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Abstract

It is well known that if a sequence of stochastic convex functions on Rd converges in probability

point-wise to some non-stochastic function then the limit function is convex and the convergence is

uniform on compact sets; see Andersen and Gill (1982) and Pollard (1991). In the present paper, I

establish that if the limiting function is differentiable then any sequence of measurable sub-gradients

of the stochastic convex functions converges in extended probability to the gradient of the limit

function uniformly on compact sets.
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1. Introduction

Optimization based estimation and inference are very widely used in statistics and economet-

rics and there is a well-developed theory of their asymptotic properties; see, for example, Hayashi

(2000). A key element in this theory is the uniform convergence in an appropriate sense of certain

sequences of stochastic functions and consequently much attention has been paid to establishing

sufficient conditions for such uniform convergence. One such set of conditions is given by Theorem

II.1 of Andersen and Gill (1982) which shows that point-wise convergence in probability of stochas-

tic convex functions implies uniform convergence on compact subsets, thus providing a stochastic

version of Theorem 10.8 of Rockafellar (1970). Pollard (1991) provides a separate proof of this uni-

form stochastic convergence result and then uses this to establish root-n consistency and asymptotic

normality of the least absolute deviations (LAD) estimator under various sets of conditions on the

regressors and error terms in a linear regression model.

Here I show that if a sequence of stochastic convex functions on Rd converges in probability

point-wise to a some non-stochastic differentiable function then any sequence of measurable sub-

gradients of the stochastic convex functions converges in extended probability to the gradient of

the limit function uniformly on compact sets, where the extension of the underlying probability

measure is to the universal completion of the underlying σ-algebra. The proof of this result does

not involve working explicitly with the functional forms of the sequence of measurable sub-gradients

but instead exploits the basic characterization of sub-gradients of convex functions. I then use this

result to establish the validity of a uniform local stochastic expansion of a sub-gradient given a

point-wise local stochastic expansion of the objective function.

The layout of the paper is as follows. In Section 2, I present the framework and main result

on uniform convergence in probability of measurable sub-gradients of stochastic convex functions.

In Section 3, I show how the main result can be applied to establish the validity of an uniform

local stochastic expansion of the sub-gradient of a convex objective function. Section 4 contains

concluding remarks. The proof of the main result is contained in an appendix.
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2. Framework and Main Result

Throughout I assume that there is an underlying probability space (Ω,F , P ). The completion

Fµ of F with respect to a probability measure µ on (Ω,F) is defined as the σ-algebra generated

by the elements of F and the µ-null subsets of Ω, where A is a µ-null subset of Ω if there exists

B ∈ F such that A ⊆ B and µ (B) = 0. The universal completion Fu of F is then given as⋂
{Fµ|µ is a probability measure on (Ω,F)} and is also a σ-algebra on Ω. The extension Pu of

P to the universal completion Fu of F is unique and necessarily satisfies Pu (E) = P (E) for all

E ∈ F ; see Stinchcombe and White (1992, pp. 498-499).

The parameter space of interest, Θ, is a non-empty open convex subset of Rd for some finite d.

{λn : Θ× Ω→ R}∞n=1 is a sequence of functions such that for each n ∈ N and ω ∈ Ω, λn (·;ω) is a

proper convex function on Θ with effective domain equal to Θ. Andersen and Gill (1982, Theorem

II.1) establishes that if there is a non-random function λ0 (·) : Θ→ R such that λn (θ, ·) converges

in probability to λ0 (θ) point-wise for each θ in Θ then λ0 (·) is a finite convex function on Θ and,

furthermore, the convergence is uniform on any non-empty compact subset Γ of Θ.

If λ (·) is a finite convex function on Θ with effective domain equal to Θ then for every θ0 ∈ Θ

there exists at least one affine function y (·) : Rd → R such that y (θ) ≤ λ (θ) for all θ ∈ Θ with

equality if θ = θ0. Such an affine function can be expressed in the form

y (θ) = λ (θ0) + 〈s (θ0) , (θ − θ0)〉 , ∀θ ∈ Rd, (1)

for some s (θ0) ∈ Rd, where 〈a, b〉 =
∑d
i=1 aibi for any (d× 1) real-valued vectors a and b. The

vector s (θ0) is then termed a sub-gradient of λ (θ) at θ = θ0. If λ (θ) is differentiable with respect

to θ at θ = θ0 then this affine function is unique with sub-gradient equal to the gradient ∇λ (θ0)

of λ (θ) at θ = θ0. The set of all sub-gradients of λ (·) at θ is called the sub-differential λ (·) at

