers must 
therefore stem from communication rather than from direct observability of others’ 
behavior.

A. Conceptual Framework

Each household ​i​ has a latent propensity to comply ​​p​i​​​, which depends on numer-
ous factors governing compliance (including, for instance, the perceived sanction 
risk or the strength of social norms). We will discuss these different factors in 
Section IVE. For the moment, we focus on how propensity ​​p​i​​​ evolves over time as a 
function of information acquired via communication in networks.

Each household is located in one network defined as a collection of 
nodes ​  =  {1, …, N }​ and a set of edges (links between the nodes)  
defined as ​Ξ  ⊆ ​ {( i, j ) | i  ≠  j  ∈   }​​, where an element ​​(i, j)​​ indicates 
that ​i​ and ​j​ are linked. The set of ​i​’s first-order neighbors (FONs) is denoted by 
​​​i​​  = ​ {j  ∈    | ​(i, j)​  ∈  Ξ}​​. In each round of communication ​t​, households ​i​ 
transmit to their FONs some information ​​I​ i​ 

t​​  with probability ​q​ independently across 
neighbors. The first round of communication, ​t  =  1​, takes place after treatment has 
occurred. Receiving a mailing directly increases a treated household’s ​​p​i​​​ (i.e., there 
is a direct treatment effect). In addition, the mailings affect the information that is 
passed on to a treated household’s neighbors.12

After receiving information, households update their propensities and start to 
comply as soon as ​​p​ i​ 

t​​ exceeds a given, household-specific threshold ​​​p ˆ ​​i​​​. In each fur-
ther round of communication ​t​, households communicate with probability ​q​ with 
their FONs, again pass on information ​​I​ i​ 

t​​, and update ​p​. Indirect treatment effects 

12 We do not specify what information is transmitted, as our institutional setting does not constrain ​​I​ i​ 
t​​. For the 

moment, one may simply consider that ​​I​ i​ 
t​​ refers to statements such as “I received a mailing” or “household ​j​ received 

a mailing.” However, ​​I​ i​ 
t​​ could contain further information, e.g., about ​i​’s propensity to comply, her perceived sanc-

tion risks, or any other dimension affected by the mailings. Note further that all households can communicate, but 
one may find it natural to think of communication being initiated by treated households.
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then arise as the different mailing treatments can (differentially) alter the commu-
nicated information, which in turn influences the compliance decision of untreated 
households within the network.

In the following, we will first establish the existence of indirect treatment effects, 
i.e., compliance spillovers within networks (Sections IVB, IVC, and IVD). We then 
discuss evidence on what type of information ​​I​ i​ 

t​​ is communicated (Section IVE). 
Section V investigates the role of the network ​​(, Ξ)​​ in structuring the communi-
cation process.

B. Identifying Indirect Effects from the Experiment

A graphical illustration of our research design and how it relates to the different 
types introduced in Section IIIA is provided in Figure 3. The figure depicts three net-
works of equal size and structure, which all include three experimental households 
(type I), two potential evaders (type II), and two compliant (type III) households. 
For any given rate of experimental households, our strategy exploits variation in the 
randomly assigned treatments among experimental households.

The spillover effects from the experiment are estimated with the following model:

(1)	​​ y​ik​​  = ​ δ​​ Tota​l​k​​​ + ​β​1​​ ​Base​k​​ + ​β​2​​ ​Threat​k​​ + ​ϵ​ik​​ ,​

where ​​y​ik​​​ indicates if a type II household ​i​ from network ​k​ starts to comply 
with license  fees  within 50 days after the intervention. The specification non-
parametrically controls for the total rate of experimental participants in 
the networks by adding ​​δ​​ ​Total​k​​​​, a set of fixed effects for each level of ​​Total​k​​​ 
(with ​​Total​k​​  = ​ Control​k​​ + ​Base​k​​ + ​Threat​k​​​; see Section IIIB). The key regressors 
measure the treatment rates at the network level, i.e., the fraction of type I house-
holds in the network that were in the baseline (​​Base​k​​​) or in the threat treatment 
(​​Threat​k​​​).13 For the examples from the top, middle, and bottom of Figure 3, we would 
obtain ​​Base​k​​​ [​​Threat​k​​​] equal to ​1/6​, ​2/6​, and ​1/6​ [​1/6​, ​1/6​, and ​2/ 6​], respectively. 
For all three cases, ​​Total​k​​​ equals ​1 / 2​. Clearly, equation (1) also exploits variation 
in rates related to variation in network size. This is not captured in Figure 3, which 
keeps the size of the networks and the number of experimental participants constant.

As long as communication takes place among all households, the treatment rates 
should be positively associated with the information that household ​i​ receives. If ​i​’s 
propensity to comply is increasing in the obtained information, the spillover effects 
should then be captured by a positive ​​β​1​​​ and ​​β​2​​​ in model 1. The two coefficients of 
interest measure the effects on type II households’ propensity to start paying fees, 
in response to an increase in the network’s rate of baseline and threat treatments, 
while keeping constant ​​Total​k​​​. Put differently, these are the effects from moving 
experimental households from the control group to one of the mailing treatments.

13 Alternative specifications in levels yield almost identical results to those reported below. Estimations in 
levels, however, turn out to be more sensitive to outliers related to a few very large networks.
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Identification.—As pointed out above, ​​β​1​​​ and ​​β​2​​​ are identified from  
network-level variation in the treatment rates for a given level of experimental 
coverage (​​Total​k​​​). The identifying assumption is that conditional on ​​Total​k​​​, variation 
in ​​Base​k​​​ and ​​Threat​k​​​ is exogenous. Given our experimental setup, this assumption 
seems plausible: between networks with the same coverage, the assignment of the 
experimental households to the different treatments varies randomly and thus sup-
ports this conditional independence assumption (CIA).

Note that equation (1) accounts for selection into the experiment by including 
dummies ​​δ​​ ​Total​k​​​​. Networks that differ in experimental coverage are therefore allowed 
to be different in unobservables that might affect the propensity to comply. One 
might expect, for instance, to see more experimental participants in networks where 
the average propensity to comply is lower. There might also be more “tougher” 
evaders among the untreated households in such networks. By (nonparametrically) 
controlling for ​​Total​k​​​, specification (1) accounts for such selection effects. Despite 
the small control group in the original experiment, model (1) is identified because 
we have enough networks with a positive share of control households within 
the experimental sample. (As reported in Table  2, 14  percent of all networks 
have ​​Control​k​​  >  0​.) In fact, identification rests on the cross-sectional variation of 
all networks (even those with ​​Control​k​​  =  0​) with the same rate of experimental 

Figure 3. Illustration of Research Design: Household Types and Experimental Treatments

Notes: The figure provides an overview of the different household types (see Section IIIA) and illustrates the type of 
variation across networks that is explored in Section IV. The illustrated networks have the same size and structure. 
All networks include three type I households. For this given rate of experimental households (as captured by  
​​Total​​k​​​), our main specification exploits the variation in the randomly assigned treatments. The three examples 
cover the case of (i) one Control, one Baseline, and one Threat treatment; (ii) two B and one T; and finally  
(iii) one B and two T. Treatment rates are computed—from the perspective of type II households—relative to all 
other households, i.e., we divide the number of treated households by ​N − 1  =  6​. For the examples, all networks 
have a ​​Total​k​​​ equal to ​1 / 2​; ​​Control​k​​​ equal to ​1 / 6​, 0, and 0; ​​Base​k​​​ equal to ​1 / 6​, ​2 / 6​, and ​1 / 6​; and ​​Threat​k​​​ equal to ​
1 / 6​ , ​1 / 6​, and ​2 / 6​ , respectively.
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coverage but different baseline and threat rates (see Figure 3 for simple examples 
with a fixed network size).

To illustrate why the experiment supports our CIA, note first that randomization 
guarantees the balance of type I households’ characteristics x across treatments:14

(2)	​ E​(x | Base)​  =  E​(x | Threat)​  =  E​(x | Control)​​.

Evidence in Fellner, Sausgruber, and Traxler (2013) and in our Table 1 is consistent 
with orthogonality, suggesting that randomization in the experiment was success-
ful. For our CIA to be violated, it would take that, after partitioning the experi-
mental households into networks, some mailings be (for a given level of ​​Total​k​​​) 
disproportionately sent to certain types of networks rather than others. This case can 
be excluded if we still have orthogonality after condition on ​​Total​k​​​:

(3)	​ E​(x | Base, ​Total​k​​)​  =  E​(x | Threat, ​Total​k​​)​  =  E​(x | Control, ​Total​k​​)​.​

Note further that the following identities hold:

	​ E​(x | Base)​  =  E​(x | Base, ​Total​k​​)​ ⋅ f ​(​Total​k​​ | Base)​,​

	​ E​(x | Threat)​  =  E​(x | Threat, ​Total​k​​)​ ⋅ f ​(​Total​k​​ | Threat)​,​

	​ E​(x | Control)​  =  E​(x | Control, ​Total​k​​ )​ ⋅ f ​(​Total​k​​ | Control)​.​

If the probability density functions ​f​(​Total​k​​ | · )​​ are equal across the three treatments 
and if (2) holds, it immediately follows that (3) must hold too. Support for this case 
is provided in Figure B.1 in online Appendix B, which indicates that the probability 
densities for the three groups are indeed almost identical.

To provide additional evidence in support of our identifying assumption, we esti-
mate models of the following structure:

(4)�​​ Base​k​​  = ​ δ​​ ​Total​k​​​ + ​μ​​ Base​ ​x​k​​ + ​ϵ​ k​ 
Base​  and ​ Threat​k​​  = ​ δ​​ ​Total​k​​​ + ​μ​​ Threat​​x​k​​ + ​ϵ​ k​ 

Threat​,​

where ​​x​k​​​ is an observable characteristic that varies at the network level. 
Our conditional independence assumption implies that, controlling 
for ​​Total​k​​​ fixed effects,  we should not find any correlation between observable 
network characteristics and our key regressors: neither ​​μ​​ Base​​ nor ​​μ​​ Threat​​ should be 
statistically different from zero. This is what we observe in Table B.2 in online 
Appendix B where we report the estimated ​​μ​​ Base​​ (columns 1 and 2) and ​​μ​​ Threat​​ 
(columns 3 and 4).We do not obtain any economically or statistically significant 
coefficients for network characteristics or characteristics of injection points (type I 
households, averaged at the network level). The results support the notion that 

14 In the following, the variables ​Base​, ​Threat​, and ​Control​ without subindex are dummies indicating which 
experimental group a type I household was assigned to.
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after controlling for experimental coverage, there is no selection on observables. 
Hence, both exercises lend support to the validity of our identifying assumption.

