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SUMMARY

Raising crop yield potential is a major goal to ensure food security for the growing global population. Pho-

tosynthesis is the primary determinant of crop productivity and any gain in photosynthetic CO2 assimilation

per unit of leaf area (A) has the potential to increase yield. Significant intraspecific variation in A is known

to exist in various autotrophic organs that represent an unexploited target for crop improvement. However,

the large number of factors that influence photosynthetic rates often makes it difficult to measure or esti-

mate A under dynamic field conditions (i.e. fluctuating light intensities or temperatures). This complexity

often results in photosynthetic capacity, rather than realized photosynthetic rates being used to assess nat-

ural variation in photosynthesis. Here we review the work on natural variation in A, the different factors

determining A and their interaction in yield formation. A series of drawbacks and perspectives are presented

for the most common analyses generally used to estimate A. The different yield components and their

determination based on different photosynthetic organs are discussed with a major focus on potential

exploitation of various traits for crop improvement. To conclude, an example of different possibilities to

increase yield in wheat through enhancing A is illustrated.
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INTRODUCTION

Photosynthesis is the primary determinant of crop produc-

tivity and any gain in photosynthetic efficiency has the

potential to result in increases in yield (Flood et al., 2011;

Lawson et al., 2012; Gu et al., 2014). Free air CO2 enrichment

(FACE) studies have provided substantial evidence that

increased photosynthetic rates have translated into greater

crop yields, demonstrating the link between photosynthesis

and yield (Ainsworth and Long, 2005). The yield potential of

a crop can be described by the following equation:
Yp ¼ Q � ei � ec � ep ;

where Q is total solar radiation, ei is the interception effi-

ciency, ec is the efficiency for conversion into biomass

and ep is the efficiency of partitioning biomass into har-

vested organs (Long et al., 2015). In the absence of envi-

ronmental stress, parameters such as harvest index are

already close to the theoretical maximum (Foulkes et al.,

2010; Reynolds et al., 2012). Additionally, many canopy

traits such as canopy architecture (Long et al., 2006), light

interception (Murchie et al., 2009), and photosynthetic

duration (Shearman et al., 2005) have been optimized.

However, empirical analyses of the yield potential compo-

nents demonstrate significant inefficiency in ec in C3 crops

(Zhu et al., 2008, 2010), in which photosynthetic CO2

assimilation per unit leaf area (A) is the primary process

(Kebeish et al., 2007; Maurino and Peterh€ansel, 2010;

Walker et al., 2016). The maximum potential conversion

energy efficiency for C3 plants is 4.6% (Zhu et al., 2010).

However, plants including crops attain much less than

this and therefore A is far from optimal and a target for

further improvements (Parry et al., 2010; Long et al.,

2015). Several studies have explored opportunities to

increase energy conversion through genetic manipulation,

including manipulating Calvin cycle activity (Simkin et al.,

2015; Lopez-Calcagno et al., 2018), RuBisCO properties

(Parry et al., 2003) and increasing the kinetics of non-pho-

tochemical quenching for photo-protection (Kromdijk
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et al., 2016), all of which have translated into increased A

and greater plant biomass. However, restrictions on grow-

ing genetically modified crops in many countries espe-

cially in Europe means that alternative methods to

achieve increases in photosynthesis must be realized. An

undervalued and currently unexploited opportunity to

increase yield, not mutually exclusive of genetic engineer-

ing approaches, is the extensive natural variation in pho-

tosynthetic capacity in different C3 crops (Rawson et al.,

1983; Blum, 1990; Watanabe et al., 1994; Fischer et al.,

1998; Herv�e et al., 2001; Pettigrew, 2004; Flood

et al., 2011; Gu et al., 2012; Lawson et al., 2012; Driever

et al., 2014; Gaju et al., 2016; Carmo-Silva et al., 2017; Qu

et al., 2017; Pater et al., 2017; Faralli et al., 2019b). A num-

ber of studies have explored natural variation in photo-

synthesis in commercial wheat varieties (often relative to

the year of release) (Fischer et al., 1981, 1998; Blum, 1990;

Watanabe et al., 1994; Reynolds et al., 2000; Xue et al.,

2002; Chytyk et al., 2011; Sadras et al., 2012), and demon-

strated a correlation between photosynthesis and yield

(e.g. Blum, 1990; Fischer et al., 1998), although, such a

relationship often depended on growth conditions (Xue

et al., 2002), or when measurements were taken during

the growing season (Reynolds et al., 2000), while others

reported no relationship (e.g. Driever et al., 2014). Varia-

tion in photosynthesis has been attributed to differences

in radiation use efficiency (Sadras et al., 2012), biochemi-

cal differences in RuBisCO activation properties (Carmo-

Silva and Salvucci, 2013), carboxylation efficiency (Driever

et al., 2014) and electron transport capacity (Carmo-Silva

et al., 2017). In addition, variations in traits limiting the

diffusion of CO2 to the site of carboxylation including

mesophyll conductance (gm) (Jahan et al., 2014) and

stomatal conductance (gs) (Fischer et al., 1998), which

also includes the rapidity of gs responses to changing

environmental conditions (Lawson et al., 2010, 2012; Far-

alli et al., 2019b) have been reported in several crops.

