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Abstract

This paper applies a plethora of machine learning techniques to forecast the direction of

the U.S. equity premium. Our techniques include benchmark binary probit models, clas-

sification and regression trees (CART), along with penalized binary probit models. Our

empirical analysis reveals that the sophisticated machine learning techniques significantly

outperformed the benchmark binary probit forecasting models, both statistically and eco-

nomically. Overall, the discriminant analysis classifiers are ranked first among all the models

tested. Specifically, the high dimensional discriminant analysis (HDDA) classifier ranks first

in terms of statistical performance, while the quadratic discriminant analysis (QDA) clas-

sifier ranks first in economic performance. The penalized likelihood binary probit models

(Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net) also outperformed the

benchmark binary probit models, providing significant alternatives to portfolio managers.
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1 Introduction

Stock market participants aim at maximising returns on portfolio investments at minimal risk.

Consequently, forecasting stock market returns has received considerable attention in recent

years. The majority of papers have focused on the forecast accuracy of competing models and

examined if there is evidence of predictability, which can lead to economic gains. However,

devising successful trading strategies is contingent on the directional accuracy of the under-

lying models. The literature on directional predictability is sparse, and the empirical findings

offer limited support. For example, the findings in (Chevapatrakul, 2013; Christoffersen and

Diebold, 2006; Nyberg and Pönkä, 2016) provide weak evidence of directional stock market

predictability. Although the predictive power of the models employed so far are shown to

be weak in statistical terms, they seem to provide economic value. Thus, the emphatic chal-

lenge lies in the development of a suitable directional predictive model involving the relevant

financial and economic variables.

The application of some benchmark econometric models used in previous findings are shown

to be weak in terms of predictive performance. The introduction of out-of-sample estimation

and forecasting techniques used by Nyberg (2011), Pönkä (2016) provide statistically signifi-

cant evidence of the directional predictability of stock market returns, but the predictive power

of the models are shown to be relatively weak, and hence, there is a need to introduce sophis-

ticated machine learning techniques, as proposed in this paper, to improve the predictive task

of the models.

This paper focuses on the application of sophisticated machine learning techniques on binary

probit and classification models to forecast the direction of the U.S. excess stock market re-

turns. The machine learning techniques employed include classification and regression trees

(CART), such as Bagging, Boosting and Discriminant Analysis classifiers, Bayesian classifiers,

Neural Networks and regularization techniques, such as Ridge, Least Absolute Shrinkage and

Selection Operator (LASSO), and Elastic Net. To compare our findings with the previous liter-

ature, we also include four variants of the benchmark binary probit models, namely, the static,

stepwise static, dynamic and stepwise dynamic models. The application of CART forecasting

models aims to explore all covariates as ensembles to learn the data, train the classification

model, recognize patterns, classify instances and to forecast future binary outcomes. With re-

spect to penalised binary probit models, we should note that the presence of shrinkage penalty

vector norms could result to a bias in coefficient estimates, reduction in the forecast errors

and improvement in predictive performance via the so-called bias-variance trade off. Thus,

the proposal of CART and penalized predictive models in this paper aims at yielding supe-

rior statistical predictive performance and economic significance compared to the benchmark

econometric models typically employed in the literature to date.

The remaining structure of the paper is laid out as follows: Section 2 discusses the relevant
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literature; Section 3 describes the research methodology; Section 4 presents the data and the

empirical findings; and Section 5 concludes the paper.

2 Literature Review

A notable quest in modern financial econometric literature is the application of suitable tech-

niques to predict the sign of stock market returns. A review of relevant empirical literature has

revealed that the use of econometric models for the directional predictability of excess stock

returns are known to produce weak predictive power, poor statistical goodness of fit and low

predictive accuracies, among others; see (Pesaran and Timmermann, 1995; Nyberg, 2011; Le-

ung et al., 2000; Chevapatrakul, 2013; Leitch and Tanner, 1991; Pönkä, 2016), even though the

empirical results seems to provide economic significance.

The previous findings on directional predictability by Anatolyev and Gospodinov (2010), and

Hong and Chung (2003) have employed a logistic regression model to predict the sign of U.S.

stock market returns using relevant financial variables as the key predictors, and their results

provide evidence of predictability, but the overall predictive power is relatively weak as com-

pared to a rule of thumb. In an attempt to determine market timing and asset allocation deci-

sions between stocks and risk-free assets, some researchers considered the role of conditional

mean and volatility while predicting the sign of asset returns. Christoffersen and Diebold

(2006) have opined that the direction of asset returns is predictable, as volatility dependence

produces sign dependence, so long as expected returns are nonzero. This notion seems to be

true, as other existing papers have also provided significant statistical evidence of the sign

predictability of the U.S. stock market returns and economic recession status by application of

static, dynamic, autodynamic and error correction models, both in-sample and out-of-sample

(Nyberg, 2011; Kauppi and Saikkonen, 2008; Nyberg and Pönkä, 2016; Nyberg, 2013).

The static and dynamic probit models proposed by Nyberg (2011) to predict the direction of

monthly U.S. excess stock returns recursively appears to have outperformed the autoregressive

moving average with exogenous inputs models (ARMAX), vector autoregressive-generalized

autoregressive conditional heteroskedasticity models (VAR-GARCH), etc. used by previous re-

searchers. The idea was based on the approach used by Kauppi and Saikkonen (2008), Estrella

and Mishkin (1998) to obtain U.S. economic recession forecasts using variables such as the U.S.

term spread and lagged stock returns, among others.

However, according to the Nyberg (2011) paper, the Estrella’s statistical goodness of fit values

in the various probit models are very low in all cases. The positive values of the Sharpe Ra-

tios signified that investors are likely to have positive returns on portfolio investments. The

percentage of correct matches as a statistical performance evaluation measure in the existing

papers are relatively low, hence the need to employ more advanced sophisticated models that

can yield a better degree of accuracy with the smallest prediction error.
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The underlying challenges associated with the use of financial and economic variables to pre-

dict stock market returns has prompted researchers to introduce sophisticated statistical or

machine learning algorithms to improve the predictive task and the overall performance eval-

uation of the resulting models under consideration. It is noticeable from the empirical literature

that statistical learning techniques, which include Random Forest, Linear Discriminant Anal-

ysis (LDA), k-Nearest Neighbour, Tree-based Classification, Recursive Partitioning, Bagging

and Boosting, Logistic Regression, Support Vector Machine (SVM), Ridge Regression, Least

Absolute Shrinkage and Selection Operator (LASSO), Least Angle Regression and Elastic Nets,

are useful for the analysis of financial econometric time series (Roy et al., 2015; Sermpinis et al.,

2017; Li and Chen, 2014; Inoue and Kilian, 2008; Zhou et al., 2015; Hsu et al., 2008; Park and

Sakaori, 2013; Chen, 2016; Stock and Watson, 2012; Lin and McClean, 2001; Kim and Swan-

son, 2014; Hajek et al., 2014; Shen et al., 2014; Pahwa et al., 2017; Swanson and White, 1997).

Khaidem et al. (2016) used the Random Forest method to predict the direction of stock market

prices. The algorithm appears to be robust in predicting the future direction of the stock market

movement, thus minimizing the risk of investment in the stock market with good predictive

accuracy.

The ridge regression introduced by Hoerl and Kennard (1970), and the least absolute shrinkage

and selection operator (LASSO) introduced by Tibshirani (1996) are found to be useful statis-

tical or machine learning techniques for econometric models. The ridge regression reduces

multicollinearity and minimizes the model prediction error but does not perform feature se-

lection; the LASSO shrinks the model coefficients towards zero and performs feature selection

and model interpretability. The aim is to introduce bias in the model coefficient estimates and

minimize the prediction error.

The empirical analysis in Inoue and Kilian (2008) revealed that bagging has large reductions

in prediction mean square errors (PMSEs) in inflation forecasting. Kim and Swanson (2014)

suggest that the model averaging does not dominate other well designed prediction model

specification methods, and that the use of hybrid combination factor and shrinkage methods

produced the best predictions as compared to principal components, bagging, boosting, least

angle regression, among others. On the other hand, the empirical results from Zhou et al. (2015)

showed no statistically significant difference between the best classification performance of the

models with yearly feature selection guided by data mining techniques and the one involving

domain knowledge; hence, their predictive accuracies seems to be the same.

The use of the LASSO linear regression model for stock market forecasting by Roy et al. (2015)

using monthly data revealed that the LASSO method yield sparse solutions and performs ex-

tremely well when the number of features is less than the number of observations, and that the

LASSO linear regression model outperforms the ridge linear regression model. Modelling the

market implied ratings using LASSO variable selection techniques by Sermpinis et al. (2017)

and forecasting macroeconomic time series using LASSO-based approaches and their forecast
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combinations with dynamic factor models by Li and Chen (2014) all reflect statistical evidence

of the superior predictive power of LASSO.

