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Abstract. Methods for incorporating high resolution intra-day asset price data into risk fore-

casts are being developed at an increasing pace. Existing methods, such as those based on

realized volatility, rely primarily on reducing the observed intra-day price fluctuations to simple

scalar summaries. In this paper, we propose several methods that incorporate full intra-day price

information as functional data objects in order to forecast Value at Risk (VaR). The methods we

consider are based on the recently proposed functional GARCH models and a new functional

linear quantile regression model. In addition to providing daily VaR forecasts, these methods

can also be used to forecast intra-day VaR curves, which we develop and study along with com-

panion backtests to evaluate the quality of such intra-day risk measures. Using high-frequency

trading data from equity and foreign exchange markets, we first forecast 1-day-ahead daily and

intra-day VaR by applying the proposed methods and a host of benchmark models. Empirical

evidence suggests that the functional GARCH models estimated from over-night cumulative

intra-day return curves exhibit competitive performance relative to benchmark models in daily

risk management, and produce valid intra-day VaR curves.
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1. Introduction

One of the primary concerns for large financial institutions and regulators is to forecast risk

measures, such as Value at Risk (VaR), accurately and efficiently. These specific measures have
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been brought to a prominent status as a result of the Basel II Accord in 1996. Suppose that

Yi denotes the daily return of an asset, and further suppose for the sake of simplicity that the

map x → P(Yi ≤ x|Fi−1) is strictly increasing with probability 1, where Fi−1 denotes the

previous information set. The VaR at quantile τ , VaRτ
i , is defined to be the almost surely unique

Fi−1-measurable random variable satisfying

P(Yi ≤ VaRτ
i |Fi−1) = τ,(1.1)

so that VaRτ
i quantifies a potential market loss of an asset on day i that is not expected to be

exceeded over a certain period with probability τ . Assuming strictly positive prices, one can

equivalently model the VaR where Yi in (1.1) is the log returns by performing an appropriate

transformation, see Example 12.6 of Francq and Zakoïan (2011); this is how we proceed in

this paper. Forecasting VaR for daily mark-to-market portfolios is routinely used to facilitate an

internal risk control from the bank side in an attempt to contribute to a stable environment for

financial markets.

Quantifying the conditional volatility of Yi is a critical step in VaR forecasting, and this will

evidently depend on the available information contained in Fi−1. The vast majority of existing

studies on VaR forecasting assumes that information is only available on the returns at a daily

frequency; see Nieto and Ruiz (2016) for a recent survey on the subject. However, researchers

often have access to muchmore refined price data on the asset of interest, such as high-frequency

intra-day records. There is every reason to believe that this additional information would be

relevant for predicting the conditional volatility of Yi by supplementing the daily information.

For example, given that an asset return on a given day was zero, one might expect greater

volatility on the following day if the intra-day price had high fluctuations compared to the case

if there were only limited intra-day fluctuations.

The problem that we wish to study in this paper is how to incorporate this intra-day information

into daily VaR forecasts. This problem has begun to receive attention only relatively recently,

and the methods proposed in the literature to date rely primarily on using realized measures

of the intra-day volatility in the forecast. Such realized measures are, roughly speaking, scalar

summaries of the intra-day price fluctuations; see, e.g. Andersen et al. (2003).
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Based on realized measures such as the quadratic variation and the intra-day high minus the

intra-day low, early work in this stream of research showed that incorporating this information

only provides a small improvement on VaR forecasts over simple generalized autoregressive

conditionally heteroscedastic (GARCH) model based benchmarks (Giot and Laurent, 2004;

Angelidisa and Degiannakis, 2008). Angelidisa and Degiannakis (2008) attributed this to the

distinct and apparently incompatible underlying processes driving intra-day and daily returns.

Subsequently, realized GARCH (RGARCH)models have been introduced to allow the dynamics

of daily conditional volatility to be determined by past intra-day realized volatility (Hansen et al.,

2012), while as a GARCH-type model, it also imposes distributional restrictions to describe the

dynamics of returns. Seeking a parsimonious model for incorporating volatility dynamics and

different temporal frequencies, Corsi (2009) proposed a Heterogeneous AutoRegessivemodel of

Realized Volatility (HAR-RV), which has been widely used to forecast volatility. More recently,

a number of empirical papers (e.g., Gerlach and Wang, 2016; Meng and Taylor, 2018) argue

convincingly that these models significantly improve VaR forecasts over benchmark models.

Although the realized volatility-type models exploit a connection between intra-day and daily

frequency returns, they still only use a scalar summary of the evolution of the intra-day price

that leads to a given return.

An alternative way of incorporating all of the intra-day price data into a VaR forecast is to treat

the high-frequency intra-day asset price records as discrete observations from an underlying

daily price or return curve. Such curves can be constructed to contain information on the daily

returns, intraday price movements, over-night returns, etc., and may subsequently be modeled or

used as covariates in order to quantify conditional heteroscedasticity, or estimate the conditional

quantiles, of the returns. We coin the particular curve used to accomplish this task an over-night

cumulative intra-day return (OCIDR) curve, Xi(t), defined as

(1.2) Xi(t) = logPi(t)− logPi−1(1), t ∈ [0, 1], 1 ≤ i ≤ N

where Pi(t) is the price on day i at intra-day time t, with t normalized to the interval [0, 1].

With this normalization Pi(1) represents the closing price on day i, and so the sequence

{Xi(1), i ∈ Z} is the daily Yi. A set of similar curves termed cumulative intra-day return

(CIDR) curves were introduced in Gabrys et al. (2010) and their properties have been studied
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extensively in a number of papers, which include Kokoszka and Zhang (2012) and Kokoszka

and Reimherr (2013). We instead prefer to use OCIDR curves because when t = 0 equation

(1.2) evaluates the over-night return logPi(0) − logPi−1(1), which has been shown to be an

important element in forecasting volatility (Hansen and Lunde, 2006; Meng and Taylor, 2018).

Although these curves are in practice only observed at an arbitrarily fine grid of intraday times,

these may be easily interpolated to produce full curves. As an example, Figure 1.1 exhibits a

plot of the OCIDR curves of the Standard & Poor’s (S&P)500 index during the week of the 58th

U.S. presidential election in 2016, where the curves are generated using linear interpolation.

Figure 1.1. Plot of five OCIDR Curves from November 2016 derived from
one-minute resolution records of the S&P500 index.
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In order to incorporate the curvesXi(t) in VaR forecasts, we employ new methods in functional

time series analysis (FTSA). For book length treatments of this subject, see, for instance, Bosq

(2000), Ramsay and Silverman (2006), Ferraty and Vieu (2006), and Horváth and Kokoszka

(2012). This work builds upon several other recent papers that use tools from FTSA in

order to forecast risk measures. For instance, Ferraty and Quintela-del-Río (2016) proposed

a non-parametric kernel-based FTSA method to estimate the conditional VaR and Expected

Shortfall (ES) based on daily return data. Fink et al. (2018) considered forecasting VaR

by employing scalar ARMA-GARCH models with functional exogenous covariates in foreign

exchange markets; see also Fuest et al. (2015). Horta and Ziegelmann (2018) proposed a

functional time series approach to forecast the probability density of intraday returns towards

estimating daily VaR.

The main method considered in this paper entails modeling the entire sequence of curvesXi(t)

using functional GARCH type models, which yield as a byproduct forecasts of the conditional
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quantile of the log returns Xi(1). This method makes use of a number of recent advances

on modeling functional conditional heteroscedasticity. A functional generalization of Engle’s

(1982) original ARCH model was put forward in Hörmann et al. (2013), and has subsequently

been generalized to functional GARCH models in Aue et al. (2016) and Cerovecki et al.

(2019). Goodness of fit tests for these models that may be used to aid in their specification

were proposed in Rice et al. (2019). Having estimated such a model, VaR forecasts may be

obtained by specifying or estimating a distribution for the residuals, and for this we consider

several methods that include functional extreme value processes and bootstraps.

In addition, the FGARCH models yield quantile curves at a continuous time scale, which we

term VaR curves, from which daily VaR forecasts are produced as a simple byproduct. To give

a brief description, we may use such models to forecast the pointwise (i.e., for a fixed quantile

level) conditional τ th quantile VaRτ
i (t) of Xi(t), for t ∈ [0, 1]. The standard daily VaR is then

obtained as VaRτ
i (1), while VaRτ

i (t) describes how the risk is forecast to evolve over the course

of the trading day, and can be used as a tool to quantify intra-day risk. Below, we illustrate

this application, and also develop novel backtests inspired by Christoffersen (1998) to evaluate

the quality of these intra-day VaR curves. Such tests may also be useful for assessing other

functional data-based risk measures.

In order to provide a more complete study of using functional time series techniques to forecast

dailyVaR,we also propose to estimate the conditional quantile of the returns via a new functional

linear quantile regression model in which the functionsXi(t) act as covariates in order to predict

the quantile of returns. However, such a model shows inferior empirical performance, we thus

relegate this into the Online supplement.