Here we review natural variation in physiological traits

with a focus on: (i) photosynthetic capacity, which is deter-

mined by plant acclimatory responses and constrained by

genetics; and (ii) dynamic short-term modifications to A

(e.g. biochemical factors such as the regulation of

enzymes, gs and gm). The most common methods used to

estimate A are evaluated and discussed. To conclude, we

will focus on natural variation in A, stomatal physiology

and the associated photosynthetic limitation in wheat (i.e.

source limitation; lack of photo-assimilates, or sink limita-

tion) with a particular emphasis on the potential exploita-

tion for crop improvement.

NATURAL VARIATION IN PHOTOSYNTHESIS

The biochemical processes of photosynthesis in C3 crops

are considered essentially identical, (although recent

metabolite profiling of C3 species by Arrivault et al. (2019)

has reported considerable variation in levels of metabo-

lites), however, significant intraspecific and interspecific

variation in photosynthetic rates exists, providing a valu-

able source of unexploited genetic diversity (Flood et al.,

2011) (Table 1a). Furthermore, the physiological or genetic

mechanisms underlying these differences in both photo-

synthetic potential as well as dynamic behaviour may pro-

vide valuable information on the performance of different

cultivars under specific environments (Driever et al.,

2014).

Intraspecific variation in photosynthetic traits in wheat

and the potential effect of selection on photosynthesis was

shown initially by Rawson et al. (1983) and then by Blum

(1990) where breeding in Mediterranean environments had

led to an increase in photosynthetic efficiency at saturating

light for the modern cultivars compared with older vari-

eties. Furthermore, Watanabe et al. (1994) followed by Fis-

cher et al. (1998) phenotyped historical Australian and

Mexican wheat cultivars for photosynthetic traits and

reported a strong correlation between increased rates of

CO2 assimilation and yield genetic gain with year of

release, demonstrating that breeding has unintentionally

selected for higher A. Subsequent research focusing on

intraspecific variation in major crops such as cotton (Petti-

grew, 2004), canola (Pater et al., 2017), rice (Gu et al.,

2012), sunflower (Herv�e et al., 2001) and wheat (Reynolds

et al., 2000; Sadras et al., 2012; Driever et al., 2014; Carmo-

Silva et al., 2017), highlighted a wide diversity of photosyn-

thetic traits [including Asat and the light and CO2 saturated

rate of photosynthesis Amax; the maximum carboxylation

capacity Vcmax as well as the maximum rate of electron

transport (Jmax)]. In addition, at the leaf level, CO2 uptake

from the atmosphere to the site of carboxylation is subject

to two main restrictions, stomatal and mesophyll, both of

which therefore determine the rate photosynthesis. gs (the

reciprocal of stomatal resistance) controls CO2 diffusion

from the atmosphere into the intercellular air spaces in the

gaseous phase (Farquhar and Sharkey, 1982; Sharkey,

1985). Subsequently, gm adds an additional limitation in

the liquid phase for the diffusion of CO2 from the intercel-

lular airspaces to the site of carboxylation in chloroplasts

(Flexas et al., 2008). Intraspecific variation exists for both

gs and gm (Table 1b) in a series of food crops including

wheat (Fischer et al., 1998; Jahan et al., 2014), barley

(Gonz�alez et al., 1999; Barbour et al., 2010) and rice

(Ouyang et al., 2017). Therefore exploiting the existing nat-

ural variation in photosynthesis as well as optimizing the

components determining A in elite cultivars (Driever et al.,

2014), landraces (Gaju et al., 2016) and wild relatives (Prins

et al., 2016) could provide novel targets for crop improve-

ment.

However, while Crosbie et al. (1981) showed that leaf

photosynthesis of maize can be improved by recurrent

selection (i.e. increasing the frequency of favourable alleles
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for quantitatively inherited traits, in this case for A) five

cycles of recurrent phenotypic selection did not produce

the expected results in term of productivity, and changes

in grain yield were not significant for any of the popula-

tions tested (Crosbie and Pearce, 1982). Indeed, correlating

photosynthesis with yield is not straight forward, with

inconsistencies in the relationship described in the litera-

ture, for example positive correlation (Carmo-Silva et al.,

2017), no correlation (Ojima, 1974; Driever et al., 2014), or

a correlation but only when photosynthesis was measured

at particular phenological stages (Gaju et al., 2016). These

inconsistences in the relationship between A and yield

emphasize the complexity of yield formation in crops that

is based on a series of interrelated subcomponents (Mir-

alles and Slafer, 2007), and that is further complicated by

the different methodologies used to estimate A and the

influence of fluctuating environmental conditions to which

the crop is subjected (Lawson et al., 2012). Individual point

measurements of Asat or Amax taken either at different

times during the crop cycle or on individual leaves within

the canopy, often do not correlate with yield (Rawson

et al., 1983; Driever et al., 2014). Having said this, in some

Table 1 (a) Variation in crop photosynthesis rate per unit leaf area collected at saturating light and current atmospheric [CO2] (Asat). All the
data were collected at 400 lmol mol�1 [CO2] while in Blum et al. (1990) and Fischer et al. (1998) measurements were taken at 345 ll L�1

