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Abstract—In recent decades, driving assistance systems have
been evolving towards personalization for adapting to different
drivers. With considering personal driving preferences and char-
acteristics, these systems become more acceptable and trustwor-
thy. This paper presents a survey of recent advances in implicit
personalized driving assistance. We classify the collection of work
into three main categories: 1) personalized Safe Driving Sys-
tems (SDS), 2) personalized Driver Monitoring Systems (DMS),
and 3) personalized In-vehicle Information Systems (IVIS). For
each category, we provide a comprehensive review of current
applications and related techniques along with the discussion of
industry status, gains of personalization, application prospects,
and future focal points. Several existing driving datasets are
summarized and open issues of personalized driving assistance
are also suggested to facilitate future research. By creating an
organized categorization of the field, this survey could not only
support future research and the development of new technologies
for personalized driving assistance but also facilitate the use of
these techniques by researchers within the driving automation
community.

Index Terms—Intelligent vehicles; driver behavior analy-
sis; personalization; Advanced Driver Assistance Systems;

I. INTRODUCTION

Safety, efficiency, and convenience are three key concerns
raised in recent studies on intelligent vehicles [1–8]. According
to a World Health Organization report, up to 50 million people
are injured or disabled in road accidents worldwide every year
with 90% of deaths occurred in developing nations [9]. As
reported by the U.S. National Highway Traffic Safety Admin-
istration, 32,719 fatalities and 2.3 million injuries occurred in
the US in 2013 [10]. In addition, according to the 2015 Urban
Mobility Scorecard report, traffic congestion costs $160 billion
per year and causes the waste of three billion gallons of fuel.
Moreover, the environment is polluted by vehicles’ tailpipe
emissions. To this end, a number of in-vehicle advanced
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functions have been developed and implemented. In this paper,
the baseline we used to classify driving assistance systems
is the application domains of these systems. Typically, three
application domains are considered: (i) the vehicle; (ii) the
driver; (iii) the service that the vehicle provides for the driver.
Corresponding to the three domains respectively, three kinds
of categories are summarized for driving assistance systems
as follows: (i) Safe Driving Systems (SDS), which work on
the vehicle, especially on vehicle dynamics and control, are
designed to reduce potential risks of accidents and even avoid
collisions [11–13]. Typical functions of SDS include adaptive
cruise control, collision avoidance, lane-keeping assistance,
lane change assistance, and intersection assistance; (ii) Driver
Monitoring Systems (DMS) are designed to supervise the
status of drivers so that they can be warned about abnormal
driving behaviors and mental states [14]. Typical functions of
DMS include fatigue and distraction detection, driving style
recognition (range prediction), and affective state recognition;
(iii) In-Vehicle Information Systems (IVIS) provide in-time
information and services for the driver [15]. Typical functions
of IVIS include route recommendations, entertainment ser-
vices recommendations, notification services, and interactive
assistance.

Internal data 

sources

External 

data sources

Sensors 

Measurements

Rule based 

approach

Machine 

learning

Driving behaviorsDriving features

Driving behavior recognition

Feature selection
New 

measurements

Generic 

predictor

Driving 

behavior
Model based 

approach

GPS V2X

Traffic 

management 

centresCameras

Lidar/Radar

IMU

Driving 

Assistance

Corresponding 

service

Driving 

features

All drivers’ data

Fig. 1. Process of generic driving assistance, where V2X means vehicle-
to-everything (e.g. vehicle, infrastructure) communication [16, 17]. Internal
data sources denote data collected by vehicle embedded sensors. External
data sources denote data collected by broadcasts, communicating with others
vehicles and road infrastructures. “all drivers’ data” imply that no driver ID
is recorded in data collection.