Each of the proposed models were evaluated by forecasting and backtesting the one-day-ahead

VaR for three equity indices, S&P500, DAX30 and CAC40, and one foreign exchange mar-

ket (FOREX) example, USD-Euro, ranging from January 2012 to March 2018. These are

further compared to a number of benchmark models, such as GARCH filtered historical sim-

ulation (FHS) models, RGARCH models, and HAR-RV models with normally distributed or

bootstrapped innovations. The results showed that, although the benchmark models with boot-

strapped innovations provide good VaR forecasts, the FGARCH-type methods incorporating

the OCIDR curves exhibited competitive and in some cases better forecasting performance,
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while also producing valid forecasts of the VaR at an intra-day scale relevant to real-time risk

management.

The rest of the paper is structured as follows. Sections 2 introduces the functional GARCH

model. Section 3 discusses the results of the empirical analyses, and Section 4 concludes the

paper.

Throughout the paper, we use the following notation. We let L2[0, 1]d to denote the space of

functions defined on the unit hypercube in d dimensions with a finite squared integral. The

random norm ofX is denoted and defined as ‖X‖ = [
∫ 1

0
X2(t)dt]1/2, based on the inner product

〈X1, X2〉 =
∫ 1

0
X1(t)X2(t)dt. We write

∫ 1

0
as
∫
for convenience.

2. VaR Forecasting using functional GARCH models

As specified in (1.2), we assume that we have observedN OCIDR curvesX1(t), ..., XN(t), and

we are interested in forecasting the VaR, or the conditional quantile, at level τ of the log returns

YN+1 = XN+1(1), as well as the pointwise conditional τ th quantile of XN+1(t). Practically

speaking, on a given day i one does not observe the full price curve Pi(t) needed to define

Xi(t), instead Pi(t) is observed usually at a fine grid of intraday times points; for instance one

observation every minute. We discuss below how to interpolate these points in order to produce

full price curves, but for now we assume that the OCIDR curves are fully observed.

The first method that we propose in this paper is a two step procedure in which first the entire

series Xi(t) is modeled using a functional GARCH model, after which the distribution of

the residuals is either estimated or bootstrapped in order to produce the forecasts of interest.

Following Aue et al. (2017) and Cerovecki et al. (2019), we assume thatXi(t) has the following

specification:

(2.1) Xi(t) = µ(t) + σi(t)εi(t), Eεi(t) = 0 Eε2
i (t) = 1, t ∈ [0, 1],

where µ(t) is the mean function of the sequence Xi(t), the innovation functions εi(t) form an

independent and identically distributed sequence, and σi(t) defines the intra-day conditional

standard deviation curve. We let σ2
i be measurable with respect toFi−1, where in this discussion

of FGARCH models we assume that Fi is the sigma-algebra generated by εj, j ≤ i, and this

will be incorporated in certain modeling specifications of σ2
i that we detail below. In practice, it
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is either assumed that the mean curve µ(t) is zero, or demeaned curves are used in the analysis,

and we use the latter of these two choices in this paper. Following Equation (1.1), we can

introduce the intra-day τ th VaR curve VaRτ
i through the random variables VaRτ

i (t), t ∈ [0, 1],

defined as the almost surely unique Fi−1–measurable solution to random variable satisfying

(2.2) P(Xi(t) ≤ VaRτ
i (t)|Fi−1) = τ,

where again for convenience of notation we assume that the conditional distribution of Xi(t)

on Fi−1 is strictly increasing. Under model (2.1), the pointwise 1-day-ahead τ th conditional

quantile of the curve Xi(t) is given by

(2.3) VaRτ
i (t) = σi(t)ε

τ (t),

where ετ (t) is the τ th quantile of ε1(t) conditional on F0, given the result that the conditional

quantiles of ε are time-invariant under the first-order or strict stationarity. We note that the

intra-day VaRτ
i (t) in (2.3) is an intra-day generalization of VaRτ

i , and VaRτ
i = VaRτ

i (1). A

forecast for the VaR curve VaRτ
N+1(t) can then be obtained as

V̂aR
τ

N+1(t) = σ̂N+1(t)ε̂τ (t),(2.4)

where σ̂N+1(t) is a forecast of σN+1(t), and ε̂τ (t) is an estimate of the τ th quantile of the error

process.

In order to forecast σN+1(t), we assume that it follows an FGARCH(p, q) specification of the

form

σ2
i (t) = ω(t) +

q∑
k=1

αkX
2
i−k(t) +

p∑
j=1

βjσ
2
i−j(t),

restricting our attention to the FGARCH(1,1) model, the model reduces to,

(2.5) σ2
i (t) = ω(t) + α1X

2
i−1(t) + β1σ

2
i−1(t),

where the operatorsα1 andβ1 are kernel integral operators satisfyingα1X
2
i−1(t) =

∫
α1(t, s)X2

i−1(s)ds

and β1σ
2
i−1(t) =

∫
β1(t, s)σ2

i−1(s)ds, t ∈ [0, 1]. We assume a positive function ω ∈ L2[0, 1],
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and non-negative kernel functions α1(t, s) and β1(t, s) defining the operators are assumed to be

elements of L2[0, 1]2.

Cerovecki et al. (2019) give precise conditions in terms of the innovation sequence, ω, and the

α1’s and β1’s under which a stationary solution to (2.1) and (2.5) exists, andwe assume that these

conditions hold in order for the estimation procedures that we define below to be consistent. The

notation required to reproduce these conditions here is prohibitively cumbersome, but roughly

speaking they require that the functions ω, α1’s, and β1’s are non-negative in order to guarantee

the positivity of σ2
i (t), and that the operators α1 and β1 satisfy contraction conditions that are

typically made in multivariate GARCH models.

Under such conditions the model may be estimated by projecting the intercept ω(t) into a

finite, M1 dimensional space, as well as the kernels α1(t, s) and β1(t, s) into a subspace

of L2[0, 1]2 of dimension M2
1 . Subsequently using least squares estimation (LSE) or quasi-

maximum likelihood estimation (QMLE) the parameters in the dimension-reduced model can

be consistently estimated; see Aue et al. (2017) and Cerovecki et al. (2019), respectively.

Consider an orthonormal collection of basis functions φ̂1(t), ..., φ̂M1(t) in L2[0, 1] that we use

to perform the dimensionality reduction, where we use “hat” notation to indicate that these

functions might depend on the data. We will discuss the selection of these elements in detail

momentarily. The parameter functions defined in (2.5) are then assumed to be approximated

via a fixed set of basis functions,

ω(t) ≈
M1∑
ı=1

dıφ̂ı(t), α1(t, s) ≈
M1∑
ı,=1

aı,φ̂ı(t)φ̂(s), β1(t, s) ≈
M1∑
ı,=1

bı,φ̂ı(t)φ̂(s),

where dı are elements in the positive valued vectorD ∈ RM1 , aı, and bı, are the (ı, )th entries

in non-negative valued matrices A1 and B1 in RM1×M1 , respectively.

Given the basis elements and up to this approximation, the model is fully determined by the

parameter θ = vec(D,A1, B1) which is assumed to lie in a compact subset Θ ⊂ RM1+2M2
1 . Let

the projecting vectors v2
i = [

〈
X2
i , φ̂1

〉
, . . . ,

〈
X2
i , φ̂M1

〉
]>, and s2

i = [
〈
σ2
i , φ̂1

〉
, . . . ,

〈
σ2
i , φ̂M1

〉
]>.

By setting s2
1 = [d1, . . . , dM1 ]

>, we can recursively compute s2
i (θ) as,

s2
i (θ) = D + A1v

2
i−1 +B1s

2
i−1.
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Iterating the above equation yields,

s2
i (θ) =

∞∑
l=1

Bl−1D +
∞∑
l=1

Bl−1A1v
2
i−1.

Then the parameter vector may be consistently estimated via the LSE approach as

(2.6) θ̂N = argmin
θ′∈Θ

{
N∑
i=2

(v2
i − ŝ2

i (θ
′))>(v2

i − ŝ2
i (θ
′))

}
,

This estimator in turn gives estimates of the functions,

ω̂(t) =

M1∑
ı=1

d̂ıφ̂ı(t), α̂1(t, s) =

M1∑
ı,=1

âı,φ̂ı(t)φ̂(s), and β̂1(t, s) =

M1∑
ı,=1

b̂ı,φ̂ı(t)φ̂(s),

and hence also estimators α̂1 and β̂1 of the operators α1 and β1. The estimated conditional

variance curves are then given by

(2.7) σ̂2
i+1(t) = ω̂(t) + α̂1X

2
i (t) + β̂1σ̂

2
i (t),

with σ̂2
N+1(t) giving the one-step ahead forecast.