[CO2], in Herv�e et al. (2001) and Watanabe et al. (1994) measurements were taken at a [CO2] of 350 lmol mol�1 and in Gu et al. (2012) mea-
surements were taken at a [CO2] of 380 lmol mol�1. (b) Variation in stomatal conductance (gs) and mesophyll conductance (gm) in different
studies.

(a) Reference Crop Range of Asat (lmol m�2 sec�1)
Intraspecific variation
(lmol m�2 sec�1) Relation with yield

Rawson
et al. (1983)

Wheat 20–45 (mg dm�2 h�1) 12 mg dm�2 h�1 Asat and yield not correlated. Cumulative CO2

fixation by flag leaf and yield P < 0.001 r2 = 0.30
Blum (1990) Wheat 9.6–16.6 7 High yielding cultivar showed highest A for the

flag leaf
Watanabe
et al. (1994)

Wheat 25.5–31.5 6 Yield data not present

Fischer et al.
(1998)

Wheat 14.8–25.9 11.1 Asat and mean grain yield r 0.72 and 0.91 (P < 0.01)

Reynolds
et al. (2000)

Wheat 20.9–27 at booting, 18–23.6 at
anthesis, 23–11.8 at grain filling

11.2 to 5.6 depending
on stage

Asat and grain yield P < 0.01, r = 0.73

Chytyk et al.
(2011)

Wheat 27.5–34.5 7 Yield data not present

Sadras et al.
(2012)

Wheat 9.3–19.6 10.3 Data not plotted

Driever et al.
(2014)

Wheat 30.5–19.1 11.4 Correlation between grain yield and A not
significant (P > 0.05)

Carmo-Silva
et al. (2017)

Wheat 21.2–31.1 (pre-anthesis), 17.1–
23.7 (post-anthesis)

9.9–6.6 P < 0.05 (r = 0.27 pre-anthesis and r = 0.25 post-
anthesis)

Pettigrew
(2004)

Cotton 20.3–37.7 17.4 Yield data not present

Pater et al.
(2017)

Canola 5.5–22.5 17 Yield data not present

Gu et al.
(2012)

Rice 12.8–25.5 12.7 Yield data not present

Herv�e et al.
(2001)

Sunflower 17.3 � 10.2 (mean � SD) na Yield data not present

(b) Reference Crop
gs range
(mol m�2 sec�1)

gm range
(mol m�2 sec�1) Note

Fischer et al. (1998) Wheat 0.34–0.57 – Field conditions
Jahan et al. (2014) Wheat – 0.51–1.05 Greenhouse conditions
Gonz�alez et al.
(1999)

Barley 0.01–0.06 (cm sec�1) – Field conditions

Barbour et al. (2010) Barley 0.25–0.52 0.05–0.50 Greenhouse conditions
Pater et al. (2017) Canola 0.12–0.63 – Large screening in greenhouse and field

conditions
Herv�e et al. (2001) Sunflower 1.01 � 0.08

(mean � SD)
– Greenhouse conditions

Ouyang et al. (2017) Rice 0.15–0.31 0.05–0.21 Pot experiment
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cases (i.e. Fischer et al., 1998) a significant relationship

between Asat and some yield components (i.e. grain num-

ber) or the average grain yield (over 5 years) was evident.

In addition, when operational A was measured (i.e. single

measurements of A at light intensities similar to those

experienced by the crop) in the field at the pre-anthesis

and post-anthesis, a strong correlation with yield was

reported (Carmo-Silva et al., 2017). Although an instanta-

neous ‘snapshot’ analysis of Asat, carried out by Rawson

et al. (1983) did not correlate with yield, a significant

(P < 0.001) correlation between cumulative carbon assimi-

lation of the flag leaf (measured as several snapshot Asat

measurements over the life cycle) and yield was observed.

These studies highlight that the different methods used to

measure A, the complexity of the relationship between A,

plant growth and yield as well as the influence of the envi-

ronment on these processes, need to be considered for

estimating overall crop photosynthesis.

Factors determining the variation in photosynthetic rate

per unit leaf area

Biochemical factors and anatomical features. One of the

first studies to examine the underlying biochemical func-

tion of interspecific variation in photosynthesis was Wulls-

chleger (1993). Using response curves of A as a function of

substomatal CO2 concentration (A/Ci), Wullschleger

demonstrated that most of the observed variation in A in

the 109 species analyzed was attributed to variation in the

underlying biochemistry and photosynthetic capacity with

differences in both carboxylation capacity (Vcmax) and elec-

tron transport capacity for RuBP regeneration (Jmax).

