
Received September 25, 2019, accepted October 20, 2019, date of publication October 24, 2019, date of current version November 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2949483

SoCodeCNN: Program Source Code for Visual
CNN Classification Using Computer
Vision Methodology
SOMDIP DEY 1, (Student Member, IEEE), AMIT KUMAR SINGH 1, (Member, IEEE),
DILIP KUMAR PRASAD 2, (Senior Member, IEEE),
AND KLAUS DIETER MCDONALD-MAIER1, (Senior Member, IEEE)
1Embedded and Intelligent Systems Laboratory, University of Essex, Colchester CO4 3SQ, U.K.
2Department of Computer Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway

Corresponding author: Somdip Dey (somdip.dey@essex.ac.uk)

This work was supported in part by the UK Engineering and Physical Sciences Research Council EPSRC [EP/R02572X/1 and
EP/P017487/1].

ABSTRACT Automated feature extraction from program source-code such that proper computing resources
could be allocated to the program is very difficult given the current state of technology. Therefore,
conventional methods call for skilled human intervention in order to achieve the task of feature extraction
from programs. This research is the first to propose a novel human-inspired approach to automatically convert
program source-codes to visual images. The images could be then utilized for automated classification by
visual convolutional neural network (CNN) based algorithm. Experimental results show high prediction
accuracy in classifying the types of program in a completely automated manner using this approach.

INDEX TERMS Classification, intermediate representation, LLVM, MPSoC, resource management, pro-
gram, source code, computer vision, energy consumption, resource optimization, dynamic power manage-
ment, machine learning.

I. INTRODUCTION
Recently we could see the emergence of several machine
learning based methodologies to map and allocate resources
such as CPU, GPU, memory, etc. to applications on embed-
ded systems in order to achieve energy efficiency, perfor-
mance, reliability, etc. Several studies, which are focused on
extracting features from source code of an application and
then utilizing several machine learning models [1]–[4] such
as Support Vector Machines (SVMs), Nearest Neighbor, etc.
to classify different set of applications and then deciding
the resources that need to be allocated to such applications.
Using suchmethodologies also have their own disadvantages.
Depending on feature extraction such as number of code
blocks, branches, divergent instructions, and then utilizing
machine learning on them usually requires accurate identi-
fication of features from the training data and then feeding
them to the model. Extracting features from a source code of
a program and then feeding to the machine learning model

The associate editor coordinating the review of this manuscript and

approving it for publication was Peng Liu .

so that further inference could be made is difficult in many
ways.

Our observations have shown that with an addition of
simple load & store instruction in a ‘‘Hello, World’’ program
can lead to 16.98% difference in the platform-independent
LLVM intermediate representation (IR) code [5], [6], which
is a platform-independent low-level programming language.
This proves that there is a scope to find and learn the pattern
from the program source code to build more intelligent infor-
mation systems such that autonomy and ability to demon-
strate close-to-human like intelligence could be demonstrated
by the computing system. LLVM IR is a strongly typed
reduced instruction set, very similar to assembly level lan-
guage, used by the LLVM compiler to represent program
source code. Fig. 1 shows the histogram of the IR code of
a ‘‘Hello, World!’’ program written in C (see Program 1)
and another C program with an addition of integer variable
initialization code (see Program 2). When we represented
the source code of these programs into visual images using
our SoCodeCNN (Program Source Code for visual Convo-
lutional Neural Network (CNN) classification) approach and

157158 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-6161-4637
https://orcid.org/0000-0003-2056-0569
https://orcid.org/0000-0002-3693-6973
https://orcid.org/0000-0003-3292-8551

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 1. Histogram of source-code of ‘‘Hello, World’’ program vs
Histogram of source-code of it with an additional integer variable
initialization (Gray level vs Number of pixels).

FIGURE 2. Differences in activation of neurons represented in shades of
blue colour encoding.

passed them through a visual CNN based model, VGG16 [7],
pre-trained with ImageNet dataset [8], [9], we observed that
there was 14.77% difference in activation of neurons in
the last fully connected layer consisting of 1000 neurons.
We evaluated the difference between the activation of neurons
for two different programs by converting the activation of
neurons for each program into visual images and then com-
pared using Quality of Index methodology (Q) [10]. Fig. 2
shows the differences in activation of 1000 neurons in the last
fully connected layer of VGG16. In this figure, each cell in the
matrix is represented as a colour ranging from 0 to 255, where
each value ranges fromwhite to different shades of blue. If the

value is closer to 255 then the colour will be the darkest shade
of blue whereas, the shade of blue fades away as the value is
closer to 0. For the cells with white colour means that there
was no difference (value equal to 0) in activation of neuron in
that place for both the image representations of the programs
(Program 1 and Program 2). However, if the cell has a colour
other than white means that there is a difference between the
activation of neurons in that place and the strength of the
difference is represented by the darker shade of blue as men-
tioned earlier. The way we evaluate the difference of neuron
values through blue colour representation is by finding the
difference in the neuron values and then normalizing the value
ranging from 0 to 255 (similar to ASCII values), where each
value represents a shade of blue as mentioned above. More
details on evaluating the difference between two images as an
image representation of different shades of blue is provided
in Sec. IV.

Program 1 Pseudo-
code for ‘‘Hello
World!’’
print(‘‘Hello,
World!’’);

Program 2 Pseudo-code for
‘‘Hello World!’’ with addi-
tional load/store instruction
integer a = 3;
print(‘‘Hello, World!’’);

In this paper, we took the inspiration from the human
being’s ability to learn from its surrounding visually
[11]–[15]. In [11], [12] it is evident that humans learn and
interact with their surroundings based on their visual per-
ception and eyes playing an important role in the process
and have grown to be one of the complex sensory organs
with millions of years evolution. In fact, most humans start
to learn and educate based on the visual representation of
knowledge, may that be in the form of languages in written
form or associating words with the visual representation of
objects. Most scientists have also adopted this ideology and
tried to extract patterns so that machines could be taught
in the same manner. This gave rise to the interdisciplinary
research between computer vision and natural language pro-
cessing (NLP) in the field of artificial intelligence [16], where
the main essence of the study is to teach computers to recog-
nize, understand and learn human (natural) languages in the
form of images. However, the trend in this interdisciplinary
research is to understand patterns from human languages
and then impart the knowledge to computers. For example,
in order to teach computers to understand the digit ‘7’, fea-
tures from several human written forms of ‘7’ are extracted
and then imparted to the computer [17]. This method of learn-
ing could be synonymous to the example where a non-English
speaking foreigner learns English by first associating the
English words to their mother tongue and then remembering
the word to learn English [18], [19]. Let’s call this learning
approach 1. In contrary, if we consider the example of how
most human babies learn a language is through the process of
associating phonetic words with the visual representation of
objects first and then understanding the differences in features
of different objects and remembering the associated words
[14], [20], [21]. Let’s call this learning approach 2. While it

VOLUME 7, 2019 157159

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

could be very intuitive to just take a picture of the program
source-code (Program 1 & 2) and use NLP and visual CNN
to classify the program, this approach would be similar to the
learning approach 1. However, learning approach 1 has its
own limitations, especially when complex language frame-
works are used in programs (more about this is discussed
in Sec. II).

Although it should be kept inmind that the learning process
in a human being is much more complex than covered by just
two examples mentioned above and includes knowledge and
information gathered from all sensory organs [15], [21] such
as eyes, ears, tongue, skin, and nose.