The outperformance of the aforementioned statistical learning algorithmic techniques over

the benchmark econometric and statistical modelling techniques has prompted modern re-

searchers to proceed into a more advanced concept, i.e., the deep learning techniques based

on artificial intelligence, which encompasses support vector machines (SVM) and neural net-

works (NN). However, the contrasting arguments of various scholars on the predictive perfor-

mance by SVM and NN as compared to the previous literature has placed this notion pending

for further statistical investigation. The application of artificial intelligence neural networks

in forecasting financial markets and stock prices by Shahpazov et al. (2014) demonstrated the

outperformance of the NN over previous techniques used in the existing literature. Again,

the findings in de Oliveira et al. (2013) also revealed that the application of artificial neural

networks yielded the minimum mean square prediction error (MSE) and excellent correct di-

rection rates. Controversially, the analytical results by Moreno and Olmeda (2007) show that

the ANN do not provide evidence of superior performance over the conventional linear mod-

els. The findings of Ding et al. (2013), applying the concept for daily data and market sen-

timent, show the outperformance of SVM over NN and logistic regression. The SVM seems

to be the most accurate machine learning model for predicting stock market movement, but

the statistical tests do not provide significant statistical evidence of better performance over

NN and logistic regression. Patel et al. (2015) confirmed the outperformance of Random For-

est over ANN, SVM and the genetic algorithm (GA) for input data with continuous values.

Ballings et al. (2015) also presented random forest as the top machine learning algorithm over

others and recommended the inclusion of ensembles in algorithmic sets when predicting the

direction of stock market prices. The findings in Zheng (2006) demonstrated the superiority

of boosting and bagging of NN over SVM and logistic regression when forecasting the daily

directional movements of stocks.

It is obvious, based on the reviewed existing empirical literature, that machine learning tech-

niques played an enormous role in financial econometric time series. Thus, the application of

the proposed sophisticated machine learning recursive out-of-sample forecasting models for

the directional predictability of the U.S. stock market returns in this paper aimed to yield sig-

nificant results and outperform the benchmark econometric models and aimed to enrich the

empirical literature for further relevant scholarly research work.
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3 Research Methodology

3.1 Equity Premium Direction Modelling as a Binary Time Series

Let Rt be the monthly U.S. excess stock market return over the risk-free interest rate denoted

by R ft , and let Is
t denote the binary-valued dependent variable. The sign of the monthly equity

premium is modelled as the return sign binary indicator, as follows:

Is
t =

1, if Rt > 0 i.e., there is positive excess stock market return

0, if Rt ≤ 0 i.e., there is negative or zero excess stock market return.

Rt is calculated as follows

Rt = ln
( Pt

Pt−1

)
−R ft−1

where Pt is the price of the stock index at period t and R ft−1 is the risk-free interest rate at

period t−1. The distribution of the return sign binary indicator Is
t conditional on ℜt−1 follows

Bernoulli with probability pt , as follows:

Is
t |ℜt−1 ∼ Bernoulli(pt),

where ℜt−1 is the information set of the covariates.

3.2 The Static and Dynamic Binary Probit Models

Christoffersen and Diebold (2006) showed that if Rt is distributed as follows:

Rt |ℜt−1 ∼ N(µ,σ2
t|t−1)

and displays no conditional mean dependence and conditional variance dependence, then

there exists a link between the volatility dynamics and the sign dynamics. The conditional

probability of a positive excess stock market return Probt−1(Rt > 0) is as follows:

Probt−1(Rt > 0) = 1−Γ

( −µ
σt|t−1

)
= Γ

( µ
σt|t−1

)
where Γ(.) is the N(0,1) cumulative distribution function, and the forecast horizon used is

equal to 1. The conditional probability of a positive equity premium sign employing the binary

indicator Is
t is as follows:

Et−1(Is
t ) = Probt−1(Is

t = 1) = Probt−1(Rt > 0) = Γ(Ψt).

In the case of the static binary probit model, we have the following:

Ψt+1(β) = α+Z′t β (1)
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where α is the model intercept; Zt is the vector of the predictors and β is the vector of the

unknown coefficients (Nyberg, 2011; Nyberg and Pönkä, 2016). In the case of the dynamic

binary probit model, we have the following:

Ψt+1(β) = α+
k

∑
i=1

ηiIs
t+1−i +Z′t β (2)

where η denotes the unknown coefficients of the lagged equity premium sign indicator and k

is the lag order of the equity premium sign indicator (Kauppi and Saikkonen, 2008).

The parameters of the binary probit models defined above are estimated by employing the

maximum likelihood method, where the maximum likelihood estimator of β is as follows:

β̂ML = argmaxβ

 ∑
(Is

t+1=1)
Γ

(
Ψt+1(β)

)
+ ∑

(Is
t+1=0)

(
1−Γ

(
Ψt+1(β)

)) . (3)

For more details, one can see Estrella and Mishkin (1998) and Pesaran (2015).

3.3 Penalized Likelihood Binary Probit Models

In this section, we will examine penalized likelihood binary probit models employing the rel-

evant Ridge, LASSO and Elastic Net structures. The inclusion of a penalty vector norm in

the log-likelihood function of the ordinary binary probit model results in the penalized binary

probit model. It is worth noting that in the penalized likelihood binary probit models, the

coefficients estimates are shrunk towards zero. The regularised coefficients have significantly

reduced variances, resulting in smaller forecasting errors.

3.3.1 The Ridge Probit Model

The ridge probit model aims to reduce multicollinearity and minimize the prediction error

of the model and is based on the ridge regression introduced by Hoerl and Kennard (1970).

Given the log-likelihood function of the ordinary probit model (3), the ridge log-likelihood

probit function introduces a shrinkage penalty employing the `2-norm of β, ‖β‖2 =
√

∑
p
j=1 β2

j

and the ridge tuning parameter λ, λ > 0, which controls the amount of regularization. Thus,

the maximum likelihood estimator of the ridge probit model is given by the following:

β̂
λ
RMLE = argmaxβ

 ∑
(Is

t+h=1)
Γ

(
Ψt+h(β)

)
+ ∑

(Is
t+h=0)

(
1−Γ

(
Ψt+h(β)

))
−λ

p

∑
j=1

β
2
j

 .

3.3.2 The LASSO Probit Model

The Least Absolute Shrinkage and Selection Operator (LASSO) introduced by Tibshirani (1996)

as a shrinkage and selection technique for linear regression models is extended to probit mod-

els. The proposed LASSO probit model aims to shrink the probit model coefficients toward

zero, resulting in increased model interpretability and identification of the covariates most
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strongly associated with the equity premium direction. To obtain the LASSO probit coefficients

β̂λ
LMLE , the maximization of the log-likelihood function of model (3) will include a shrinkage

penalty on the `1-norm of β. The vector β̂λ
LMLE is obtained by

β̂
λ
LMLE = argmaxβ

 ∑
(Is

t+h=1)
Γ

(
Ψt+h(β)

)
+ ∑

(Is
t+h=0)

(
1−Γ

(
Ψt+h(β)

))
−λ

p

∑
j=1
|β j|


where ‖β‖1 = ∑

p
j=1 |β j| is the `1-vector norm of β and λ, λ > 0, is the LASSO tuning parameter,

which controls the amount of shrinkage of β.

3.3.3 The Elastic Net Binary Probit Model

The elastic net (EN) is a regularized technique that linearly combines the `1 and `2 penalties of

LASSO and Ridge. The elastic net probit coefficient estimates β̂λ
EMLE are obtained by maximiz-

ing the log-likelihood function, which penalize the size of the model coefficients based on both

the `1-vector norm and `2-vector norm of β. Thus, the parameter estimates of the elastic net

probit model will be given by the following:

β̂
λ
EMLE = argmaxβ

 ∑
(Is

t+1=1)
Γ

(
Ψt+h(β)

)
+ ∑

(Is
t+1=0)

(
1−Γ

(
Ψt+h(β)

))
−λ

(
(1−α)

p

∑
j=1

β2
j

2
+α

p

∑
j=1
|β j|
)

where λ and α are the EN tuning parameters (Zou and Hastie, 2005). We employ α = 0.5.

To choose the tuning parameter λ in LASSO, Ridge and EN, we need a validation set in which

the predictive value of the specific penalized binary probit model could be compared for vari-

ous values of the tuning parameter, and the optimal tuning parameter should be chosen such

that the error rate is minimal. We choose the best tuning parameter employing cross-validation.

3.4 Discriminant Analysis

In this section, we will discuss the discriminant analysis class of methods. This class includes

linear, quadratic, regularised, heteroscedastic, sparse, and high-dimensional discriminant anal-

ysis methods. Discriminant analysis methods do not suffer from parameter instability as the

binary models do when the classes are well separated.