Wullschleger (1993) also reported a positive correlation

between Vcmax and Jmax suggesting co-ordinated regula-

tion by these two processes. A small number of species

(23) was reported to be limited by the utilization of

triose phosphates, which ranged from 4.9 to

20.1 lmol m�2 sec�1, and reflects the short-term interac-

tion between A and starch–sucrose production, which ulti-

mately reflects growth. It is clear from the representative

A/Ci curves in Wullschleger (1993), that the switch-over

point between limitation by carboxylation capacity and

capacity for electron transport differed greatly in the four

species illustrated, and that the maximum rates of A

achieved were vastly different, which may be due to nitro-

gen allocation between RuBisCO and light harvesting.

Nitrogen (N) concentration is a key determinate of A, as

the majority of leaf N is invested in the photosynthetic

apparatus, in particular RuBisCO (Hikosaka, 2010). Differ-

ences in N-use efficiency and N concentration in different

crops have suggested these as targets for both increased A

and optimization of fertilization input (Guarda et al., 2004;

Hirel et al., 2007). Although, there is evidence that within

species variation in A, can be explained by differences in

Vcmax and Jmax (Driever et al, 2014; Carmo-Silva et al.,

2017), Driever et al. (2014) highlighted that the variation in

carboxylation capacity was not due to RuBisCO content

(or N allocation) but possibly RuBisCO activation, demon-

strating further complexity in identifying specific targets

for future wheat improvement. Furthermore, the same

study also reported that some of the highest Vcmax values

were found in older species, suggesting that photosyn-

thetic capacity potential has not been fully exploited in

past breeding programmes. However, since a major goal

of future agriculture is to enhance resource-use efficiency,

it has been hypothesized that increasing RuBisCO carboxy-

lation efficiency while reducing N allocation to RuBisCO

might be a successful alternative in crops to improve or

sustain A (Reynolds et al., 2012). A reduction in RuBisCO

content (up to 20%) led to a 10% lower N requirement in

wheat, although reductions in A at high light intensities

were also present (Reynolds et al., 2012). More recently,

Carmo-Silva et al. (2017) found significant genotypic varia-

tion for RuBisCO carboxylation efficiency and RuBisCO

content in wheat, with the cultivar Gatsby combining a

high A and a low RuBisCO content, suggesting the poten-

tial of this preferable combination for further exploitation.

Genetic engineering approaches have shown that increas-

ing protein abundance (e.g. sedoheptulose1,7-biphos-

phatase, SBPase) led to a significant increase in A which

suggests that although photosynthesis requires a large

number of protein–protein interactions, part of the genetic

variation can be explained by differences in key protein

abundance and activity, that result in improved photosyn-

thetic capacity (Flood et al., 2011; Simkin et al., 2019) and

which also might explain variation in metabolite profiles in

C3 species (Arrivault et al., 2019). The potential for exploit-

ing natural variation in photosynthetic capacity has been

demonstrated by Gu et al. (2014) who used a simulation

analyses to assess the contribution that the natural varia-

tion in RuBisCO and electron transport rate could make to

photosynthesis in rice and showed that exploiting this

could increase rice yield by 22–29%, depending on location

and year.

Many studies have focused on significant variation in

photosynthetic capacity that is determined by acclimation

to particular environmental conditions and genetically con-

strained. However, on a day-to-day basis, plants respond

dynamically to changes in the surrounding environmental

conditions that introduce a further layer of complexity to

variation in photosynthesis as there is significant variation

in dynamic responses. These dynamic processes include

regulation and expression levels of enzymes (Sassenrath-

Cole and Pearcy, 1994; Hikosaka, 2010), dynamic regulation

in response to environmental change (Sassenrath-Cole

et al., 1994) including changes in non-photochemical

quenching of excess energy dissipating mechanisms

(K€ulheim et al., 2002; Lawson et al., 2012), and the rapidity

of stomatal responses (Lawson et al., 2010, 2012;
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McAusland et al., 2016) as well as developmental

responses to growth environment (Flood et al., 2011; Gil-

bert et al., 2011).

Other processes, although not directly related to the

photosynthetic machinery, also play a role in photosyn-

thetic performance. For instance, sucrose transport from

the mesophyll cells to heterotrophic tissues is of pivotal

importance to sustain diurnal A, as it is generally accepted

that A slowly decreases over the diurnal period due to the

accumulation of photosynthates (Ainsworth and Bush,

2011). Recently, Ainsworth and Lemonnier (2018) reported

the existence of genetic variation in different phloem load-

ing mechanisms. Apoplastic loading-unloading strategies

are typically common in crop species and optimization

cannot only help in sustaining A but also enhance sink

strength, therefore these are potential targets to further

maximize the diurnal integrated A (Ainsworth and Lemon-

nier, 2018). Furthermore, morphological factors substan-

tially influenced A with long-lived evergreen plants

showing thicker leaves, with a higher leaf mass per unit

leaf area, lower gm and therefore lower A than herbaceous

plants (e.g. grasses) (Flood et al., 2011). Therefore, differ-

ences in leaf functionality between species are the result of

differences in leaf longevity and subsequent optimization

of resource investment into photosynthetic organs.