Human factors [18] or individual driver’s preferences are
involved in all these systems. The common design approach
for SDS, DMS, and IVIS is to develop a generic system that
can work for all drivers. We show a schematic of the overall
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framework in Fig. 1. In a generic system, signals from internal
data sources (the sensors embedded in a vehicle, e.g. GPS,
camera, IMU, Lidar and radar) and external data sources (the
data obtained from communication networks and traffic radios,
e.g. traffic management centers and V2X communication) are
treated indiscriminately even though these signals are from
different drivers. Next, the principal features are chosen by
using feature selection techniques so as to conspicuously link
the driving features to the corresponding driving behaviors.
After obtaining the principal driving features and labels of
the corresponding driving behaviors, driving behaviors can
be recognized by three different approaches including: model
based approaches, rule based approaches, and machine learn-
ing approaches. The predictors of model based approaches are
derived from driver models (e.g. intelligent driver model and
car-following model) as in [19–21]. The predictors of rule
based approaches are often used to recognize driver behaviors
using a predetermined threshold [22–24]. The predictors of
machine learning approaches are obtained by training a clas-
sifier or regressor (e.g. Bayesian network, decision tree, and
support vector machine) as in [5, 25, 26]. Then, the predictor
is used in a generic system. When the new measurements
are received by sensors, the corresponding driving behaviors
(e.g. fatigue, distraction) are recognized by the generic system
so that corresponding services (e.g. guiding drivers to rest
stops, alerting drivers) can be provided. It is noticeable that
the generic approach trains or designs a model by using the
driving data of all drivers indiscriminately, and, as a result, per-
sonalized driving characteristics and preferences of individual
drivers may be neglected [27]. In practice, different drivers
may have distinct driving characteristics and preferences even
in a similar driving scenario [3]. Therefore, it is not surprising
that a conventional generic approach may provide limited per-
formance and satisfaction for individual drivers. This motivates
the introduction of personalized driving assistance, implicitly
embedding personalized styles, preferences, and characteris-
tics. Here, the driving styles refer to drivers’ personal feelings
about whether their driving is normal, moderate or aggressive.
The procedure of collecting normal and aggressive driving data
for individual drivers is outlined in [28]. Driving preference
and characteristic refer to personal driving behaviors such as
preferred distance to the car in-front [20, 26] and adaptive lane
change assistance [29].

This paper presents a comprehensive review of personalized
driving assistance. Personalization of driving assistance is dis-
cussed from three different aspects, where the taxonomy and
related techniques of driving assistance are presented in Fig. 2.
To the best of the authors’ knowledge, this is the first attempt
to conduct a comprehensive review of implicit personalized
driving assistance. More precisely, the main contributions are
summarized below:

• According to application domains, driving assistance sys-
tems are divided into SDS, DMS, and IVIS with the
corresponding functions.

• The motivation and key components of personalized driving
assistance systems are discussed.

• State-of-the-art implicit personalized driving assistance
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Fig. 2. The Categories of Personalized Driving Assistance.

techniques in SDS, DMS, and IVIS are elaborated along
with dataset types, inputs, algorithms, pros, and cons.

• Detailed discussion is conducted on SDS, DMS, and IVIS in
terms of industry status, gain of personalization, application
prospects, and future focal points. The literature of SDS,
DMS, and IVIS covers from 1999 to 2019, from 2009 to
2019, and from 2001 to 2019 respectively.

• Open issues on implicit personalized driving assistance are
highlighted to inspire future research.

II. PERSONALIZATION IN DRIVING ASSISTANCE

According to [3, 22, 26, 30–34], driving assistance systems
should be safe, effective, and comfortable. To meet these
criteria, personalization is introduced to understand the status
of a specific driver [35], and take individual driving styles
[29], requirements, and preferences [36] into account.