In this paper, we have adopted the same ideology of learn-
ing through visual representation (learning approach 2) by
converting the program source code intomachine understand-
able intermediate representation and then trying to extract
patterns and learning from them. To this extent the main
contributions of this paper are as follows:

1) Propose SoCodeCNN, a way to convert program
source code into more machine understandable visual
representation (images) such that it makes the pro-
cess of feature extraction from such images completely
automated by utilizing the inherent feature extraction
of visual deep convolutional neural network (DCNN)
based algorithms, taking the expert skillful human
effort out of the context.

2) Propose a new metric index named Pixelator: Pixel
wise differentiator, to understand the differences
between two images pixel by pixel in a visually rep-
resentative way.

3) Provide an exemplar case-study to utilize SoCodeCNN
for practical applications in embedded devices. The
exemplar application uses SoCodeCNN based classi-
fication to predict the types (Compute intensive, Mem-
ory intensive, Mixed workload) of different benchmark
applications along with their probability of being a cer-
tain type, and then utilizing our heuristic based power
management technique to save power consumption of
the embedded device (Samsung Exynos 5422 multi-
processor system-on-a-chip [22]). To the best of our
knowledge, this is the first work to convert program
source code to a more machine understandable visual
image and then classify into the type of program using
CNN model in order to optimize power consumption.

II. MOTIVATIONAL CASE STUDY
A. TRADITIONAL FEATURE EXTRACTION
FROM SOURCE CODE
Let us discuss the traditional approach of using machine
learning on program source code with an example. We could
assume that there is a simple program, which is capable of
executing on several CPUs using OpenMP [23] programming
framework. If we consider the following programs in Pro-
gram 3 and Program 4 then if a skillful human without a
knowledge of OpenMP is given the task of extracting features
such as how many parallel executions of for loops are there

or how many for loops are there in the programs, that person
would classify both the programs (3 & 4) as the same, having
two for loops in each algorithm. Whereas, Program 3 has
one general for loop and one parallel for loop capable of
executing on multiple threads. Therefore, the human being
has to have special technical skills in order to understand such
differences. In the study [2], the authors proposed a heuristic
based deep learning methodology for allocating resources to
executing applications by utilizing feature extraction from
source code and then training a deep neural network (DNN)
model to take decisions on resource allocation. Their pro-
posed methodology requires special technical skill-set as
described earlier.

Program 3 An OpenMP
example of partial program
#pragma omp parallel
{

#pragma omp for
for (i = 0; i<N; i++) {

c[i] = a[i] + b[i];
}

}
for (i = 0; i<M; i++) {

d[i] = a[i] + b[i];
}

Program 4 An exam-
ple of partial program
for (i = 0; i<N; i++) {

c[i] = a[i] + b[i];
}
for (i = 0; i<M; i++)
{

d[i] = a[i] + b[i];
}

On the other hand if we consider that a program consists
of 1000 features such as number of code blocks, branches,
divergent instructions, number of instructions in divergent
regions, etc. and each feature extraction requires 3 seconds for
a human being then such program would consume 3000 sec-
onds or 50 minutes for complete feature extraction so that
those features could be further used in machine learning algo-
rithm. Since feature extraction from program source-code
using NLP is heavily utilized in compiler optimization and
thus someone could argue that the field of compiler optimiza-
tion has improved a lot in past couple of years [24], [25].
However, given the emergence of specialized frameworks
and directives such as OpenMP, OpenCL, OpenVX, modern
automated code feature extraction methods [1]–[4] are still
lacking in pace in terms of accurately extracting such features
in a completely automated manner. Therefore, human inter-
vention for improved accuracy in feature extraction is always
required. However, if we utilize our SoCodeCNN methodol-
ogy of converting the program source code to images and then
utilize them in visual convolutional neural networks (CNNs)
then it does not require any human intervention in the pro-
cess and could end up saving 50 minutes in manual feature
extraction such as the case for the example mentioned above.

B. FILLING UP THE GAP
Instead of identifying features from source code by the user
and then feeding them to machine learning models as in
the conventional approaches, with our approach the machine
learning model is able to understand and learn from the

157160 VOLUME 7, 2019

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 3. Block diagram of SoCodeCNN.

patterns in the source code of the program by themselves. One
of our important observations which has led to the proposal of
our methodology, ‘‘SoCodeCNN’’, human evolution inspired
approach to convert program SourceCode to image forCNN
classification/prediction, is that when we compared the two
different source codes (Program 1 & 2), where the difference
is only of that of an additional load/store instruction, there
was a difference of 16.98% between the images using the
Quality of Index methodology (Q) [10], and a Mean Squared
Error (MSE) value of 7864.3. In Fig. 1 we also show the his-
togram of two different aforementioned source codes, which
highlights the fact that even for a minute difference such
as introducing a simple instruction is capable of creating a
different pattern. The main motivation of this study is to fill
up the gap in the usual conventional approaches by employing
‘‘SoCodeCNN’’ to automate feature extraction from program
source-codes and using visual based machine learning algo-
rithm to understand the inherent differences in patterns of
source codes of different programs so that further learning
and classification could be performed on such programs.
In our proposed methodology, we introduce an effective way
of converting source codes to visual images so that they could
be fed to different computer vision based Deep Convolutional
Neural Network for training and classification purposes.

III. SOCODECNN: HOW IT WORKS
Many human beings are not able to read or write using
written languages, yet intelligent capacity of human brain and
sophistication of visual capacity make the same human being
intelligent enough to learn about the surrounding through
visual representation of every object. For example, a human
being might not be able to read or write ‘‘car’’ or ‘‘truck’’, yet
when he/she sees one, the person instantly can differentiate
between a car and a truck based on obvious visual features of
each of these objects.

We try to impart the same kind of intelligence to a computer
by representing each source-code of applications in the form
of visual images. SoCodeCNN is not just a methodology but
also a software application that processes source-codes to
be represented as visual images, which is understandable by
computing machines. It has two parts (Pre-process Source-
Code and Process Source-Code IR), which are achieved
through three distinct modules (refer to Fig. 3) accomplishing

separate tasks on their own in order to achieve the accumu-
lated goal. The three modules are as follows: IR Generator,
Code Cleanser & Image Creator. IR Generator and Code
Cleanser pre-process the source-code of the application in
order to generate platform-independent intermediate repre-
sentation code so that the visual image could be created,
whereas the Image Creator actually processes the intermedi-
ate representation code of the program source-code to create
a visual image. The overview of SoCodeCNN is provided in
Algorithm 5. Next, we provide more details of steps Pre-
process Source-Code and Process Source-Code IR.

A. PRE-PROCESS SOURCE-CODE
The algorithm of this part is provided in Algo. 5
(from line 4 to 11).

1) IR GENERATOR
In this intermediate step, the LLVM intermediate represen-
tation (IR) [5], [6] of the source code of an instance of
an application (Appi) is generated. LLVM IR is a low-level
programming language, which is a strongly typed reduced
instruction set computing (RISC) instruction set, very similar
to assembly level language. The importance of converting
to LLVM IR is that the code is human readable as well
as easily translatable to machine executable code, which is
platform-independent. This means that LLVM code could be
used to build and execute an application instance (Appi) on
any operating system such as Windows, Linux, Mac OS, etc.
LLVM also provides a methodology to create optimized IR
codes, where the IR code is optimized even further such as not
including unused variables, memory optimization, etc. The IR
Generator generates the optimized IR code from the program
source-code for further processing.
For Example: When we convert the Program 1 to LLVM

IR code we achieve the IR code as shown in the snap-
shot in Fig. 4.(a). We could notice that the first four
lines consist of meta-data about the program itself such
as the name of the program, related meta-information, etc.
Although it should be noted that regardless of the target
platform and the platform OS information is available in the
LLVM IR code as meta-information, however, the variables
and other instructions generated as part of the IR code is
platform-independent.