Mesophyll and stomatal limitations of photosynthe-

sis. Mesophyll conductance is considered a key trait for

future improvement in A and yield potential, as lower

resistance for CO2 diffusion to the chloroplast will allow

higher substrate availability for carboxylation. Addition-

ally, an attractive property of increasing gm is the poten-

tial to increase A without increasing water loss (Nadal

and Flexas, 2018), which is not possible if gs is increased.

gm can be dissected into three subcomponents: conduc-

tance through intercellular air spaces (gias), through cell

wall (gw) and through the liquid phase inside cells (gliq)

(Flexas et al., 2008; Terashima et al., 2011). Variation in

gm between species has been associated with alterations

in all these components: for instance leaf structure may

affect mostly gias and gw, in particular in thick leaves

(Evans and von Caemmerer, 1996). In tobacco and soy-

bean however, the most limiting component to gm

appeared to be gliq (Evans and von Caemmerer, 1996).

The intraspecific variation in gm in crop species (Table 1)

suggests that both morphological and metabolic factors

are involved in CO2 diffusion into chloroplasts, with evi-

dence of aquaporin modulation of the gliq component

(Gillon and Yakir, 2000; Hanba et al., 2004; Flexas et al.,

2006). For instance, overexpression of the aquaporin

OsPIP1;2 in rice increased gm by up to 150% compared

with the wild type, resulting in greater biomass and yield

(Xu et al., 2018) and therefore provided evidence for a

major role for aquaporins in the modulation of

intracellular CO2 diffusion (Uehlein et al., 2003; Uehlein

et al., 2008). Such studies often introduce the question

‘why have such changes not occurred naturally’, however

it should be borne in mind that survival to reproduce is

the plant’s ultimate goal, while photosynthesis and bio-

mass may or may not be a part of this process, and there-

fore resource allocation and adaptive capacity will

regulate such changes. gm is generally affected by both

light and temperature, therefore gm can have a signficant

impact on photosynthetic efficiency under fluctuating

environments (e.g. Flexas et al., 2008; Kaiser et al., 2018).

However, methodologies to quantify gm are time consum-

ing and subject to high levels of uncertainty (see review

by Pons et al., 2009 and references therein), severely lim-

iting high-throughput phenotyping for this trait. In addi-

tion, gm is principally dependant on the physical capacity

of CO2 to diffuse into the leaf tissue, and therefore depen-

dent on gs and stomatal dynamics.

Increasing CO2 diffusion from the atmosphere to the leaf

interior increases A (Lawson et al., 2010) and it has been

demonstrated in several studies that manipulating stom-

atal density (Tanaka et al., 2013) or aperture (Lawson and

Blatt, 2014; Duan et al., 2015) increases gs, while recent

studies have also suggested that stomatal kinetics and the

rapidity of gs responses to the changing environment can

increase carbon assimilation (McAusland et al., 2016;

Papanatsiou et al., 2019). Increasing gs represents a trait

already unintentionally included in breeding for high yield-

ing varieties over many decades (Fischer et al., 1998; Lu

et al., 1998; De Vita et al., 2007). The positive effects of

higher gs are numerous: in particular, under steady-state

conditions A is co-related to gs and therefore high gs leads

to elevated photosynthetic rates (by limiting the resistance

to CO2 diffusion into intracellular airspaces) and, at the

same time, increased evaporative cooling maintains opti-

mal leaf temperature for A (Lawson and Blatt, 2014). As in

C3 crops, a strong limitation of A is the temperature-depen-

dent increase in the oxygenation reaction of RuBisCO, the

maintenance of optimal leaf temperature through high

transpiration rates may be key in limiting photorespiration

(Long et al., 2006). In addition, although high gs may lead

to early soil water depletion, it has been shown that the

extra assimilates gained early in the growing season may

enable greater carbon investment in roots (Blum, 2011),

facilitating higher water extraction from the deeper soil lay-

ers therefore avoiding drought stress (Venuprasad et al.,

2011). It is therefore unarguable that gs is a key trait for

improving crop yield potential and stability with substan-

tial natural variation known to exist (Faralli et al., 2019a).