C. Basic Results

Using a linear probability model, we estimate model (1) for all potential  
evaders from the nonexperimental population (type II households) in relevant net-
works with ​​Total​k​​  >  0​.15 The results, together with standard errors clustered at the 
network level, are reported in column 1 of Table 3. The coefficients of interest are 
both positive and precisely estimated. The point estimates imply that a 1 percentage 
point increase in the rate of the baseline (threat) treatment increases the likelihood 
that an untreated potential evader registers by 0.24 (0.35) percentage points, respec-
tively. An F-test on the equality of the coefficients on the baseline and threat treat-
ment rates rejects the null that the two effects are equal. The estimates hardly change 
when we switch from a nonparametric to a parametric control for the networks’ 
experimental coverage. In fact, specification (2) shows that the coefficient on ​​Total​k​​​ 
is small and only weakly significant. The negative sign indicates that a higher exper-
imental coverage in a network is correlated with a lower probability of unsolicited 
registration among type II households.

15 Including networks with ​​Total​k​​  =  0​ does not change the results reported below.

Table 3—Basic Results: Impact of Mailings on Compliance of Non-experimental Households

Networks 
with ​z = 50​m

Municipality 
level Probit

Municipality 
fixed effects Field inspections

(1) (2) (3) (4) (5) (6) (7)

Basek 0.2431 0.2473 −0.5672 0.1972 0.2219 0.2440 0.2486
(0.0381) (0.0383) (0.8102) (0.0554) (0.0451) (0.0381) (0.0382)

Threatk 0.3496 0.3532 0.1157 0.2423 0.3376 0.3499 0.3566
(0.0390) (0.0391) (0.7995) (0.0554) (0.0464) (0.0390) (0.0392)

Totalk – −0.0594 0.3825 −0.0569 – – –
(0.0332) (0.7395) (0.0545)

Totalk fixed effects Yes No No No Yes Yes Yes
F-test: Basek  ​=​  Threatk 13.44 14.01 5.16 13.32 14.34 13.31 13.58

Observations 14,987 14,987 14,987 14,987 14,987 14,987 13,395
Networks 3,764 3,764 771 3,764 3,764 3,764 3,588
R2 0.0946 0.0553 0.0144 0.0770 0.1873 0.0966 0.0994

Notes: This table estimates the impact of the mailings on the compliance of households outside of the experi-
mental sample (type II households). Column 1 presents the results from a linear probability (LPM) estimation of  
equation (1). Column 2 replaces ​​δ​​ ​Total​k​​​​ (i.e., the 451 dummies for each value of ​​Total​k​​​) with a linear control 
for ​​Total​k​​​. Column 3 uses the sample from the first two specifications but assumes that the network is defined by 
the municipality. Column 4 replicates the specification used in column 2 using a Probit model. It reports marginal 
effects evaluated at the mean of the independent variables. The remaining output comes again from LPM estima-
tions including ​​Total​k​​​ fixed effects. Column 5 adds fixed effects at the municipality level. Column 6 controls for the 
enforcement rate (i.e., the rate of households detected in field inspections in the period before the start of experi-
ment); the estimated coefficient on the enforcement rate is 0.387 (SE 0.120). Column 7 excludes all networks with 
an enforcement rate greater than zero. The table further reports F-statistics, testing ​​Base​k​​  = ​ Threat​​k​​​. Standard 
errors, clustered at the network (all columns except 3) or municipality level (column 3), are reported in parentheses.
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To illustrate the size of the spillover effect, consider the thought experiment in 
which we move one experimental household from the control to the threat treatment. 
For a median network with ​N  =  6​, the additional mailing implies a 20 percentage 
point increase in the threat treatment rate (​1/(6 − 1)  =  0.2​). Our estimates imply 
that the additional threat mailing would increase the type  II households’ proba-
bility to register by 7 percentage points (​0.2 × 0.35  =  0.07​). On average, type II 
households account for roughly 20 percent of the network population (see Table B.1 
in online Appendix B). Hence, in a network with ​N  =  6​, only one will be of type II 
(20 percent of ​N − 1  =  5​). We would therefore expect a total spillover of ​0.07 × 1​ 
unsolicited registrations for license fees.16 Keeping constant the experimental cov-
erage, one additional threat (baseline) mailing thus increases the probability of 
observing one additional registration among the untreated evaders in the network 
by 7 (5) percentage points. Although the comparison of registration rates between 
the treated and the untreated sample is complicated (see footnote 9), it is worth 
noting that the total spillover effect seems to be of similar magnitude as the direct 
treatment effects on type I households (5.9 and 6.6 percentage points for the base-
line and threat treatment, respectively; see Table 1). The implied social multiplier is 
thus around two, meaning that the overall effect of the intervention on compliance is 
twice the one observed by only looking at the targeted households.

Having detected a significant spillover from the experiment onto the 
nonexperimental population, let us point out that one would miss this indirect treat-
ment effect if one estimates equation  (1) at the municipality rather than the net-
work level. This is documented in column 3 of Table 3. For this specification, we 
assigned the sample from columns 1 and 2 (i.e., all type II households from geo-
graphic networks with ​​Total​k​​  >  0​) into one network per municipality and recom-
puted the treatment rates. Despite the fact that these municipalities are still fairly 
small observational units (with an average population of 1,790 individuals), we 
obtain estimated coefficients on the baseline and threat treatment rates that are both 
statistically insignificant. Column 4 reports the marginal effects from a probit esti-
mation of the specification from column 2. The spillover effects are similar to those 
indicated by the linear probability model estimates, and the effect size differs again 
significantly between the two mailing treatments. In column  5, we augment the 
basic model (1) by adding fixed effects at the municipality level. As expected, this 
leaves our results unchanged.

To account for possible effects from local enforcement activities (see Rincke 
and Traxler 2011), column 6 controls for enforcement activities during the months 
before the experiment. More specifically, we compute an enforcement rate at the 
network level that measures the number of households detected in field inspections 
before the experiment (during the third quarter of 2005) relative to the network size. 
Consistent with Rincke and Traxler (2011), enforcement has a significantly posi-
tive relationship with the propensity to register (coefficient reported in the notes to 
Table 3). However, the point estimates for our coefficients of interest are essentially 

16 For larger networks, the effect of one additional mailing on the treatment rates would be smaller, but the spill-
overs would spread to a larger number of potential evaders. It is straightforward to show that equation (1) implies 
that the total spillover from sending one additional mailing into a network is independent of the network size.
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identical to those from column 1, suggesting that pretrial enforcement was not cor-
related with the treatment variation. In an additional step, we run our basic model 
excluding networks in which at least one household was detected in field inspections 
before the trial.17 The results reported in column 7 show that the estimated coeffi-
cients remain again almost unchanged.

We also examined heterogenous spillover effects according to different munic-
ipality characteristics. The analysis reveals significant interaction effects for only 
two variables: dwelling structure and voter turnout. The magnitude of the spill-
over increases with the fraction of people living in single- or two-family dwellings 
(as compared to multifamily homes) as well as with the turnout (see Table B.3 in 
online Appendix B). The latter interaction could reflect different levels of social cap-
ital and communication intensities or stronger norms supporting prosocial behavior.

D. Additional Results and Robustness Checks

Different Network Assumptions.—To understand the sensitivity of our findings 
with respect to ​z​, we computed geographical networks based on distance thresh-
olds that vary between 25 and 2,000 meters.18 We then replicate our estimates for 
the different samples of relevant networks. Panel A in Table 4 reports the results 
from this exercise. The estimated coefficients turn out to be fairly stable for  
​z  <  500​ meters. For larger values of ​z​, the coefficient on the baseline treatment 
starts to decline, whereas the one on the threat treatment remains substantial (but 
the standard error becomes large).

It is important to keep in mind that any change in ​z​ also varies the number 
of relevant networks, the average network size, as well as the number of type  II  
households (see online Appendix Table B.1). This clearly complicates the compar-
ison and interpretation of the different point estimates as well as the estimation of 
the model from (1). The last point is due to the fact that the number of networks 
approaches the number of ​​Total​k​​​ fixed effects as ​z​ becomes larger. For large networks  
(with ​z  >  500​), the ​​δ​​ ​Total​k​​​​ dummies then absorb almost all variation across 
networks. For this reason, Table 4 is based on the specification that linearly controls 
for experimental coverage (as in column 2 of Table 3). Estimations from our  
preferred model (with nonparametric controls for ​​Total​k​​​) yield almost identical 
results for networks with ​z  <  500​.

A first attempt to facilitate a meaningful comparison across samples is provided 
in panel B of Table 4. Here we normalize the estimated coefficients relative to the 
mean network size. With this normalization, we get the effect from sending one 
additional mailing to each relevant network on the register probability of an aver-
age type II household (in an average-sized network). Panel B shows that the effect 
from one mailing monotonically declines with ​z​. Given the results from panel A, 
this pattern is due to the fact that the average network size increases monotonically 

17 This drops 176 networks from the sample. The number of nonexperimental households drops by a larger 
share because the excluded networks tend to be larger ones. This is due to the fact that, ceteris paribus, the probabil-
ity to have at least one household detected by a field inspector is increasing with the network size.

18 Employing within-municipality distance matrices, we exclude links between networks from different munic-
ipalities. This restriction becomes relevant for ​z  ≥  500​ but affects only a small part of the sample.
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with ​z​. One additional mailing thus implies a smaller increase in treatment rates in 
the larger networks that are obtained from higher values of ​z​. However, the metric 
from panel B neglects that the average spillover applies to a larger population.

The latter point is accounted for in panel  C, which reports the results from a 
different thought experiment. It considers sending a fixed amount of 1,000 addi-
tional baseline or threat mailings to relevant networks. Based on our estimates 
and the network properties, we then compute the total number of additional  
registrations that we expect to be induced by the spillover effects from these 
mailings.19 For ​z  =  50​, for instance, the number of expected spillover registra-
tions that indirectly emerges from 1,000 additional baseline (threat) mailings adds 
up to 44 (69), respectively. As pointed out above, this is very similar to the direct 
compliance effect of 1,000 additional mailings, implying a social multiplier of 
approximately two, which is not uncommon in the literature on social interactions 

19 For the baseline mailings, this number is computed as follows: ​Number of Observations  
× ​(1, 000/Number of Networks)​ × ​((​​β ˆ ​​0​​ + ​​β ˆ ​​1​​)/(N − 1))​​, where ​​β​0​​​ is the coefficient on ​​​Total​k​​​ and ​N​ is the mean 
network size (for each different ​z​). The effect is weighted with the total number of observations to account for the 
fact that the spillover applies to all type II households in the networks.