VOLUME 7, 2019 157161

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 4. Processing of LLVM IR Code of Program 1 by IR Generator and Code Cleanser modules.

2) CODE CLEANSER
The main job of the Code Cleanser module is to get rid of
the redundant part of the IR code, which does not add any
value in the process of understanding the implementation of
the application. Such redundant part of the code consists of
initializing the name of the application and on which platform
the LLVM IR code is built for or comments in the IR, etc.
Once the redundant part of the LLVM IR code is removed
the IR is ready to be utilized for visual image creation by the
Image Creator.
For example: Fig. 4.(b) shows the IR code after Code

Cleanser processes the IR code which is generated from the
IR Generator module.

B. PROCESS SOURCE-CODE IR
The algorithm of this part is provided in Algo. 5
(from line 12-34).

IMAGE CREATOR
The Image Creator module first gets the total number of
characters in the file consisting of LLVM IR code and the
number of characters (SizeOf (IR) in line 14 of Algo. 5) is
denoted by totalSize. The totalSize would be used to evalu-
ate the height and width of the visual image to be created
and the relationship between the height, width and totalSize
is provided in Eq. 1. The height and width of the image
are determined such that |height − width| (see Eq. 1) is
the least from all the possibilities of a set (F) of factors,
F = {f1, f2,fn} (where f1, f2,fn are all possible factors
of totalSize), of totalSize, and height and width belong to the
set F .

totalSize = height × width (1)

When the height and width is evaluated, the Image Cre-
ator module creates an instance of an empty image matrix
(Imgi) as 0Mheight×width . The Image Creator then parses through
the file containing the LLVM IR code and reads the file
character by character and fetches the ASCII value (a) of
those characters. Since each unique character will have a
unique ASCII value (number), we would be converting the

IR code to their equivalent number representatives, which are
correspondingly processed by the computing system. After
fetching the ASCII value (aj) of the character at position j
of totalSize, the value at the corresponding position on the
image matrix (Imgi) is replaced with the ASCII value of the
character (as shown in line 28 to 31 in Algo. 5) since totalSize
follows a relationship with height and width as shown in
Eq. 1. The image matrix could be denoted by the formula
portrayed in Eq. 2.

Imgi = (aheight,width) ∈ Rheigth×width and

aheight,width = ASCII (aj) ∀j ∈ R & 0 ≤ j ≤ totalSize (2)

For Example:After Image Creator processes the optimized
LLVM IR code of Program 1, we get a visual image as the
Output in Fig. 3.

IV. PIXELATOR: PIXEL WISE DIFFERENTIATOR
OF IMAGES
A. OVERVIEW OF PIXELATOR
We have also designed a special algorithm, which is capa-
ble of showing pixel wise difference between two separate
images in the form of different colour shades. We call this
algorithm as Pixelator view (Pixel wise differentiator view).
In the Pixelator view, two images are compared pixel by pixel
where each difference in the pixel value is evaluated using
Eq. 3 and the difference is shown in a cell in the matrix
representation. Each pixel of first image (P1), which is being
compared, is converted into its equivalent integer value. Since
each pixel of the image has a Red-Green-Blue (RGB) value
associated with it, we use (R × 216 + G × 28 + B) formula
to convert the associated RGB value of the pixel of the first
image to its corresponding integer, and then compared with
the integer value (RGB to integer) of the corresponding pixel
in the second image (P2), where the difference in the value
only ranges from 0 to 255 similar to ASCII values. Each
value, ranging from 0 to 255, represents a shade of blue.
Since most of the program source codes are written in the
English language where each character in the code could be
represented by a unique ASCII value ranging from 0 to 255,
henceforth, we chose the range of difference between the

157162 VOLUME 7, 2019

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

Algorithm 5 SoCodeCNN: The Methodology
Input:
S(App): set of source-code of applications, where
source-code of each application instance is represented
as Appi
Output: I : set of visual images, each representing each

Appi in S(App)
1 Initialize:
2 heightimageMatrix = 0;
3 widthimageMatrix = 0;
4 Preprocess Source-code:
5 foreach Appi in S(App) do
6 Generate LLVM IR using IR Generator module;
7 Generate LLVM Optimized IR using IR Generator

module;
8 Strip all the program related metadata using Code

Cleanser module;
9 Strip all the comments using Code Cleanser module;

10 Store the IR in a set S(IR);
11 end
12 Process Source-code IR using Image Creatormodule:
13 foreach IRi in S(IR) do
14 totalSize = SizeOf (IRi);
15 foreach Byte in IRi do
16 Store in imageArray[totalSize] as an integer

value;
17 end
18 lengthOfFactorArray = Total number of factors of

totalSize;
19 Factorize totalSize and store in

factorArray[lengthOfFactorArray];
20 foreach Factor, f ,

in factorArray[lengthOfFactorArray] do
21 divisor = totalSize/f ;
22 if (f − divisor) is least then
23 heightimageMatrix = f ;
24 widthimageMatrix = divisor ;
25 end
26 end
27 Create an image matrix, Imgi with height,

heightimageMatrix , and width, widthimageMatrix ;
28 foreach ASCII Integer value, ai,

in imageArray[totalSize] do
29 foreach Cell, ci, in Imgi do
30 Store ai in ci;
31 end
32 end
33 Store Imgi in I ;
34 end
35 return I ;

pixels to be within that.

int(P′) = |int(P1i,j)− int(P
2
i,j)| mod 255 (3)

If we assume that h and w are the height and width of the
referenced (original) image respectively then the Pixelator
also integrates (adds) the difference between corresponding
pixels to quantify the difference between two separate images
using the Eq. 4. In 4, the h and w corresponds to the height
and width of the image (P′) respectively. We have given the
index in Eq. 4 the same name as the approach itself for ease of
naming convention. If the value of the index, Pixelator, using
Eq. 4 is high then it means that the difference between the two
images is also high and directly proportional.
Note: If the size of the images (P1,P2) are different then

the pixel value of the smaller image (Psmall,whereP1 ≤
Psmall ≤ P2) is compared with corresponding pixel value
of the larger image (Plarge,whereP1 ≤ Plarge ≤ P2) till the
difference of all the pixel values of dimension (hsmall×wsmall)
ofPsmall are evaluated, where hsmall,wsmall corresponds to the
height and width of Psmall respectively.

The reason to have both a quantitative value and a visual
image to understand the difference between two images, pixel
by pixel, is to make it easier for both human and machine
to understand the differences between the images. Although
it is easier and intuitive to understand the differences of
the images just by visualizing and inspecting the difference
by a human being, however, for a machine it is not easy
to achieve such level of capability without some complex
computation. Whereas, machines can process numbers faster
and hence having a quantitative value (number) associated to
measure the difference between two images is more readily
understandable by the machine.

Pixelator =
h,w∑
1,1

int(P′) (4)

B. IMPORTANCE OF PIXELATOR
Some of the popular approaches for assessing perceptual
image quality to quantify the visibility of errors (differ-
ences) between a distorted image and a reference image
includes Mean Squared Error (MSE) [26], Quality of
Index (Q) methodology [10] and Structural Similarity Index
(SSIM) [27] for measuring image quality.