Personalized systems are often realized in implicit ways
using data-driven approaches. This is because implicit per-
sonalization allows a system to adapt to the user through
interactions and historical usage data with little direct input
from the driver [37, 38]. For instance, the parameters of an
intelligent driver model [39] can be tuned from individual
historical driving data. The key components of the person-
alization process include observing the driving behaviors,
modelling human driving behaviors and validating the models.
The overall structure is depicted in Fig. 3. 1) Observing
the driving behaviors: Individual driving behaviors can be
observed from his/her historical driving data. The task in this
step focuses on personal driving data collection. 2) Human
driving behaviors and preferences modelling: The data of a
specific driver is used to train a driver model, which is then
used in either driving state recognition or vehicle dynamic
control [20, 40, 41]. 3) Validation of a personalized model:
Evaluation of a personalized model can be classified into four
levels: a) Offline playback; b) Simulation in a traffic simulator;
c) Human in the loop simulation; d) Field test [42]. Among
them, the field test is most convincing. However, it is also the
most challenging due to a relatively large cost and issues with
safety. To this end, human in the loop simulation [32, 43] is
a promising efficient and meaningful alternative.
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Fig. 3. Personalized process, where the blocks within black dashed lines are
for observing the driving behaviors, the blocks within dark green dashed lines
are for human driving behaviors and preferences modelling, and the blocks
within dark blue dashed lines are for the validation of a personalized model.

III. PERSONALIZED SAFE DRIVING SYSTEMS (SDS)

SDS have evolved substantially in the past decades and have
become a significant component of intelligent vehicles. SDS
are focused on out-vehicle environment (e.g. road, other vehi-
cles, and other road users) rather than in-vehicle environment
(e.g. drivers, passengers). Therefore, “out-vehicle assistance”
links more closely to vehicle dynamic control. This section
reviews the related studies in five different aspects: adaptive
cruise control, collision avoidance, lane keeping assistance,
lane change assistance and intersection assistance. The related
literature of personalized SDS, presented in this paper, is
summarized in Table I and Table II along with the description
of dataset types, inputs, used algorithms, pros, and cons.
A. Adaptive Cruise Control

Adaptive cruise control focuses on the longitudinal control
of a vehicle, which drives a vehicle at a pre-defined speed
whilst maintaining a desired gap with the vehicle in-front.
However, conventional adaptive cruise control systems only
provide a limited number of pre-defined gaps. Such design
makes these systems difficult to satisfy the requirements of
different drivers. To overcome this weakness, a great number
of personalized adaptive cruise control systems have been
developed over recent decades. In [23, 47, 51, 66], person-
alized adaptive cruise control systems adapt to drivers in
real-time based on the observation of the drivers’ style and
preferences. Here, artificial neural networks, linear models or
a combination of the two are used to generate time gaps of
a specific driver according to the driver’s historical driving
data. In [44], authors design a fuzzy controller based on
evolutionary strategies, which can generate fuzzy rules by
using the driving data of a specific driver such that a variety of
behaviors can imitated with great accuracy. Different from the
aforementioned approaches, learning-based approaches that
use Model Predictive Control are used in [21, 53, 57, 58]. This
allows them to imitate each driver’s style and preferences so
as to achieve personalized adaptive cruise control of a vehicle.
In addition, [20] predicts a driver’s throttle and braking pedal

operations according to time headway and inverse time to
collision. In contrast to previous research that mainly focuses
on imitating a specific driver’s behaviors, [18, 19, 65] reduce
the errors of longitudinal control by building a personalized
driving model. Driver’s behaviors are modeled using a Gaus-
sian Mixture Model approach. All in all, most of the personal-
ized adaptive cruise control functions can provide reasonable
performance. One big challenge is how to define principal
features for different drivers, because different drivers have
different driving characteristics and therefore useful features
for different drivers may be entirely different. Inspired by
[73, 74], the principal individual driving characteristics can
be extracted by using model selection techniques (e.g. Wald
statistics) [73] or feature selection algorithms (e.g. sequential
forward floating selection) [74].