θ, denoted ∂λ (θ), and the correspondence which maps θ to ∂λ (θ) is the sub-differential map. A

selection ∇†λ (·) of the sub-differential map is then a single valued mapping which for each element

θ of Θ selects an element ∇†λ (θ) ∈ ∂λ (θ). In what follows, B (Θ), B (R) and B
(
Rd
)

are the Borel

σ-algebras on Θ, R and Rd respectively, and B (Θ)⊗F is the product σ-algebra on Θ×Ω generated
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by (Θ,B (Θ)) and (Ω,F). A measurable sub-gradient of a (B (Θ)⊗F) /B (R)-measurable function

λ∗ : Θ × Ω → R which is convex on Θ for all ω ∈ Ω is then a (B (Θ)⊗F) /B
(
Rd
)
-measurable

selection of the sub-differential map of λ∗ (·).

Theorem 1. Let Θ be a non-empty open convex subset of Rd, where d is a finite positive in-

teger, {λn : Θ× Ω→ R}∞n=1 be a sequence of (B (Θ)⊗F) /B
(
Rd
)
-measurable functions such that

λn (·;ω) : Θ → R is a proper convex function on Θ for each ω ∈ Ω with effective domain equal to

Θ, and λ0 : Θ → R be a finite convex function such that λn (θ) converges in probability to λ0 (θ)

point-wise for each θ in Θ. In addition, suppose that:

(i) ∇†λn : Θ× Ω→ Rd is a measurable sub-gradient of λn for each n ∈ N; and

(ii) λ0 (θ) is differentiable with respect to θ for all θ ∈ Θ with gradient ∇λ0 (θ).

Then:

(a) For every non-empty compact subset Γ of Θ, supθ∈Γ

∥∥∇†λn (θ, ·)−∇λ0 (θ)
∥∥ is Fu/B (R)-

measurable for each n ∈ N, where Fu is the universal completion of F .

(b) limn→∞ Pu
(
supθ∈Γ

∥∥∇†λn (θ)−∇λ0 (θ)
∥∥ > ε

)
= 0 for all ε > 0, where Pu is the extension

of P to (Ω,Fu).

Remark 1. Theorem 1 is a stochastic analogue of a generalization of Theorem 25.7 of Rockafellar

(1970). The latter theorem establishes that if {λn (·)}∞n=1 is a sequence of non-random differentiable

finite convex functions defined on a non-empty open convex subset Θ of Rd that converge point-wise

to a non-random differentiable function λ0 (·) on Θ then the sequence of gradients {∇λn (·)}∞n=1

converges uniformly to ∇λ0 (·) on any compact subset of Θ. Theorem 1 allows the functions in

the sequence to be random and drops the requirement that they be differentiable, though the limit

function still needs to be differentiable.

Remark 2. If the λn functions were differentiable on Θ for all n ∈ N and ω ∈ Ω then it would only

be necessary in Theorem 1 to require that ∇†λn (θ) be F/B
(
Rd
)
-measurable, i.e. a random vector,

for each θ ∈ Θ. Corollary 25.5.1 of Rockafellar (1970) would then imply that λn was continuously
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differentiable on θ for all ω ∈ Ω and hence so too was (λn − λ). It would then be straightforward

to show that (∇λn −∇λ) converged in probability uniformly on compact subsets of Θ by using

the same diagonalization method as in the proof of Theorem II.1 of Andersen and Gill (1982) but

replacing the reference to Theorem 10.8 of Rockafellar (1970) by a reference to Theorem 25.7 of

Rockafellar (1970). Unfortunately, in many cases of interest there is a positive probability that

λn is not differentiable everywhere in Θ. Since Θ is an open convex set, it follows from Theorems

25.5 and 25.6 of Rockafellar (1970) that any selection of the sub-differential map of λn (·;ω) will be

discontinuous at those elements of Θ at which λn (·;ω) is not differentiable.

Remark 3. Theorem 1 does not itself establish the existence of a measurable sub-gradient ∇†λn.

One case where this can be established is when λn depends on Ω through a (Dn×1) vector of random

variables Wn (where Dn is finite) and is jointly continuous with respect to (θ,Wn). Then Θ×RDn

is σ-compact Hausdorff and the sub-differential correspondence ∂λn : Θ×RDn � Rd is non-empty

compact valued so its graph is closed. Theorems 18.10 and 18.20 of Aliprantis and Border (2006)

then imply that ∂λn is weakly measurable. It follows by the Kuratowski–Ryll-Nardzewski theorem

that ∂λn has a measurable selection.