A widely adopted assumption in image processing is that
the loss of perceptual quality is directly related to the visi-
bility of the distorted image. An easy implementation of this
concept is visualized in the MSE [26], where the differences
between the distorted image and reference image is quantified
objectively. But two distorted imageswith the sameMSEmay
have very different types of distortion, where some of the
distortions are much more visible than others. To overcome
this issue in the study, Quality of Index (Q)methodology [10],
Wang et al. developed an approach, which would quantify the
distortion by modeling it as a combination of three factors:
loss of correlation, luminance distortion, and contrast distor-
tion. Hence, quantifying distortion in images as a number
does not truly reflect the exact area on the image where
distortion happened nor reflects the kind of distortion that

VOLUME 7, 2019 157163

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 5. Highlighting differences between distorted Lena and reference Lena images using SSIM and Pixelator.

took place. In contrast in SSIM [27] approach, Wang et al.
developed a framework for quality assessment based on the
degradation of structural information by computing three
terms: the luminance, the contrast and the structural infor-
mation. The overall SSIM is a multiplicative combination of
the aforementioned three terms and represents the structural
distortion appropriate for human visual perception. However,
for minuscule distortions in one of the colour channels out of
the RGB channels of the image, SSIM fails to represent such
minimal distortion which could be differentiated for human
visual perception (see example in Sec. IV-B).

In order to overcome the drawbacks of MSE, Q and
SSIM we have developed Pixelator, which is not just able
to quantify the distortion but at the same time represent
the exact distortion area in an image representation, which
is suitable and comprehensive for human visual perception.
We developed Pixelator, especially to understand differences
in images (example result as Output in Fig. 3) created from
our SoCodeCNN approach such that we could understand
and visualize minuscule modifications in these visual images
due to minuscule changes in the program source-code, which
might not be visualized easily in general.

AN EXAMPLE DEMONSTRATING THE
IMPORTANCE OF PIXELATOR
We choose the Lena image (refer to Fig. 5.(a)), which is pop-
ularly utilized in image processing, to demonstrate the effec-
tiveness of Pixelator over approaches such as MSE, Q and
SSIM.We choose only one of the colour channels of the Lena
image and for the pixel values in that channel representing 94,
95, 96, 97 and 220, we increment the corresponding values
by 2 (distorted Lena image is shown in Fig. 5.(b)). The reason
to choose the aforementioned pixel values is that from the
histogram of the image we got to know that these pixel values
were the most frequently occurring values in the chosen Red
channel. When we evaluated the difference between distorted
Lena image and the referenced Lena image using MSE, Q,
SSIM and Pixelator, we could visualize that Pixelator is able
to quantify and reflect the differences in the form of an image
with respect to human visual perception (refer to Fig. 5.(d)),
and at the same time outperforms the popular approaches.
By differentiating the distorted and referenced images MSE

gave a value of 9.7221, Q index evaluated to be 0.99984
(approx.), SSIM was evaluated to be 0.9959 (approx.) and
Pixelator was evaluated to be 30533.43457. However, Pixe-
lator is able to represent the differences more prominently in
the form of visual representation image than SSIM, which is
shown in Fig 5 as SSIMmap. We could notice that regardless
of having a SSIM value of 0.9959 (approx.), the approach is
not able to represent the differences visually in SSIM map
(refer to Fig. 5.(c)), whereas Pixelator is able to highlight the
difference in each pixel wherever there is one.

Therefore, using Pixelator we are able to both visualize
the difference between the original and distorted image, and
quantify the difference at the same time, which could not be
achieved by other popular methodologies such asMSE, Q and
SSIM.

V. EXPERIMENTAL AND VALIDATION RESULTS
A. EXPERIMENTAL SETUP
We ran several sets of experiments to evaluate the potential
and efficacy of utilizing SoCodeCNN and scale its usability.
The first experiment denoted as Exp. 1 was performed to
see how much difference could be there in the visual images
with the slightest modification in the program source code.
We have chosen several simple programs with slight modi-
fications to convey the efficacy of utilizing the SoCodeCNN
methodology. In this experiment, the base program (denoted
as 1st program) is a ‘‘Hello, World!’’ program, which just
prints out ‘‘Hello, World!’’ on the terminal (see Program 1).
We added an additional load/store instruction in the base pro-
gram (1st program), where we initialized an integer value into
a variable and this program is denoted as the 2nd program (see
Program 2). In the next program, we added an additional code
to the base program to print out three integer values and we
denote this program as 3rd program (see Program 6). In the
4th program, also denoted as the same name in figures and
tables, has some additional load/store codes to initialize three
integer variables whereas one of the variables is the sum
of the other two and the result of the summation is printed
out on the terminal (see Program 7). We used SoCodeCNN
to convert these program source-codes to visual images and
compared the differences using histogram, Mean Squared
Error (MSE) [26] andQuality of Index (Q)methodology [10].

157164 VOLUME 7, 2019

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 6. Network architecture used for fine-tuning.

Program 6 3rd program
pseudo-code
print(‘‘Hello, World!’’);
print(1 2 3);

Program 7 4th program
pseudo-code
integer a = 3, b = 4, c;
print(‘‘Hello, World!’’);
c = a + b;
print(‘‘Sum of ’’ + a +
‘‘ and ’’ + b + ‘‘ is ’’ +
c);

In the second set of experiments, denoted by Exp. 2 we
chose VGG16 [7] Imagenet trained model with our cus-
tom classifier having only three classes: Compute, Mem-
ory, Mixed. According to several studies [28], [29] different
workloads could be classified as compute intensive, memory
intensive, and mixed (compute and memory intensive) based
on the number of instructions per cycle or memory accesses.
The purpose of Exp. 2 is to show the efficacy of existing
CNNmodels to classify programs based on images generated
by SoCodeCNN. The classes (Compute, Memory, Mixed) of
our classifier reflects the different types of workloads and
hence denotes the type of program application. The class
Compute refers to the programs, which are very compute
intensive, but has low memory transactions (read/write, data
sharing/exchange) in comparison, whereas the classMemory
represents the programs, which have really high memory
transactions in comparison to the computation performed in
such programs. The class Mixed represents programs, which
are both compute intensive and memory intensive. We con-
verted all the benchmarks of the PARSEC [30] benchmark
suit using our SoCodeCNN and passed the corresponding
images through the pre-trained VGG16 to fetch the Deep
Dream [31] images from the last fully connected layer of
the model for each of the three classes to compare the visual
differences between these classes if there is any.

In the third set of experiments (Exp. 3) we uti-
lized SoCodeCNN to convert the program source-codes of
all benchmarks from the PARSEC, SPLASH-2 [32] and
MiBench [33] benchmark suit. The purpose of Exp. 3 is
to show scalability of SoCodeCNN’s application with CNN
model by classifying programs from some of the popular
benchmark suits. There were 28 individual images in total
created from PARSEC and SPLASH-2 including P-thread
and serial version of some of the benchmarks, and were
segregated into three different classes (Compute, Memory
& Mixed) based on the study [34] comparing each bench-
mark with respect to their different number of instructions
and memory transaction. To train and test the images for

classification purposes VGG19 CNN model is used instead
of VGG16 since it produced improved classification accuracy
due to its deeper architecture. We fine-tuned VGG19 CNN
model by adding our a new randomly initialized classifier,
and training the last fully connected layer by freezing all the
layers of the base model (frozen layers represented with gray
colour in Fig. 6) and unfreezing the last fully connected layer
(unfrozen layers represented with green colour in Fig. 6).
In this way, only the weights of the last fully connected
layer is updated and the classifier is trained with our images
(see Fig. 6 for the CNN architecture used for fine-tuning).
The source-code of benchmarks of MiBench are used for
cross-validation purpose and testing the trained VGG19 CNN
with our defined classes. The 28 images from PARSEC and
SPLASH-2 were utilized to train the classifier and the last
fully connected layer of the VGG19 pre-trained CNN using
transfer learning [35] so that during prediction we could clas-
sify a program source-code image using a visual based CNN
model such as VGG16/19. The Compute and Mixed classes
have 10 images each, and theMemory class has 8 images for
training. Due to the imbalance in the training dataset, weights
of the classes were set accordingly to facilitate fair training.