3.4.1 Linear Discriminant Analysis

The discriminant function concept was first introduced by Fisher (1936). Linear discrimi-

nant analysis (LDA) uses Bayes’ theorem to estimate output class probabilities given the in-

put features, using the assumptions that the input data Z = (Z1, · · · ,ZK) follow a multivariate

Gaussian distribution with a class specific mean vector µc and a common covariance matrix

Sc = S for all c. If fc(z) is the class conditional density of the covariates Z, in class Y = c, i.e.,
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fc(z) = Prob(Z = z|Y = c), and ψc is the prior probability of class c, then by Bayes’ theorem, the

class posterior probability is given by the following:

Prob(Y = c|Z = z) =
fc(z)ψc

∑
C
c=1 fc(z)ψc

, f or c = 1,2, · · · ,C

and Z has a multivariate Gaussian density for each class given by the following:

fc(z) = (2π)−
p
2 |Sc|−

1
2 exp

(
− 1

2
(z−µc)

′
S−1

c (z−µc)
)
.

The LDA classifier assigns an observation given by Z = z to the class c given by the following:

Ψ
LDA
c (z) = argmaxc

{
z
′
S−1µc−

1
2

µ
′
cS−1µc + logψc

}
. (4)

For a proof of the above equation, see (James et al., 2013). The word linear in the LDA classifier

stems from the fact that the discriminant function is a linear function of the input features Z.

3.4.2 Quadratic Discriminant Analysis

The quadratic discriminant analysis (QDA) classifier separates multi-class measurements by

a quadratic surface. Unlike LDA, in the case of the QDA classifier, the input features in each

class follow a multivariate Gaussian distribution with a class specific mean vector µc and a

class specific covariance matrix Sc (James et al., 2013; Ou and Wang, 2009). The QDA classifier

is given by the following:

Ψ
QDA
c (z) = argmaxc

(
Ωc(z)

)
= argmaxc

{
−1

2
log|Sc|−

1
2
(z−µc)

′
S−1

c (z−µc)+ logψc

}
. (5)

The QDA classifier obtains its name from the fact that the QDA discriminant function is a

quadratic function of the input features Z.

3.4.3 Regularized Discriminant Analysis

The regularized discriminant analysis (RDA) introduces regularization into the estimates of

the covariance matrices and allows the shrinkage of the separate covariance matrices of QDA

toward a common covariance, as in LDA. In this sense, RDA is a compromise between LDA

and QDA. The regularized covariance matrices have the form

Sc(λ) = λSc +(1−λ)S

where S is the pooled covariance matrix used in LDA and Sc is the class specific covariance

matrix of the input features used in QDA. Here, λ ∈ [0,1] allows a continuum of models be-

tween LDA and QDA and needs to be specified. In practice, λ can be chosen employing cross-

validation. Biasing the class covariance matrices toward commonality is not the only way to

shrink them. An additional convex combination allows Sc itself to be shrunk toward a scaled

identity matrix, using the shrinkage parameter γ as follows:

Sc(λ,γ) = (1− γ)Sc(λ)+ γ
1
d

tr[Sc(λ)]I
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where 1
d tr[Sc(λ)] is the mean of the diagonal elements of Sc,(λ), so it is the mean variance of the

class input features. The RDA classifier is given by the following:

Ψ
RDA
c (z) =

{
(z− z̄)

′
S−1

c (λ,γ)(z− z̄k)+ log|Sc(λ,γ)|
}

(6)

where λ is the cross-validated parameter that controls the degree of shrinkage of the individual

class covariance matrix estimates toward the pooled estimates and γ is an additional regular-

ization parameter that controls shrinkage toward a multiple of the identity matrix for a given

value of λ (Friedman, 1989).

3.4.4 Heteroscedastic Discriminant Analysis

The heteroscedastic discriminant analysis (HDA) is a generalized method of the LDA in that its

feature space transformation does not require the imposition of equal within-class covariance

assumptions as compared to the standard LDA. The HDA classifier is capable of handling

different covariance structures of the class distributions (Kumar and Andreou, 1998).

Let
{

zi

}N

i=1
denote a sequence of K-dimensional feature vectors, with each vector belonging

to a single class j ∈ {1, ...,C}, and let y denote a categorical response variable. If N j, µ j and

Σ j represent the sample count, mean and covariance, respectively, of the jth class, then the

between-class matrix M can be extracted in the following form:

M =
1
N

C

∑
j=1

N jµ jµ
′
j− ¯µµ′

where µ
′
j is the transpose of µ j of the jth class; µ is a vector of overall means.

The HDA objective function seeks to find a projection matrix, denoted by β, that maximizes the

likelihood in the Jacobian transformation space y = β
′
z under the normality assumption, such

that the ratio of the determinants

Ω(β) =
|βMβ

′ |N

∏
C
j=1 |βΣ jβ

′ |N j
(7)

is maximized, where β
′

is the transpose of β (Huang et al., 2000; Szepannek et al., 2009).

The HDA classifier is then given by the following:

Ψ
HDA(β) = argmax

β

log
{

Ω(β)
}
= argmax

β

{ C

∑
j=1
−N jlog|βΣ jβ

′ |+Nlog|βMβ
′ |
}

(8)

where M is the between-class matrix. See Kumar and Andreou (1998) for further details.

3.4.5 Sparse Discriminant Analysis

The sparse LDA introduces projection techniques that imposes zero entries in the feature ma-

trix, aimed at reducing the dimensionality to produce a final parsimonious model. The sparse

discriminant function involves the inclusion of an `1 penalty norm in the optimal scoring prob-

lem which results in the optimization problem, as follows:

maxβ j β
′
jSβ j−η

∥∥β j
∥∥

1 subject to β
′
j(Sw +Ω)β j = 1, β

′
j(Sw +Ω)βm = 0 for all m < j (9)
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where β j is the discriminant vector of class j, Ω is a positive definite matrix; Sw is the within

class covariance matrix. The jth sparse discriminant analysis solution pair (θ j,β j) is obtained

by solving the problem, as follows:

minβ j ,θ j

{∥∥yθ j− zβ j
∥∥2

+ηβ
′
jΩβ j +λ

∥∥β j
∥∥

1

}
(10)

subject to
1
n

θ
′
jy
′
yθ j = 1 and θ

′
jy
′
yθm = 0 for all m < j

and the sparse LDA is as follows:

Ψ
SparseLDA(θ,β) = argmin

β j ,θ j

{1
n
‖yθ j− zβ j‖2 +ηβ

′
jΩβ j +λ‖β j‖1

}
where y is a matrix of dummy variables for the jth classes; θ j is a j-vector of scores; n is the

sample size; η and λ are non-negative tuning parameters (Clemmensen et al., 2011). Thus the

`1 penalty norm on β j results in sparsity when the tuning parameter λ is large.

3.4.6 High Dimensional Discriminant Analysis

The high dimensional discriminant analysis (HDDA) is another important extension of the

LDA most feasible for a dimensionality reduction model involving many features as compared

to the sample size, and in which the LDA is weak in performance. Let Γi be an orthogonal

matrix of eigenvectors of a covariance matrix Si; let Φi be the basis from the eigenvectors of Si,

and assuming the class conditional densities follows Gaussian N (µi,Si) for all i = 1, ...,C. Then,

the class conditional covariance matrix Ωi, is defined by the following:

Ωi = Γ
′
iSiΓi

where Ωi is diagonal matrix with two distinct eigenvectors ui and vi, ui > vi.

If Πi(z) = Γ̂iΓ̂
′
i(z− µi)+ µi represents the projection of the input vector z on the affine space fi,

then the cost function will be as follows:

θi(z) =
‖µi−Πi(z)‖2

ui
+
‖z−Πi(z)‖2

vi
+di lnui +(K−di) lnvi−2lnπi (11)

where ui =
σ2

i
αi

and vi =
σ2

i
1−αi

with αi ∈{0,1} and σi > 0 for all i= 1, ...,C; K is the K-dimensional

input vector; di is the ith diagonal of Γi (Bouveyron et al., 2007).

The posterior probability is defined as follows:

Prob(Ci|z) =
e
−

1
2

θi(z)

∑
C
j=1 e

−
1
2

θ j(z)

for i 6= j (12)

Thus, the maximum likelihood estimators of ui and vi are, respectively, as follows:

ûMLE
i =

1
di

di

∑
j=1

ωi, j and v̂MLE
i =

1
K−di

K

∑
j=di+1

ωi, j
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where ωi,1 ≥ ωi,2 ≥ ...≥ ωi,K are the eigenvectors of Ŝi.