The basis φ̂1(t), ..., φ̂M1(t) can be selected in a number of ways, including using deterministic

bases, such as the fourier bases, b-spline bases or wavelet bases. Here we utilize a functional

principal component analysis (FPCA) in order to obtain data-driven basis functions; see Ramsay

and Silverman (2006) for a detailed monograph on the FPCA technique. As α1(t, s) and β1(t, s)

are the kernel functions relating to the conditional mean of the squared process X2
i (t), we

consider the basis of eigenfunctions of the covariance operator of X2
i (t) in order to perform a

dimensionality reduction. The covariance kernel of the squared process can be estimated from

the sample as

ĉ(t, s) =
1

N

N∑
i=1

[X2
i (t)− X̄2

i (t)][X2
i (s)− X̄2

i (s)],

where X̄2
i (t) = 1

N

∑N
i=1X

2
i (t). Under the simple moment condition that E‖Xi‖4 < ∞,

the above kernel is a consistent estimator of c(t, s) = cov(X2
i (t), X2

i (s)). The principal

components of the squared process can then be consistently estimated by φ̂ı which solve the

Fredholm equations

λ̂ıφ̂ı(t) =

∫
ĉ(t, s)φ̂ı(s)ds, ∀ı.
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Meanwhile, because these bases are used to model volatility, the conditions of positive ω̂(t) and

non-negative α̂1(t, s), β̂1(t, s) should be satisfied to guarantee the positivity of σ̂2
i (t). In order

to satisfy this condition, inspired by the discussion on the positivity in Cerovecki et al. (2019),

we set the negative part of the estimated bases to zero, i.e. we take

φ̂ı(t) = φ̂ı(t)− inf
t∈[0,1]

φ̂ı(t) ∧ 0, ∀ı.

As a consequence, the constant function ω(t) in Equation (2.5) is positive as the vector parame-

tersD are positive valued, and the kernel functions α1(t, s) and β1(t, s) are non-negative as the

parameter matrices A1 and B1 are non-negative. Below we present results based on this basis

selection. We considered several other polynomial bases, e.g., B-spline bases, but found this

particular choice to give superior results.

A practical question that also must be addressed is how to select p, q and M1 to fit a given

collection of curves. Various methods have been suggested in order to choose the projection

number M1. For instance, in the usual vernacular of principal component analysis, we can

selectM1 as the minimal number of basis elements so that the total variance explained (TVE)

by them is a high percentage of that of the squared processes, e.g. 90%. In this paper, we

propose to use a global evaluation of model fit in order to select p, q and M1 simultaneously,

following the work of Rice et al. (2019). Let the residuals be defined as ε̂i(t) = Xi(t)/σ̂i(t)

for a given selection of p, q, andM1. We argue that the model is adequate if we cannot reject

the null hypothesis

H0: The sequence {εi(t)} is independent, and identically distributed (IID).

based on the residuals. To test H0 we apply the following two statistics that aim to detect

conditional heteroscedasticity of the residuals:

(2.8) Vε̂,N,H = N

H∑
h=1

γ̂2
1,ε̂,h, Qε̂,N,H = N

H∑
h=1

‖γ̂2,ε̂,h‖2 ,

where H is a user-specified maximal lag length,

γ̂1,ε̂,h =
1

N

N−h∑
i=1

(‖ε̂i‖2 − ε̄1)(‖ε̂i+h‖2 − ε̄1),
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and

γ̂2,ε̂,h(t, s) =
1

N

N−h∑
i=1

(ε̂2
i (t)− ε̄2(t))(ε̂2

i+h(s)− ε̄2(s)),

where ε̄1 and ε̄2(t) are sample means of ‖ε̂i‖2 ∈ R and ε̂2
i ∈ L2[0, 1], respectively. The

asymptotic distributions of each of these statistics are calculated in Rice et al. (2019), which can

be used to calculate an approximate P-value forH0, with small P-values indicating inadequacy

of the model. The parameters p, q andM1 can be increased as needed until a model is found to

be adequate.

2.1. Estimating ετ (t).

Once the conditional volatility forecast σ̂N+1(t) has been obtained, one only has to specify the

τ th quantile of intra-day innovations ετi (t) in order to produce an estimate for the VaR. Here

we enumerate three methods to do so. The first we denote with “FGARCH-OU", in which we

assume that the innovation curves εi(t) follow an Ornstein-Uhlenbeck process,

εi(t) = e−t/2Wi(e
t), t ∈ [0, 1],

whereWi(s) are independent and identically distributed standard Brownian motions. It follows

from this that εi(t) for each t are distributed as standard normal random variables, and their τ th

quantile is given by ε̂τ (t) = Φ−1(τ), where Φ(·) is the standard normal distribution function.

In comparison to standard univariate GARCH-based VaR forecasts, this is similar to assuming

an independent and identically distributed standard normal innovation sequence.

Secondly, as the assumption of normality is usually in question with financial return data, we

propose to resample the residuals ε̂i(t) to empirically estimate the quantiles ε̂τ (t) pointwise. We

denote this method “FGARCH-BOOT", and it is implemented as follows. For j ranging from 1

to B, B denoting the number of bootstrap samples, and letting ε(j)
i (t) denote the j’th draw with

replacement from the residual curves, we calculate the j’th bootstrap realization ofXN+1(t) as

X̂
(j)
N+1(t) = σ̂N+1(t)ε

(j)
i (t). The VaR may then be estimated as V̂aR

τ

N+1(t) = X̂S,τ
N+1(t), where

X̂S,τ
N+1(t) is the pointwise sample τ th bootstrap quantile. For one step/day ahead forecast, this

is approximately equivalent to taking

(2.9) ε̂τ (t) = ε̂S,τ (t),
11



in (2.4), where ε̂S,τ (t) is the point-wise sample τ th quantile of ε̂i(t). For a multiple-day

ahead VaR forecast one can resample the residuals further to produce bootstrap realizations of

XN+h(t), and estimate the VaR similarly.

Thirdly, in order to more accurately describe the tail of the distribution of the innovations, we

consider models based on extreme value theory (EVT), which we denote as “FGARCH-EVT".

This method is insiperd by McNeil and Frey (2000), in which the VaR is forecast by estimating

an extreme value distribution for scalar GARCH innovations. In their work they found a

generalized Pareto distribution (GPD) to be suitable. To adapt this idea to our context, we first

project the residuals ε̂i(t) onto a finite, M2-dimensional subspace spanned by an orthonormal

set φ̂ε,m, 1 ≤ m ≤ M2, where the φ̂ε,m(t) are are eigenfunctions of the empirical covariance

operator of the residuals ε̂i. Then, we approximate

(2.10) ε̂i(t) ≈
M2∑
m=1

ζm,iφ̂ε,m(t).

For each fixedm, we estimate an extreme value distribution from the sample ζm,1, . . . , ζm,M2 . A

procedure similar to this was considered recently in Kokoszka and Xiong (2018). We consider

the peaks over threshold (POT) model (Gomes and Guillou, 2015) with threshold um, to be

discussed below, for univariate ζm,i, and fit exceedances with the GPD.

The value of a threshold um is critical to the POT model. As discussed in Gomes and Guillou

(2015) there is a well-known trade-off between selecting a threshold close to the center of the

distribution or in the tail. The former can result in an estimate of GPD that fails to mimic the tail

behavior, while the latter can result in a low effective sample size as very few observations exceed

the threshold. Some studies have applied graphical methods to select um, but ultimately the

choice is still subjective. Here, we stick with the approach taken byMcNeil and Frey (2000) and

letP (ζm,i < um) = 0.05, i.e., the threshold um is determined to keep the number of exceedances

to be always equal to 5% of the total number of observations. With this sepecification, we then

fit each sequence of scores ζm,i with a GPD, which has the following density function,

(2.11) Gγm,νm(ζ) =

1− (1 + γmζ/νm)−1/νm ifγm 6= 0

1− exp(−ζ/νm) ifγm = 0
,
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where the scale parameter νm and the shape parameter γm can be estimated by using the

maximum likelihood method. Using the estimated parameters, we are able to simulate random

scores ζ(j)
m,i, j = 1, ..., B, yielding a sequence of simulated innovations

ε̂
(j)
i (t) =

M2∑
m=1

ζ
(j)
m,iφ̂m(t).

based on a large number of such simulations, we obtain a Monte Carlo pointwise τ th quantile

function ε̂τ (t) to use in (2.4).

2.2. Estimating and Backtesting Intra-day VaR Curves.

As mentioned above, the FGARCH model can be used to forecast the standard daily VaR with

the forecast V̂aR
τ

N+1(1) via Equation (2.4). In addition, the function V̂aR
τ

N+1(t), t ∈ [0, 1],

may be used to forecast the intra-day Value at Risk, and provides a visual and implementable

tool for intra-day risk management.