Program 8 Execute power
of 2 for 100,000 numbers iter-
atively on 4 different threads
function evaluatePowerOf2()
{
foreach i in 100, 000 do

Compute i2;
end
}
Execute evaluatePowerOf2()
on Thread 1;
Execute evaluatePowerOf2()
on Thread 2;
Execute evaluatePowerOf2()
on Thread 3;
Execute evaluatePowerOf2()
on Thread 4;

Program 9 Execute
power of 2 for 100,000
numbers iteratively
and add the result with
itself in a separate
variable
function double-
SumOfPowerOf2()
{
foreach i in

100, 000 do
z = Compute i2;
y = z;
x = y + z;

end
}

Since most of the benchmarks from MiBench are mixed
load and, sometimes the benchmark programs are compli-
cated to be segregated into either of the three different classes.
Hence, to show the efficacy of using SoCodeCNN approach
in CNN based algorithm we wrote simple programs, which
would directly reflect either compute intensive or memory
intensive or mixed workloads, and evaluate the classification
outcome of such programs in Exp. 3. We wrote a simple
program (see Program 8), which computes power of 2 for
100,000 numbers iteratively on 4 different threads and hence
it could be classified as ‘Compute’. We also slightly modified
the program to make it more memory intensive by initializing
the value of the power of 2 in a separate variable and then
adding the result with itself in another separate variable (see

VOLUME 7, 2019 157165

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

Program 9). In Prog. 9 instead of executing the computation
function on four different threads, we execute it only on one
thread, making it more memory intensive. We further slightly
modified Prog. 9 to make it mixed workload (compute and
memory intensive) by executing the memory intensive func-
tion iteratively on 4 separate threads (see Program 10).We fed
the source-code of the Prog. 8, 9 and 10 to the trained CNN
in order to verify the output classification.

Program 10 Execute power of 2 for 100,000 numbers
iteratively and add the result with itself in a separate
variable on 4 different threads
function doubleSumOfPowerOf2() {
foreach i in 100, 000 do

z = Compute i2;
y = z;
x = y + z;

end
}
Execute doubleSumOfPowerOf2() on Thread 1;
Execute doubleSumOfPowerOf2() on Thread 2;
Execute doubleSumOfPowerOf2() on Thread 3;
Execute doubleSumOfPowerOf2() on Thread 4;

B. EXPERIMENTAL RESULTS
Table 1 shows the result from Exp. 1, where different
programs are compared using MSE and Q methodologies.
From the table, it is evident that the visual representation of
different program source-codes have different image
representation and hence a potential playground for pat-
tern recognition using visual CNN and image processing
methodologies. Fig. 7 shows the histograms of four different
programs (Program 1, 2, 6 and 7) of Exp. 1, where the
X-axis represents the gray level of the visual images of the
corresponding program and Y-axis represents the number of
pixels for the corresponding gray level. Fig. 8 shows the
Pixelator view of the differences in the visual images of
Program 1 and Program 2.

Fig 9 shows the Deep Dream images of three dif-
ferent classes (Compute, Memory & Mixed) of program
source-codes from Exp. 2, which proves that each class
has different features that could be extracted to differ-
entiate between program source-code in a visual manner.
Fig. 2 shows the difference in activation of neurons of the
VGG16CNNwhen 1st Program and 2nd Programs are passed
through the CNN model of Exp. 2.

InExp. 3 after training the VGG19CNN the CNN achieved
a validation prediction accuracy of 55.56% and when we
passed the program source-code of Program 8, the trained
CNN was able to classify the program as Compute inten-
sive with the confidence probability of each class as shown
in Table 2. From Table 2 we could also notice that although
the CNN classified Program 8 as compute intensive but
the probability of memory intensive is also high and that
is because when the power of 2 is computed iteratively,

TABLE 1. MSE and Q values of SoCodeCNN of different programs
compared to 1st program.

FIGURE 7. Histogram of source-code of 1st, 2nd, 3rd and 4th Program.

FIGURE 8. Differences in pixel of 1st and 2nd Program using Pixelator
view.

TABLE 2. Classification probability of program 8 for different classes:
compute, memory & mixed.

the values are still stored in the memory and hence has
moderately high memory transaction as well. Table 3
shows the classification prediction for Program 9 and
Table 4 shows the classification prediction for Program 10.
In order to verify whether Program 8, 9 & 10 are Compute,
Memory intensive and Mixed workload respectively we used

157166 VOLUME 7, 2019

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 9. Deep Dream Images of three different types of program source-codes: Compute, Memory & Mixed.

FIGURE 10. Classification of MiBench [33] benchmark suits (Benchmark vs Confidence in % for a
specific class).

TABLE 3. Classification probability of program 9 for different classes:
compute, memory & mixed.

TABLE 4. Classification probability of program 10 for different classes:
compute, memory & mixed.

MRPI [28] methodology for cross-validation. In [28] work-
loads are classified based on Memory Reads Per Instruction
metric (MRPI = L2 cache read refills

Instructions retired). The workload is quan-
tified by MRPI, where high value of MRPI signifies low
workload on the processing core and vice-versa. For Pro-
gram 8, 9 & 10 MRPI values were 0.018, 0.031 and 0.028 on

FIGURE 11. Grad-Cam visualization.

average respectively, proving the correctness of workload
classified by our trained CNN model. Therefore, for our
chosen programs (Program 8, 9 & 10) we could notice that
the CNN classifier is able to predict the label for each pro-
gram source-code with high probability. Fig. 10 shows the
classification (confidence in percentage) of some of the cho-
sen popular benchmarks from MiBench benchmark suits.

VOLUME 7, 2019 157167

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 12. Block diagram of power management agent, APM, using SoCodeCNN.

From the aforementioned experiments we noticed that
compared to conventional methodologies [1], [3], where
skilled human is required to extract features from program
source-code to determine whether a program is compute
intensive or memory intensive or mixed, our approach is
able to avoid such manual feature extraction and still able to
classify programs into their corresponding classes accurately
in an automated manner using visual based CNN algorithm.

C. WHERE THE CNN IS LOOKING
In order to verify whether the VGG19 CNN of Exp. 3 is
extracting the correct features to be able to predict the type
of the application (program) we utilized Grad-Cam [36] to
visualize which area of the program-source code image is the
model focusing on to make a decision (predict). In Grad-Cam
the visual-explanation of decision made by the CNNmodel is
provided by using the gradient information flowing into the
last convolutional layer of the CNN model to understand the
importance of each neuron for a decision made.

When we utilized Grad-Cam for classification of Pro-
gram 10 and SHA benchmark application of MiBench by
CNN we got Fig. 11.a and Fig. 11.b respectively to notice
which regions are highlighted, reflecting the regions focused
by the CNN to make the prediction decision. In Fig. 11.a and
Fig. 11.b the regions highligted as red are the most important
feature-extraction regions by the CNN, whereas the yellow
regions are less significant and the blue ones are the least
significant regions influencing the prediction decision.