Table 4—Sensitivity Analysis: Different Network (Distance) Assumptions

Threshold ​z  =​ 25 50 75 100 250 500 1,000 1,500 2,000
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Estimation results
Basek 0.2454 0.2473 0.2692 0.2761 0.2720 0.2641 0.2210 0.0658 −0.0731

(0.0327) (0.0383) (0.0573) (0.0544) (0.0796) (0.1354) (0.2564) (0.3650) (0.4771)
Threatk 0.3144 0.3532 0.3954 0.3904 0.3564 0.5038 0.4816 0.4196 0.2713

(0.0333) (0.0391) (0.0590) (0.0560) (0.0823) (0.1360) (0.2572) (0.3555) (0.4507)
Totalk 0.0160 −0.0594 −0.1095 −0.1231 −0.1237 −0.2050 −0.1867 −0.0863 0.0511

(0.0304) (0.0332) (0.0523) (0.0475) (0.0713) (0.1226) (0.2359) (0.3315) (0.4295)
Constant 0.0195 0.0306 0.0345 0.0384 0.0420 0.0430 0.0446 0.0446 0.0444

(0.0078) (0.0027) (0.0021) (0.0020) (0.0018) (0.0016) (0.0015) (0.0015) (0.0015)

Observations 5,337 14,987 23,673 29,212 41,547 50,688 58,498 60,520 61,551
Networks 3,243 3,764 3,319 2,990 2,113 1,554 1,169 1,073 1,020
R2 0.0775 0.0553 0.0363 0.0258 0.0146 0.0110 0.0078 0.0075 0.0075

Panel B. Average individual effect from one additional mailing into each network
Base 0.0533 0.0111 0.0050 0.0035 0.0017 0.0004 0.0001 −0.0001 −0.0001
Threat 0.0673 0.0173 0.0090 0.0061 0.0026 0.0020 0.0013 0.0013 0.0012

Panel C. Total spillover from 1,000 additional mailings, spread over all networks
Base 87.68 44.04 35.68 33.89 32.60 12.76 7.41 −4.45 −4.77
Threat 110.80 68.87 63.86 59.19 51.18 64.55 63.63 72.10 69.84

Notes: Panel A reports the results from LPM estimations of the equation ​​y​k​​ = ​β​0​​ Tota​l​k​​ + ​β​1​​ Bas​e​k​​ + ​β​2​​ Threa​t​k​​ + ​ϵ​k​​​ 
(see specification 2 in Table 3) for different samples that emerge for different distance thresholds ​z​ defining the 
networks. Standard errors, clustered at the network level, are in parentheses. Panel B presents the effect of send-
ing one additional baseline [threat] mailing into each network on a type II household’s probability to register. The 
effect is derived from the point estimates from panel A and given by ​​(​​β ˆ ​​0​​ + ​​β ˆ ​​1​​)​/​(N − 1)​​ ​​[(​​β ˆ ​​0​​ + ​​β ˆ ​​2​​)/(N − 1)]​​, 
where ​N​ indicates the average network size for a given threshold ​z​. Panel C computes the expected spillover from 
sending a fixed number of 1,000 additional baseline [threat] mailings into the networks covered by the respective 
sample; i.e.,  for the baseline treatment, the total number of expected spillover registrations is computed as fol-
lows: ​Number of Observations × (1,000/Number of Networks) × ​((​​β ˆ ​​0​​ + ​​β ˆ ​​1​​)/(N − 1))​​. The effect is weighted 
with the total number of observations to account for the fact that the spillover applies to all type II households in 
these networks.
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(Glaeser, Sacerdote, and Scheinkman 2003).20 Finally, panel C indicates that the 
overall spillover from the baseline mailing shrinks for ​z  >  250​. This observation 
fits the survey evidence, which showed that communication frequencies among 
FONs sharply decline in this range.

Spillovers within the Experimental Sample.—Given our main results from above, 
it seems natural to ask whether there are also spillovers within the experimental 
sample. If a type  I household’s treatment response depended on the treatment of 
other households in the network, this would imply a violation of the stable unit 
treatment value assumption (SUTVA)—see Imbens and  Wooldridge 2009—for 
evaluating the direct effect of the experiment. To explore this case, we focus on 
type I households and analyze whether the behavior of a treated household depends 
on the treatment rates in its network in addition to its own treatment. Our analysis 
does not yield evidence that treatment responses of type I households are influenced 
by the treatment of their neighbors: controlling for the baseline and threat mailing 
rates does not alter the estimates for the direct treatment effects of the mailings (see 
Table B.4 in online Appendix B). The results suggest that, for the experimental sam-
ple, the direct treatment effect dominates any indirect effects from the experiment.

Permutation Test on Networks.—In principle, columns 1–3 from Table 3 could 
be interpreted in support of the idea that geographical networks of neighbors are a 
key unit for the information transmission that shapes the spillover effects. A concern 
with this interpretation is that we might simply have too little variation to detect any 
spillover when we estimate the regressions at the municipality level (see column 3). 
To address this concern and provide further evidence that geographical networks 
are crucial in determining the spillovers, we perform the following permutation test.

Within each of the 771 municipalities covered by the sample from our main spec-
ification from Table 3, we randomly allocate all (types I, II, and III) households into 
networks of size ​N  =  10​.21 With this procedure, households remain in their “true” 
municipalities, but they are randomly grouped in different networks, irrespective of 
their geographic location within the municipality. For such randomly generated net-
works, we then compute our regressors and estimate equation (1). The results from 
1,000 iterations of this exercise are illustrated in Figure 4.

The figure displays the cumulative distribution functions of the estimated coef-
ficients for the baseline (​​β​1​​​, panel A) and the threat mailing (​​β​2​​​, panel B) and the 
point estimates from Table 3. We obtain one single case (out of 1,000 iterations) 
for which an estimate from the permutation tests is larger than the estimates from 
above. This suggests that the results from Table 3 are not simply driven by partition-
ing municipalities into smaller units. Instead, the networks based on geographical 

20 Based on Table 1, the average direct treatment effect would add up to 59 [66] registrations from 1,000 addi-
tional baseline [threat] mailings. Hence, relative to this benchmark, diffusion and social interaction double the 
impact of the mailings. Reassuringly, this ratio does not change that much if we consider lower (​z  =  25​) or higher 
(e.g., ​z  =  250​) distance thresholds for computing the networks. For ​z  =  25​ [​z  =  250​] the implied social multi-
plier would be approximately 2.5 [1.75].

21 For a municipality with, say, 1,017 households, we would randomly form 100 networks with 10, and 1 
network with the remaining 17 households. Note further that our analysis yields very similar results when we 
use ​N  =  5​ (close to the median network size, see Table 2) or ​N  =  15​ (close to the third quartile).
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distance seem to pick up a systematic spillover effect that is shaped by communica-
tion within these networks. Section V will study the microstructure of the spillovers 
in more detail.

E. Discussion of Channels

As pointed out in Section IB, neither receiving a mailing nor compliance is 
observable to one’s neighbors. The compliance spillovers must therefore stem from 
the dispersion of information via communication (as, e.g., in the context of job 
referrals, see Beaman and Magruder 2012, Dustmann et al. 2016). This raises the 
question of which type of information makes households update their compliance 
propensity and ultimately comply. As in other studies on information diffusion, pin-
ning down the precise piece of information that triggers behavioral responses is 
complex and not the focus of this paper. Nevertheless, our data offer several insights 
on the micromechanisms related to different dimensions of information.

In one broad class of mechanisms, the crucial information content is compliance 
behavior. After receiving a mailing, a type I household might communicate a switch 
to compliance. Communication could then reinforce, among other things, confor-
mity pressure or social norms about compliance (Akerlof 1980, Bernheim 1994), 
implying a potential spillover on the compliance of type II households, which later 
communicate their compliance to their FONs, etc. Several pieces of evidence sug-
gest that the spillovers do not (solely) rest on these mechanisms but rather on the 
diffusion of information that increases the perceived risk of detection.

If treatment spillovers were contingent on the compliance responses of treated 
households, the indirect effects should be closely aligned with the direct treatment 
effects. Our results reject this case. Table 1 shows that the threat produces roughly 
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Figure 4. Permutation Tests: Distribution of Estimated Coefficients

Notes: The figures present the cumulative distribution function of the coefficients on the baseline (panel A) and 
threat mailing rates (panel B), obtained from the permutation test described in Section IVD. The red vertical lines 
represent the coefficients on the baseline and the threat mailing rates obtained from estimating model (1).
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12  percent more direct registrations than the baseline mailing. By contrast, the 
estimates from Table 3 indicate that the indirect effect from the threat is 45 percent 
larger than the one from the baseline mailings (​​β​2​​ / ​β​1​​  =  0.35 / 0.24​). The latter 
finding points to the role of more “traditional” enforcement channels: communica-
tion about the mailings may change the perceived sanction risk. After all, learning 
about an enforcement activity that was targeted at neighbor ​j​ might alter the subjec-
tive detection risk of an untreated cheater (see, e.g., Sah 1991). This risk channel 
appears particularly relevant for threat mailings, which announce possible door-
to-door inspections. Given the high spatial correlation in the inspections of FIS’s 
enforcement division (Rincke and  Traxler 2011), it seems plausible that type  II 
households would update their risk perceptions. This case is further supported by 
the evidence from Fellner, Sausgruber, and Traxler (2013), who document that the 
larger direct treatment effect of the threat relative to a baseline is driven by a higher 
perceived sanction risk. Additional support comes from our online survey, which 
shows that people are willing “to warn” their neighbors (see Section II).

To further assess the role of direct treatment responses for the emergence of 
spillovers, we make use of the fact that many type I households were actually com-
plying with license fees at the time of the experiment (see Section IIIA). Hence, 
these treated households could, by definition, not switch from evasion to compli-
ance. If behavioral changes were necessary to induce an indirect effect, the mail-
ings sent to compliant households should not produce any spillover. To test this 
hypothesis, we rerun our basic regression model on the sample of networks where 
all mailing targets were already complying with license fees before the treatment. 
The results from this exercise (which are reported in the first column of Table B.5 
in online Appendix B) show that we do observe spillovers in networks where the 
compliance rate of type I households is 100 percent. We also find, though, that the 
spillovers, in particular those from the baseline mailing, decrease with the ex ante 
compliance rate among the injection points.22 Changes in compliance behavior 
thus seem to contribute to larger indirect treatment effects; however, they are not 
necessary to induce the spillovers. Obviously, this empirical design does not allow 
rejecting the case in which the shared information is not a change in compliance but 
rather the (previously unknown) compliance status. Even if all treated households 
were compliant, communicating their status might be sufficient to trigger spillovers 
among neighbors. Conceptually, however, this communication content would repre-
sent an informational rather than a pure behavioral imitation channel.