In order to evaluate the quality of such functionalVaR forecasts, we propose a statistical approach

to backtest the curves V̂aR
τ

N+1(t). Inspired by classical backtesting approaches (Christoffersen,

1998; 2010; 2011), we base these backtests on the pointwise intra-day violation process Zτ
i (t)

at quantile τ , defined by

(2.12) Zτ
i (t) = 1{Xi(t)<V̂aR

τ

i (t)}, 1 ≤ i ≤ N, t ∈ [0, 1],

whereXi(t) is the observedOCIDR return curve, and1 is the indicator function. In conventional

VaR backtesting methods, as surveyed in Christoffersen (2010), one usually wishes to evaluate

(1) that the conditional coverage is at the specified nominal level τ , and (2) that the violation

process is approximately independent. This evaluation can be framed as hypotheses tests of

H(1)
0 : E[Zτ

i (t)− τ ]=0 for all t ∈ [0, 1], and H(2)
0 : Zτ

i (t) is IID along i.

Unlike Christoffersen (1998), who used likelihood ratio-based statistics to jointly test such

hypotheses, here we propose tests based on some recently developed techniques in functional

time series analysis.

In particular, in order to testH(1)
0 , we use the test statistic

TN = N ||Z̄ − τ ||2,
13



where Z̄(t) = 1/N
∑N

i=1 Zi(t). UnderH
(2)
0 it is straightforward to verify that

TN
D→

∞∑
`=1

λ`N 2
`

D≡: Ξ1, N →∞,(2.13)

where N`, ` ≥ 1 are independent and identically distributed normal random variables, and the

λ`, ` ≥ 1 are the eigenvalues of the covariance operator of the violation process, namely they

are are the eigenvalues of the kernel integral operator with kernelCZ(t, s) = cov(Z0(t), Z0(s)),

t, s ∈ [0, 1]. The distribution of Ξ1 can be approximated by using Monte Carlo simulation

after estimating the eigenvalues λ`, and a P-value of the test may then be approximated by

p = P (Ξ1 > TN).

We note here that it is a typical simplification in the literature on conditional coverage backtests

to assume that the violation process follows H(2)
0 or a martingale difference assumption in

order to establish and use results akin to (2.13), although similar results evidently hold under

weaker conditions. In a preliminary study, we also considered backtests for nominal conditional

coverage that allowed for serial correlation in the violation process, but found that these had

little effect on the empirical results presented below, and so we chose not to develop them here

in view of saving space.

In order to testH(2)
0 , we first note that several independence or “portmanteau" tests for functional

time series data have been recently proposed in the literature (e.g., Gabrys and Kokoszka, 2007;

Zhang, 2016; Kokoszka et al.; 2017). Here we apply the portmanteau test proposed byKokoszka

et al. (2017). We consider the test statistic

VN,H = N

H∑
h=1

||γ̂h,Z ||2

where H is a user specified maximum lag length, and the autocovariance function γh,Z(t, s) is

defined by,

γ̂h,Z(t, s) =
1

N

N−h∑
i=1

[Zi(t)− Z̄(t)][Zi+h(s)− Z̄(s)].

According to Theorem 2 in Kokoszka et al. (2017), underH(2)
0

VN,H
d→
∞∑
`=1

ξ`,HN 2
`

D
=: Ξ2,H , N →∞
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where again N` are standard normal random variables, and the ξ′`,Hs are the eigenvalues of a

covariance operator determined from the violation process. Kokoszka et al. (2017) describe

approaches for estimating this limiting distribution, which we follow, and a P-value of the test

is obtained as p = P (Ξ2,H > VN,H). Regarding the choice of H , several portmanteau-type

backtesting studies indicate that selecting a large value ofH tends to result in a loss of power to

detect correlation in the violation process that tends to occur at short lags, (see, Escanciano and

Olmo, 2010), and hence we consider only small and moderate values of H = 1, 3, 5 and 10.

3. Comparative study and application to equity and FOREX market returns

In this section, we present the results of the empirical analysis that aims to evaluate each of

the methods proposed above relative to benchmark methods for VaR forecasting at both daily

and intra-day frequencies. The specific data that we consider consist of high resolution price

data of three indices from equity markets and one FOREX market. The data series from equity

markets are the S&P500, DAX30 and CAC40 indices, which are known as the leading indicators

for business cycles in the U.S. and European markets. The foreign exchange data is the spot

exchange rate between U.S. dollar (USD) and Euro. The sample consists of a five year period

ranging from 2nd-January-2012 to 29th-March-2018, with a total of 1,566 trading days. The

intra-day data is collected at the 1-minute frequency. Over the whole period, apart from the

2015-2016 stock market selloff, the global financial market is steadily rising over this period.

3.1. Model specification and benchmarks.

We compute the OCIDR curves according to Equation (1.2). The discretely sampled high-

frequency returns are interpolated using the linear interpolation in order to produce full curves.

We note that the linear interpolation can be readily justifiable in this setting relative to other

potential interpolation methods, since if the prices evolve approximately as Brownian motions

between the observed times, then the best predictor (conditional expectation) of the path given

the observed endpoints should be linear.

Table 3.1 summarizes the trading hour and the total number of intra-day grid points for each

asset, and provides basic summary statistics for the daily closing return Yi = Xi(1). One

notable element given in this table is that the USD-Euro FOREX returns exhibit excess kurtosis
15



relative to the standard normal distribution, which suggests that the VaR forecasts assuming

Gaussian innovations might not be appropriate.

Table 3.1. Summary information on the daily closing log returns of each of
the series considered. No. Grid describes the number of one minute evaluation
points of each OCIDR curve.

Trading Hour (EST) No. Grid Mean SD Skew Kurt Min Max
S&P500 9:30-16:00 390 0.0005 0.0077 -0.4943 3.1849 -0.0447 0.0381
DAX30 6:00-15:00 540 0.0004 0.0113 -0.3018 2.0684 -0.0687 0.0521
CAC40 6:00-15:00 540 0.0003 0.0113 -0.3426 3.1973 -0.0800 0.0450

USD-Euro 13:00-22:00 540 -0.0001 0.0054 0.6422 6.2241 -0.0216 0.0482

We compared the proposed methods to three families of benchmark models: the filtered histor-

ical simulation (FHS) based on the standard GARCH model, the realized GARCH (RGARCH)

model (Hansen et al., 2012), and the Heterogeneous Autoregressivemodel of Realized Volatility

(HAR-RV) model (Corsi, 2009). The first one is based on daily return information and is widely

used in the banking sector; the latter two play more competitive roles as they model the daily

conditional volatility by incorporating intra-day information. In particular the HAR model has

been shown to be a strong benchmark in volatility forecasting.

The FHS method is described below. Similar to our two-step method, we fit Yi with a

GARCH(1,1) process first,

Yi = σiεi

σ2
i = ω + αY 2

i−1 + βσ2
i−1,

(3.1)

and estimate the scalar parameters by using QMLE, from which we obtain the fitted innovations

ε̂i. We bootstrap ε̂i and obtain the quantile quantile corresponding to the empirical distribution

ε̂B,τi . For a one-step ahead forecasts this reduces to evaluating the sample τ th quantile of the

residuals. The VaR is then computed as:

(3.2) V̂aR
τ

i = σ̂iε̂
B,τ
i .

To describe the RGARCHbenchmark, it is presumed that the process Yi follows the first equation

of (3.1), but the conditional volatility σ2
i follows a different recursive dynamic. In particular

(3.3) σ2
i = ω + αRVi−1 + βσ2

i−1,
16



where RVi is a realized volatility modeled by the measurement equation RVi = a + bσ2
i +

t(εi) + vi. This measurement equation relates the realized volatility to the daily conditional

volatility and leads to a joint modeling of volatility and asset returns. The term t(εi) captures the

leveraged effect and typically the vi are taken to be IID normally distributed random variables.

In the application, in order to conduct a fair comparison, we estimate the latent integrated

volatility with an over-night effect by summing squared intra-day log returns using a quadratic

variation estimate with the squared over-night return,

(3.4) RVi = [
J∑
j=2

(logPi(j ·∆)− logPi((j − 1) ·∆))2 + (logPi(0)− logPi−1(1))2]1/2,

wherePi(j ·∆) is the discrete intra-day log return at day iwith frequency∆, and J is the number

of intra-day log returns to be summed. The choice of ∆ is crucial in defining the estimated

quadratic variation volatility measure. Using the highest available frequency might cause this

measure to be severely contaminated by market microstructure noises, see Meddahi (2002),

while using a low frequency may lose useful information for measuring volatility. Here we take

∆ = 5 minutes. We also tried taking ∆ = 1 minute, but found the results to be generally

worse. Model (3.3) is also estimated by using the QMLE method. Similarly, we calculate the

VaR at level τ assuming either normal innovations or bootstrapped innovations,

V̂aR
τ

i = σ̂iΦ
−1(τ), V̂aR

τ

i = σ̂iε̂
B,τ
i .

We call these benchmarks RGARCH-N and RGARCH-BOOT. Note that the VaR estimation

according to different methods are notational indistinct.