B. Collision Avoidance

Collision avoidance systems enhance driving safety by
alerting drivers to an impending collision or automatic braking
for avoiding potential collisions. However, different drivers
have different driving styles, preferences, and characteristics.
A generic model based collision avoidance approach cannot
perform well for all drivers. To reduce the false alarms and
extend the reaction time, personalized driving characteristics
can be considered for these systems [23, 67, 68, 70, 75]. Rule
based collision avoidance algorithms are intuitive approaches
to predict a crash event, where a threshold for autonomous
braking is learned from personalized historical driving data
[23]. In [67], a statistical behavior modeling approach is
proposed to estimate the danger level probability distribution
of a particular driver such that an activation threshold can be
determined to warn them of the potential of an emerging crash.
However, the warning threshold of different driving situations
should be different. Therefore, authors in [68] develop an
online learning forward collision warning algorithm which
adjusts the warning threshold automatically by considering the
current driving situation. In contrast to the aforementioned
studies, [70] implements personalized steering assistance by
introducing a personalized potential field. In the proposed
system, a personalized potential map is built up to represent
hazard awareness of each driver. In brief, online learning
algorithms can be promising solutions which can adjust the
threshold of a specific driver over time. Additionally, return-
ing uncertainty is significant for decision making on vehicle
dynamics control, where systems can provide the probability
of potential collision [76]. However, the approaches used here
are ”offline”, which means they cannot tune the threshold over
time as in [23].

C. Lane-Keeping Assistance

Lane-keeping assistance aims to alert drivers to a forth-
coming lane departure. However, a failure to understand the
driver’s correct behavior may cause a significant number of
false warnings. This could make drivers mistrust or even
abandon lane-keeping assistance systems [26, 92]. To reduce
false positive rate, Hidden Markov Models, Gaussian Mixture
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TABLE I
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED SDS (PART A)

Type Ref Dataset Inputs Algorithms Pros Cons
Adaptive
Cruise
Control

[44] Real-world -Space headway, speed of
the leading vehicle, speed
of the following vehicle,
relative speed

Evolutionary
strategies, Fuzzy
logic

-Direct for real valued parame-
ter optimization; Rule structure
and membership functions are
evolved simultaneously; [45]

-Fuzzy control is not easy to
conduct stability analysis; [46]

[47] Real-world -Space headway, speed of
the leading vehicle, speed
of the following vehicle

Artificial Neural
Network, Linear
model

-Flexible non-linear capability;
data-driven method; [48, 49]

-Hard to design layers and neu-
rons; large volume of iterations
to converge [49, 50];

[23, 51] Real-world -Space headway, relative
speed, speed of the lead-
ing vehicle

Linear model -Simple implementation; ro-
bustness;

-Limited accuracy;

[21] Simulation -Velocity Gaussian
Mixture Model

-Low computation load [52];
easy to implement; arbitrary
feature distribution;

-Hard to tune parameters; hard
to extend in high dimensional
applications;

[53] Simulation&
Real-world

-Longitudinal position,
longitudinal velocity of
the ego vehicle, relative
distance to the preceding
vehicle

Hidden Markov
Model + Gaus-
sian Mixture Re-
gression

-Time-sequential learning [54];
arbitrary feature distribution;
utilization of prior knowledge
[55];

-Large volume of parameters
with complicate model [56];
not work well with high dimen-
sional problem;

[57] Real-world -Relative distance to the
preceding vehicle, relative
velocity to the preceding
vehicle, velocity of the
ego vehicle

Hidden Markov
Model + Gaus-
sian Mixture Re-
gression

-Time-sequential learning [54];
arbitrary feature distribution;
utilization of prior knowledge
[55];

-High model complexity [56];
Limited performance in high
dimensional problem;

[58] Simulation -Position, velocity Random Forest
Regression

-Always converge and
overfitting-free; robustness
to residual features;[59] little
pre-defined parameters [60];

-”black box” approach [61]; lo-
cal optima; large model; size
[62];

[20] Real-world -Headway, speed of the
host vehicle, relative
speed to the leading
vehicle

Recursive Least
Square

-Robustness; online adaptation;
[63]

-Roundoff error sensitivity
[64];

[18, 65] Real-world -Speed of the following
vehicle, relative distance,
relative speed, change rate
of relative speed, follow-
ing vehicle acceleration