Summing up, our results indicate that while behavioral interdependencies do play 
some role, informational channels clearly contribute to the spillover. Moreover, the 
evidence is unambiguous in that any channel must operate via communication.

22 This mirrors a result from Banerjee et al. (2013), who find that adopters of new technologies are crucial in the 
diffusion of the technology. Note, however, that variation in the ex ante compliance rate might be correlated with 
relevant unobserved factors.
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V.  Communication and Diffusion in Networks

This section explores the role of the geographic network in diffusing informa-
tion. We ask how far the spillover travels, i.e., whether the information of the mail-
ing reaches only first-order neighbors or whether it diffuses farther (Section VA), 
which measures (if any) of injection points’ centrality can be used for targeting 
(Section VB), and whether it is more effective to locally concentrate mailings or to 
spread treatments broadly within a network (Section VC). While all questions are 
informative about the role of the network in shaping the diffusion process, the last 
two questions are particularly important from a policy perspective.

A. How Local Are Spillovers?

Let us first study how far the spillover reaches into the network. If new informa-
tion does not travel very far in the network, then it can only affect (postcommuni-
cation) propensities to comply of households located “near” the injection points in 
terms of network distance.23 In this case, spillovers would be limited to households 
that are “close” to a treated household (compare the conceptual framework from 
Section IVA).

Figure 5, which presents a hypothetical network, illustrates a case of local 
spillovers. In this network, only household ​k​ receives a mailing. Since only ​k​ can 
start to spread the word, it will always first reach ​k​’s FONs (panel B in Figure 5). If 
the FONs do not pass on the information, then any spillover will be limited to the 
treated household’s FONs. If they do pass it on, then the news will reach ​k​’s SONs 
(panel C in Figure 5). Roughly speaking, if a treatment induces more widespread 
communication, then more distant households will be reached via the spillover.

To analyze how far the spillovers reach, we compute treatment rates that dis-
tinguish between the treatments of a household’s FONs, SONs, or higher-order 
neighbors (HONs). More specifically, we count the number of ​i​’s FONs, SONs, 
and HONs who received a given treatment. Normalizing these numbers by ​​N​k​​ − 1​, 
we obtain the treatment rates ​​Base​ ik​ 

h ​​ and ​​Threat​ ik​ 
h ​​ for ​h  ∈  {FON, SON, HON }​. This 

approach ensures the identities ​​Base​k​​  = ​ ∑ h​ 
 
 ​​​ Base​ ik​ 

h ​​ and ​​Threat​k​​  = ​ ∑ h​ 
 
 ​​​ Threat​ ik​ 

h ​​. 
We then estimate a refined version of equation (1), which now exploits variation 
between and within networks:

(5)	​​ y​ik​​  = ​ δ​​ ​Total​k​​​ + ​∑ 
h
​ ​​ ​ β​ 1​ 

h​ ​Base​ ik​ 
h ​ + ​∑ 

h
​ ​​ ​ β​ 2​ 

h​ ​Threat​ ik​ 
h ​ + ​ϵ​ik​​.​

The more locally confined diffusion is, the more sharply ​​β​ 1​ 
h​​ and ​​β​ 2​ 

h​​ should decline 
with the order of vicinity of the treated neighbors.

Note that the estimated coefficients ​​β​ 1​ 
h​​ and ​​β​ 2​ 

h​​ are identified from the experimen-
tal variation in treatment rates for a given level of ​​Total​k​​​. Conditional on ​​Total​k​​​, we 
argue that whether and how a type II’s close (FON) or more distant neighbor (SON 
or HON) is treated varies exogenously. However, one might be concerned that the 

23 Network distance, often also referred to as geodesic distance, refers to the length of the shortest path between 
two agents (nodes).
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location of experimental households (relative to type II households) is not random 
within networks. Accounting for this point, we also consider an augmented specifi-
cation which estimates the effects conditional on ​​Total​ k​ 

FON​​, ​​Total​ k​ 
SON​​, and ​​Total​ k​ 

HON​​:

(6)	​​ y​ik​​  = ​ ∑ 
h
​ ​​​ α​​ h​ ​Total​ k​ 

h​ + ​∑ 
h
​ ​​ ​ β​ 1​ 

h​ ​Base​ ik​ 
h ​ + ​∑ 

h
​ ​​ ​ β​ 2​ 

h​ ​Threat​ ik​ 
h ​ + ​ϵ​ik​​.​

The identification of the ​β​ coefficients in this model rests again on the random vari-
ation in treatment rates among FONs, SONs, and HONs—but now we condition 
on the rate of experimental households, ​​Total​ k​ 

h​​ for each ​h  ∈  {FON, SON, HON }​.24 
Note that this augmented specification will absorb much variation in the data.

Linear probability model estimates of equations (5) and (6) are presented in 
columns 1 and 3 of Table 5, respectively. The results show consistently that both 
mailing treatments trigger sizable spillovers on the treated households’ FONs. For 

24 We linearly control for ​​Total​ k​ 
h​​ as there would be a too-large number of fixed effects for each rate ​​Total​ k​ 

h​​ 
in ​h  ∈  {FON, SON, HON }​.

Figure 5. Illustration: How Local Are Spillovers?

Notes: The figure shows targeted household ​k​ with its first-, second-, third-, and fourth-order neighbors (indicated 
by numbers 1, 2, 3, and 4) in a hypothetical network. Panel A represents the time before communication starts where 
only ​k​ knows about its letter, in (panel B) the news has spread to ​k​’s FONs, in (panel C) to her SONs, etc. Note that 
each time the message spreads its impact becomes smaller: in (panel C) for instance, the SON of ​k​ learns about the 
letters but also about the fact that ​k​’s FONs—with whom she communicates—did not receive a letter.
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the baseline treatment, the spillover seems mainly limited to FONs. To compare the 
size of coefficients in column 3 across FON, SON, and HON neighborhoods, we 
need to sum the coefficients for ​​Total​ k​ 

h​​ and ​​Base​ k​ 
h​​ for each ​h  ∈  {FON, SON, HON }​ 

as now ​​Total​ k​ 
h​​ also differs across ​h​. Doing so, we see that the estimates indicate 

spillovers from sending an additional mailing into each of these neighborhoods of 
0.215 for FON (​= ​ Total​ k​ 

FON​ + ​Base​ k​ 
FON​​) as opposed to 0.086 for SON and − 0.023 

Table 5—Impact by Network Distance: How Far-Reaching Are the Spillovers?

(1) (2) (3) (4)

Base​​​​​ FON​​ 0.2568 0.2540 0.2541 0.2505
(0.0387) (0.0390) (0.0399) (0.0400)

Base​​​​​ SON​​ 0.0922 0.0908 0.1426 0.1393
(0.0686) (0.0690) (0.1302) (0.1303)

Base​​​​​ HON​​ 0.0450 0.0378 0.2995 0.2946
(0.0878) (0.0886) (0.1922) (0.1927)

Threat​​​​​ FON​​ 0.3615 0.3648 0.3580 0.3609
(0.0397) (0.0400) (0.0407) (0.0409)

Threat​​​​​ SON​​ 0.1396 0.1473 0.1550 0.1606
(0.0681) (0.0686) (0.1247) (0.1307)

Threat​​​​​ HON​​ 0.3884 0.3998 0.5889 0.6073
(0.0948) (0.0955) (0.2044) (0.2107)

Total​​​​​ FON​​ −0.0391 −0.0397
(0.0341) (0.0341)

Total​​​​​ SON​​ −0.0568 −0.0590
(0.1162) (0.1162)

Total​​​​​ HON​​ −0.3222 −0.3304
(0.1792) (0.1796)

Distance to nearest base – −0.0000 – −0.0000
(0.0000) (0.0000)

Distance to nearest threat – 0.0000 – 0.0000
(0.0000) (0.0000)

F-tests: (see table notes)
Base:
  FON versus SON 6.65 6.51 4.65 4.73
  FON versus HON 6.60 6.70 14.57 15.33
  SON versus HON 0.26 0.32 1.82 2.08

Threat:
  FON versus SON 12.16 11.67 12.48 12.34
  FON versus HON 0.09 0.15 0.54 0.38
  SON versus HON 5.76 5.92 3.42 3.69

R​​​​​ 2​​ 0.0967 0.0974 0.0605 0.0610

Notes: FON, SON, and HON abbreviates First-, Second-, and Higher-Order Neighbors, 
respectively. Column 1 and 3 present results from LPM estimations of equations  (5) 
and (6), respectively. Columns 2 and 4 add controls for the Euclidean distance to the near-
est household treated with a baseline or a threat mailing, respectively. The F-tests from 
columns  1 and 2 are based on equation  (5) and report F-statistics for the ​​H​0​​​: ​​β​ j​ 

h​  =  ​β​ j​ 
ℓ​​ 

for ​h  ≠  ℓ  ∈  {FON, SON, HON }​ and ​j  =  1​ (Base) and ​j  =  2​ (Threat), respectively. Hence, 
we test ​​Base​​ FON​  = ​​​ Base​​​ SON​​, etc. Columns 3 and 4 are based on equation  (6) and test the  
​​H​0​​​: ​​α​​ h​ + ​β​ j​ 

h​  =  ​α​​ ℓ​ + ​β​ j​ 
ℓ​​ for ​h  ≠  ℓ​ and ​j  =  1​ (Base) and ​j  =  2​ (Threat), respectively. Put 

differently, we are testing ​​Total​​ FON​ + ​​​Base​​ FON​  = ​​​ Total​​ SON​ + ​Base​​​ SON​​, etc. Adding up coef-
ficients in columns 3 and 4 accounts for the fact that Total​​​​​ h​​ differs across ​h​. Number of obser-
vations: 14,987; number of networks: 3,764. Standard errors, clustered at the network level, 
are in parentheses.
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for HON, respectively. (Except for the comparison of SON with HON, all spillovers 
are significantly different from each other; see the F-statistics reported in Table 5.)

For the threat treatment, the spillovers are not limited to FONs or SONs but also 
extend to HONs. The estimated ​​β​ 2​ 

h​​ coefficients from column 2 are statistically sig-
nificant at the 1 percent—or 5 percent—level for all types of neighborhoods (FON, 
SON, HON), and the F-tests indicate that we cannot reject the hypothesis that 
spillovers are equally large for FONs as they are for HONs. All these findings are 
robust when we control for a household’s Euclidean distances to the nearest house-
hold in a given treatment (columns 2 and 4).

The evidence from Table  5 indicates that the geographic network does shape 
diffusion. The spillover is more concentrated among households with a smaller net-
work distance to the targeted nodes. At the same time, the spillover is not only con-
fined to FONs: for the threat treatment, the indirect effect clearly has a larger scope.