Nextwe briefly review theHARmodel. Seminal papers such asBarndorff-Nielsen and Shephard

(2002) and Andersen et al. (2003) showed that the integrated variance can be consistently

approximated by the realized volatility. In this regard, a HAR model (Corsi, 2009) provides

a parsimoniously specified dynamic model to forecast volatility among all types of realized

volatility models. The HARmodel directly works on the realized volatility (3.4), and the model

can be specified as,

(3.5) RVi = ω + αRVi−1 + βRVw
i−1 + γRVm

i−1 + ui
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where RVw
i and RVm

i are weekly and monthly realized volatility at time i, given as,

RVw
i = 1/5(RVi + · · ·+ RVi−4), RVm

i = 1/22(RVi + · · ·+ RVi−21)

Model (3.5) can be easily estimated by the standard LSE. We then calculate the VaR as,

V̂aR
τ

i = R̂ViΦ
−1(τ), V̂aR

τ

i = R̂Viε̂
B,τ
i .

These benchmarks are termed as HAR-N and HAR-BOOT model, respectively.

We now describe the details of fitting the proposed models based on the OCIDR curves to the

data sets under study. In order to estimate an FGARCH model for each of these series, we first

estimate the FPCA basis derived from the squared processesX2
i (t). Note that return curves used

for the FPCA are interpolated by using 30 cubic B-spline polynomials; see Chapter 3 in Ramsay

and Silverman (2006) and Section 7 in Ramsay et al. (2009) for technical details. Figure 3.1

displays the first four estimated basis functions corresponding to the S&P500 OCIDR curves.

The figure also shows howmuch variation is explained by each basis element. We notice that for

all four series under study, the first two basis functions explain over 90% of the total variation.

We thus takeM1 = 2 below. Similarly to selectingM1, we selectM2 which defines the number

of projections in the GPD approximation of the residual distribution in order to explain 90% of

the TVE. This results in takingM2 = 4 in each data set.

Figure 3.1. First four PCA Basis elements of the squared process of S&P500
OCIDR curves.
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Table 3.2. P-values of goodness-of-fit tests of the FGARCH(1,1) model with
M1 = 2

S&P500 DAX30 CAC40 USD-Euro
H = 1 H = 5 H = 10 H = 1 H = 5 H = 10 H = 1 H = 5 H = 10 H = 1 H = 5 H = 10

Vε̂,N,H 0.45 0.90 0.97 0.37 0.91 0.94 0.96 1.00 1.00 0.15 0.31 0.71
Qε̂,N,H 0.33 0.73 0.96 0.26 0.75 0.84 0.98 1.00 1.00 0.16 0.40 0.78

Next, we evaluate the model adequacy of the FGARCH(p,q) candidates by using the diagnostic

tests described above, starting from a FGARCH(1,1) specification suggested in Rice et al.

(2019). Table 3.2 presents the goodness-of-fit test results in terms of approximate P-values for

several choice of the maximum lag parameter H . The results for lag lengths H = 1, 5, and 10

indicate that the FGARCH(1,1) model is adequate for all of the series considered in this paper.

As correctly pointed out by one of reviewers, here we select the parameters of the FGARCH

model by using the entire sample. However, given our focus on forecasting, these three

parameters could and perhaps should be selected recursively for each rolling window of the

training sample. Aside from the goodness-of-fit testing applied above, one can then select

the optimal model parameters through out-of-sample cross-validation. Here we mention two

methods for the evaluation in the cross-validation step: backtesing the in-sample violation

process, and assessing the forecasted quantiles through consistent scoring rules. We introduce

these ideas in Section 4.2. In this paper though, considering the computational costs, we stick

with our previous analysis and simply select the global optimal FGARCH model globally.

3.2. Empirical Results and Backtesting daily VaR Forecasts.

We forecast 1-day-ahead VaR for all of the assets based on a training sample of length 750

days (which is roughly the number of trading days in three years) and a testing sample of

length 816 days. The forecasting method follows a rolling window approach, i.e., in every

in-sample window, we use the past three years of observations to train the models including

the FHS-GARCH(1,1), RGARCH(1,1), HAR and FGARCH(1,1) models, and then predict the

1-day-ahead VaR, rolling the window to forecast the out-of-sample spanning from 2nd-January-

2015 to 29th-March-2018. In this exercise, we consider three quantiles: τ = 0.025, 0.01, and

0.005.

In order to assess the performance of the forecasts of the risk measures, we evaluate the VaR

from two perspectives, namely backtesting and capital requirement. The traditional ways to

assess the validity of VaR have been to use the unconditional (Kupiec, 1995) and conditional
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coverage tests (Christoffersen, 1998). There are other VaR backtesting methods available in the

literature; see Nieto and Ruiz (2016) for a survey. Most of them concentrate on the violation

process V τ
i = 1(Yi ≤ VaRτ

i ). Similar to the conditional coverage test, a valid risk measure

should deliver an independent violation process with an unbiased expectation of τ , which is a

testable hypothesis.

Table 3.3 documents the violation rates of the VaR forecasts for each method. The boxed values

point out the method that produces the closest violation ratio to the true quantile τ . Apart

from three values recommending the superiority of the parametric FG-EVT method, the other

results show that the semi-parametric bootstrap-based methods performed the best in terms of

the accuracy of violation ratios. In particular, the FG-B is tagged as the superior model in

six out of twelves cases. Further, the V̂aR
τ

i forecasted assuming normal innovations shows the

pattern that they are relatively accurate at the 2.5% quantile level with data from equity markets,

but deviate when it comes to extreme quantiles.

Table 3.3. VaR violation rates with the boxed value indicating the model that
produced the closest to nominal rate.

S&P500 DAX30 CAC40 USD-Euro
τ 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5%

FHS 0.023 0.013 0.009 0.027 0.012 0.007 0.031 0.008 0.007 0.039 0.016 0.008
RG-N 0.028 0.020 0.016 0.029 0.016 0.011 0.029 0.019 0.015 0.044 0.029 0.026
RG-B 0.020 0.015 0.011 0.025 0.009 0.008 0.023 0.014 0.006 0.039 0.026 0.016
HAR-N 0.047 0.033 0.027 0.065 0.036 0.031 0.057 0.032 0.022 0.049 0.042 0.029
HAR-B 0.025 0.012 0.008 0.037 0.020 0.012 0.020 0.009 0.007 0.036 0.016 0.006
FG-OU 0.074 0.057 0.044 0.109 0.072 0.063 0.133 0.110 0.098 0.093 0.063 0.044
FG-B 0.021 0.011 0.008 0.019 0.009 0.003 0.024 0.007 0.004 0.034 0.018 0.010

FG-EVT 0.019 0.016 0.013 0.015 0.009 0.004 0.017 0.011 0.008 0.036 0.021 0.018

Table 3.4 reports results of the VaR backtesting, providing similar patterns of results with

those reported in Table 3.3. Overall, the semi-parametric methods (FHS, RG-B, HAR-B, and

FG-B) show better performance than the parametric methods (RG-N, HAR-N, FG-OU), with

an exception that the FG-EVT model passes the backtests in ten out of twelve cases at the 5%

level.

The results can be summarized as follows. First, the benchmark FHS, RGARCH, and HAR

models forecast VaR reliably when the bootstrapped innovations are used, while the RGARCH

method performs poorly in the case of USD-Euro. Similarly poor performances were observed

to forecast the 1% and 0.5% quantiles, if the innovations are assumed to be normal. Additionally,

the FGARCHmodel forecasts passed the backtests when the bootstrapped innovation were used,
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particularly with equity data, but the performance is poor when normal innovations were used.

Also, we notice that, as a fully parametric model, the FGARCH-EVT model performs relatively

well in all cases.

In order to further compare the models, we also considered pair-wise and multi-model com-

parisons using the Diebold and Mariano test (DM test, Diebold and Mariano, 1995) and the

model confidence set (MCS, Hansen et al., 2011) based on generalized probability scoring (PS);

see Gneiting and Raftery (2007). The PS method can be used to compare quantile forecasts

by using consistent scoring rules to evaluate the quality of the forecast based on the realized

variable. Although many such consistent scores can be used, we consider the PS for the τ level

quantile

(3.6) S(fM(τ), Y ) = (fM(τ)− Y )(1{fM(τ)≤Y } − τ)

where fM is the forecasting quantile of model M, and Y is the realized outcome. Here a

smaller score indicates a better forecast. In order to check the relative performances among

all candidate models, we first calculate the averaged PS S̄fM = 1
N−No+1

∑N
i=No

S(fM(τ), Yi),

where {YNo , YNo+1, . . . , YN} are daily returns from the out-of-sample. Then, we compare scores

pair-wise by using the DM test and calculating MCS. We omit the descriptions of these two

tests to save space, but one can refer to the above papers for details.
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Table 3.4. P-values of backtests for the VaR forecasts with the bold values
indicating significance at the 5% level.