Remark 4. Validating the requirement that ∇†λn be B (Θ)⊗F/B
(
Rd
)
-measurable when λn is not

differentiable everywhere in Θ needs to be done on a case-by-case basis but is often straightforward

in practice. For example, in the quantile regression case when the conditional α-quantile of y given

x is equal to x′β0 for some unknown β0 then the objective function is given by:

SN (β;α) =

n∑
i=1

(
α− 1{yi<x′

iβ}
)

(yi − x′iβ)

where 1{yi<x′
iβ} is the indicator function for the event {yi < x′iβ}. One natural choice of sub-

gradient of SN (β;α) with respect to β is then

∇†SN (β;α) = −
n∑
i=1

[
α− 1{yi<x′

iβ}
]
xi,
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and it is easy to verify that this choice of sub-gradient of SN (β;α) is B (Θ)⊗F/B
(
RK
)
-measurable,

where Θ = RK .

3. Relevance for Optimization Based Estimation

Suppose that Υ is a non-empty open convex subset of Rd and that for each n ∈ N, Qn (·) is a

random convex function from Θ to R and Tn is a (d× 1) random vector. In addition, suppose that,

as in Pollard (1991), there exists β0 ∈ Υ and a non-random symmetric positive definite (d× d)

matrix A0 such that

Qn

(
β0 + n−1/2ψ

)
= Qn (β0) + 〈Tn, ψ〉+

1

2
ψ′A0ψ + op (1) , ∀ψ ∈ Rd. (2)

Then λn (ψ) = Qn
(
β0 + n−1/2ψ

)
− Qn (β0) − 〈Tn, ψ〉 is a convex function of ψ which converges

in probability point-wise to the finite strictly convex function λ0 (ψ) = 1
2ψ
′A0ψ. Theorem II.1 of

Andersen and Gill (1982) implies that λn (·) converges uniformly in probability to λ0 (·) on any

compact subset Γ of Rd and thus

sup
ψ∈Γ

∣∣∣∣Qn (β0 + n−1/2ψ
)
−Qn (β0)− 〈Tn, ψ〉 −

1

2
ψ′A0ψ

∣∣∣∣ = op (1) ,

which establishes that the local stochastic expansion given by Equation (2) is uniform on compact

subsets of Rd. The line of argument in Pollard (1991) can then be used to show that if, in addition,

Tn converges in distribution to a N (0, B0) random vector, where B0 is a non-random positive

definite (d× d) matrix, then

n1/2
(
β̂n − β0

)
= −A−1

0 Tn + op (1) , (3)

where β̂n is a F/B
(
Rd
)
-measurable solution to minβ∈B Qn (β), and hence n1/2

(
β̂n − β0

)
converges

in distribution to a N
(
0, A−1

0 B0A
−1
0

)
random vector.
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Now suppose that ∇†Qn (·) is a measurable selection of ∂Qn (·). Then ∇†λn (·), defined by

∇†λn (ψ) ≡ n−1/2∇†Qn
(
β0 + n−1/2ψ

)
− Tn, ∀ψ ∈ Rd,

is a measurable selection of ∂λn (·). Since λ0 (ψ) is differentiable it follows from Theorem 1 above

that supψ∈Γ

∣∣∇†λn (ψ)−∇λ0 (ψ)
∣∣ = op (1) and hence that

sup
ψ∈Γ

∣∣∣n−1/2∇†Qn
(
β0 + n−1/2ψ

)
− Tn −A0ψ

∣∣∣ = op (1) , (4)

noting that ∇λ0 (ψ) = 1
2

∂(ψ′A0ψ)
∂ψ = A0ψ.

Equations (3) and (4) then imply that n−1/2∇†Qn
(
β̂n

)
= op (1). If β̃n is a root-n consistent

estimator of β0 and Ãn is a consistent estimator of A0 then a single Gauss-Newton step

β̃∗n = β̃n − Ã−1
n n−1∇†Qn

(
β̃n

)
,

produces an estimator which is asymptotically equivalent to the full optimization estimator in

that n1/2
(
β̃∗n − β̂n

)
= op (1). The result in Equation (4) can also be used in the construction of

score tests and generalized C (α) tests provided that consistent estimators of both A0 and B0 are

available.