Gaussian
Mixture Model

-Low computation load [52];
easy to implement; arbitrary
feature distribution;

-Hard to tune parameters; not
work well with high dimen-
sional problem;

[19] Simulation -Following distance (Ft),
Velocity (Vt), ∆Ft, ∆Vt,
∆2Ft, ∆2Vt, Gas pedal
pattern (Gt), Brake pedal
pattern (Bt), ∆Gt,∆Bt

Gaussian
Mixture Model

-Low computation load [52];
easy to implement; arbitrary
feature distribution;

-Hard to tune parameters; not
work well with high dimen-
sional problem;

[66] Simulation -Maximum acceleration,
maximum deceleration,
mean of time headway
(THW), standard
deviation of mean THW,
standard deviation of
THW, maximum inverse
time to collision (TTC),
minimum inverse TTC;

Multi-model
based artificial
neural network

-Enhance the precision of mod-
eling, flexible non-linear capa-
bility; [48]

-Hard to tune parameters; not
work well with high dimen-
sional problem;

Collision
Avoid-
ance

[67] Simulation -Wheelbase, distance of
the center of gravity to
the front axle, distance
of the center of gravity
to the rear axle, vehicle
mass, moment of inertia
to the yaw axis, relative
front cornering stiffness,
rear cornering stiffness

Neural Network -Flexible non-linear capability;
data-driven method; [48, 49]

-Hard to design layers and neu-
rons; large volume of iterations
to converge; [49, 50]

[68] Real-world -Speed of host vehicle,
weighted following dis-
tance, weighted relative
speed

Recursive least
square

-Online adaptation and compu-
tational efficiency [69]; well in-
terpretation; robustness;

-Explicit relation between in-
puts and outputs;

[70] Simulation -Distance to left boundary,
distance to right boundary

Potential field -Unrestraint with shapes of ob-
jects; [71]

-Unstable motion [72];

[23] Real-world -Relative velocity Rule-based
model

-Simplicity; robustness; -Hard to determine threshold;
limited performance; high re-
quirement of feature selections;
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TABLE II
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED SDS (PART B)

Type Ref Dataset Inputs Algorithms Pros Cons
Lane-
Keeping
Assistance

[57] Real-world -Longitudinal velocity,
distance to the lane
center (y), orientation
with respect to the lane
center (θ), derivative of
y, derivative of θ, road
curvature

Hidden Markov
Models + Gaus-
sian Mixture Re-
gression

-Time-sequential learning [54];
arbitrary feature distribution;
utilization of prior knowledge
[55];

-High model complexity [56];
Limited performance in high
dimensional problem;

[77] Real-world -Vehicle speed, relative
yaw angle, relative yaw
rate, road curvature, lat-
eral displacement

Gaussian
Mixture Models
+ Hidden
Markov Models

-Time-sequential learning [54];
arbitrary feature distribution;
utilization of prior knowledge
[55];

-Large volume of parameters
with complicate model [56];
not work well with high dimen-
sional problem;

Lane
Change
Assistance

[29] Real-world -Distance of gap, relative
speed of interest

Gaussian
Mixture Models

-Low computation load [52];
easy to implement; arbitrary
feature distribution;

-Hard to tune parameters; lim-
ited performance in high di-
mensional problem;

[27] Simulation -Steering wheel angle, the
error between desired path
and current path

Lateral driver
model

-Intuitive interpretation; easy
realization;

-Hard to guarantee accuracy;

[78] Simulation -Distance of ego-car (E)
and merging-car (M); rel-
ative velocity between E
and M; relative accelera-
tion between E and lead-
ing car; relative distance
to the end of acceleration
lane; length of recogniz-
able area;

Decision entropy
+Randomized
Model Predictive
Control+logistic
regression model

-Low computation load [52];
easy to implement; take human
drivers’ preferences and uncer-
tainty into account;

-Neglect the personality and
preferences of drivers;

[79] Simulation -Distance of gap and ve-
hicle position

Logistic regres-
sion model

-Easy to implement; Fast run-
time [52];