Following this approach, the maximum likelihood estimators of αi and σ2
i are

α̂
MLE
i =

v̂i

ûi + v̂i
and (σ̂2

i )
MLE =

ûiv̂i

ûi + v̂i

3.4.7 Distance Weighted Discrimination

The distance weighted discrimination (DWD) was introduced by Marron et al. (2007) to tackle

high-dimensional datasets and to specifically improve the performance of support vector ma-

chines. It employs the concept of maximization, thereby maximizing the existing gap between

an ordered pair of classes to make them more separable, introducing harmonic mean of the dis-

tances of all data vectors to the separating hyperplane (Huang et al., 2012). Given the training

dataset {(yi,zi)}n
i=1 with k-dimensional vector of covariates Z, Y the binary response variable

y ∈ {−1,+1}, let di = (z
′
iw + θ)yi + αi be the distance of the ith data vector to the separating

hyperplane. Then, the DWD is obtained by the following:

argmin
w,θ,αi

n

∑
i=1

( 1
di

+C(αi)
)

subject to di = (z
′
iw+θ)yi +αi; di,αi ≥ 0; ∀ ||w||2 ≤ 1 (13)

where αi is a positive slack variable included to boost the positivity of di; w is the weight vector

(Qiao and Zhang, 2015). The slack variable serves as a correction measure, which corresponds

to the amount of misclassification for the ith vector. Thus, the DWD binary linear classifica-

tion process employs gap minimization to improve the separability of the two classes and the

minimization of the misclassification error.

3.5 Classification and Regression Trees

Classification and regression trees (CART) involve the use of decision tree learning procedures

to build a model that can predict the value of a target variable based on several input variables,

see Breiman et al. (1984). There are many classification algorithms, including decision trees,

rule-based learners, support vector machines, neural networks and Bayesian networks. There

are also ways of combining them into ensemble classifiers, such as bagging, boosting, and ran-

dom forests. The consistent CART models in this study include the following: bagging, ran-

dom forest, conditional inference tree, conditional inference forest, adaptive boosting, gradient

boosting, generalized linear boosting, logitboost, recursive partitioning, k nearest neighbour,

naive Bayes, learning vector quantization and neural networks.

3.5.1 Bagging

Bagging or bootstrap aggregating was introduced by Breiman (1996) to improve classifica-

tion by combining classifications of randomly generated training datasets, to reduce the bi-

ases and variances in a tree-based analysis. Bagging implies fitting a model, including all

potential points on the original training set. It appears to effectively remove the instability
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of a decision rule by averaging across resamples and to avoid overfitting (Zheng, 2006). Let

S = {(z1,y1), · · · ,(zT ,yT )} denote the training sample, where T is the number of observations

in the training sample, zt is a vector of k covariates, and yt ∈ {−1,1} indicates a negative or

positive return for each t. The classification into one of the two groups is defined as follows:

Ψ̂(z) = sign
(

δ̂(zt)− τB

)
,Ψ̂(z) ∈ {−1,1}

where τB is the cut-off value; δ̂(zt) is the base classifier that learned the covariates in the training

sample; δ̂(zt) > τB implies a positive return classification, while δ̂(zt) < τB implies a negative

return classification (Lemmens and Croux, 2006). The decision tree classification score is given

by the following:

δ̂(z) = 2ρ̂(z)−1,

where ρ̂(z) is the predicted probability of a positive return estimated by the tree. For each

bootstrap sample S∗b, a classifier can be estimated employing the score functions δ̂b(z) for b =

1,2, ...,B. These functions are afterwards aggregated into a score, as follows:

δ̂bag(z) =
1
B

B

∑
b=1

δ̂b(z).

Thus, the final classification is obtained as follows:

Ψ̂bag(z) = sign
(

δ̂bag(z)− τB

)
. (14)

3.5.2 Random Forest

A random forest (RF) classifier, see Breiman (2001), is a specific type of bootstrap aggregating

based on a random subset of the input features (Ballings et al., 2015; Kumar and Thenmozhi,

2006). A random forest classifier consists of an ensemble classification algorithm that involves

the use of trees as base classifiers. It consists of a combination of classifiers in which each

classifier contributes an individual vote for assigning the most frequent class to the input vector

z, defined by the following:
ˆ

δB
RF = ma jority vote

{
δ̂b(z)

}B

b=1
(15)

where δ̂b(z) is the class prediction of the bth random forest tree.

The Gini index, suggested by Breiman et al. (1984), is employed for selecting the best split at

each node. For a given node τ with estimated class probabilities Prob( j|τ), j = 1, ...,J, the node

impurity, I(τ), employing the Gini index is defined as follows:

I(τ) =
J

∑
j 6=i

Prob( j|τ)Prob(i|τ). (16)

The Gini index is minimised when the node is pure (homogeneous) with respect to one of the

classes.
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3.5.3 Conditional Inference Tree

The conditional inference tree (CTree) enables the use of recursive partitioning and tree-structured

models in a conditional inference framework. The use of the Gini index to determine the most

favourable split induces a selection bias toward covariates with many possible splits and also

cannot distinguish between a significant and an insignificant improvement in the information

measure. Hothorn et al. (2006) proposed the conditional inference approach tree where the

node split is selected based on how good the association is between the response and the co-

variates. The resulting nodes should provide a high association between the response and the

covariates. The significance of the association is investigated by a χ2 test and the covariate with

highest association is selected for splitting. Moreover, multiple test procedures are applied to

determine whether no significant association between any of the covariates and the response

can be stated and the recursion needs to stop.

In more detail, let Z = (Z1, · · · ,Zk) be the k-dimensional vector of covariates and let Y be a cate-

gorical response variable. Z is taken from a sample space Z = Z1×·· ·×Zk. We assume that the

conditional distribution of Y given Z depends on the function f of Z as follows:

D(Y |Z) = D(Y |Z1, · · · ,Zk) = D(Y | f (Z1, · · · ,Zk)).

Thus, a generic algorithm for recursive binary partitioning for a given learning sample

Ln = (Yi,Z1i, · · · ,Zki), i = 1, · · · ,n,

can be formulated using non-negative integer valued case weights ω = (ω1, · · · ,ωn).

Each node of the tree is represented by a vector of case weights having nonzero elements when

the corresponding observations are elements of the node, and are zero otherwise. The follow-

ing steps implement recursive binary partitioning:

1. Test the global null hypothesis of independence between any covariate Z and the cate-

gorical response variable Y for case weights ω. Stop if this hypothesis cannot be rejected.

Otherwise, select the j-th covariate Z j with the strongest association to Y .

2. Choose a set A⊂Z j to split Z j into two disjoint sets of A and Ac. The case weights ωle f t and

ωright determine the two subgroups with ωle f t,i = ωiI(Z j,i ∈ A) and ωright,i = ωiI(Z j,i /∈ A),

for all i = 1,2, · · · ,m , where I(·) is the indicator function.

3. Repeat steps 1 and 2 recursively with the different case weights ωle f t and ωright , respec-

tively.

3.5.4 Conditional Inference Forest

Random forest has been criticised for the bias that results from favouring covariates with many

split-points. The conditional inference forest (CForest) is known to correct this bias by sepa-

rating the procedure for the best covariate to split on from that of the best split point search
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for the selected covariate. The conditional inference forest is an implementation of the random

forest and bootstrap aggregating ensemble algorithms, utilising conditional inference trees as

base learners.

To determine the variable importance in conditional inference forests, the vector of the pre-

dictor variables is randomly permuted and the initial association with the response variable is

broken. When the permuted and the non-permuted variables are used to predict the response

variable for the out of bag observations, the classification accuracy decreases substantially if

the permuted variable is associated with the response. Hence, the variable importance is the

difference in the prediction accuracy before and after permutation of the variable average over

all trees (Strobl et al., 2008; Das et al., 2009).

3.5.5 Adaptive Boosting

Boosting is an ensemble technique aimed at increasing the strength of a weak learning classi-

fier by improving its accuracy. The principle consists of sequentially applying the classifier to

adaptively re-weighted versions of the initial dataset S∗b,b = 1,2, · · · ,B. In each step, the learn-

ing attention is focused on modified versions of the data, where the modifications give more

weight, wt , to misclassified points. Once the process has finished, the single classifiers obtained

are combined into a final classifier by weighted majority vote. We employ the Adaptive Boost-

ing (Adaboost) procedure proposed by (Freund and Schapire, 1996; Alfaro et al., 2013). The

main steps of the Adaboost algorithm are as follows:

1. Initialize the observation weights wt =
1
T

for t = 1,2, · · · ,T .

2. For b = 1,2, · · · ,B:

(a) Fit a classifier cb(z) to the training data using observation weights wt .

(b) Compute the weighted misclassification error for cb:

errb =
∑

T
t=1 wt I[yt 6=cb(zt )]

∑
T
t=1 wt

(c) Compute αb =
1
2 ln[ 1−errb

errb
]

(d) Update the weights wt ← wtexp(αbI[yt 6= cb(zt)]), for t = 1,2, · · · ,T and normalize

them.

3. Output the final classifier Ψ̂boost(z) = sign
[

∑
B
b=1 αbcb(z)

]
,Ψ̂boost(z) ∈ {−1,1}.