S&P500 DAX30 CAC40 USD-Euro
τ 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5%

Panel A: Unconditional Coverage Test
FHS 0.68 0.38 0.13 0.77 0.59 0.54 0.33 0.57 0.54 0.10 0.31 0.47
RG-N 0.60 0.02 0.00 0.46 0.13 0.06 0.46 0.03 0.00 0.03 0.00 0.00
RG-B 0.37 0.23 0.06 0.95 0.86 0.28 0.68 0.38 0.90 0.10 0.01 0.02
HAR-N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HAR-B 0.98 0.59 0.28 0.04 0.02 0.02 0.37 0.86 0.54 0.18 0.31 0.95
FG-OU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FG-B 0.39 0.19 0.54 0.39 0.92 0.61 0.63 0.60 0.91 0.36 0.31 0.41

FG-EVT 0.27 0.13 0.01 0.13 0.92 0.91 0.29 0.90 0.54 0.24 0.15 0.02
Panel B: Conditional Coverage Test

FHS 0.64 0.20 0.05 0.81 0.78 0.80 0.59 0.81 0.80 0.23 0.54 0.75
RG-N 0.06 0.00 0.00 0.28 0.13 0.14 0.06 0.05 0.00 0.04 0.01 0.00
RG-B 0.01 0.17 0.15 0.23 0.92 0.54 0.15 0.20 0.97 0.08 0.02 0.01
HAR-N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
HAR-B 0.80 0.78 0.54 0.13 0.04 0.06 0.49 0.92 0.80 0.24 0.54 0.99
FG-OU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FG-B 0.37 0.85 0.28 0.25 0.86 0.32 0.86 0.33 0.69 0.29 0.15 0.19

FG-EVT 0.25 0.13 0.01 0.05 0.86 0.69 0.16 0.85 0.28 0.18 0.06 0.00

Table 3.5 reports the average PS for all models. Similarly as in the above analyses, the bootstrap-

based models generally performed better. The FHS, RG-B and HAR-B models are the best

model in most cases, but the FG-B and FG-EVT models have comparable scores.

Table 3.5. Average probability scores of the VaR forecasts with the boxed value
indicating the model that produces smallest scores, all scores are valued with
units 10−4.

S&P500 DAX30 CAC40 USD-Euro
τ 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5%

FHS 5.72 2.82 1.69 7.74 3.73 2.01 8.16 4.24 2.50 4.16 1.95 1.18
RG-N 5.72 3.16 2.08 7.78 3.93 2.37 8.20 4.37 2.77 5.69 2.79 1.59
RG-B 5.65 2.99 1.94 7.69 3.68 2.10 8.21 4.26 2.46 4.29 2.17 1.21
HAR-N 5.92 3.45 2.36 8.96 4.89 3.25 8.74 4.92 3.35 4.36 2.28 1.37
HAR-B 5.57 2.76 1.61 8.23 4.10 2.58 8.26 4.32 2.63 4.18 2.03 1.15
FG-OU 7.10 4.68 3.56 10.71 6.67 4.83 11.97 8.38 6.60 5.21 3.10 2.24
FG-B 6.19 3.22 1.90 8.45 4.03 2.15 8.74 4.48 2.47 4.54 2.23 1.26

FG-EVT 6.11 3.10 2.03 8.69 3.93 2.08 8.93 4.29 2.49 4.56 2.30 1.40

Table 3.6 displays the results of testing the significance of these differences in performance.

Panel A selects the “better” models under 25% model confidence set. It is notable that the
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FG-OU model are eliminated in almost all cases, as well as the HAR-N model with equity data

at extreme quantiles. Given these results, in Panel B, we exclude the FG-OU model, and pair-

wisely compare the rest of models by using the DM test. The testing results basically reinforce

the findings mentioned above, i.e., the bootstrap-based models significantly improve over the

normal distribution based models. Also, all bootstrap-based models were not significantly

different (at the 0.05 level) in pairwise comparison, including the FG-B model, the exception

being the RG-B method with the FOREX index. The FG-EVT model performed statistically

indistinguishable from to the bootstrap-based models.

Finally, we also examined the cap requirements each model imposes. Part (a) in Figure 3.2

displays an example plot of the VaR predictions for S&P500 with quantile τ = 0.01 for those

methods that performs well in backtests. From the plot, we can see that the market is relatively

stable at the beginning of 2015, while it is relatively more turbulent during the 2015-2016 stock

market selloff. We also observe the benchmarks (FHS, RGARCH-BOOT, HAR-BOOT) forecast

VaR to be relatively tight, while we observe that the FGARCH-based predictors to relatively

deviate from the data. This pattern is consistent during both the period of an economic expansion

and the period of a market turbulence.
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Table 3.6. Results of relevant performance tests of the VaR forecasts. In Panel
A, the bold values mean those models belong to the 25%MCS. Panel B contains
the DM test statistics, with the asterisk ∗, ∗∗, ∗∗∗ denoting tests at 10%, 5% and
1% significance levels, respectively.

S&P500 DAX30 CAC40 USD-Euro
2.5% 1.0% 0.5% 2.5% 1.0% 0.5% 2.5% 1.0% 0.5% 2.5% 1.0% 0.5%

Panel A: P values of Model Confidence Set
FHS 0.96 1.00 0.90 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
RG-N 0.99 0.70 0.29 0.90 0.70 0.29 1.00 1.00 0.68 0.64 0.50 0.76
RG-B 0.99 0.75 0.29 1.00 1.00 0.45 1.00 1.00 1.00 0.99 0.81 1.00
HAR-N 0.73 - - - - - 0.27 0.33 - 0.97 0.81 0.82
HAR-B 1.00 1.00 1.00 - 0.37 - 1.00 1.00 0.97 1.00 1.00 1.00
FG-OU - - - - - - - - - - - -
FG-B - - - - - 0.70 - 0.91 1.00 0.46 0.61 0.97

FG-EVT - 0.30 - - 0.67 0.97 - 1.00 1.00 0.47 0.59 0.66
Panel B: Diebold & Mariano Test

FHS v RG-N -1.39 -1.56 -1.62 -2.10∗∗ -2.01∗∗ -1.64 -1.52 -1.37 -1.41 -1.54 -1.79∗ -1.88∗

FHS v RG-B -0.70 -0.92 -1.41 0.58 0.81 0.63 1.21 -0.34 -0.89 -2.60∗∗∗ -1.81∗ -1.25
FHS v HAR-N -2.09∗∗ -1.99∗∗ -1.99∗∗ -2.90∗∗∗ -2.72∗∗∗ -2.39∗∗ -2.18∗∗ -1.75∗ -1.77∗ -1.03 -1.18 -0.81
FHS v HAR-B -0.08 0.67 0.93 0.46 0.34 -1.94∗ 0.96 1.12 0.96 0.11 -0.24 0.20
FHS v FG-B -0.61 -0.80 -0.65 1.21 1.03 0.98 1.53 1.64 1.17 -0.16 0.42 0.57

FHS v FG-EVT 0.55 -0.89 -1.59 1.23 1.08 0.99 1.45 1.29 0.90 -0.45 -1.01 -0.87
RG-N v RG-B 1.59 2.18∗∗ 1.71∗ 2.40∗∗ 1.65 1.51 1.90∗ 1.41 1.52 1.41 1.42 1.64
RG-N v HAR-N -2.16∗∗ -1.79∗ -1.52 -2.06∗∗ -1.95∗ -1.94∗ -1.26 -0.98 -0.84 1.39 1.17 0.60
RG-N v HAR-B 1.71∗ 1.87∗ 1.79∗ 1.15 1.08 0.94 1.47 1.31 1.32 1.55 1.58 1.48
RG-N v FG-B 1.28 1.45 1.37 1.65∗ 1.43 1.27 1.59 1.51 1.34 1.53 1.79∗ 1.70∗

RG-N v FG-EVT 1.61 1.45 1.13 1.61 1.43 1.29 1.53 1.36 1.30 1.51 1.48 1.16
RG-B v HAR-N -3.10∗∗∗ -3.15∗∗∗ -2.56∗∗ -2.97∗∗∗ -2.35∗∗ -2.26∗∗ -2.44∗∗ -1.69∗ -1.87 -0.01 -0.22 -0.65
RG-B v HAR-B 1.48 1.57 1.64 0.37 -0.22 -1.80∗ 0.51 1.08 1.01 1.08 0.61 0.56
RG-B v FG-B 0.56 0.53 0.97 1.27 1.13 1.03 1.29 1.49 1.16 1.34 1.13 0.92

RG-B v FG-EVT 1.06 0.45 0.10 1.28 1.19 1.04 1.23 1.27 0.97 1.14 0.36 -0.50
HAR-N v HAR-B 2.80∗∗∗ 2.36∗∗ 2.18∗∗ 2.41∗∗ 2.11∗∗ 2.41∗∗ 2.47∗∗ 1.68∗ 1.61 2.82∗∗∗ 2.52∗∗∗ 2.00∗∗

HAR-N v FG-B 2.35∗∗ 2.07∗∗ 1.78∗ 2.38∗∗ 2.06∗∗ 1.84∗ 2.07∗∗ 1.86∗ 1.55 1.69∗ 1.99∗∗ 1.74∗

HAR-N v FG-EVT 2.35∗∗ 2.09∗∗ 1.77∗ 2.30∗∗ 2.04∗∗ 1.95∗ 1.88∗ 1.64 1.55 1.42 1.18 0.71
HAR-B v FG-B -1.04 -1.82∗ -1.52 1.83∗ 1.71∗ 1.34 1.13 1.01 1.28 -0.43 1.07 0.88

HAR-B v FG-EVT 0.49 -1.77∗ -2.04∗∗ 1.88∗ 1.77∗ 1.37 1.04 0.55 0.16 -0.68 -1.12 −1.66∗

FG-B v FG-EVT 1.29 -0.77 -1.64 1.23 1.45 -0.89 0.57 -0.17 -1.48 -0.96 -2.15∗∗ −1.88∗

Then, we plot the average capital reserve required by the VaR for τ = 2.5%, 1% and 0.5%

for both of the equity and FOREX markets. We make three remarks in part (b). First, the

benchmarks (FHS and HAR-BOOT) perform reasonably well and show a moderate level of

capital requirement for all of the assets considered in this study at the chosen quantile levels.