The result also offers insights about two basic reasons why the threat treatment 
triggers a larger spillover. On the one hand, the threat might induce more communi-
cation. On the other hand, the treatment could—conditional on the level of commu-
nication—simply increase the propensities to comply by a larger amount. (Note that 
our basic estimates did not allow us to distinguish between these two interpretations; 
see Section IVE.) If the difference in spillovers from the base and the threat mailing 
was entirely due to the threat’s stronger impact on compliance propensities, then we 
should see smaller spillovers for the baseline treatment—but those smaller spillovers 
should be equally distributed among FONs, SONs, and HONs, the groups reached 
by the threat. The fact that the spillover generated from the base mailing seems to be 
largely concentrated among FONs suggests, though, that the threat induces indeed 
more communication.

This finding also has implications for which households to optimally target. If 
the spillovers were limited to FONs, the indirect effect of the intervention would be 
maximized by simply targeting those households with the highest number of FONs 
(households with the highest degree). If spillovers travel beyond FONs, as is the 
case for the threat mailing, then other centrality measures may be more relevant for 
“optimal” targeting. The next subsection explores this point in more detail.

B. Which Households to Target?

To study optimal targeting, we focus on centrality measures that have been shown 
to play an important role for diffusion. The first such measure is diffusion centrality, 
which captures a household’s ability to spread information in a finite amount of 
time (Banerjee et al. 2019). A special case of diffusion centrality is degree, which 
simply counts how many network neighbors (FONs) a household has. The second 
measure is eigenvector centrality, which is focused on infinite (or very long last-
ing) communication (DeGroot 1974; DeMarzo, Vayanos, and Zwiebel 2003; Golub 
and Jackson 2010).25

25 These measures are more closely discussed in online Appendix C.
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Figure 6, which shows a typical network from our sample, illustrates how 
different households would serve as optimal injection points, depending on which 
centrality measure is key (see figure notes). While these centrality measures tend 
to be strongly correlated, the variation among the large number of networks in our 
sample allows us to differentially assess their role for mediating the spillovers. We 
do so by exploring variation in the injection points’ (type I households’) centrality.

First, we compute the median centrality of all type I households in our relevant 
networks for each centrality measure ​c​ introduced below. Based on this median, 
we then calculate new treatment rates, ​​Base​ k​ 

c-H​​ and ​​Base​ k​ 
c-L​​, which measure a 

network ​k​’s fraction of type  I households in the baseline mailing treatment with 
an above- or below-median level of centrality, respectively. The rates for the threat 
treatment, ​​Threat​ k​ 

c-H​​ and ​​Threat​ k​ 
c-L​​, are defined accordingly. We then estimate the 

following model:

(7) ​​ y​ik​​  = ​ δ​​ ​Total​k​​​ + ​β​ 1​ 
H​​Base​ k​ 

c-H​ + ​β​ 1​ 
L​​Base​ k​ 

c-L​ + ​β​ 2​ 
H​​Threat​ k​ 

c-H​ + ​β​ 2​ 
L​ ​Threat​ k​ 

c-L​ + ​ϵ​ik​​.​

Treatment rates are again defined relative to ​​N​k​​ − 1​. This ensures the 
identity ​​Base​ k​ 

c-H​ + ​Base​ k​ 
c-L​  = ​ Base​k​​​, in which ​​Base​k​​​ is the baseline rate from our 

basic model (1). The analogue holds for ​​Threat​k​​​. Equation (7) is thus nested in (1).
Intuitively, model (7) distinguishes the effect from treating nodes with relatively 

high or low centrality (as captured by ​​β​ 1​ H​​ versus ​​β​ 1​ 
L​​, and ​​β​ 2​ 

H​​ versus ​​β​ 2​ 
L​​ for the baseline 

and threat treatment, respectively). For a given level of ​​Total​k​​​, the model exploits 
experimental variation in the treatment of more or less central nodes. Still, one might 
argue that the treated households’ centrality is correlated with unobserved network 
properties. In particular, having experimental households with a relatively high or 
low centrality might correlate with the nonexperimental households’ propensity to 

Figure 6. Illustration: Degree, Diffusion Centrality, and Eigenvector Centrality

Notes: The figure shows a stylized representation of a typical network in our sample. Four nodes (indicated with 
a star) have the highest degree: they all have three network neighbors. The black node uniquely has the highest 
diffusion centrality after two rounds of communication (​​DC​​ T=2​​ ). By targeting the black node the entire network 
can be “reached” after two rounds of communication (assuming that the probability to passing on information is 
equal to 1). This is not the case if the patterned nodes are targeted. The latter nodes have the highest eigenvector 
centrality (EC), i.e., those are linked to nodes who are linked to “more important” nodes than the black node, thus 
contributing to their higher eigenvector centrality.
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comply. Hence, we also consider an augmented specification that responds to this 
concern.

Following the same strategy as in Section VA, we replace the ​​Total​k​​​ fixed effects 
from (7) and instead condition on ​​Total​ k​ 

c-H​​ and ​​Total​ k​ 
c-L​​, the rate of all experimental 

households in a given network ​k​ that have an above- or below-median level of 
centrality.26 We then estimate

(8)	 ​​y​ik​​  = ​ α​​ H​​Total​ k​ 
c-H​ + ​α​​ L​​Total​ k​ 

c-L​ + ​β​ 1​ 
H​​Base​ k​ 

c-H​ 

	 + ​β​ 1​ 
L​​Base​ k​ 

c-L​ + ​β​ 2​ 
H​​Threat​ k​ 

c-H​ + ​β​ 2​ 
L​​Threat​ k​ 

c-L​ + ​ϵ​ik​​.​

Controlling for both ​​Total​ k​ 
c-H​​ and ​​Total​ k​ 

c-L​​ ensures that the ​β​ coefficients from this 
model are identified from the random treatment assignment, even if the potential 
injection points’ centrality in network ​k​ was indeed correlated with unobservables.

We estimate (7) and (8) for three different measures of diffusion centrality 
(​DC​) as well as eigenvector centrality (​EC​). Note that ​DC​ is a function of ​T​, the 
time horizon of communication (see equation (1) in the online Appendix C). Our 
main analysis uses ​DC​ for ​T  =  1​ and ​T  =  10​ rounds of communication, ​​DC​​ T=1​​ 
and ​​DC​​ T=10​​. For both measures, the second parameter of ​DC​, the probability to 
pass on information (see Section IVA), is fixed at ​q  =  1​.27 In addition, we also 
examine the ​DC​ benchmark proposed in Banerjee et  al. (2019), with ​T​ equal to 
the network’s diameter and the probability ​q​ equal to the inverse of the first eigen-
value of the network’s adjacency matrix. This measure, ​​DC​ q​ 

T​​, is thus based on net-
work specific parameters ​​q​k​​​ and ​​T​k​​​. Finally, note that all four centrality variables,  
​c  = ​ {​DC​​ T=1​, ​DC​​ T=10​, ​DC​ q​ 

T​, EC}​​, are normalized.28

Linear probability models estimates of equations (7) and (8) for each of the four 
centrality measures ​c​ are presented in Table 6. The results for the diffusion central-
ity measures are straightforward. For almost all combinations of treatments and  
​DC​ measures, the point estimates for ​​β​​ H​​ are higher than those for ​​β​​ L​​. The point 
estimates from column 1, for instance, suggest that the spillovers from the baseline 
mailing might double if one targets injection points with relatively high ​​DC​​ T=1​​. 
At the same time, sending baseline mailings to nodes with high ​​DC​​ T=10​​ does not 
necessarily increase spillovers (the difference between ​​β​ j​ 

H​​ and ​​β​ j​ 
L​​ is not statisti-

cally significant in column 3). This pattern also indicates that the diffusion process 
driving the spillover from the baseline mailing is limited—which is consistent with 
the results described in Section VA. (Recall that the indirect effects of the baseline 
mailing are mainly confined to first-order neighbors.)

26 Note that the two rates obviously add up to ​​Total​k​​​ from equation (1). Equation (8) is thus nested in specifi-
cation 2 from Table 3. Due to a too-large number of fixed effects for each level of ​Tota​l​ k​ 

c-H​​ and ​​Total​ k​ 
c-L​​, we linearly 

control for the two rates (as in model (6) above).
27 In online Appendix B, we provide results for alternative values of ​0  <  q  <  1​ (see online Appendix 

Table B.8). As mentioned above, the concept of degree centrality (the number of first-order neighbors) is nested in 
diffusion centrality. Specifically, ​​DC​​ T=1​​ (with ​q  =  1​) corresponds to the degree (up to normalization).

28 For the diffusion centrality, we use the normalization suggested in Banerjee et  al. (2019), i.e., we 
compare ​​DC​​ T​(ℓ )​ to the hypothetical case of complete networks (for which one obtains the maximum possible entry 
for ​​DC​​ T​(ℓ )​ for each node ​ℓ​ and any given ​T​  ).
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For the threat mailing, both ​​DC​​ T=1​​ and ​​DC​​ T=10​​ seem to matter, suggesting that 
treatment-induced diffusion is less limited and happens over multiple rounds of com-
munication. Again, this is consistent with the broader reach of the spillover docu-
mented in section VA. The results for the network-specific ​​DC​ q​ 

T​​ are in between those 
for ​​DC​​ T=1​​ and ​​DC​​ T=10​​.29 Finally, for eigenvector centrality, there is no clear pat-
tern indicating that a higher EC of the injection points would increase the spillover. 
Note that ​EC​ would be the decisive variable for targeting, if the diffusion process 
would be unlimited (​T  →  ∞​). The results from columns 7 and 8 do not support  
this case.

The estimates from Table 6 are further corroborated by models in which the treat-
ment rates linearly interact with the treated households’ centrality ​c​ (see Table B.6 in 
online Appendix B). Consistent with the evidence from above, the estimates reveal 

29 The measure ​​DC​ q​ 
T​​ can be considered as an intermediate case as the (network-specific) diameter, which 

determines ​T​, is on average roughly 4.