3.5.6 Gradient Boosting

Friedman (2001, 2002) laid the groundwork for a new generation of boosting algorithms. As-

sume that we are interested in modelling Pr(Y = 1|Z = z) for a Bernoulli response variable. The
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idea is to fit a model of the following form:

λ(z) = GB(z) =
B

∑
b=1

gb(z;γb)

where

λ(z) = log
(

Pr(Y = 1|Z = z)
Pr(Y = 0|Z = z)

)
and γb is parameter vector, which for the trees, captures the identity of the split variables, their

split values and the constants in the terminal nodes. The main steps of the gradient boosting

algorithm are as follows:

1. Start with Ĝ0(z) = 0, and set the shrinkage parameter ε > 0.

2. For b = 1,2, · · · ,B:

(a) Compute the pointwise negative gradient of the loss function at the current fit as

follows:

rt =− ∂L(yt ,λt )
∂λt

(b) Approximate the negative gradient by a depth-d tree by solving the following:

minimiseγ ∑
T
t=1(rt −gb(z;γb))

2.

(c) Update Ĝb(z) = Ĝb−1(z)+ ĝb(z), with ĝb(z) = εg(z; γ̂b).

3. Return the sequence Ĝb(z), for b = 1,2, · · · ,B.

3.5.7 Gradient Boosting With Component-Wise Linear Models

Gradient boosting with component-wise linear models (GLMBoost) employs component-wise

(generalised) linear models as base-learners (Bühlmann and Yu, 2003; Bühlmann et al., 2006,

2007).

Let z = (z1,z2, ...,zK)
′

be a set of K-dimensional covariates, from which the categorical binary

response variable yi ∈ {1, ...,C} can be predicted. Then, a generalized linear model can be fitted

in the following form:

`(µ̂) = β0 +β1z1 + ...+βKzK (17)

where µ̂ = E(y|z) is the conditional expectation of the binary response; ` is the link function; β

is a vector of unknown parameters.

The boosted generalized linear model additionally performs variable selection and the effects

are shrunken toward zero if early stopping is applied in the model (Hofner et al., 2014). The

GLMBoost fits simple linear models separately for each column of the design matrix to the

negative gradient vector, for each boosting iteration, using only the best fitting base-learner in

the update step.
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3.5.8 LogitBoost

The LogitBoost is an algorithm used to produce a logistic regression model at every node in the

classification tree and each node is able to be split using a suitable splitting criterion (Friedman

et al., 2000; Landwehr et al., 2005). It is designed to train the classification algorithm using

stumps or one node decision trees as weak learners.

Let {(yi,zi)}N
i=1 be the input dataset with N samples, zi ∈ Z, yi ∈ Y ∈ −1,1. We use the transfor-

mation y∗ = 1+y
2 to represent the outcome with a 0/1 response. We represent the probability of

y∗ = 1 with p(z) where

p(z) =
eF(z)

eF(z)+ e−F(z)
.

The main steps of the LogitBoost algorithm are as follows:

1. Start with wt = 1/T, t = 1, · · · ,T , F(z) = 0, and probability estimates p(zi) =
1
2 .

2. For b = 1,2, · · · ,B:

(a) Compute the working response ri and the weights aswi = p(zi)(1− p(zi))

ri =
y∗−p(zi)

wi

(b) Fit the function fb(z) by a weighted least-squares regression of ri to zi using weights

wi.

(c) Update F(z)← F(z)+ 1
2 fb(z), and p(z) = eF(z)

eF(z)+e−F(z) .

3. Return the classifier sign [F(z)] = sign
[
∑

B
b=1 fb(z)

]
, for b = 1,2, · · · ,B.

3.5.9 Recursive Partitioning Algorithm

The recursive partitioning (RPart) algorithm builds a decision tree that attempt to correctly

classify elements of the set by splitting it into subsets based on several features. The splitting

process continues indefinitely, resulting in newer sub-samples and terminates after a specific

stopping criterion is attained (Cook and Goldman, 1984).

Let yt be a conditionally distributed dichotomous response variable given the k predictors,

such that the k predictors are elements of a sample space Ω = Ω1×Ω2× ....×Ωk. Then, by tree-

structured recursive partitioning, the conditional distribution of yt given zt−1 depends on the

function

Ψ(yt |zt−1) = Ψ(yt |g(z(t−1)1,z(t−1)2, ...,z(t−1)k)) (18)

from which the p disjoint cells B1,B2, ...,Bp partitioning the predictor space

Ω = B1∪B2∪ .....∪Bp = ∪p
j=1B j
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are obtained; where g(.) is a function of the k predictors (Hothorn et al., 2006).

The fitted model is based on a learning sample defined by the following:

`T = {yt ;z(t−1)1,z(t−1)2, ...,z(t−1)k; t = 1,2, ...,T} (19)

The recursive algorithm proposed by Zeileis et al. (2008), Hothorn et al. (2006) is as follows:

1. Fit the model to all observations at once in the initial node and estimate the unknown

parameters by minimizing the objective function;

2. Evaluate the stability or instability of the estimated parameters with respect to the order-

ing features;

3. Determine the splitting point that locally optimizes the objective function using a fixed

or adaptive number of splits;

4. Split the node into sub-nodes and repeat the procedure recursively until no further split-

ting is feasible.

3.5.10 k Nearest Neighbour

The k nearest neighbour (kNN) is used for classifying objects based on the closest training in-

stances in the feature space., Given the training data set {(z1,y1),(z2,y2), · · · ,(zL,yL)}, an object

is to be classified based on a majority being assigned to the class most common to its corre-

sponding k nearest neighbours. In more detail, given a positive integer k and a test observation

zL+1, the kNN classifier first identifies the k points in the training data set that are closest (using

for example the Euclidean distance) to z0, represented by N0. It then estimates the conditional

probability for class j as the fraction of points in N0 whose response equals j:

Pr(Y = j|Z = z0) =
1
k ∑

i∈N0

I(yi = j). (20)

Finally, the Bayes rule is applied and the test observation is classified to the class with the

largest probability. The k can be chosen by cross-validation, and the kNN model does not de-

pend on the prior probabilities of the classes (James et al., 2013; Huang et al., 2008; Su, 2011).

3.5.11 Naive Bayes

The Naive Bayes classifier is a simple example of Bayes Networks. It combines the Bayes for-

mula with a decision rule, and a common rule is to pick the most probable hypothesis, which

is known as maximum posterior decision rule (Ripley, 1996; Ou and Wang, 2009).
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Given the input of m features z1, · · · ,zm and using the assumption that the features are indepen-

dent given the class j, we have that Naive Bayes classifier is as follows:

Ψ
NB(z) = argmax j

{
ψ j

m

∏
i=1

p(zi| j)

}
(21)

where ψ j is estimated from the sample proportion.

3.5.12 Learning Vector Quantization

The learning vector quantization (LVQ) algorithm (Kohonen, 1995; Ripley, 1996), is an arti-

ficial neural network designed to enable one to construct a modified training set iteratively.

The modified training sets are called codebooks. We will describe the LVQ1 process based on

Kohonen (1995). Assume that a number of codebooks mi are placed into the input space to

approximate various domains of the input vector z by their quantized values. Usually several

codebook vectors are assigned to each class of z values, and z is then decided to belong to the

same class to which the nearest mi belongs. Let c = argmin(||z−mi||), define the nearest mi to z,

denoted by mc.

Values for the mi that approximately minimize the misclassification errors in the above nearest-

neighbor classification can be found as asymptotic values in the following learning process.

Let z(t) be a sample of input and let the mi(t) represent sequences of the mi in the discrete-time

domain. The basic LVQ1 process is defined by:

mc(t +1) = mc(t)+α(t)[z(t)−mc(t)]

if z and mc belong to the same class,

mc(t +1) = mc(t)α(t)[z(t)−mc(t)]

if z and mc belong to different classes, and

mi(t +1) = mi(t)

for i not in c. Here 0 < α(t)< 1, and α(t) may be constant or decrease monotonically with time.

3.5.13 Neural Network

The neural network (NNET) is a system made up of a number of simple highly interconnected

processing elements, which process information by their dynamic state response to external in-

puts. The NNET consists of layers made up of interconnected nodes that contain the activation

function (Ripley, 1996; Hastie, 2005; Caudill, 1989). The NNET layers are as follows:

InputLayer 7−→ Hidden Layer 7−→ Out put
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Given an input vector of covariates z, and a categorical output y, neural network can be mod-

elled in the following form:

x j = Γ(θ0, j +θ
′
jz) f or j = 1,2, ...,m

ŷk = Ψk(β0,k +β
′
kx) f or k = 1,2, ...,q

where Γ(x) = 1
1+e−x is the sigmoid activation function, used to introduce a nonlinearity at the

hidden layer. The parameters θ j,l and βk, j are known as the weights and define linear combi-

nations of the input vector z and hidden unit output x. The intercepts θ0, j and β0,k are known

as biases. The function Ψk permits a final transformation of the output and a typical choice for

binary classification is the inverse logit function.