-The diversity of the partici-
pants is not enough (it had bet-
ter include drivers from differ-
ent age groups and genders);

[80] Simulation -Longitudinal Vehicle
Speed, yaw angle, lateral
Deviations, steering wheel
angle

Human-
Centered Feed-
forward Control

-Feedback-free [81]; -Slow response; unstable; [81]

[82] Simulation -Electroencephalography Extend queuing
network

-High stability [83]; -Low robustness (single source)
[84];

[85] Simulation –Speed, proximities to in-
ner/outer road boundary

Inverse optimal
control

-Constructive; stability; [86] -Model-dependent; priori-
dependent; [87]

[88] Real-world -Velocity, relative velocity
and distance

fuzzy c-mean
clustering +
fuzzy knn +
intelligent driver
model

-Labeling-free and model-free;
easy to implement; arbitrary
feature distribution;

-Hard to choose distance crite-
ria in feature space and tune
the threshold for convergence;
High computation load;

Intersection
Assistance

[89] Simulation -Traffic lights location and
timing data for each one
of them on the route,
traffic flow speed (V2I
needed), fuel consump-
tion, time of arrival

Sequential
Quadratic
Programming

-Flexibility; non-linear models;
multiple objectives; [90]

-High computation load [90];

[91] Simulation -Historical gap size Maximum Like-
lihood

-Consistent parameter estima-
tion; solid theoretical basis;

-Biased for small samples; lo-
cal optima;

[23] Real-world -Relative velocity Rule based
model

-Simplicity; robustness; -Thresholds and features selec-
tion; limited performance;

Models, and their combination are used in personalized lane-
keeping assistance systems [57, 77]. These systems can learn
a driver’s preferences when a human-driver keeps driving in a
lane. Subsequently, these systems accommodate to each driver
by considering his/her driving preferences and characteristics.
In general, the Gaussian Mixture Models is robust to the
feature distribution and is able to deal with non-linear prob-
lems. Hidden Markov Models can process sequential data (or
streaming data). It is not surprising that their combination,
which inherits the advantages of Gaussian Mixture Models
and Hidden Markov Models, outperforms both of them.

D. Lane Change Assistance

Lane changing is one of the most challenging tasks during
driving. This is because it not only requires drivers to have
a clear perception and projection of the surrounding environ-
ment, but also involves changes in the longitudinal and lateral
speed of the vehicle. To make lane change assistance more ac-
ceptable and effective, the driving characteristics of a specific
driver need to be accommodated, as suggested by [27, 29, 78–
80, 82, 85, 88, 93]. In [29], Gaussian Mixture Models are
used to adjust the kinematic model parameters so as to adapt
to individual driving styles. Moreover, authors in [88] achieve
better gap prediction with considering the characteristics of
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drivers. Here, the fuzzy c-mean clustering algorithm is com-
bined with Kalman filter to estimate the distance from follow-
ing vehicle to the heading vehicle more accurately. Another
approach implements personalized lane changing by proposing
a compensatory transfer function based on a driver model in
combination with a feedforward anticipatory subsystem [27].
Furthermore, [85] learns a driver’s steering characteristics by
using inverse optimal control. In this research, inverse optimal
control is used to identify the parameters of a cost function,
where the cost function is designed by considering speed,
steering, and the inner/outter road boundary. In addition, lane
change assistance plays a significant role in merging tasks.
In [78, 79], logistic regression models are used to determine
the acceptability of merging tasks. Compared to [79], [78]
also takes preferences of drivers on the main lane into ac-
count, which is achieved by minimizing decision entropy.
Such design makes driving assistance more acceptable and
efficient. Lane change assistance is a sharing control task,
where a human driver and the vehicle controller are able to
collaborate with each other. To this end, [80, 93] develop
a Human-Centered Feed-forward Control system, where a
driver’s steering characteristics and the human driver’s steering
inputs are both taken into account for vehicle steering control.
More exciting research in personalized lane change assistance
is to predict steering angle by the electroencephalography
signal[82]. This study shows that a human driver’s intention
can be reflected by his/her electroencephalography signal.