Stomatal conductance is determined by the number of

stomata per unit leaf area and the pore aperture (which is

often dependent on the size of stomata) both of which rep-

resent breeding targets for altered gs. For example, Ara-

bidopsis lines lacking the epidermal patterning factor (EPF)
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1 and 2, exhibited high stomatal density, greater gs and A

when compared with the wild type Col-0 (Franks et al.,

2015). Large natural variation in gs has been shown in a

number of plants, including crops (i.e. Tich�a, 1982; Roche,

2015; Faralli et al., 2019a and Table 1), suggesting gs as a

potential target to exploit for increased A, and therefore

yield. Stomata open and close in response to changes in

environmental cues (i.e. water availability, light, VPD) and

depend upon plant hydraulic capacity, which is the plant’s

ability to take up and distribute water around the plant

(Sack and Scoffoni, 2013; Lawson and Blatt, 2014). In the

field and inside a crop canopy, light and VPD can vary

within minutes or even seconds. Stomatal responses are

an order of magnitude slower than the response of A. For

example, gs in wheat can take between 5 and 15 min to

reach steady state following a shade or sun fleck (Faralli

et al., 2019b) and this lag in behaviour can limit A by up to

15%. Both intraspecific and interspecific variation have

been shown to exist for stomatal rapidity (McAusland

et al., 2016; Faralli et al., 2019b). In addition significant

developmental effects on stomatal responses were shown

by Faralli et al. (2019b), in which a decrease in stomatal

rapidity was reported in wheat during the post-anthesis

stage compared with the early booting stage. Therefore, gs

and the dynamic response of gs can be potential unex-

ploited targets for future crop improvement.

Measuring photosynthesis. To date, most photosynthetic

measurements have been based on two approaches using

infrared gas analyzer systems: (i) capacity measurements

where photosynthetic CO2 assimilation is measured as a

function of substomatal CO2 concentration curves (A/Ci) or

as a function of light intensity (A/Q); or (ii) ‘snapshot’ or

instantaneous measurements of A at selected times of the

day. Additionally, other methods such as carbon isotope

discrimination has been successfully used to estimate tran-

spiration efficiency (Rebetzke et al., 2002) and the photo-

synthetic contribution of different non-foliar organs to

grain yield (Sanchez-Bragado et al., 2016). In general, A/Ci

analysis is a powerful tool from which the biochemical

properties under light saturated conditions, a constant leaf

temperature and minimal boundary layer resistance can be

determined. These conditions, necessary to assess maxi-

mum photosynthetic capacity are unlikely to represent

those to which a leaf is exposed in the field (Lawson et al.,

2012; Driever et al., 2014) (Figure 1). Assessing photosyn-

thesis as a function of light (A/Q analysis) might be consid-

ered more representative of field conditions. These

measurements can be used to model A rates over the diur-

nal period if incident light is monitored. However, it should

be noted that A/Q curves are usually performed in near

optimal environmental conditions, particularly at low

vapour pressure deficits and often measured early in the

diurnal cycle, both of which promote high gs. Therefore

dynamic stomatal behaviour in the field environment could

significantly decrease realized A when compared with the

‘theoretical maximum’ (Lawson et al., 2012) (Figure 1c).

Indeed, in a study on the effect of dynamic light on Ara-

bidopsis by Vialet-Chabrand et al. (2017) continuous diur-

nal gas exchange measurements of A were compared with

those determined from A/Q response curve and incident

photosynthetic active radiation (PAR), the latter failed to

accurately predict the measured photosynthetic rates due

to the limitation imposed by stomata (Figure 1c,1) as well

Figure 1. Example of a CO2 assimilation as a function of substomatal CO2

concentration curve (A/Ci) and light (A/Q) (a, b respectively) measured on

the flag leaf of wheat (cv. Robigus) at booting stage with an infrared gas

analyzer (Li-Cor 6400, Li-Cor, USA). The A/Ci was measured at saturating

light [1500 µmol m�2 sec�1 photosynthetic active radiation (PAR)] and a leaf

temperature of 20°C. RuBisCO carboxylation efficiency (Vcmax), the maxi-

mum electron transport rate for RuBP regeneration (Jmax) was estimated

following Sharkey et al. (2007) and Asat represents the light saturated A at

current ambient [CO2]. (c, d) Diurnal measurement of photosynthetic CO2

assimilation (A) and stomatal conductance (gs) were measured on the same

day as the A/Ci and A/Q analysis on an adjacent part of the flag leaf at 20°C
leaf temperature following a fluctuating light environment. In (c), black dots

represent recorded A values, whereas the red line represents A estimated

through the A/Q response. Orange regions represent the discrepancy in A

between observed and modelled values from the A/Q. Light brown regions

represent the potential overestimation in daily CO2 uptake if Asat is used to

assess total daily photosynthesis for plants growing under a natural fluctu-

ating light regime. In (d), grey regions represent the light regimes (therefore

the photosynthetically active radiation, PAR) at which the diurnal measure-

ment with the Li-Cor was carried out (following a simulated sunny-cloudy

pattern shown in (c)), while blue dots represent gs.
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as the late-diurnal negative feedback on A (Vialet-Chabrand

et al., 2017; Matthews et al., 2018). Similar methodological

drawbacks are present for simpler (and quicker) analysis of

instantaneous or ‘snapshot’ measurements of photosyn-

thesis that are either captured under natural irradiance, or

use a light source to mirror in situ irradiance intensities.