3.6 Statistical and Economic Performance Evaluation

3.6.1 Confusion Matrix Metrics

The confusion matrix consists of true positives (TP), false positives (FP), false negatives (FN)

and true negatives (TN), presented in Table 1. In this paper, we use the following metrics to

Positive (Predicted) Negative (Predicted)

Positive (Actual) TP FN

Negative (Actual) FP TN

Table (1) The Confusion Matrix

evaluate the accuracy and correctness of the classification models:

Accuracy =
T P+T N

T P+T N +FP+FN
.

The accuracy is also known as the correct prediction ratio (CPR).

Precision =
T P

T P+FP
.

Sensitivity =
T P

T P+FN
.

Speci f icity =
T N

T N +FN
.

F1Score =
2

1
Recall

+
1

Precision

=
2T P

2T P+FP+FN
.

Kappa Statistic: The kappa statistic, denoted by κ, is computed as follows:

κ =
p0− pe

1− pe
= 1− 1− p0

1− pe
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where p0 is the relative observed agreement among the raters; pe is the hypothetical probability

of chance agreement, which can be obtained from the following:

pe =
1

N2 ∑
m

nm1nm2

for categories m with N items and nmi is the number of times rater i predicted category m.

McNemar’s Test: The McNemar’s test, as introduced by McNemar (1947), is used in this paper

to investigate the marginal homogeneity between the row and column marginal frequencies

in the 2× 2 confusion matrix. The null hypothesis of marginal homogeneity (that is the two

outcomes are marginally equiprobable) against the alternative hypothesis that they differ in

probabilities is defined as follows:

H0 : Prob(FN) = Prob(FP)

HA : Prob(FN) 6= Prob(FP)

The McNemar
′
s test statistic is defined as follows:

χ
2 =

(FN−FP)2

FN +FP
∼ χ

2
1(α).

Thus, the McNemar’s test statistic is asymptotically chi-square distributed with 1 degree of

freedom at the α% significance level.

3.6.2 The Pesaran-Timmermann Directional Predictability Test

This test was first proposed by Pesaran and Timmermann (1992) and was employed also by

Granger and Pesaran (2000) for evaluating directional forecasting or predictability performance

and market timing. The null hypothesis H0, which is ”No statistically significant directional

predictability” against the alternative hypothesis HA, which is ”There is statistically significant

directional predictability” can be tested based on the Pesaran-Timmermann test statistic, as

follows:

PT =

√
T KS(

τ̄I(1− τ̄I)

Ī(1− Ī)

)0.5
asymptotically∼ N(0,1)

where KS = T R−FR is the Hanssen-Kuiper skill score; T R =
Îuu

Îuu + Îdu
is the true or hit rate;

FR =
Îud

Îud + Îdd
is the false rate; T is the sample period in months;

and the forecasts’ classifications are again obtained from the 2 x 2 confusion matrix showing:

Îuu =
T

∑
t=1

I(Ît = 1, It = 1);

Îud =
T

∑
t=1

I(Ît = 1, It = 0);
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Îdu =
T

∑
t=1

I(Ît = 0, It = 1);

Îdd =
T

∑
t=1

I(Ît = 0, It = 0);

where u is an upward signal (It = 1) and d is a downward signal (It = 0); I(.) is the indicator

function taking the values 0 and 1; Ī is the sample mean of the sign indicator values It com-

puted in the T −month sample period; Ît is the predicted excess stock return sign indicator; It is

the actual excess stock return sign indicator; τ̄I = ĪT R+(1− Ī)FR (Nyberg, 2011; Granger and

Pesaran, 2000; Bergmeir et al., 2014).

Thus, the PT test statistic as stated above has the asymptotic standard normal distribution un-

der the null hypothesis H0 of no directional predictability.

3.6.3 Economic Performance Evaluation

Evaluating the economic performance of a forecasting model is of great importance to a profit

oriented portfolio investor. The models proposed in this paper seem to provide useful evidence

of economic significance.

We consider the following trading strategy: Let Probt(Rt+1 > 0) be the estimated probability of

a positive excess stock return for the period t+1. Then the trading strategy or decision rule can

be expressed as follows:

If Probt(Rt+1 > 0)> 0.5, then purchase the stock index.

Else if Probt(Rt+1 > 0)≤ 0.5, then purchase the treasury bill.

The performance of the constructed portfolios is evaluated over the out-of-sample period (1991

to 2016: T=312 months) using a plethora of performance measures. First, we consider the re-

alized returns of the constructed portfolios. Let rp,t+1 be the realized return of the portfolio at

time t + 1. We calculate the average return (AR) within the out-of-sample period, the cumu-

lative return at the end of the period, and the volatility of the portfolio. We also compare the

return per unit of risk by using the Sharpe Ratio.

Sharpe Ratio

We use the Sharpe Ratio (SR), which standardizes the realized returns with the risk of the

portfolio and is calculated through the following equation:

SRp =
E(rp)−E(R f )√

Var(rp)
,

where rp is the average realized return of the portfolio over the out-of-sample period; R f is the

risk-free interest rate and Var(rp) is the variance of the portfolio over the out-of-sample period.

Portfolios with high Sharpe ratios are most preferable to portfolios with low Sharpe ratios, ow-

ing to the fact that the higher the Sharpe ratio, the higher the return and the lower the volatility.
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Maximum Drawdown

We also calculate the maximum drawdown (MaxDD). MaxDD determines the maximum sus-

tained percentage decline (peak to trough), which has occurred in the portfolio within the pe-

riod studied. MaxDD up to time T is the maximum of the drawdown over the history of the

specific variable under consideration, and it is computed as follows:

MaxDDp = max
T0≤t≤T−1

[ max
T0≤ j≤T−1

(PVj)−PVt ],

where PV denotes the portfolio value; T0,T denote the beginning and end of the evaluation

period, respectively.

Omega Ratio

The Omega ratio, as a risk-return performance measure of a portfolio investment introduced

by Keating and Shadwick (2002), gives the probability weighted ratio of gains versus losses for

a stipulated threshold return target. We first define the n-th lower partial moment (LPMn) of the

portfolio return and the kappa function Kn, and used the concept to compute Omega, Sortino

and the Upside Potential respectively, see (Harlow and Rao, 1989; Sortino and Van Der Meer,

1991; Sortino and Price, 1994) for detail studies. The n-th lower partial moment of the portfolio

return is defined as follows:

LPMn(rb) = E[((rb− rp)+)
n]

where rb is the benchmark return.

The Kappa function Kn(rb) is defined as follows:

Kn(rb) =
E(rp)− rb
n
√

LPMn(rb)
for n = 1,2, ...

Thus, the Omega ratio is computed from the following formula:

Omega(rb) = K1(rb)+1.

Sortino Ratio

Unlike the Sharpe ratio, which penalizes both upside and downside volatility equally, the

Sortino ratio penalizes only the returns that fall below a user specified target. The Sortino

ratio measures the risk adjusted return of a portfolio. It can be computed from the following

formula:

S(rb) = K2(rb).

Like the Sharpe ratio, the higher the Sortino ratio, the better the risk adjusted performance and

vice versa.

Upside Potential

Upside Potential is a measure of the return of an investment relative to the minimal acceptable
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return. The upside potential is calculated as follows:

UP(rb) =
E[(rp− rb)

+]√
LPM2(rb)

The economic importance of the upside cannot be overemphasized. It not only indicates an

investor’s potential gain in value but also judges the success of a portfolio manager’s perfor-

mance comparative to a benchmark.

Additionally, we investigate the tail-risk of the different proposed portfolios. A CVaR of λ% at

the 100(1-α)% confidence level means that the average portfolio loss measured over 100α% of

worst cases is equal to λ% of the wealth managed by the investor. To compute VaR and CVaR,

we use the empirical distribution of the portfolio realized returns. VaR and CVaR are calculated

at the 95% confidence levels.

In this paper, we employ the U.S. 3-month interest rate for the risk free rate R f and for the

benchmark rate of return (rb) necessary for the calculation of Omega, MaxDD and S.

4 Data Analysis and Discussion

4.1 Sources of Data and Variables

The data used in this paper are obtained from Amit Goyal’s webpage2, covering monthly ob-

servations ranging from January 1960 to December 2016. These variables, presented in Table 2,

have been used in the existing literature quite extensively for predictability of the equity pre-

mium, see (Rapach et al., 2010; Nyberg, 2011; Meligkotsidou et al., 2014, 2019) among others.

The total number of observations is T = 684. An out-of-sample period of T2 = 312 monthly ob-

servations ranging from January 1991 to December 2016 has been employed for the evaluation

of the forecasting performance. The forecast horizon denoted by h is one month ahead for each

of the forecasting models.