When we referred back the red-highlighted regions of
Fig. 11.a and Fig. 11.b we noticed that the CNN is focus-
ing on the code for separate thread executions of Pro-
gram 10, and parts of the functions named sha_transform and
sha_final of SHA benchmark of MiBench. Upon inspecting
Grad-Cam visualization of Program 10 and SHA benchmark
it re-instated our confidence in the performance of the CNN in
order to make a prediction decision since the aforementioned
code regions in those programs are actually the important
code-regions which are required to deduce the type of the
application.

VI. EXEMPLAR APPLICATION OF SOCODECNN
To prove the efficacy of utilizing SoCodeCNN we use the
CNN model from the Exp. 3 mentioned in Section V-A to
develop an automated power management agent, which uses
the CNN model to decide the operating frequency of the

processing elements (CPU) based on the type of the program
being executed on the computing system. The procedure
of reducing dynamic power consumption (P ∝ V 2f) by
reducing the operating frequency of the processing elements
is known as dynamic voltage frequency scaling (DVFS)
[37], [38]. Since dynamic power is proportional to the oper-
ating frequency of the processing elements as shown in
the aforementioned equation, executing the application on a
reduced operating frequency leads to a reduced power con-
sumption of the system. In order to cater for performance
and reduced power consumption several resource mapping
and partitioning mechanisms using DVFS [37]–[42] has been
proposed. To implement the automated power management
agent we chose Odroid XU4 [43] development board (see
Fig. 13), which employs the Samsung Exynos 5422 [22]
multiprocessor system-on-a-chip (MPSoC) platform. The
Exynos 5422 MPSoC is used in several modern Samsung
smart-phones and phablets including Samsung Galaxy Note
and S series devices.

A. HARDWARE AND SOFTWARE INFRASTRUCTURE
Nowadays heterogeneous MPSoCs consist of different types
of cores, either having the same or different instruction
set architecture (ISA). Moreover, the number of cores of
each type of ISA can vary based on MPSoCs and are
usually clustered if the types of cores are similar. For
this research, we have chosen an Asymmetric Multicore
Processors (AMPs) system-on-chip (AMPSoC), which is
a special case of heterogeneous MPSoC and has clus-
tered cores on the system. Our study was pursued on the
Odroid XU4 board [43], which employs the Samsung Exynos
5422 [22] MPSoC (as shown in Fig.13.b). Exynos 5422 is
based on ARM’s big.LITTLE technology [44] and contains
cluster of 4 ARM Cortex-A15 (big) CPU cores and another
of 4 ARM Cortex-A7 (LITTLE) CPU cores, where each
core implements the ARM v7A ISA. This MPSoC provides
dynamic voltage frequency scaling feature per cluster, where
the big core cluster has 19 frequency scaling levels, ranging
from 200 MHz to 2000 MHz with each step of 100 MHz and
the LITTLE cluster has 13 frequency scaling levels, ranging
from 200 MHz to 1400 MHz, with each step of 100 MHz.
Additionally, each core on the cluster has a private L1 instruc-
tion and data cache, and a L2 cache, which is shared across
all the cores within a cluster.

157168 VOLUME 7, 2019

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 13. Odroid XU4 development board and Exynos 5422 MPSoC.

FIGURE 14. Power consumption of executing Program 9 on ondemand
vs APM.

Since Odroid XU4 board does not have an internal power
sensor onboard, hence an external power monitor [45] with
networking capabilities over WIFI is used to take power con-
sumption readings. Although the ARMCortex-A7 (LITTLE)
CPU cores on Odroid XU4 do not have temperature sensor
but our intelligent power management agent approach is
scalable and works for heterogeneous cluster cores. We have
run all our experiments on UbuntuMate version 14.04 (Linux
Odroid Kernel: 3.10.105) on the Odroid XU4.

B. DVFS USING SOCODECNN IN MPSOCS
Fig. 12 shows the block diagram of the implementation of the
automated power management agent. When an instance of an
application (Appi) is executed, the program source code of the
application is fed to the SoCodeCNN to create the image rep-
resenting the platform-independent IR code of Appi, which
will be used by the CNN model (called as ‘‘Program Classi-
fier’’ in Fig. 12) for classification purpose. If Appi has been
executed before on the platform then the image representation
created by SoCodeCNN during its first execution is already
saved on the memory and used only for classification purpose
for future executions. The Program Classifier will classify
based on what type of application is being executed at the
moment such as Appi is of compute intensive or memory

FIGURE 15. Power consumption of executing Program 10 on ondemand
vs APM.

intensive or mixed load, and DVFS module is used to set the
operating frequency of the CPUs of the Odroid as required by
the type of executing application.

We refer to our automated power management agent as
APM. In our APM implementation we specify if an applica-
tion is compute intensive then the operating frequency of the
big CPU cluster of the Odroid should be set to 2000MHz and
the LITTLE cluster’s frequency to 1400 MHz, whereas if the
application is memory intensive then the operating frequency
of the big cluster to be set to 900 MHz and the LITTLE
cluster’s frequency to 600 MHz. If the executing application
is of mixed workload then the operating frequency of the
big cluster to be set to 1300 MHz and the LITTLE cluster’s
frequency to 1100 MHz. Through our experiments we have
found that if an application is memory intensive or mixed
load then most of the time running the CPUs at high fre-
quency only wastes energy while not utilizing the maximum
cycles per second capacity of the CPUs. Hence, we chose
the associated operating frequencies as mentioned earlier
through several experimentations. In the next sub-section we
show the power consumption difference between execution
of Program 9 and Program 10 on UbuntuMate’s (Linux)
ondemand governor and on our APM implementation in
a graphical representation. We also evaluate the difference

VOLUME 7, 2019 157169

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

FIGURE 16. Average power consumption of different benchmark programs on ondemand vs APM vs
performance.

in terms of power consumption while executing several
benchmark applications of MiBench using Linux’s onde-
mand, performance and APM.

C. RESULTS
Fig. 14 and Fig. 15 show the power consumption over time
of execution of Program 9 and Program 10 respectively while
executing on Linux’s ondemand governor and on our APM.
In the figures, the Y axis is denoted by power consumption in
watts (W) vs time interval in seconds. In Fig. 14, using APM
we are able to save 49.52% of power on average over the time
period (APM power consumption: 1.372 W vs ondemand
power consumption: 2.718 W). Using APM we only sacri-
ficed 1.8 secs of execution time compared to ondemand’s exe-
cution time of 58.2 secs while achieving 49.52% more power
consumption reduction. In Fig. 15, using APM we are able to
save 43.48% of power on average (APM power consumption:
1.716 W vs ondemand power consumption: 3.036 W). Using
APMwe only sacrificed 3.1 secs of execution time compared
to ondemand’s execution time of 80.4 secs while achieving
43.48% more power consumption reduction.

When we evaluated the power consumption of executing
several benchmark applications ofMiBench using ondemand,
performance governors and APM, we noticed that APM is
able to achieve more than 10% power saving on average
over the time period compared to ondemand and perfor-
mance while sacrificing only less than 3% of performance on
average in terms of execution time. Fig. ?? shows the aver-
age power consumption of different benchmarks while using
ondemand, performance and APM. In Fig. ?? the X-axis
denotes the name of the benchmark and the Y-axis denotes
the average power consumption.

It should also be noted that when a new application is
executed on the platform, the average time taken to create the
visual image from the source-code of the application using
SoCodeCNN is less than 2 seconds (depending on the size

of the program). Image creation is only performed once if
the new application is executed for the first time using APM,
otherwise, the inference of the image for classification and
setting the operating frequency appropriately takes less than
150 milliseconds.