Table 6—Impact by Centrality of Injection Points

​D​C​​ T=1​​ ​D​C​​ T=10​​ ​D​C​ q​ 
T​​ ​EC​

Centrality measure ​c​: (1) (2) (3) (4) (5) (6) (7) (8)

​​Base​ k​ 
c-L​​ 0.1233 0.1777 0.2150 0.1937 0.1763 0.2738 0.1759 0.4187

(0.0547) (0.1160) (0.0646) (0.1491) (0.0662) (0.1453) (0.1188) (0.2326)
​​Base​ k​ 

c-H​​ 0.2571 0.2601 0.2459 0.2552 0.2474 0.2486 0.2441 0.2444
(0.0390) (0.0401) (0.0386) (0.0394) (0.0385) (0.0392) (0.0382) (0.0382)

​​Threat​ k​ 
c-L​​ 0.2620 0.2813 0.2782 0.2261 0.2985 0.3421 0.4415 0.6225

(0.0607) (0.1177) (0.0691) (0.1482) (0.0729) (0.1460) (0.1183) (0.2403)
​​Threat​ k​ 

c-H​​ 0.3598 0.3632 0.3549 0.3651 0.3533 0.3554 0.3479 0.3468
(0.0397) (0.0408) (0.0394) (0.0402) (0.0394) (0.0400) (0.0391) (0.0390)

​​Total​ k​ 
c-L​​ −0.0970 −0.0604 −0.1552 −0.3774

(0.1055) (0.1346) (0.1313) (0.2130)
​​Total​ k​ 

c-H​​ −0.0463 −0.0520 −0.0444 −0.0378
(0.0342) (0.0337) (0.0335) (0.0327)

​​Total​​k​​​ fixed effects Yes No Yes No Yes No Yes No

F-tests: (see table notes)
Base:  
  High versus low

7.662 10.92 0.279 2.255 1.397 3.184 0.346 5.152

Threat:  
  High verus low

3.188 9.051 1.461 8.871 0.662 5.747 0.668 0.596

R​​​​​ 2​​ 0.096 0.059 0.095 0.058 0.095 0.058 0.095 0.058

Notes: The table presents results from LPM estimations of equations (7) and (8). The estimates explores how the 
impact of the mailings on the compliance of non-experimental households varies with the centrality of the injec-
tion points. We differentiate treatment rates according to the injection points’ having above or below media mea-
sures of centrality ​c​ for: diffusion centrality for one (​D​C​​ T=1​​, columns 1 and 2) and 10 rounds of communication  
(​​DC​​ T=10​​, columns 3 and 4), diffusion centrality with ​T​ equal to the network’s diameter and probability ​q​ equal to 
the inverse of the first eigenvalue of the network’s adjacency matrix (​​DC​ q​ 

T​​, columns 5 and 6), and finally eigenvec-
tor centrality (​EC​, columns 7 and 8). The F-tests reported in columns 1, 3, 5, and 7 are based on equation (7) and 
test the ​​H​0​​​: ​​β​ j​ 

L​  =  ​β​ j​ 
H​​ for ​j  =  1​ (Base) and ​j  =  2​ (Threat), respectively. We thus test ​​Base​ k​ 

c-H​  = ​​​ Base​ k​ 
c-L​​ for the 

different centrality measures ​c​ (and analogously for the threat treatment rates). The tests from columns 2, 4, 6, and 
8 are based on the augmented equation (8) and test ​​H​0​​​: ​​α​​ L​ + ​β​ j​ 

L​  =  ​α​​ H​ + ​β​ j​ 
H​​ for ​j  =  1​ (Base) and ​j  =  2​ (Threat), 

respectively. Hence, we test ​​Total​​​ c-L​ + ​Base​​​ c-L​  = ​ Total​​​ c-H​ + ​Base​​​ c-H​​ for the different centrality measures ​c​ (and 
analogously for the threat treatment rates). Adding up coefficients here accounts for the fact that ​​Total​​​ c-L​​ differs 
from ​​Total​​​ c-H​​ (compare Table 5). Number of observations: 14,987; number of networks: 3,764. Standard errors, 
clustered at the network level, are in parentheses.
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significant interactions of the baseline treatment with ​​DC​​ T=1​​; for the threat, instead, 
one obtains significant interactions with ​​DC​​ T=10​​. In additional robustness exer-
cises, we ran specifications that further augment equations (7) and (8) by including 
controls for the injection points’ centrality. The estimates (which are reported in  
Table B.7) are almost indistinguishable from those reported in Table 6. Finally, we 
also replicated results for different DC measures with ​T  ∈ ​ {1, … , 10}​​ and ​q  <  1​. 
The results show again qualitatively similar patterns (see Table B.8).

To wrap up, the results from this and the previous section consistently indicate 
that the diffusion process driving the spillovers is (i) strongly limited for the base-
line mailing but (ii) less limited for the threat mailing. For the baseline treatment, 
mostly close neighbors of targeted nodes respond to the intervention. The threat 
treatment, by contrast, induces compliance spillovers also on households with 
higher network distance. In terms of which households an authority should target to 
maximize spillovers, our results indicate that diffusion centrality serves as a good 
indicator. To operationalize such a strategy, however, an authority would have to 
determine a value of ​T​. Which value to use will depend on the specific communi-
cation or enforcement strategy. For a rather innocent intervention that is unlikely 
to lead to much communication (as our baseline mailing), a low value of ​T​ might 
be best. If the intervention involves a message that is likely to induce much more 
communication (as the threat mailing), a higher value of ​T​ seems more reasonable.

C. Local Treatment Concentration

Another important policy question concerns the effect of treatment concentra-
tion: is it more effective to locally concentrate mailings or to spread treatments 
broadly within a network? The problem is illustrated in Figure 7, which displays 
a case with high local treatment concentration, i.e., where treated households are 
FONs (panel A), and another example where concentration is low (panel B). Where 
should we expect larger spillovers? In the context of limited diffusion, both targeting 
strategies could be reasonable. On the one hand, a low concentration ceteris paribus 
means that more households will hear about the treatment. Each of these house-
holds, however, is likely to hear about only one mailing and to talk to many other 
untreated households. Hence, while many households will hear about a mailing, 
their propensities to comply might only increase marginally. High concentration 
resolves the latter issue at the cost of reaching fewer households. High concentration 
should hence be particularly desirable if households need to hear sufficiently often 
about a mailing in order to change behavior, as is the case in, e.g., threshold models 
(Granovetter 1978, Centola and Macy 2007, Beaman et al. 2015).

To measure the extent to which mailings are locally concentrated, we define a 
measure called local treatment concentration, which measures the extent to which 
households in the same treatment are directly linked to each other in the network. 
This concept is reminiscent of the concept of homophily that has received a lot of 
attention in recent years across a variety of fields, including economics (Benhabib, 
Bisin, and Jackson 2010), sociology (McPherson, Smith-Lovin, and Cook 2001), 
and management (Borgatti and  Foster 2003). There are two key differences, 
however, between our local concentration measure and homophily. First, the notion 
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of local treatment concentration considers two neighbors as “similar” if they are 
in the same treatment, whereas homophily usually defines similarity in terms of 
race, age, or other characteristics. Second, the random assignment of treatments 
assures that, conditional on being experimental participants, local concentration will 
not reflect other household properties. In particular, whether or not experimental 
households are linked is exogenous to the assigned treatment condition. By contrast, 
with homophily whether two households are linked can be a result of the dimension 
of similarity considered.30 This is why homophily can be thought of as a preference 
for being linked with similar others.31 This interpretation does not apply to our 
concept of local treatment concentration. However, both the endogenous concept 
of homophily and the exogenous concept of local treatment concentration measure 
to which extent neighbors are similar to each other. Exogeneity in this sense can be 
seen as a strength compared to previous empirical work, as it allows us to isolate the 

30 If, e.g., a single (white, old, etc.) person chooses to move next to other single (white, old, etc.) people.
31 Many empirical studies, though, consider homophily as the mere statistical fact that similar people are more 

likely to be linked to each other in the network (McPherson, Smith-Lovin, and Cook 2001; Currarini, Jackson, 
and Pin 2009).

Figure 7. Illustration: Local Treatment Concentration

Notes: The figure shows two networks with the same structure but different degrees of local treatment concentration. 
There are 12 households of three types represented in this picture. Let the dark nodes represent threat-treated 
households, the lighter nodes base-treated and the empty nodes untreated households (type II or III). In panel A, 
households of the same type tend to be neighbors, while households in panel B tend to be neighbors with house-
holds of a different type. Based on the formula from the online Appendix  C, it is straightforward to compute 
the inbreeding homophily (IH) index for the different cases. In panel A, the IH index for the threat treatment is 

given by ​​IH​​ Threat​  = ​ (​ 2 _ 4 ​ − ​ 11 _ 12 ​ ​ 1 _ 
6
 ​)​/​(1 − ​ 11 _ 12 ​ ​ 1 _ 

6
 ​)​  ≈  0.41​, reflecting the fact that (i) there are two neighbors of a threat-

treated node who are also threat-treated, (ii) threat-treated nodes have four neighbors overall, (iii) there is a total 
of twelve nodes in the network, and (iv) the threat-rate is ​1 / 6​. For the base treatment, one analogously obtains  

​​IH​​ Base​  = ​ (​ 6 _ 10 ​ − ​ 11 _ 12 ​ ​ 1 _ 4 ​)​/​(1 − ​ 11 _ 12 ​ ​ 1 _ 4 ​)​  ≈  0.48​. In panel B, there are no neighbors of threat- (base-) treated house-
holds who are threat- (base-) treated. For this network, one gets ​​IH​​ Threat​  ≈  − 0.18​ and ​​IH​​ Base​  ≈  − 0.30​.

Panel A. Local concentration is high Panel B. Local concentration is low
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effects of similarity (in treatment and posttreatment beliefs) on behavioral outcomes 
within networks.

We use the inbreeding homophily (IH) index to measure local concentration 
(Coleman 1958; Currarini, Jackson, and Pin 2009, 2010).32 The IH index is defined 
at the network level for each treatment group. It ranges in ​[− 1, 1]​. A value of zero 
indicates that on average within a given network the share of a household’s neighbors 
in the same treatment group as the household itself corresponds to what we would 
expect from random assignment. A positive value indicates that there is homophily 
(high local concentration), i.e., households are linked overproportionately with 
households from the same treatment. A negative value indicates heterophily (low 
local concentration), i.e., households are linked overproportionately with households 
that are in a different treatment group.

Figure 7 shows a case of high (panel A) and low local treatment concentration 
(panel B). As detailed in the caption, the IH indices would be positive for the one 
(left) and negative in the other (right) case (see the caption to Figure 7 for compu-
tational details). To account for a potential downside of the IH index (it is slightly 
biased downward in small networks; see online Appendix C), we also consider a 
dummy indicating whether the IH index is positive. In 17 percent of networks, we 
observe at least 1 pair of FONs who receive the same mailing treatment. There is 
a lot of variation in the IH index, with a majority of networks having a negative 
inbreeding homophily for the two mailing treatments but also a substantial share of 
networks with a positive IH index.