E. Intersection Assistance

Intersection crossing is one of the most frequent driving
maneuvers in urban and metropolitan areas. To make inter-
section assistance more desired, several intersection assistant
systems are proposed with the consideration of personal driv-
ing preferences [23, 89, 91]. The distance of braking or the
distance required to release the accelerator can be expressed
by a polynomial regression model, where the coefficients of
the model are calibrated by personal driving data in order to
adapt to different drivers [23]. In [89], the authors propose
a personalized pace optimization algorithm to help drivers
approach and cross through a signalized interaction. The
proposed algorithm optimizes pace on a route by considering
driver characteristics so that fuel use and waiting time are
minimized. Different from conventional methods (e.g., Trout-
beck [94], Raff [95]), authors in [91] estimate a critical gap
by using Maximum Likelihood Estimation. The critical gap
is the smallest acceptable gap for a specific driver. According
to experimental results, the false alarm rate can be reduced
from 11.8% to 9.8% by introducing the critical gap. Overall,
the polynomial regression model is a feasible approach to
predict braking and accelerator release behaviors. However,
are there any better models to describe these behaviors? For
instance, the Gaussian Process may provide a better model
for these behaviors, which has the additional advantages of
providing confidence intervals and not requiring the order of
the regression model to be defined a priori [96]. Furthermore,
Maximum Likelihood Estimation is numerically stable and
straightforward to implement.

F. Discussion

Industry status: Adaptive cruise control functions are pro-
vided by many models of cars (e.g. Audi A8, Volkswagen
Touareg, BMW 5 and 6 series) [97]. Similarly, collision avoid-
ance systems have also been successfully used in many brands
and models such as Audi (A8, A7, A3), Dodge Durango,
Honda (Accord, Inspire), Lexus (LS, GS, IS, RX), Skoda
Octavia, Tesla Model S [97]. However, these functions are
often implemented using rule-based approaches, which cannot
adapt to individual drivers in an online manner. Although
lots of studies have been conducted on personalized SDS,
automotive manufacturers have not rushed to promote per-
sonalized functions of SDS. This may be because integrating
the personalized learning algorithms into existing SDS needs
careful testing to guarantee compatibility and security.

Gains of personalization: Safe driving systems can obtain
several benefits by introducing personalization. The primary
gain is the enhanced acceptability [26, 68]. In [26], the
false-warning rate of a lane departure warning system can
be reduced to 3.13%. In [68], the false positive rate of a
forward collision warning system is decreased below 10%.
The secondary gain is safety. When the false alarm is too
high, the systems can become annoying to drivers and may be
abandoned [18, 29]. Therefore, the enhanced acceptability can
encourage drivers to keep SDS, which leads to an improvement
in driving safety.

Application prospects: In adaptive cruise control, recursive
least square and Gaussian mixture models are the two most
promising approaches and have been used in real-time vehicle
tests [18, 20, 65]. Other approaches in [44, 47, 53] have poten-
tial, but so far have only been validated using offline playback.
In collision avoidance, recursive least squares is feasible to
be commercialized by automotive companies. Different from
[23], recursive least squares does not only overcome the online
adaptation issue but also can be run in real-time on a test
vehicle [68]. In lane-keeping assistance, not many studies have
used real-time vehicle testing. According to the real-world data
playback validation results, the combination of hidden Markov
models and Gaussian mixture models (or regressions) [26, 57]
are promising approaches. In lane change assistance, Gaussian
mixture models [29] are a suitable approach. Compared to
the data-driven intelligent driver model mentioned in [88],
Gaussian mixture models do not need a large volume of data
at the beginning and can adapt to individual drivers online. In
intersection assistance, for now, maximum likelihood estima-
tion and linear approximation are the two feasible approaches
[23, 91]. Compared to the maximum likelihood method which
is only validated in simulations [91], linear approximation is
more practical since it can be validated by real-world data
playback [23]. When the vehicular communication devices and
road communication facilities are more sound and ubiquitous,
sequential quadratic programming may become practical and
effective. For the time being, however, the performance of
sequential quadratic programming is only assessed in a simu-
lation environment.