In the out-of-sample method, the parameters of the forecasting models are estimated recur-

sively using an expanding window of observations, in which the fitted models are estimated

using data from the start date of the dataset to the present time and obtain a one month-period-

ahead forecast. The procedure is repeated iteratively until the end of the forecast sample pe-

riod is attained. In the CART techniques, we train each classification model, pre-process the

training dataset in a closed centre and scale form, tune the parameter(s) of each model by

cross-validation and resampling, determining the variable importance before making the out-

of-sample forecasts. The resampling approach seeks to determine the values of each of the

model parameters (if any) and uses the best tuning parameter(s) based on fitted in-sample

2www.hec.unil.ch/agoyal/
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Table (2) The Financial Variables used for the Study

Indicator Time Series Variable

Equity Premium EquityPrem

Default Return Spread DFR

Excess Stock Return ESR

Short Term Interest Rate ∆ShortR

Long Term Yield ∆LongR

Term Spread TermSpr

Inflation ∆In f l

Return Spread ReturnSpr

Yield Spread YieldSpr

Book to Market Value BMV

Net Equity Expansion NEE

Dividend Price Ratio DPR

Earning Price Ratio EPR

Stock Variance SVar

accurate measures to produce the out-of-sample forecasts. In each model, the best tuning pa-

rameter(s) were used to run the out of sample forecasts recursively, and their respective perfor-

mance evaluation measures were obtained.

4.2 Statistical Performance Evaluation Results

The statistical performance evaluation results for the proposed techniques in this paper, pre-

sented in Table 3, are shown to be promising, owing to the empirical evidence of useful pre-

dictability. The out-of-sample positive class return forecasts are depicted in Figure 1. In the

benchmark binary probit models, the predictive accuracy of the static binary probit model in-

volving all covariates appeared to be very low with insignificant evidence of PT directional

predictability, and the kappa statistic is extremely poor, indicating a poor inter-rater agreement

between the actual and predicted values. Whereas the application of stepwise variable selec-

tion by the Akaike information criterion (AIC) on the static model seeks to improve the predic-

tive accuracy, it does not provide statistically significant evidence of directional predictability

and the kappa statistic is still low. The dynamic binary probit, which includes the lagged

excess stock return indicator together with the other predictor variables, produced a slightly

better predictive accuracy as compared to the static probit. The ”∗∗∗ ”, ”∗∗” and ”∗ ” signified

0.1%, 1% and 5% significance, respectively.

Again, the application of stepwise variable selection by AIC on the dynamic probit results

in a slight increase in the predictive accuracy and the result equals the result of the stepwise
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Table (3) Statistical Performance Evaluation Results

Model CPR/Accuracy MCE PT Precision Specificity Sensitivity Kappa McNemar F1Score

Panel A: Binary Probit Models

Static BP 0.561 0.439 -0.066 0.794 0.391 0.605 -0.003 0.000 0.686

Static BP StepAIC 0.596 0.404 1.533 0.820 0.477 0.628 0.079 0.000 0.711

Dynamic BP 0.580 0.420 0.794 0.810 0.452 0.617 0.014 0.000 0.700

Dynamic BP StepAIC 0.596 0.404 1.533 0.820 0.477 0.628 0.079 0.000 0.711

Panel B: Penalized Binary Probit Models

Ridge BP 0.651 0.349 3.939*** 0.947 0.706 0.644 0.163 0.000 0.767

LASSO BP 0.619 0.381 2.215* 0.894 0.545 0.631 0.101 0.000 0.740

Elastic Net BP 0.628 0.372 2.744** 0.894 0.574 0.638 0.127 0.000 0.744

Panel C: Bagging and Boosting Models

Bagging 0.606 0.394 2.626** 0.735 0.500 0.656 0.147 0.047 0.693

RPart 0.612 0.388 1.674* 0.621 0.138 0.921 0.068 0.000 0.742

RF 0.654 0.346 4.339*** 0.681 0.577 0.804 0.240 0.001 0.738

CTree 0.609 0.391 0.970 0.984 0.571 0.610 0.020 0.000 0.753

CForest 0.612 0.388 1.465 0.610 0.024 0.995 0.023 0.000 0.756

AdaBoost 0.644 0.356 3.668*** 0.963 0.731 0.636 0.136 0.000 0.766

LogitBoost 0.583 0.417 1.294 0.627 0.293 0.773 0.070 0.000 0.692

GBM 0.615 0.385 2.001* 0.899 0.537 0.627 0.089 0.000 0.739

GLMBoost 0.625 0.375 2.408** 0.952 0.625 0.625 0.086 0.000 0.755

Panel D: Nearest Neighbour Model

kNN 0.628 0.372 3.219*** 0.799 0.542 0.659 0.175 0.000 0.722

Panel E: Neural Networks Model

NNET 0.593 0.407 0.555 0.619 0.195 0.852 0.052 0.000 0.717

LVQ 0.606 0.394 2.626** 0.624 0.187 0.878 0.073 0.000 0.730

Panel F: Bayesian Models

Bayes GLM 0.603 0.397 1.739* 0.836 0.492 0.629 0.088 0.000 0.718

Naive Bayes 0.660 0.340 4.402*** 0.937 0.707 0.653 0.195 0.000 0.770

Panel G: Discriminant Analysis Models

LDA 0.558 0.442 -0.241 0.794 0.381 0.602 -0.012 0.000 0.685

Sparse LDA 0.603 0.397 1.533 0.862 0.490 0.625 0.073 0.000 0.724

Step LDA 0.603 0.397 0.663 0.952 0.471 0.610 0.021 0.000 0.744

HDA 0.580 0.420 0.407 0.847 0.420 0.611 0.019 0.000 0.710

HDDA 0.670 0.330 5.244*** 0.894 0.667 0.671 0.241 0.000 0.766

QDA 0.654 0.346 4.131*** 0.857 0.609 0.667 0.215 0.000 0.750

Step QDA 0.603 0.397 0.663 0.952 0.471 0.610 0.021 0.000 0.744

RDA 0.636 0.365 3.015** 0.926 0.622 0.636 0.029 0.000 0.759

DWD Linear 0.609 0.391 1.581 0.905 0.514 0.622 0.067 0.000 0.737

static binary probit. The analysis of the static and dynamic binary probit models revealed

that a parsimonious approach is preferable to incorporating many predictors in the models.

The replication of the static and dynamic binary probit models used in the previous findings,

as shown in the existing literature, such as in Nyberg (2011), had confirmed the feasibility of

these models for excess stock return directional predictability. Interestingly, the empirical anal-

ysis of the static and dynamic binary probit models in this paper produced predictive accuracy

(CPRs) equivalent to the CPRs of these models demonstrated by Nyberg (2008), Nyberg (2011)

and investigate other important statistical performance measures, such as the kappa statistic,

which determines inter-rater agreement between the actual results and the forecasts, and the

McNemar’s test for the detection of marginal homogeneity or equiprobability.

Turning to penalized binary probit models, the inclusion of penalty vector norm(s) in the or-

dinary binary probit models revealed a good improvement in predictive performance of the

models. Specifically, the ridge, LASSO and elastic net provide higher predictive accuracy,

which outperformed the benchmark binary probit models, with Ridge being statistically sig-

nificant at 0.1%, EN at 1% and LASSO at 5%, with better inter-rater agreement between the
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Figure (1) Graphical Representation of the Out-of-Sample Positive Class Return Forecasts
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actual results and the forecasts, as judged by the kappa statistic, and McNemar’s pvalue evi-

dence of marginal heterogeneity. The penalized probit models also produced better precision,

specificity, sensitivity and F1 scores compared to the ordinary probit models. The ridge pro-

duced a better predictive accuracy and other statistical performance evaluation measures than

the LASSO and elastic net, outperforming both the LASSO and the elastic net in this direction.

Overall, the presence of the `1 and `2 penalty vector norms in the binary probit models ap-

peared to improve the predictive task and the overall performance of the resulting models.

The models employed for forecasting the direction of the U.S. stock market in this paper

demonstrate both the feasibility of the models and significant evidence of outperformance over

the benchmark probit models. With the exception of LogitBoost, neural networks, LDA and

HDA, all other classifiers in this paper are shown to have outperformed the benchmark binary

probit models by statistical performance evaluation measures. In more detail, seven of the pro-

posed methods outperform the benchmark probit models at 0.1%, five methods at 1% and four

methods at 5%. It is noticeable that the introduction of the stepwise variable selection concept

in the LDA model improved the predictive task and the resulting statistical performance of

the LDA model, whereas the introduction of the stepwise concept in the QDA model wors-

ened the predictive task and overall performance of the QDA model. The empirical analysis

in this paper confirmed the superior outperformance of random forest (RF) over other forest

based classification models in financial analysis, as shown in Ballings et al. (2015). Bagging and

boosting, as demonstrated by Zheng (2006) in other aspects of stock market analysis, also ap-

peared to have outperformed the neural networks in this paper. Unlike the benchmark binary

probit models, the three sophisticated machine learning classification models, i.e., random for-

est, HDDA and QDA, provide fair inter-rater agreement between the actual results and the

forecasts, as shown by their respective kappa statistic. The HDDA appeared to produce the

best out of sample statistical performance evaluation results, followed by naive Bayes, and the

QDA, with significant evidence of outperformance. Overall, the HDDA is the best model for

predicting the direction of the U.S stock market in terms of statistical measures of predictability.