We estimate the model

(9)	​​ y​ik​​   = ​ δ​​ ​Total​k​​​ + ​β​1​​ ​Base​k​​ + ​β​2​​ ​Threat​k​​ + ​δ​1​​I​H​ k​ 
Base​ + ​δ​2​​ I​H​ k​ 

Threat​

	 + ​δ​3​​​(I​H​ k​ 
Base​ × ​Base​k​​)​ + ​δ​4​​​(I​H​ k​ 

Threat​ × ​Threat​k​​)​ + ​ϵ​ik​​ ,​

where ​I​H​ k​ 
Base​​ and ​I​H​ k​ 

Threat​​ capture one of the two local concentration measures (the 
IH index or the IH dummy). Conditional on ​​Total​​k​​​ fixed effects, random treatment 
assignment implies that the variation in the treatment-specific concentration 
measures will be exogenous. In addition, we also consider an augmented specifi-
cation that absorbs additional variation by including an IH measure for the local 
concentration of all possible injection points ​​(I​H​ k​ 

All​)​​ irrespective of their treatment. 
Estimation results for the simple and the augmented version of equation  (9) are 
presented in Table 7.

The estimates suggest that local treatment concentration is associated with 
smaller compliance spillovers. While the interaction effects (​​δ​3​​​ and ​​δ​4​​​) are statisti-
cally insignificant for the IH-index (columns 1 and 2), they turn significant for the 
IH dummy (columns 3 and 4). Quantitatively, these interactions are quite sizable: 
the point estimates from the last two specifications indicate that the spillovers shrink 
by roughly 50 percent in networks with a positive IH index. To assess the robustness 

32 Inbreeding homophily of household ​i​ is defined as the difference between the fraction of links of household ​i​ 
to others of the same treatment type and the fraction of ​i​’s type in the network divided by the maximal amount of 
homophily possible (​1 −​ the fraction of ​i​’s type in the network). For a closer discussion, see online Appendix C.
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of these results, we replicated the estimations using IH measures that pool the two 
mailing treatments (see Table B.9 in online Appendix B). The exercise confirms the 
negative interaction effects and improves statistical power: with a higher treatment 
concentration, we find significantly smaller spillovers. The evidence therefore sug-
gests that spreading the interventions more broadly—and thus assuring that more 
people “hear” about the mailings—produces larger spillovers.

Our findings are consistent with evidence highlighting the role of one’s peers’ 
exposure to law enforcement for the formation of one’s own risk perceptions and 
legal compliance (see Lochner 2007, and Section I.B in Chalfin and McCrary 2017). 
The fact that a high local treatment concentration reduces spillovers is also in line 
with theoretical results showing that similarity in beliefs hampers social learning 
(Golub and Jackson 2012). Facing the same treatment most likely implies similar 
posttreatment beliefs (e.g., about the probability of detection). One can thus interpret 
our findings as being consistent with the theoretical results.

Table 7—Impact by Local Treatment Concentration

IH index IH​​​​​ +​​ dummy

(1) (2) (3) (4)

Base​​​​k​​​ 0.2053 0.2083 0.2755 0.2748
(0.0582) (0.0628) (0.0428) (0.0429)

Threat​​​​k​​​ 0.2678 0.2708 0.3983 0.3980
(0.0579) (0.0649) (0.0435) (0.0435)

Base​​​​k​​​​×​ ​​IHI​ k​ 
Base​​ −0.0359 −0.0334

(0.0806) (0.0823)
Threat​​​​k​​​​×​ ​​IHI​ k​ 

Threat​​ −0.1018 −0.0993
(0.0812) (0.0830)

​​IHI​ k​ 
Base​​ −0.0121 −0.0106

(0.0639) (0.0658)
​​IHI​ k​ 

Threat​​ −0.0076 −0.0061
(0.0574) (0.0603)

​​IHI​ k​ 
All​​ −0.0036

(0.0330)

Base​​​​k​​​ × ​​IHD​ k​ 
Base​​ −0.1527 −0.1393

(0.0745) (0.0781)
Threat​​​​k​​​ × ​​IHD​ k​ 

Threat​​ −0.1861 −0.1758
(0.0742) (0.0775)

​​IHD​ k​ 
Base​​ 0.0176 0.0173

(0.0097) (0.0097)
​​IHD​ k​ 

Threat​​ 0.0277 0.0276
(0.0093) (0.0093)

​​IHD​ k​ 
All​​ −0.0078

(0.0116)

R​​​​​ 2​​ 0.0951 0.0951 0.0958 0.0959

Notes: The table presents results from LPM estimations of equation (9). In columns 1 and 2, 
local treatment concentration is measured by the Inbreeding Homophily Indexes (​IHI​). In 
columns 3 and 4, we use a dummy indicating a positive inbreeding homophily (​IHD  =  1​ 
if ​IHI  ≥  0​). Specifications used in columns 2 and 4 control for the local concentration of all 
experimental (type I) households in a network ​k​. All estimates are based on 14,987 observa-
tions from 3,764 networks. Standard errors, clustered at the network level, are in parentheses.
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VI.  Conclusions

This paper studied the spread of compliance with TV license fees among 
neighbors in geographic networks in Austria. We exploited exogenous variation 
from a field experiment which randomly assigned potential license fee evaders into 
a control or different treatment conditions (baseline or threat mailing). Building 
on this variation, we tested whether untreated households, which were not cov-
ered by the experiment, respond to mailings received by their network neighbors. 
Our analysis identified strong and precisely estimated spillover effects. Controlling 
for the total number of households in a network involved in the experiment, an 
increase in the fraction of treated neighbors significantly raises the likelihood that 
an untreated cheater switches from evasion to compliance. Overall, the magnitude 
of the indirect treatment effects is similar to the direct treatment impact, indicating 
a social multiplier of roughly two (Glaeser, Sacerdote, and Scheinkman 2003). 
We also document heterogeneity across treatments: the threat mailings trigger a 
spillover that is roughly 40 percent larger than the spillover from the baseline mail-
ings. As we focus on small municipalities, it is hard to assess if our results apply 
to urban areas, too. On the one hand, one might expect smaller spillovers as neigh-
borhood networks are less relevant in larger towns and cities. On the other hand, 
Fellner, Sausgruber, and Traxler (2013) document slightly larger direct treatment 
effects in urban areas (in particular, for the threat mailing). This, in turn, could also 
boost spillovers, which might occur among friends or peers at work rather than 
spatial neighbors.

The paper further studied how information on license fee enforcement diffused 
among neighbors in geographic networks. By exploiting variation within and 
between over 3,750 networks, we derived the following results: First, relative to 
the threat treatment, the spillover from the baseline is more concentrated among 
households that are—in terms of network distance—closer to the households 
targeted by the experiment (the “injection points”). Second, the spillovers from 
the mailing treatments are increasing with the injection points’ diffusion central-
ity. Third, a higher local treatment concentration results in a significantly smaller 
spillover—a  finding which can be interpreted in terms of homophily (Golub 
and Jackson 2012). Together with several null results from various placebo exer-
cises, these findings indicate that the structure of our geographic networks is useful 
to capture patterns of information diffusion among neighbors.

The results carry important implications for the optimal targeting of policies that 
play on word-of-mouth diffusion among neighbors. Our findings suggest that one 
could, ceteris paribus, greatly improve the intervention’s impact by targeting cen-
tral households and by spreading the treatment broadly within a network. The easy 
availability of geographic information facilitates the computation of neighborhood 
networks and allows to implement these strategies at fairly low costs.

REFERENCES

Akerlof, George A. 1980. “A Theory of Social Custom, of Which Unemployment May Be One 
Consequence.” Quarterly Journal of Economics 94 (4): 749–75.

http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F1885667&citationId=p_1


132	 AMERICAN ECONOMIC JOURNAL: APPLIED ECONOMICS� APRIL 2020

Alatas, Vivi, Abhijit Banerjee, Arun G. Chandrasekhar, Rema Hanna, and Benjamin A. Olken. 2016. 
“Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia.” 
American Economic Review 106 (7): 1663–1704.

Allcott, Hunt. 2011. “Social Norms and Energy Conservation.” Journal of Public Economics  
95 (9–10): 1082–95.

Alstadsæter, Annette, Wojciech Kopczuk, and Kjetil Telle. 2018. “Social Networks and Tax Avoidance: 
Evidence from a Well-Defined Norwegian Tax Shelter.” NBER Working Paper 25191.

Aral, Sinan, and Dylan Walker. 2011. “Creating Social Contagion through Viral Product Design:  
A Randomized Trial of Peer Influence in Networks.” Management Science 57 (9): 1623–39.

Banerjee, Abhijit, Arun G. Chandrasekhar, Esther Duflo, and Matthew O. Jackson. 2013. “The Diffu-
sion of Microfinance.” Science 341 (6144): 1236498.

Banerjee, Abhijit, Arun G. Chandrasekhar, Esther Duflo, and Matthew O. Jackson. 2019. “Using 
Gossips to Spread Information: Theory and Evidence from Two Randomized Controlled Trials.” 
http://stanford.edu/~arungc/BCDJ_gossip.pdf.

Bayer, Patrick, Stephen L. Ross, and Giorgio Topa. 2008. “Place of Work and Place of Residence: 
Informal Hiring Networks and Labor Market Outcomes.” Journal of Political Economy  
116 (6): 1150–96.

Beaman, Lori, Ariel BenYishay, Jeremy Magruder, and Ahmed Mushfiq Mobarak. 2015. “Can 
Network Theory-Based Targeting Increase Technology Adoption?” https://cdep.sipa.columbia.edu/
sites/default/files/cdep/MNW_Columbia_Magruder.pdf.

Beaman, Lori, and Jeremy Magruder. 2012. “Who Gets the Job Referral? Evidence from a Social 
Networks Experiment.” American Economic Review 102 (7): 3574–93.

Benhabib, Jess, Alberto Bisin, and Matthew O. Jackson, ed. 2010. The Handbook of Social Economics. 
(Volumes 1A and 1B). Amsterdam: North Holland.

BenYishay, Ariel, and A. Mushfiq Mobarak. 2019. “Social Learning and Incentives for Experimenta-
tion and Communication.” Review of Economic Studies 86 (3): 976–1009.

Berger, Melissa, Gerlinde Fellner-Röhling, Rupert Sausgruber, and Christian Traxler. 2016. “Higher 
Taxes, More Evasion? Evidence from Border Differentials in TV License Fees.” Journal of Public 
Economics 135: 74–86.