Stomatal limitation, enzyme activation states and photoin-

hibition can greatly influence short-term photosynthesis.

Additionally the environmental conditions that the plants

have been exposed to before measurements also impact

on instantaneous measurements, therefore increasing the

complexity for data interpretation (Lawson and Weyers,

1999).

Therefore, it is not surprising that A is not always corre-

lated with yield as analyses are often based on either pho-

tosynthetic capacity (e.g. A/Ci and A/Q curves) that are not

realized in the field or instantaneous measurements that

represent a single point measurement of A that fails to

characterize the diurnal photosynthetic pattern. In Table 1,

the best link between yield and photosynthesis was found

when integrated CO2 uptake was determined over the

growing season or ‘operational’ photosynthesis was mea-

sured in situ (Rawson et al., 1983; Carmo-Silva et al., 2017

respectively) suggesting that: (i) the different components

defining yield are determined over spatial and temporal-

specific phenological stages, and therefore Asat (the most

used trait estimated in the literature) may correlate to a

particular yield component rather than overall grain yield;

(ii) Asat is representative of a steady-state and optimal con-

dition that crop plants hardly ever experience in the field,

and more realistic conditions for the analysis (e.g. subsatu-

rating light intensities) are the most appropriate way to

evaluate the realized A in natural dynamic environments;

and (iii) although technically challenging, time consuming

and subject to a high degrees of errors (e.g. time of senes-

cence initiation), integrated CO2 uptake of the most photo-

synthetically active leaf (i.e. flag leaf) has the potential to

be a representative trait linked to grain yield, at least in

wheat (Rawson et al., 1983). Therefore, new instrumenta-

tion that would enable diurnal and seasonal measurements

of realized photosynthesis to be captured under natural

dynamic field conditions and at different layers within the

canopy is required (e.g. Salter et al., 2018; Murchie et al.,

2018; Vialet-Chabrand and Lawson, 2019). For example, the

development of the ‘OCTOflux’ system by Salter et al.

(2018), which is a multiplexed semiportable gas exchange

system that enables Amax to be measured in eight leaves

simultaneously. Furthermore, new tools are needed to

facilitate high-throughput measurements of photosynthetic

capacity in situ and on large numbers of plants, such as

the recent developments in hyperspectral imaging to

rapidly measure Vcmax in the field (ca. 10 sec) (Meacham-

Hensold et al., 2019). Although the approaches mentioned

above have made significant advancements in measuring

photosynthetic capacity, further developments on instru-

mentation are necessary to enable diel operational or real-

ized photosynthetic rates to be determined, that are

subject to the limitations driven by the growth conditions

as well as the kinetics of various processes that a plant is

subjected to over the dynamic diurnal period.

EXPLOITING NATURAL VARIATION IN PHOTOSYNTHETIC

CAPACITY AND STOMATAL FUNCTION FOR IMPROVING

CROP PRODUCTIVITY: A CASE IN WHEAT

In wheat, several physiological traits have been uninten-

tionally selected for to produce high yielding cultivars

with increased grain number m�2 (GN) and hence yield

(Fischer et al., 1998). In the last few years, however, yield

has stagnated in many countries suggesting the need for

greater effort and new targets for increasing productivity

(Ray et al., 2012). The critical and source-limited phase of

stem extension determines GN (Slafer et al., 2015). Two

not mutually exclusive possibilities have been proposed

to increase GN in wheat: (i) lengthening the duration

and rate of growth and (ii) increasing resource availabil-

ity (i.e. photosynthesis) (Miralles and Slafer, 2007).

Indeed, increasing sedoheptulose1,7-biphosphatase activ-

ity increased flag leaf photosynthetic capacity and GN per

spike in greenhouse-grown wheat (Driever et al., 2017),

suggesting that elevated flag leaf A can increase spike

fertility. Most of the work characterizing photosynthesis

in wheat has focused on flag leaf A, however, under-

standing and assessing earlier canopy photosynthetic effi-

ciency (e.g. early stem extension) might be of greater

importance to optimize spikelet and floret fertility. Several

studies have already reported significant variation in pho-

tosynthetic capacity and light saturated rate of photosyn-

thesis in wheat, suggesting the potential exploitation of

diversity for selection and/or gene discovery (Driever

et al., 2014; Carmo-Silva et al., 2017). In particular, high-

throughput phenotyping approaches can help detect

important genomic regions for leaf and/or canopy photo-

synthetic traits in wheat and speed up the selection of

desirable traits. Either large panels of wheat with

unknown ancestry or bi and multiparental populations

(for quantitative trait loci analysis) can be used for this

approach, as already demonstrated in rice (Teng et al.,

2004; Gu et al., 2012) and recently reviewed by van

Bezouw et al. (2019). In addition the development of sin-

gle-nucleotide polymorphism platforms in wheat (Wilkin-

son et al., 2012) and the recently annotated genome of

bread wheat (Appels et al., 2018) will ensure a more com-

prehensive understanding of the genetic control of photo-

synthetic traits or other A-determining traits such as gs

and stomatal dynamics.