4.3 The Economic Performance Evaluation Results

As in the statistical case, the economic performance evaluation results, presented in Table 4,

also revealed that the dynamic binary probit model produced better cumulative returns, Sharpe

ratio (SR), MaxDD, Omega, Sortino Ratio and Upside Potential than the static binary probit,

and the stepwise variable selection cases by AIC, in each case, appeared to yield even better

economic evaluation results than the ordinary case. The penalized binary probit models (ridge,

LASSO and elastic net) produced better cumulative returns, SR, MaxDD, Omega, Sortino and

Upside than the ordinary binary probit models and, hence, demonstrate economically signif-
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icant evidence of outperformance over the benchmark binary probit. For example ridge has

SR equal to 0.642 while the static probit has SR equal to 0.271. Interestingly, all the penalized

binary probit models outperformed the benchmark static and dynamic binary probit models in

this paper. Again, the ridge outperformed the LASSO and elastic net in terms of the economic

significance measure and seems to provide better economic information on future investment

outcomes to a stock market investor than the LASSO and elastic net. All the CART models that

are shown to be promising in terms of statistical predictability in this paper are also shown

to be promising in terms of economic significance to portfolio investors. The effectiveness of

Bagging (Bootstrap Aggregating), Boosting, Trees, Forests, Naive Bayes Discriminant Analysis

models and other ensembles that were demonstrated to be useful in other concepts of financial

analysis are also shown to be useful in forecasting the direction of the U.S. excess stock market

returns and providing portfolio investors with better economic significance about the future

outcome of investments in the stock market. The Random Forest method produced the highest

SR (0.643) among the bagging and boosting models and by far greater than the static probit

model (0.271). It is worth noting that a best performing model in terms of the statistical mea-

sure may not necessarily reflect the best performance in the economic significance measure.

Contrary to the statistical performance analysis, the HDDA does not correspondingly provide

the best economic performance result; instead the QDA produced the highest cumulative re-

turn, SR, Omega, Sortino and Upside with a corresponding least MaxDD. QDA gives SR equal

to 1.077 (almost four times the SR of static probit), while HDDA produces SR equal to 0.831.

Although the HDDA also demonstrates good evidence of economic significance and appeared

to have outperformed the other models in terms of some useful economic performance eval-

uation measures, another suitable benchmark comparative measure of economic significance

on portfolio investment by investors is to compare the expected return on portfolio invest-

ment produced by the model with a buy and hold trading strategy of the SP500 index. In this

case, we see that the simple probit models do not outperformed the buy and hold strategy.

However, the penalized probit models and the prominent CART models (for example, HDDA,

QDA, RDA and Naive Bayes) outperformed the buy and hold strategy, providing higher risk-

adjusted returns.

Interestingly, the prominent CART models used in this paper have economically outperformed

the benchmark binary probit models and the buy and hold trading strategy with a significant

margin. Overall, the QDA appeared to be the best economically significant model for forecast-

ing the direction of the U.S. stock market out of sample.
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Table (4) Economic Performance Evaluation Results

Model CumRet ER SD SR VaR0.05 CVaR0.05 MaxDD Omega Sortino Upside Potential

Buy & Hold Strategy 1.914 0.074 0.144 0.326 -0.230 -0.342 34.655 1.274 0.130 0.594

Panel A: Binary Probit Models

Static BP 1.576 0.061 0.125 0.271 -0.215 -0.308 38.973 1.256 0.107 0.525

Static BP StepAIC 2.145 0.083 0.130 0.430 -0.215 -0.308 20.784 1.436 0.177 0.582

Dynamic BP 2.012 0.078 0.126 0.428 -0.215 -0.308 26.342 1.374 0.163 0.574

Dynamic BP StepAIC 2.145 0.083 0.130 0.430 -0.215 -0.308 20.784 1.436 0.177 0.582

Panel B: Penalized Binary Probit Models

Ridge BP 2.796 0.108 0.126 0.642 -0.181 -0.284 15.556 1.669 0.274 0.683

LASSO BP 2.459 0.095 0.130 0.524 -0.204 -0.301 17.362 1.526 0.219 0.630

Elastic Net BP 2.533 0.097 0.127 0.559 -0.189 -0.289 16.755 1.574 0.236 0.647

Panel C: Bagging and Boosting Models

Bagging 2.137 0.082 0.109 0.511 -0.189 -0.253 13.475 1.563 0.223 0.618

RPart 1.655 0.064 0.140 0.265 -0.229 -0.338 38.932 1.231 0.105 0.559

RF 2.605 0.100 0.114 0.643 -0.168 -0.266 9.256 1.737 0.285 0.672

CTree 1.986 0.076 0.143 0.348 -0.229 -0.341 33.527 1.305 0.139 0.594

CForest 1.973 0.076 0.144 0.342 -0.230 -0.342 33.720 1.296 0.136 0.598

AdaBoost 2.383 0.092 0.137 0.475 -0.219 -0.319 21.728 1.450 0.195 0.628

LogitBoost 1.762 0.068 0.124 0.332 -0.201 -0.296 32.488 1.318 0.138 0.570

GBM 2.112 0.081 0.131 0.418 -0.218 -0.295 27.367 1.392 0.175 0.620

GLMBoost 2.161 0.083 0.138 0.409 -0.224 -0.326 27.669 1.376 0.166 0.607

Panel D: Nearest Neighbour Model

kNN 2.266 0.087 0.124 0.487 -0.179 -0.298 17.423 1.519 0.203 0.594

Panel E: Neural Networks Models

NNET 2.004 0.077 0.127 0.396 -0.218 -0.290 27.504 1.367 0.165 0.612

LVQ 1.861 0.072 0.143 0.314 -0.230 -0.342 34.198 1.270 0.124 0.585

Panel F: Bayesian Models

Bayes GLM 2.230 0.086 0.124 0.477 -0.189 -0.289 21.103 1.487 0.198 0.603

Naive Bayes 2.807 0.108 0.125 0.653 -0.191 -0.278 15.844 1.673 0.281 0.699

Panel G: Discriminant Analysis Models

LDA 1.481 0.057 0.126 0.240 -0.218 -0.311 38.973 1.223 0.094 0.515

Sparse LDA 1.972 0.076 0.130 0.380 -0.219 -0.309 27.066 1.361 0.152 0.575

Step LDA 2.007 0.077 0.142 0.356 -0.229 -0.338 33.202 1.315 0.143 0.595

HDA 1.927 0.074 0.127 0.375 -0.201 -0.308 25.157 1.360 0.151 0.569

HDDA 3.090 0.119 0.111 0.831 -0.162 -0.225 16.430 1.935 0.396 0.820

QDA 3.517 0.135 0.101 1.077 -0.125 -0.168 6.072 2.378 0.598 1.032

Step QDA 1.863 0.072 0.141 0.319 -0.229 -0.338 34.156 1.281 0.127 0.579

RDA 2.499 0.096 0.124 0.561 -0.204 -0.277 31.126 1.552 0.240 0.676

DWD Linear 1.921 0.074 0.133 0.355 -0.223 -0.322 37.314 1.331 0.141 0.569

5 Conclusion

The analysis of the benchmark binary probit models in this paper corroborates the empirical

findings in previous studies, especially in Nyberg (2008), Nyberg (2011). In this paper, addi-

tional statistical and economic performance evaluation measures were introduced to investi-

gate the long-run usefulness of these models in the financial stock market.

The empirical analysis in this paper revealed that the proposed sophisticated machine learning

techniques outperformed the benchmark binary probit models both statistically and econom-

ically. In terms of the statistical predictive accuracy, the best penalized binary probit model

outperformed the best binary probit model by 5.5% and the best CART model outperformed

the best binary probit model by 7.4%.

In terms of statistical performance evaluation measures, the HDDA appeared to be the best

model for forecasting the direction of the U.S stock market in this paper, owing to its highest

predictive accuracy with minimum misclassification error (MCE) and other resulting statistical

measures. Adding to the previous analysis in the existing financial and econometric literature,

the Kappa statistic was used in this paper to investigate the inter-rater agreement between the
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actual values and forecasts produced by the various models. The Kappa statistic revealed that

there is no inter-rater agreement between the actual values and the forecasts obtained by the

static and the dynamic binary probit models. Interestingly, the RF, QDA and HDDA proposed

in this paper provide evidence of fair inter-rater agreement between the actual values and

the forecasts produced by the models. However, the QDA appeared to be the best model in

terms of the measures of economic significance in this paper. The QDA seems to provide more

economic value to guarantee the success of a portfolio manager in the stock market than the

other models used in this paper.

Overall, the HDDA is the best model for forecasting the direction of the U.S stock market out of

sample in terms of statistical predictability measures, while the QDA is the best economically

significant model for a portfolio investor whose utmost goal is to minimise risk and maximize

profit, based on the empirical analytical findings in this paper.
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