Second, the RGARCH-BOOT model delivers relatively smaller expected losses and provides

the riskiest measurement. Lastly, at the majority of the selected quantile levels, the FGARCH-

BOOT and FGARCH-EVT methods generally produce the most conservative VaR measures.

In the Appendix, we also provide the Expected Shortfall forecasts, which are obtained based on

the VaR forecasts, and the backtesting and relative accuracy hypotheses are tested and discussed

as well.
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Figure 3.2. (Top panel) Plots of VaR forecasts at τ = 0.01 for S&P500. The
forecasts are plotted every twelfth day in order to aid in differentiation of the
models. (Bottom panel) The average VaR for assets at τ = 2.5%, 1%, 0.5%.
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3.3. Empirical Results and Backtesting Intra-day VaR Curves.

In this last subsection, we provide an application of forecasting and backtesting intra-day VaR

curves by using themethods proposed in Section 2.2. Figure 3.3 illustrates the predicted intraday

VaR curves (recall eq. (2.2)) for the index S&P500 between 16th-March and 29th-March 2018

through the FGARCH(1,1) model with three types of innovations. It shows similar patterns

with the summary drawn from the previous analyses at the daily frequency, i.e., the FGARCH-

BOOT generates the most conservative intra-day VaR curves, and the VaR curves with the OU
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innovation are more tight to the data but more likely to produce violations. The FGARCH-EVT

curves lie generally between the two.

Figure 3.3. Plot of 10 Days of 1-day ahead VaR Curve forecasts at τ = 0.01 for
S&P500 in 2018.
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Table 3.7. P-values of backtests ofH1
0 andH2

0 for the VaR curves forecasts with
the bold values indicating the significance at the 5% Level

S&P500 DAX30 CAC40 USD-Euro
FG-OU FG-B FG-EVT FG-OU FG-B FG-EVT FG-OU FG-B FG-EVT FG-OU FG-B FG-EVT

H(1)
0

2.5% 0.00 0.32 0.44 0.00 0.47 0.03 0.00 0.49 0.53 0.00 0.38 0.36
1.0% 0.00 0.39 0.00 0.00 0.49 0.06 0.00 0.45 0.00 0.00 0.38 0.10
0.5% 0.00 0.16 0.00 0.00 0.47 0.00 0.00 0.36 0.00 0.00 0.17 0.00

H(2)
0 , H=1

2.5% 0.51 0.22 0.18 0.69 0.51 0.35 0.13 0.22 0.33 0.08 0.29 0.27
1.0% 0.44 0.16 0.23 0.60 0.00 0.06 0.21 0.00 0.15 0.00 0.05 0.03
0.5% 0.36 0.03 0.01 0.68 0.03 0.01 0.17 0.05 0.12 0.00 0.14 0.05

H(2)
0 , H=3

2.5% 0.75 0.28 0.28 0.80 0.53 0.44 0.35 0.26 0.26 0.45 0.33 0.32
1.0% 0.71 0.00 0.14 0.86 0.23 0.31 0.37 0.09 0.20 0.39 0.07 0.05
0.5% 0.66 0.05 0.00 0.82 0.01 0.31 0.24 0.01 0.01 0.22 0.16 0.20

H(2)
0 , H=5

2.5% 0.47 0.27 0.26 0.53 0.29 0.29 0.48 0.10 0.01 0.52 0.44 0.48
1.0% 0.51 0.30 0.25 0.83 0.23 0.22 0.43 0.00 0.08 0.62 0.32 0.46
0.5% 0.42 0.32 0.27 0.76 0.00 0.22 0.30 0.01 0.00 0.57 0.27 0.38

H(2)
0 , H=10

2.5% 0.21 0.19 0.16 0.14 0.31 0.26 0.58 0.25 0.24 0.51 0.53 0.48
1.0% 0.15 0.26 0.15 0.39 0.34 0.26 0.46 0.31 0.30 0.51 0.39 0.45
0.5% 0.09 0.26 0.13 0.54 0.01 0.26 0.26 0.33 0.30 0.74 0.32 0.41

Table 3.7 reports the P-values of backtesting the conditional coverage and independence hy-

potheses on the violation functions defined by (2.12). We can see that FG-OU model cannot

pass the conditional coverage hypothesis, and the same results occur in FG-EVT in forecasting

extreme VaR curves. The FG-B model, as the one that passes H(1)
0 in all cases, generally
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produces independent violation functions across different values of H , though there are a few

exceptions in the index of CAC40. The FG-EVT appears to be generally valid to forecast

intra-day VaR curves if a less extreme quantile is considered.

4. Conclusion

We considered the issue of forecasting daily and intra-day Value-at-Risk by using fine-resolution

intra-day trading information. In order to capture the information of intra-day price movement

and the over-night effect, we introduced and studied the over-night cumulative intra-day return

curves, and their incorporation into risk modeling using a functional time series framework.

Several forecasting methods were discussed, including parametric and semi-parametric two-

step approaches. These are mainly based on the functional GARCH(p,q) model. Exploiting the

structure of the FGARCH model, we also proposed a new approach to forecast intra-day VaR

curves, and corresponding backtests for such curves.

In the application, we considered three equity indices (S&P500, DAX30, and CAC40) and

one FOREX spot rate (USD-Euro) at the 1-minute frequency. After smoothing these high-

frequency data into daily curves, we forecast the one-day-ahead VaR by using the proposed

methods, along with three benchmark models – the filtered historical simulation based on daily

information, the realized GARCH, and the heterogeneous autoregressive model based on the

intra-day realized measurement. The empirical findings indicated that our methods based on

the FGARCH model with bootstrapped residuals yielded comparatively good performance to

VaR forecasts over benchmark models. The FGARCH-EVT model also was shown to provide

reasonable forecasts in the equity markets and FOREX markets. Regarding the intra-day VaR

forecasting, the FGARCH-BOOT model produced generally valid VaR curves, meanwhile, the

good performances are shown in the FGARCH-EVTmodel to forecast less extreme VaR curves.

It is worth mentioning that our methodologies can be generally applied to study the tail behavior

of other arbitrarily fine grid observed economic and financial data. Avenues of future researches

in this direction might focus on incorporating the leverage effect for intra-day return curves from

the equity market, and to augment the quantile regression model with an explicit autoregressive

term based on the conditional quantiles.
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Appendix A. Forecasting Expected Shortfall

In this appendix, we discuss how to obtain a simple forecast of the Expected Shortfall (ES)

based on the above VaR forecasts. The ES at quantile τ is usually defined, in the low-frequency

literature, as

ESτi = E[Yi|Fi−1, Yi < VaRτ
i ].

The analytic solutions for various ES estimators at daily frequency are reviewed by Nadarajah et

al. (2013). To adapt the definition of ES into the functional high-frequency context we obtain,

ESτi (t) = E[Xi(t)|Fi−1, Xi(t) < VaRτ
i (t)]

Here we directly estimate the intra-day ES of Xi(t) from the sample as,

(A.1) ÊS
τ

i (t) =
1

N(t)

N∑
j=1

Xi(t)1{Xi(t)<V̂aR
τ

i (t)},

where N(t) =
∑N

j=1 1{Xi(t)<VaRτi (t)}. Thus the one-day-ahead ES curve is predicted by taking

the pointwise sample mean of the observations that exceed V̂aR
τ

i (t). As such, ÊS
τ

i (1) gives an

estimate of the daily ES.

To backtest daily ES,we focus on the event of quantile violations and apply the daily standardized

residual test used in McNeil and Frey (2000). Let (Yi < VaRτ
i ) denote those daily returns hit

the VaR forecasts, and then the daily standardized residuals ri can be computed by,

ri =
(Yi < VaRτ

i )− ESτi
σ̂i

,

where σ̂i is the estimated conditional standard error. Another possible way to estimate the

conditional density function is to use the method proposed in Fernandes et al. (2019). It is clear

that ri focuses on the difference between Yi and ESτi in the event of violations. We aim to test

one-sided hypotheses on E[ri],

HE
0 : E[ri] ≥ 0 againstHE

A: E[ri] < 0.