4. Conclusions

Following Pollard (1991) it has been well known in econometrics that point-wise convergence in

probability for a sequence of stochastic convex functions to some limit function implies their uniform

convergence in probability on compact sets. In the present paper, I establish that if the limiting

function is differentiable then any sequence of measurable sub-gradients of the stochastic convex

functions converges uniformly in extended probability on compact sets to the derivative of the limit

function. I then use this result to establish the validity of a uniform local stochastic expansion of

a sub-gradient of a convex objective function given a point-wise local stochastic expansion of the

objective function.
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Appendix A. Proof of Theorem 1

First, observe that since Γ is a compact subset of Θ then there exists τ > 0 such that Nτ (θ) ⊂ Θ

for all θ ∈ Γ, where

Nτ (θ) =
{
θ̃ ∈ Rd :

∥∥∥θ̃ − θ∥∥∥ ≤ τ}
is the closed ball of radius τ centered at θ. Let Aτ (Γ) = ∪θ∈ΓNτ (θ); then Γ ⊂ Aτ (Γ) and Aτ (Γ)

is a compact subset of Θ. Since λn (·;ω) is a proper convex function on Θ for any ω ∈ Ω it

follows that λn (·;ω) is uniformly continuous on Aτ (Γ) for any ω ∈ Ω and hence that there exists

Ln (Γ;ω) <∞ such that
∣∣∣λn (θ̃;ω)∣∣∣ ≤ Ln (Γ;ω) for all θ̃ ∈ Aτ (Γ). It follows by the characterization

of sub-gradients given in Equation (1) that

〈
∇†λn (θ;ω) ,

(
θ̃ − θ

)〉
≤ λn

(
θ̃;ω

)
− λ0 (θ) ≤ 2Ln (Γ;ω) , ∀θ ∈ Γ & θ̃ ∈ Nτ (θ) ,

which implies that supθ̃∈Nτ (θ)

〈
∇†λn (θ;ω) ,

(
θ̃ − θ

)〉
≤ 2Ln (Γ;ω) for all θ ∈ Γ. Since ‖a‖ =

supη:‖η‖=1 < a, η > for any vector a then
∥∥∇λ†n (θ;ω)

∥∥ ≤ 2Ln (Γ;ω) /τ <∞ for all θ ∈ Γ and ω ∈ Ω.

By a parallel argument it follows that there exists L0 <∞ such that ‖∇λ0 (θ)‖ ≤ 2L0/τ for all θ ∈ Γ.

Together these imply that
∥∥∇λ†n (θ;ω)−∇λ0 (θ)

∥∥ ≤ 2 (L0 + Ln (Γ;ω)) /τ for all θ ∈ Γ and ω ∈ Ω

and hence that supθ∈Γ

∥∥∇λ†n (θ;ω)−∇λ0 (θ)
∥∥ <∞ for all ω ∈ Ω so supθ∈Γ

∥∥∇λ†n (θ, ·)−∇λ0 (θ)
∥∥

is a mapping from Ω to R. Then since Rd is a Polish space and Θ is an open subset of Rd it follows

that Θ is a Lusin space and hence it is also a Souslin space. Defining the correspondence S : Ω⇒ Θ

by S (ω) = Γ for all ω ∈ Ω, it follows that the graph of S belongs to B (Θ) ⊗ F . Hence it follows

from Theorem 2.17 of Stinchcombe and White (1992) that the function hn : Ω→ Rd, defined by

hn (ω) = sup
θ∈S(ω)

∥∥∇†λn (θ;ω)−∇λ0 (θ)
∥∥ = sup

θ∈Γ

∥∥∇†λn (θ, ω)−∇λ0 (θ)
∥∥ ,

is F-analytic and hence is Fu/B (R)-measurable, which establishes the first result in the theorem.

Second, since λn (θ;ω) is a convex function of θ ∈ Θ for any ω ∈ Ω and converges point-wise

in probability to λ0 (θ) it follows that that λ0 (·) is convex on Θ and hence also continuous on Θ.

Since Aτ (Γ) is a compact subset of Θ it follows that λ0 (·) is uniformly continuous on Aτ (Γ). Now
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fix ε > 0; then there exists δ > 0 such that
∥∥∥∇λ0

(
θ̃
)
−∇λ0 (θ)

∥∥∥ < ε for all θ, θ̃ ∈ Aτ (Γ) satisfying∥∥∥θ̃ − θ∥∥∥ < δ. Next, fix θ∗ ∈ Γ, η ∈ Rd such that ‖η‖ = 1, and ξ ∈ (0,min (τ, δ)). Then θ∗, (θ∗ − ξη)

and (θ∗ + ξη) all belong to Aτ (Γ). Since λ0 (θ∗ + zη) is convex in z given θ∗ and η for all z such

that (θ∗ + zη) ∈ Θ then

〈∇λ0 (θ∗ − ξη) , η〉 ≤
[
λ0 (θ∗)− λ0 (θ∗ − ξη)

ξ

]
≤ 〈∇λ0 (θ∗) , η〉

≤
[
λ0 (θ∗ + ξη)− λ0 (θ∗)

ξ

]
≤ 〈∇λ0 (θ∗ + ξη) , η〉 .