As yield generally plateaus at high GN due to the trade-

off with grain weight (GW) (Figure 2, scenarios a and b)

(Gamb�ın and Borr�as, 2010; Quintero et al., 2018),
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understanding and potentially optimizing the GW compo-

nent is of major importance for wheat yield improvement.

Recent work reported the presence of a potential source

limitation during grain filling (�Alvaro et al., 2008; Xie et al.,

2015; Quintero et al., 2018). These reports suggest that

increased A in post-anthesis would help facilitate the attain-

ment of the potential maximum individual GW, especially if

GN is increased (Figure 2, scenario c). GW can rely on three

main sources of assimilates: leaf photosynthesis, spike

photosynthesis and the remobilization of the water-soluble

carbohydrates (WSC) from the stem. While efforts have lar-

gely focused on selecting and screening for post-anthesis

leaf photosynthetic duration (Blake et al., 2007) and WSC

concentration (Rebetzke et al., 2008), spike photosynthesis

is an unexplored determining component contributing to

GW. When compared with the flag leaf, the spike has

shown a higher degree of drought tolerance (Tambussi

et al., 2005, 2007) generally explained by a greater intrinsic

water-use efficiency (driven by a low gs per unit area and a

high degree of re-fixed respiratory CO2) and a more pro-

nounced osmotic adjustment (Tambussi et al., 2005, 2007).

This situation suggests that spike photosynthesis has an

important role in times of water limitation, possibly com-

pensating the flag leaf during grain filling. Furthermore, the

assimilates produced in the spike are directly translocated

into the grains (Carr and Wardlaw, 1965) leading to a contri-

bution to GW between 10 and 45% depending on environ-

mental conditions and genotype tested (Maydup et al.,

2010; Sanchez-Bragado et al., 2016). Indeed a large varia-

tion in gross spike A (calculated as the sum of A and dark

respiration (Rd) as a proxy of respiration in the light) has

been shown in both durum and bread wheat (Maydup

et al., 2010; Molero et al., 2013; Zhou et al., 2016; Sanchez-

Bragado et al., 2016), suggesting the existence of natural

genetic diversity for exploitation. For instance, the presence

of awns (lemma-derived organs) has been considered an

important source of external CO2 assimilation of the spike

(Maydup et al., 2010) although other factors such a spike

morphology (e.g. photosynthetic surface area of spikelets)

seems to drive the observed variation in spike A (Guo and

Schnurbusch, 2016). Earlier evidence proposes that, in the

UK, a significant genotypic variation for spike gross A and

for the contribution of spike A to GW is present (Faralli

et al., 2019c) and confirms the importance of spike photo-

synthetic CO2 assimilation for grain filling. Additional work

is needed to fully understand the underlying mechanism of

spike A, as well as the extent of existing natural variation.

Further development of high-throughput phenotyping tools

focusing on spike A would take full advantage of this unex-

ploited trait for GW improvement.

CONCLUSION

Photosynthesis is a key determinant of crop yield. Large

natural variation in A and A-determining traits in different

photosynthetic organs exists in a number of crop species

that represent a currently unexploited target for crop

Figure 2. Theoretical scenarios for improving grain

yield in wheat. (a) Current scenario with GN source-

limited and GW sink-limited or both co-limited.

Here, grain yield is limited by GN. (b) Optimization

of resources for grain number (GN) leads to a

trade-off with the individual grain weight therefore

plateauing grain yield through the progress in GN.

(c) Removal of source limitation is required for the

reproductive and grain filling stages through opti-

mization of flag leaf photosynthesis, spike photo-

synthesis and WSC remobilization, leading to a

reduced trade-off with the individual grain weight

and therefore increase in grain yield.
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improvement. Owing to the complexity of the relation

between A and yield, improvements in high-throughput,

reliable and relevant methodologies will enable the dissec-

tion of useful genetic targets for marker-assisted selection.

In wheat, enhancing leaf canopy photosynthesis will

increase GN although greater yield will only be achieved

with a parallel increase in GW, which relies primarily on

enhanced spike photosynthesis. With this in mind, screen-

ing for high photosynthetic capacity in both organs should

be considered a prime target for high yielding wheat culti-

vars. In summary, genetic manipulation and elevated [CO2]

experiments have shown a yield advantage when photo-

synthesis is increased in food crops; therefore exploiting

natural genetic variation in photosynthesis will facilitate the

development of cultivars with greater yield potential.
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