D. ADVANTAGE OF SOCODECNN BASED DVFS
In the methodology proposed by Taylor et al [1], the authors
define a machine learning based system which selects the
appropriate processing elements and the desired operating
frequency of the processing elements by extracting the fea-
tures from the program source code and then evaluating the
feature values by a predictor. However, the features from
the program source code has to be manually selected by
skilled people having experience with the programming lan-
guage framework. In another study by Cummins et al. [2],
the authors utilize similar feature extraction methodology
from source code to be fed to a DNN model to make deci-
sions and this approach also requires the intervention of
a skilled person to perform the manual feature extraction.
On the other hand, studies [28], [46], [47] which include
hybrid scheduling/resource mapping where the methodology
is partly dependent on offline and online training of the
executing application to decide the appropriate processing
elements and their operating frequencies, also has its own
limitations. In case a new application is being executed on
the device, we need to perform an offline training on this
new application in order to achieve an improvement on the
main objective of scheduling/resource mapping to optimize
performance, energy efficiency, etc.

From the exemplar application of APM using SoCodeCNN
to use DVFS of the processing elements we could notice that
we do not require a skilled person to extract features manually
from the source code to be fed to the software agent to decide
the operating frequency of the system. At the same time in
case a new application is installed and executed on the system

157170 VOLUME 7, 2019

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

then the APM is capable of classifying the application using
SoCodeCNN’s image conversion methodology and trained
CNN model, and then appropriately deciding the operating
frequency of the processing elements based on the type of
application being executed. The most advantage of utiliz-
ing SoCodeCNN is that we can design power and thermal
management agents which are automated in nature with an
overhead of at most 150 ms during classification and setting
the operating frequency.

VII. SOCODECNN: A FUTURE DIRECTION
Usually to train Deep Convolutional Neural Networks
(DCNNs) we require a huge dataset consisting of thousands
to millions of data (image) or else there might be an issue of
overfitting by the trained DCNN model, which in turn could
lead to inaccurate predictions. However, from the experimen-
tal results, the trained DCNN models using SoCodeCNN’s
code to image conversion methodology led to accurate results
in all the predictions.

Given the efficacy of this proposed approach, we would
expect more researchers utilizing this concept to understand,
study and learn from the visual patterns of images of the
source-codes of applications and continue contributing to
building a large dataset of such code repositories so that it
could be used to train DCNN models in the future.

VIII. CONCLUSION
In this paper, we propose SoCodeCNN (Program Source
Code for visual CNN classification) capable of converting
program source-codes to visual images such that they could
be utilized for classification by visual CNN based algorithm.
Experimental results also show that using SoCodeCNN we
could classify the benchmarks from PARSEC, SPLASH-2,
and MiBench in a completely automated manner and with
high prediction accuracy for our chosen test cases. We also
demonstrate with an example the use of SoCodeCNN for
DVFS in MPSoC.

IX. CODE AVAILABILITY
The source-code for SoCodeCNN is available from
https://github.com/somdipdey/SoCodeCNN, and that of
Pixelator is available from https://github.com/somdipdey/
Pixelator-View.

REFERENCES
[1] B. Taylor, V. S. Marco, and Z. Wang, ‘‘Adaptive optimization for OpenCL

programs on embedded heterogeneous systems,’’ ACM SIGPLAN Notices,
vol. 52, no. 5, pp. 11–20, 2017.

[2] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, ‘‘End-to-end deep
learning of optimization heuristics,’’ in Proc. IEEE 26th Int. Conf. Parallel
Archit. Compilation Techn. (PACT), Sep. 2017, pp. 219–232.

[3] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, ‘‘A survey of machine
learning for big code and naturalness,’’ ACM Comput. Surv., vol. 51, no. 4,
p. 81, Jul. 2018.

[4] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano,
‘‘A survey on compiler autotuning using machine learning,’’ 2018,
arXiv:1801.04405. [Online]. Available: https://arxiv.org/abs/1801.04405

[5] C. A. Lattner, ‘‘LLVM: An infrastructure for multi-stage
optimization,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Illinois at
Urbana–Champaign, Champaign, IL, USA, 2002.

[6] Y. Ko, B. Burgstaller, and B. Scholz, ‘‘LaminarIR: Compile-time
queues for structured streams,’’ ACM SIGPLAN Notices, vol. 50, no. 6,
pp. 121–130, 2015.

[7] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556. [Online]. Avail-
able: https://arxiv.org/abs/1409.1556

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, and M. Bernstein, ‘‘ImageNet large scale visual
recognition challenge,’’ Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252,
Dec. 2015.

[10] Z. Wang and A. C. Bovik, ‘‘A universal image quality index,’’ IEEE Signal
Process. Lett., vol. 9, no. 3, pp. 81–84, Mar. 2002.

[11] D. Marr, Vision—A Computational Investigation into the Human Repre-
sentation and Processing of Visual Information. Cambridge, MA, USA:
MIT Press, 1982.

[12] P.Messaris,Visual Literacy: Image, Mind, and Reality. Boulder, CO, USA:
Westview Press, 1994.

[13] P. Dallow and J. Elkins, ‘‘The visual complex: Mapping some interdisci-
plinary dimensions of visual literacy,’’ in Visual Literacy. Evanston, IL,
USA: Routledge, 2009, pp. 99–112.

[14] M. R. Dillon and E. S. Spelke, ‘‘Young children’s use of surface and object
information in drawings of everyday scenes,’’ Child Develop., vol. 88,
no. 5, pp. 1701–1715, 2017.

[15] M. Ahissar, M. Nahum, I. Nelken, and S. Hochstein, ‘‘Reverse hierarchies
and sensory learning,’’ Philos. Trans. Roy. Soc. London B, Biol. Sci.,
vol. 364, no. 1515, pp. 285–299, 2009.

[16] P. Wiriyathammabhum, D. Summers-Stay, C. Fermüller, and
Y. Aloimonos, ‘‘Computer vision and natural language processing:
Recent approaches in multimedia and robotics,’’ ACM Comput. Surv.,
vol. 49, no. 4, 2017, Art. no. 71.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[18] L. Jancová, ‘‘Translation and the role of the mother tongue in ELT,’’
Palacký Univ. Olomouc, Olomouc, Czech Republic, Tech. Rep., 2010.

[19] J. Krajka, ‘‘Your mother tongue does matter! Translation in the classroom
and on the Web,’’ Teach. English Technol., vol. 4, no. 4, 2004.

[20] J. L. Shinskey and L. J. Jachens, ‘‘Picturing objects in infancy,’’ Child
Develop., vol. 85, no. 5, pp. 1813–1820, 2014.

[21] R. A. Thompson, ‘‘Development in the first years of life,’’Future Children,
vol. 11, no. 1, pp. 20–33, 2001.

[22] Exynos 5 Octa (5422). Accessed: Jul. 23, 2018. [Online]. Available:
https://www.samsung.com/exynos

[23] The Open Standard for Parallel Programming of Heterogeneous Sys-
tems. Accessed: Jul. 23, 2018. [Online]. Available: https://www.khronos.
org/opencl/

[24] M. Namolaru, A. Cohen, G. Fursin, A. Zaks, and A. Freund, ‘‘Practi-
cal aggregation of semantical program properties for machine learning
based optimization,’’ in Proc. ACM Int. Conf. Compilers, Archit. Synthesis
Embedded Syst., 2010, pp. 197–206.