But since supη̃:‖η̃‖=1

∣∣∣〈∇λ0

(
θ̃
)
, η̃
〉
− 〈∇λ0 (θ) , η̃〉

∣∣∣ =
∥∥∥∇λ0

(
θ̃
)
−∇λ0 (θ)

∥∥∥ < ε for all θ, θ̃ ∈ Aτ (Γ)

satisfying
∥∥∥θ̃ − θ∥∥∥ < δ and since ξ < δ it follows that

|〈∇λ0 (θ∗) , η〉 − 〈∇λ0 (θ∗ − ξη) , η〉| < ε, |〈∇λ0 (θ∗) , η〉 − 〈∇λ0 (θ∗ + ξη) , η〉| < ε. (A.1)

In addition, since λn (θ∗ + zη) is convex in z given θ∗ and η for all z such that (θ∗ + zη) ∈ Θ then

[
λn (θ∗)− λn (θ∗ − ξη)

ξ

]
≤
〈
∇†λn (θ∗) , η

〉
≤
[
λn (θ∗ + ξη)− λn (θ∗)

ξ

]
. (A.2)

Since Aτ (Γ) is a compact subset of Θ it follows from Theorem II.1 of Andersen and Gill (1982)

that limn→∞ P
(

supθ∈Aτ (Γ) |λn (θ)− λ0 (θ)| ≤ ε∗
)

= 1 for any ε∗ > 0. Since Pu is the unique

extension of P to the universal completion Fu of F then Pu (A) = P (A) for any A ∈ F and hence

limn→∞ Pu
(

supθ∈Aτ (Γ) |λn (θ)− λ0 (θ)| ≤ ε∗
)

= 1 for any ε∗ > 0. This in turn implies that

lim
n→∞

Pu

(
sup

θ∈Γ,η̃:‖η̃‖=1

∣∣∣∣[λn (θ)− λn (θ − ξη̃)

ξ

]
−
[
λ0 (θ)− λ0 (θ − ξη̃)

ξ

]∣∣∣∣ ≤ ε
)

= 1,

lim
n→∞

Pu

(
sup

θ∈Γ,η̃:‖η̃‖=1

∣∣∣∣[λn (θ + ξη̃)− λn (θ)

ξ

]
−
[
λ0 (θ + ξη̃)− λ0 (θ)

ξ

]∣∣∣∣ ≤ ε
)

= 1.

9



Combined with Equation (A.1) these imply that,

lim
n→∞

Pu

(
sup

θ∈Γ,η̃:‖η̃‖=1

∣∣∣∣[λn (θ)− λn (θ − ξη̃)

ξ

]
− 〈∇λ0 (θ) , η̃〉

∣∣∣∣ ≤ 2ε

)
= 1,

lim
n→∞

Pu

(
sup

θ∈Γ,η̃:‖η̃‖=1

∣∣∣∣[λn (θ + ξη̃)− λn (θ)

ξ

]
− 〈∇λ0 (θ) , η̃〉

∣∣∣∣ ≤ 2ε

)
= 1.

Now for any quadruplet (a, b, c, d) such that a ≤ b ≤ c, |a− d| ≤ 2ε and |c− d| ≤ 2ε it follows by

the triangle inequality that |b− d| ≤ 2ε. Hence it follows from Equation (A.2) that

lim
n→∞

Pu

(
sup

θ∈Γ,η̃:‖η̃‖=1

∣∣〈∇†λn (θ) , η̃
〉
− 〈∇λ0 (θ) , η̃〉

∣∣ ≤ 2ε

)
= 1.

But

sup
θ∈Γ,η̃:‖η̃‖=1

∣∣〈∇†λn (θ) , η̃
〉
− 〈∇λ0 (θ) , η̃〉

∣∣ = sup
θ∈Γ

∥∥∇†λn (θ)−∇λ0 (θ)
∥∥ ,

so it follows in turn that

lim
n→∞

Pu
(

sup
θ∈Γ

∥∥∇†λn (θ)−∇λ0 (θ)
∥∥ ≤ 2ε

)
= 1.

Since ε > 0 was arbitrary this establishes the third result in the theorem. �
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