Bernheim, B. Douglas. 1994. “A Theory of Conformity.” Journal of Political Economy 102 (5): 841–77.
Bollinger, Bryan, and Kenneth Gillingham. 2012. “Peer Effects in the Diffusion of Solar Photovoltaic 

Panels.” Marketing Science 31 (6): 900–912.
Boning, William C., John Guyton, Ronald H. Hodge, II, Joel Slemrod, and Ugo Troiano. 2018. “Heard 

It through the Grapevine: Direct and Network Effects of a Tax Enforcement Field Experiment.” 
NBER Working Paper 24305.

Borgatti, Stephen P., and Pacey C. Foster. 2003. “The Network Paradigm in Organizational Research: 
A Review and Typology.” Journal of Management 29 (6): 991–1013.

Brollo, Fernanda, Katja Maria Kaufmann, and Eliana La Ferrara. 2017. “Learning about the Enforce-
ment of Conditional Welfare Programs: Evidence from Brazil.” IZA Discussion Paper 10654.

Bruhin, Adrian, Lorenz GÖtte, Simon Haenni, and Lingqing Jiang. 2014. “Spillovers of Prosocial 
Motivation: Evidence from an Intervention Study on Blood Donors.” IZA Discussion Paper 8738.

Centola, Damon, and Michael Macy. 2007. “Complex Contagions and the Weakness of Long Ties.” 
American Journal of Sociology 113 (3): 702–34.

Chalfin, Aaron, and Justin McCrary. 2017. “Criminal Deterrence: A Review of the Literature.” Journal 
of Economic Literature 55 (1): 5–48.

Chetty, Raj, John N. Friedman, and Emmanuel Saez. 2013. “Using Differences in Knowledge across 
Neighborhoods to Uncover the Impacts of the EITC on Earnings.” American Economic Review  
103 (7): 2683–2721.

Coleman, James S. 1958. “Relational Analysis: The Study of Social Organizations with Survey 
Methods.” Human Organization 17 (4): 28–36.

Currarini, Sergio, Matthew O. Jackson, and Paolo Pin. 2009. “An Economic Model of Friendship: 
Homophily, Minorities, and Segregation.” Econometrica 77 (4): 1003–45.

Currarini, Sergio, Matthew O. Jackson, and Paolo Pin. 2010. “Identifying the Roles of Race-Based 
Choice and Chance in High School Friendship Network Formation.” PNAS 107 (11): 4857–61.

DeGroot, Morris H. 1974. “Reaching a Consensus.” Journal of the American Statistical Association 
69 (345): 118–21.

DeMarzo, Peter M., Dimitri Vayanos, and Jeffrey Zwiebel. 2003. “Persuasion Bias, Social Influence, 
and Unidimensional Opinions.” Quarterly Journal of Economics 118 (3): 909–68.

Dustmann, Christian, Albrecht Glitz, Uta Schönberg, and Herbert Brücker. 2016. “Referral-Based 
Job Search Networks.” Review of Economic Studies 83 (2): 514–46.

https://cdep.sipa.columbia.edu/sites/default/files/cdep/MNW_Columbia_Magruder.pdf
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmksc.1120.0727&citationId=p_15
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmnsc.1110.1421&citationId=p_5
http://pubs.aeaweb.org/action/showLinks?crossref=10.17730%2Fhumo.17.4.q5604m676260q8n7&citationId=p_23
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Frestud%2Frdy039&citationId=p_12
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2F00335530360698469&citationId=p_27
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F521848&citationId=p_20
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.20140705&citationId=p_2
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA7528&citationId=p_24
http://pubs.aeaweb.org/action/showLinks?crossref=10.1126%2Fscience.1236498&citationId=p_6
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jpubeco.2016.01.007&citationId=p_13
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Frestud%2Frdv045&citationId=p_28
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2FS0149-2063%2803%2900087-4&citationId=p_17
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jpubeco.2011.03.003&citationId=p_3
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjel.20141147&citationId=p_21
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.102.7.3574&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?crossref=10.1073%2Fpnas.0911793107&citationId=p_25
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F261957&citationId=p_14
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.103.7.2683&citationId=p_22
http://pubs.aeaweb.org/action/showLinks?crossref=10.1080%2F01621459.1974.10480137&citationId=p_26
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F595975&citationId=p_8


VOL. 12 NO. 2� 133DRAGO ET AL.: COMPLIANCE BEHAVIOR IN NETWORKS

Dwenger, Nadja, Henrik Kleven, Imran Rasul, and Johannes Rincke. 2016. “Extrinsic and Intrinsic 
Motivations for Tax Compliance: Evidence from a Field Experiment in Germany.” American 
Economic Journal: Economic Policy 8 (3): 203–32.

Fellner, Gerlinde, Rupert Sausgruber, and Christian Traxler. 2013. “Testing Enforcement Strategies 
in the Field: Threat, Moral Appeal and Social Information.” Journal of the European Economic 
Association 11 (3): 634–60.

Glaeser, Edward L., Bruce I. Sacerdote, and Jose A. Scheinkman. 2003. “The Social Multiplier.” 
Journal of the European Economic Association 1 (2–3): 345–53.

Golub, Benjamin, and Matthew O. Jackson. 2010. “Naïve Learning in Social Networks and the 
Wisdom of Crowds.” American Economic Journal: Microeconomics 2 (1): 112–49.

Golub, Benjamin, and Matthew O. Jackson. 2012. “How Homophily Affects the Speed of Learning 
and Best-Response Dynamics.” Quarterly Journal of Economics 127 (3): 1287–1338.

Granovetter, Mark. 1978. “Threshold Models of Collective Behavior.” American Journal of Sociology 
83 (6): 1420–43.

Imbens, Guido W., and Jeffrey M. Wooldridge. 2009. “Recent Developments in the Econometrics of 
Program Evaluation.” Journal of Economic Literature 47 (1): 5–86.

Jackson, Matthew O. 2008. Social and Economic Networks. Princeton: Princeton University Press.
Jackson, Matthew O. 2016. “The Past and Future of Network Analysis in Economics.” In The Oxford 

Handbook of the Economics of Networks, edited by Yann Bramoullé, Andrea Galeotti, and Brian 
Rogers, 117–33. Oxford: Oxford University Press.

Jackson, Matthew O., Tomas Rodriguez-Barraquer, and Xu Tan. 2012. “Social Capital and Social 
Quilts: Network Patterns of Favor Exchange.” American Economic Review 102 (5): 1857–97.

Jacobs, Jane. 1961. The Death and Life of Great American Cities. New York: Random House.
Khan, Adnan Q., Asim I. Khwaja, and Benjamin A. Olken. 2016. “Tax Farming Redux: 

Experimental Evidence on Performance Pay for Tax Collectors.” Quarterly Journal of Economics  
131 (1): 219–71.

Kleven, Henrik Jacobsen, Martin B. Knudsen, Claus Thustrup Kreiner, Søren Pedersen, and 
Emmanuel Saez. 2011. “Unwilling or Unable to Cheat? Evidence from a Tax Audit Experiment in 
Denmark.” Econometrica 79 (3): 651–92.

Kuhn, Peter, Peter Kooreman, Adriaan Soetevent, and Arie Kapteyn. 2011. “The Effects of Lottery 
Prizes on Winners and Their Neighbors: Evidence from the Dutch Postcode Lottery.” American 
Economic Review 101 (5): 2226–47.

Landry, Craig E., Andreas Lange, John A. List, Michael K. Price, and Nicholas G. Rupp. 2006. 
“Toward an Understanding of the Economics of Charity: Evidence from a Field Experiment.” 
Quarterly Journal of Economics 121 (2): 747–82.

Lochner, Lance. 2007. “Individual Perceptions of the Criminal Justice System.” American Economic 
Review 97 (1): 444–60.

Marmaros, David, and Bruce Sacerdote. 2006. “How Do Friendships Form?” Quarterly Journal of 
Economics 121 (1): 79–119. 

McPherson, Miller, Lynn Smith-Lovin, and James M. Cook. 2001. “Birds of a Feather: Homophily in 
Social Networks.” Annual Review of Sociology 27: 415–44.

Miguel, Edward, and Michael Kremer. 2004. “Worms: Identifying Impacts on Education and Health 
in the Presence of Treatment Externalities.” Econometrica 72 (1): 159–217.

Olken, Benjamin A. 2007. “Monitoring Corruption: Evidence from a Field Experiment in Indonesia.” 
Journal of Political Economy 115 (2): 200–249.

Pomeranz, Dina. 2015. “No Taxation without Information: Deterrence and Self-Enforcement in the 
Value Added Tax.” American Economic Review 105 (8): 2539–69.

Rincke, Johannes, and Christian Traxler. 2011. “Enforcement Spillovers.” Review of Economics and 
Statistics 93 (4): 1224–34.

Sah, Raaj K. 1991. “Social Osmosis and Patterns of Crime.” Journal of Political Economy  
99 (6): 1272–95.

Shimeles, Abebe, Daniel Zerfu Gurara, and Firew Woldeyes. 2017. “Taxman’s Dilemma: Coercion 
or Persuasion? Evidence from a Randomized Field Experiment in Ethiopia.” American Economic 
Review 107 (5): 420–24.

http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fjeea.12013&citationId=p_30
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2Fqjec.2006.121.1.79&citationId=p_45
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F226707&citationId=p_34
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.20130393&citationId=p_49
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.102.5.1857&citationId=p_38
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.101.5.2226&citationId=p_42
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2F154247603322390982&citationId=p_31
http://pubs.aeaweb.org/action/showLinks?crossref=10.1146%2Fannurev.soc.27.1.415&citationId=p_46
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2FREST_a_00128&citationId=p_50
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fjel.47.1.5&citationId=p_35
http://pubs.aeaweb.org/action/showLinks?crossref=10.1162%2Fqjec.2006.121.2.747&citationId=p_43
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fmic.2.1.112&citationId=p_32
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1468-0262.2004.00481.x&citationId=p_47
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F261800&citationId=p_51
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Fqje%2Fqjv042&citationId=p_40
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.97.1.444&citationId=p_44
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fpol.20150083&citationId=p_29
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Fqje%2Fqjs021&citationId=p_33
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F517935&citationId=p_48
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.p20171141&citationId=p_52
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FECTA9113&citationId=p_41

	Compliance Behavior in Networks: Evidence from a Field Experiment
	I. Background of the Field Experiment
	A. License Fees
	B. Field Experiment

	II. Communication among Neighbors
	III. Data
	A. Sample
	B. Geographical Networks

	IV. Spillover Effects
	A. Conceptual Framework
	B. Identifying Indirect Effects from the Experiment
	C. Basic Results
	D. Additional Results and Robustness Checks
	E. Discussion of Channels

	V. Communication and Diffusion in Networks
	A. How Local Are Spillovers?
	B. Which Households to Target?
	C. Local Treatment Concentration

	VI. Conclusions
	REFERENCES