[25] H. Leather, E. Bonilla, and M. F. P. O’Boyle, ‘‘Automatic feature gener-
ation for machine learning–based optimising compilation,’’ ACM Trans.
Archit. Code Optim., vol. 11, no. 1, 2014, Art. no. 14.

[26] J.-B. Martens and L. Meesters, ‘‘Image dissimilarity,’’ Signal Process.,
vol. 70, no. 3, pp. 155–176, 1998.

[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[28] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, ‘‘Mapping on
multi/many-core systems: Survey of current and emerging trends,’’ inProc.
IEEE 50th ACM/EDAC/IEEEDesign Autom. Conf. (DAC), May/Jun. 2013,
pp. 1–10.

[29] B. K. Reddy, A. K. Singh, D. Biswas, G. V. Merrett, and B. Al-Hashimi,
‘‘Inter-cluster thread-to-core mapping and DVFS on heterogeneous multi-
cores,’’ IEEE Trans. Multiscale Comput. Syst., vol. 4, no. 3, pp. 369–382,
Jul./Sep. 2018.

[30] C. Bienia, ‘‘Benchmarking modern multiprocessors,’’ Ph.D. dissertation,
Dept. Comput. Sci., Princeton Univ., Princeton, NJ, USA, Jan. 2011.

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

VOLUME 7, 2019 157171

S. Dey et al.: SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, ‘‘The SPLASH-
2 programs: Characterization and methodological considerations,’’ ACM
SIGARCH Comput. Archit. News, vol. 23, no. 2, pp. 24–36, 1995.

[33] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, ‘‘MiBench: A free, commercially representative embedded
benchmark suite,’’ in Proc. IEEE Int. Workshop Workload Characteriza-
tion (WWC), Dec. 2001, pp. 3–14.

[34] C. Bienia, S. Kumar, and K. Li, ‘‘PARSEC vs. SPLASH-2: A quan-
titative comparison of two multithreaded benchmark suites on chip-
multiprocessors,’’ in Proc. IEEE Int. Symp. Workload Characterization
(IISWC), Sep. 2008, pp. 47–56.

[35] S. J. Pan andQ. Yang, ‘‘A survey on transfer learning,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[36] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 618–626.

[37] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang, and A. Yakovlev,
‘‘Power–aware performance adaptation of concurrent applications in het-
erogeneous many-core systems,’’ in Proc. ACM Int. Symp. Low Power
Electron. Design, 2016, pp. 368–373.

[38] A. K. Singh, C. Leech, K. R. Basireddy, B. M. Al-Hashimi, and
G. V. Merrett, ‘‘Learning-based run-time power and energy management
of multi/many-core systems: Current and future trends,’’ J. Low Power
Electron., vol. 13, no. 3, pp. 310–325, Sep. 2017.

[39] K. Chandramohan and M. F. P. O’Boyle, ‘‘Partitioning data-parallel pro-
grams for heterogeneous MPSoCs: Time and energy design space explo-
ration,’’ ACM SIGPLAN Notices, vol. 49, no. 5, pp. 73–82, 2014.

[40] R. Barik, N. Farooqui, B. T. Lewis, C. Hu, and T. Shpeisman, ‘‘A black-box
approach to energy-aware scheduling on integrated CPU-GPU systems,’’
in Proc. ACM Int. Symp. Code Gener. Optim., 2016, pp. 70–81.

[41] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and
B. M. Al-Hashimi, ‘‘Energy-efficient run-time mapping and thread parti-
tioning of concurrent OpenCL applications on CPU-GPUMPSoCs,’’ ACM
Trans. Embedded Comput. Syst., vol. 16, no. 5s, p. 147, 2017.

[42] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak, ‘‘A sur-
vey and comparative study of hard and soft real-time dynamic resource
allocation strategies for multi-/many-core systems,’’ ACM Comput. Surv.,
vol. 50, no. 2, 2017, Art. no. 24.

[43] ODROID-XU4. Accessed: Jul. 23, 2018. [Online]. Available: https://goo.
gl/KmHZRG

[44] ARM Big.LITTLE Technology. Accessed: Jul. 23, 2018. [Online]. Avail-
able: http://www.arm.com/

[45] Odroid SmartPower2. Accessed: Jul. 23, 2018. [Online]. Available:
https://www.odroid.co.uk/odroid-smart-power-2

[46] B. K. Reddy, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh, ‘‘Online
concurrent workload classification for multi-core energy management,’’ in
Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2018, pp. 621–624.

[47] E. W. Wachter, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh,
‘‘Reliable mapping and partitioning of performance-constrained OpenCL
applications on CPU-GPU MPSoCs,’’ in Proc. 15th IEEE/ACM Symp.
Embedded Syst. Real-Time Multimedia, Oct. 2017, pp. 78–83.

SOMDIP DEY was born in Kolkata, India,
in 1990. He received the B.Sc. degree (Hons.)
in computer science from St. Xavier’s College
(Autonomous), Kolkata, India, in 2012, and the
M.Sc. degree in advanced computer science, with
specialization in computer systems engineering,
from The University of Manchester, U.K., in 2014.
He has more than 10 years of industry experience,
working on developing technologies, including
working for Microsoft and Samsung Electronics.

He is currently an Artificial Intelligence Scientist working on embedded
systems at the University of Essex, U.K., and a Serial Entrepreneur, with
a focus on social impact. His current research interests include affordable
artificial intelligence, information security, computer systems engineering
and computing resource optimization for performance, energy, temperature,
reliability, and security in mobile platforms. He has also served as a Reviewer
and TPC Member for several top conferences such as DATE, DAC, AAAI,
CVPR, ICCV, IEEE EdgeCom, IEEE CSCloud, and IEEE CSE.

AMIT KUMAR SINGH (M’09) received the
B.Tech. degree in electronics engineering from the
Indian Institute of Technology (Indian School of
Mines), Dhanbad, India, in 2006, and the Ph.D.
degree from the School of Computer Engineering,
Nanyang Technological University (NTU), Singa-
pore, in 2013. He was with HCL Technologies,
India, for a year and half, until 2008. He has a post-
doctoral research experience for over five years
at several reputed universities. He is currently a

Lecturer with the University of Essex, U.K. His current research interests
include system-level design-time and runtime optimizations of 2D and 3D
multicore systems for performance, energy, temperature, reliability, and
security. He has published over 80 papers in reputed journals/conferences,
and received several Best Paper Awards, including the ICCES 2017, ISORC
2016, and PDP 2015. He has served on the TPC of the prestigious IEEE/ACM
conferences DAC, DATE, CASES, and CODES+ISSS.

DILIP KUMAR PRASAD received the B.Tech.
and Ph.D. degrees in computer science and engi-
neering from the Indian Institute of Technology
(ISM), Dhanbad, India, and Nanyang Techno-
logical University, Singapore, in 2003 and 2013,
respectively. He is currently an Associate Profes-
sor at UiT The Arctic University of Norway. His
current research interests include image process-
ing, machine learning, and computer vision.

KLAUS DIETER MCDONALD-MAIER (S’91–
SM’06) is currently the Head of the Embedded
and Intelligent Systems Laboratory, University of
Essex, Colchester, U.K. He is also the Chief Sci-
entist of UltraSoC Technologies Ltd., the CEO of
Metrarc Ltd., and a Visiting Professor with the
University of Kent. His current research interests
include embedded systems and system-on-chip
design, security, development support and tech-
nology, parallel and energy-efficient architectures,

computer vision, data analytics, and the application of soft computing and
image processing techniques for real-world problems. He is a member of the
VDE and a Fellow of the IET.

157172 VOLUME 7, 2019