The one-sided backtest is appealing because the overestimation of the ES results in a failure of

risk management and a punishment by the regularity authority, while the underestimation of the

ES does not cause this problem. Thus, the ES is deemed to be acceptable if we cannot reject

HE
0 .
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Table A.1. P-values of Backtests of HE
0 for the ES Forecasts with the Bold

Values Indicating the Significance at 95% Level.

S&P500 DAX30 CAC40 USD-Euro
τ 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5%

FHS 0.05 0.53 0.53 0.55 0.29 0.55 0.55 0.07 0.09 0.59 0.59 0.23
RG-N 0.16 0.10 0.18 0.28 0.06 0.03 0.24 0.25 0.29 0.04 0.24 0.64
RG-B 0.07 0.16 0.06 0.51 0.18 0.56 0.36 0.31 0.06 0.02 0.05 0.63
HAR-N 0.33 0.54 0.53 0.73 0.65 0.68 0.73 0.36 0.09 0.10 0.41 0.38
HAR-B 0.40 0.76 0.69 0.87 0.80 0.75 0.05 0.26 0.63 0.39 0.43 0.00
FG-OU 0.53 0.61 0.28 0.92 0.83 0.86 0.91 0.91 0.93 0.37 0.24 0.10
FG-B 0.04 0.08 0.57 0.75 0.37 0.00 0.74 0.09 0.76 0.39 0.42 0.35

FG-EVT 0.09 0.27 0.14 0.42 0.55 0.74 0.55 0.11 0.21 0.54 0.07 0.09

Table A.1 exhibits the backtesting results. The majority of models provide reasonable ES,

apart from a few exceptions in the RGARCH model and bootstrap-typed methods in HAR and

FGARCH models.

In order to further assess the relative accuracy of the above models, we calculate the PS for ES

forecasts according to Equation (4.6). Table A.2 shows the average PS, and similar to Table 4.5,

the FGARCH model provides comparable PS with bench-marks. However, the models with

normal distributed innovation generally outperform bootstrap-typed models, particularly at less

extreme quantiles. We attribute this to the reason that bootstrapped models are more likely to

provide much conservative VaR forecasts.
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Table A.2. Average Probability Scores of the ES Forecasts with the Boxed value
Indicating the Model that Produces Smallest Scores, all Scores are Valued with
Unit e-4.

S&P500 DAX30 CAC40 USD-Euro
τ 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5%

FHS 6.73 3.31 2.01 8.68 4.05 2.39 9.38 4.59 2.73 4.35 1.96 1.11
RG-N 6.16 3.19 2.01 8.56 4.09 2.39 8.87 4.44 2.66 4.14 1.93 1.06
RG-B 6.51 3.31 2.16 8.73 4.10 2.42 9.39 4.66 2.79 4.21 1.97 1.04

HAR-N 5.83 3.04 1.89 8.32 4.15 2.50 8.70 4.53 2.85 4.33 2.27 1.32
HAR-B 6.32 3.24 1.99 8.44 4.13 2.58 9.35 4.69 2.89 4.41 2.03 1.16
FG-OU 6.07 3.38 2.36 8.08 4.13 2.55 8.16 4.43 2.93 4.12 2.22 1.47
FG-B 6.96 3.45 2.18 9.08 4.36 2.46 9.62 4.84 3.00 4.29 2.02 1.17

FG-EVT 6.96 3.17 2.08 9.50 4.31 2.52 9.95 4.59 2.69 4.35 2.15 1.15

We then apply the Model Confidence Set and Diebold & Mariano test to evaluate the relative

performances of these models. In the panel A of Table A.3, we can see that the HAR-N and

FG-OU models are belonging to the 25% model confidence set in most of cases. Panel B shows

the pair-wise comparisons of ES forecasts by using the Diebold & Mariano test. The results

consistently match our summaries made above, i.e., the majority of the models are statistically

equivalent, with few cases indicating that HAR-N model performs better.
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Table A.3. Results of Relevant Performance Tests of the ES Forecasts. In Panel
A, the bold values mean that models are belong to the 25% MCS. In Panel B,
the asterisk ∗, ∗∗, ∗∗∗ mean significant at 90%, 95% and 99% significance levels.

S&P500 DAX30 CAC40 USD-Euro
2.5% 1.0% 0.5% 2.5% 1.0% 0.5% 2.5% 1.0% 0.5% 2.5% 1.0% 0.5%

Panel A: P values of Model Confidence Set
FHS - 0.81 0.97 0.63 1.00 1.00 - 1.00 0.89 0.70 1.00 -
RG-N - - - 0.57 1.00 1.00 - 1.00 1.00 1.00 1.00 0.89
RG-B - - 0.42 0.31 1.00 1.00 - 0.97 - 0.38 0.78 1.00
HAR-N 1.00 1.00 1.00 0.88 1.00 0.99 - 1.00 0.68 0.96 0.52 0.40
HAR-B - 0.95 0.99 0.94 1.00 0.37 - 0.95 - 0.78 0.94 0.48
FG-OU 0.37 0.48 - 1.00 1.00 0.98 1.00 1.00 0.77 1.00 0.87 -
FG-B - 0.26 - - 0.34 0.50 - - - 0.93 0.60 -

FG-EVT - 0.98 0.82 - - - - 1.00 1.00 0.77 0.72 0.55
Panel B: Diebold & Mariano Test

FHS v RG-N 0.39 -0.33 -1.24 -1.77∗ -1.27 -0.48 -0.95 -1.11 -1.17 -1.25 -1.14 -1.00
FHS v RG-B 0.43 0.12 -1.70∗ 0.72 0.95 0.98 1.48 -0.32 0.76 -1.63 -1.09 9.55∗∗∗

FHS v HAR-N 0.36 -0.69 -0.83 -2.17∗∗ -2.11∗∗ -1.13 -1.02 -1.42 -1.41 -1.81∗ -1.72 -1.45
FHS v HAR-B 0.92 0.27 -0.86 0.78 0.56 -1.41 1.02 -0.83 -0.62 -1.63 -1.32 -1.14
FHS v FG-B 0.26 0.02 -1.05 0.86 -0.19 0.89 1.23 -0.62 -1.02 0.78 -1.02 -1.13

FHS v FG-EVT 1.06 0.97 -1.54 0.29 0.16 -1.12 1.18 0.93 -0.82 0.69 -1.27 -1.15
RG-N v RG-B 0.05 0.86 -0.28 1.61 1.09 1.00 1.22 1.09 1.19 -1.71∗ 0.47 1.04
RG-N v HAR-N -0.09 -1.12 0.71 -1.86∗ -1.94∗ -1.46 -0.12 -1.49 -1.72∗ -1.66∗ -1.94 -1.55
RG-N v HAR-B 1.21 0.39 0.38 1.19 0.86 0.07 1.01 0.98 1.14 -1.25 -1.23 -1.23
RG-N v FG-B -0.60 0.31 0.81 1.17 0.27 0.96 1.15 1.05 0.63 1.01 0.84 -1.29

RG-N v FG-EVT 0.35 1.11 0.11 0.81 0.57 0.28 1.12 1.16 1.08 0.93 -1.34 -1.24
RG-B v HAR-N -0.07 -1.83∗ 0.49 -2.21 -1.76∗ -1.61 -1.26 -1.43 -1.43 -1.55 -1.97∗∗ -1.46
RG-B v HAR-B 1.55 0.07 0.87 0.79 -1.24 -1.61 0.47 -1.18 -1.12 -0.98 -1.36 -1.16
RG-B v FG-B -0.67 -0.11 0.96 0.88 -1.12 -1.16 1.10 -1.06 -1.06 1.16 0.75 -1.15

RG-B v FG-EVT 0.35 0.95 0.43 0.16 -1.04 -1.01 1.04 1.07 -0.96 1.09 -1.39 -1.16
HAR-N v HAR-B 1.16 0.72 0.12 1.73∗ 1.66 0.80 1.05 1.36 1.39 1.98∗∗ 2.10∗∗ 1.70∗

HAR-N v FG-B -0.51 0.67 0.21 1.58 1.02 1.58 1.20 1.40 1.15 1.54 2.01∗∗ 1.58
HAR-N v FG-EVT 0.36 1.45 -0.15 1.33 1.34 0.92 1.17 1.47 1.38 1.50 2.10∗∗ 1.70∗

HAR-B v FG-B -2.15∗∗ -0.28 -0.06 0.81 -0.75 1.59 1.35 1.22 -0.96 1.30 1.57 1.16
HAR-B v FG-EVT -0.34 0.68 -0.58 -0.85 -0.49 0.68 1.26 1.15 -0.58 1.25 -1.07 -0.60
FG-B v FG-EVT 1.01 1.33 -0.42 -1.39 1.26 -0.95 -1.41 1.09 1.09 -0.99 -1.47 -1.19
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