Future focal points: Firstly, safe interaction amongst users
(human drivers or even autonomous vehicles) on the road
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needs to be prioritized [98]. The implementation of safe
interaction is challenging because human actions and be-
haviors are often unpredictable [99]. Fortunately, studies in
[98, 100] provide some promising ideas (such as developing
robust informative models or regenerative stochastic models).
Secondly, intersection assistance may become a focal point
with the development of vehicle embedded devices (e.g.
communication modules, high-performance CPU/GPUs) and
road infrastructures (e.g. roadside units), which can not only
make approaching an intersection safer and more smooth
(for example, by reducing unnecessary braking and providing
collision warnings), but also provide clearer communication
amongst drivers to improve the fluency of their interactions.

IV. PERSONALIZED DRIVER MONITORING SYSTEMS
(DMS)

In recent years, in-vehicle monitoring systems have been de-
veloped rapidly and pervasively applied in healthcare and cog-
nitive workload recognition [101]. Driver monitoring systems
can detect abnormal driving behaviors (drowsiness, fatigue,
distraction) or driving styles (normal, moderate, aggressive)
via vehicle dynamic measurements or vision measurements.
Moreover, driver monitoring systems are one of the most
significant components of vehicular safety applications de-
tecting fatigue, distractions and the driving style/mental state
of a driver [102]. However, several challenges, such as trust,
acceptance, and unpredictability [98, 103, 104], may slow
down the development of these systems. To overcome these
issues, personalized driver monitoring may be a promising
solution, which makes driving assistance more trustworthy
and acceptable. Moreover, driving performances of different
drivers are quite different even in the same driving scenarios.
The limited feedback of personalized driving behaviors make it
difficult to evaluate the performance of plug-in hybrid electric
vehicles [105]. Personalized driver monitoring systems are to
detect abnormal behaviors and driving styles based on indi-
vidual drivers. For instance, the heart rate and blood pressure
are two popular measurements to assess abnormal driving
behaviors (drowsiness, fatigue, distraction) [24, 106, 107].
However, classifying based on average statistics of these two
measurements easily leads to a higher false positive rate,
especially for drivers with cardiovascular diseases. Because of
this, personalized driver monitoring systems urgently need to
be developed. Compared to SDS, the personalization in driver
monitoring systems has not attracted significant attention in
the past decade. Table III summarizes the relevant techniques
in personalized driver monitoring systems along with the
description of dataset types, inputs, used algorithms, pros, and
cons.

A. Fatigue and Distraction Detection

Driver inattention monitoring can be classified into distrac-
tion and fatigue [123]. Some studies attempt to detect fatigue
and distraction via video [40, 41, 109]. Vision measurements
contain eye blink duration, nodding frequency, and head poses.
These measurements have been proved useful to detect abnor-
mal driving behaviors [123]. However, vision measurements

are often obtained using computer vision techniques which
are sensitive to light condition. Moreover, the privacy issue
involved in vision also needs to be addressed. Compared to
vision measurements, vehicle dynamic measurements are more
robust against light condition [3]. Vehicle dynamic measure-
ments include steering angle, lateral acceleration, longitudinal
acceleration, vehicle velocity amongst others. Moreover, more
features can be generated by using vehicle dynamic measure-
ments such as steering entropy, steering reversal rate, and
speed prediction error. In [108], speed prediction error and
steering entropy are used as features to train a support vector
machine, which can achieve high overall accuracy of 95% and
a false positive rate about 78.3% based on a specific driver’s
data. It is found that a personalized drowsiness detection sys-
tem outperforms the average system when sufficient person-
alized data is available for training the classifier. Personalized
data collection is always challenging in a personalized applica-
tion. In [101], a personalized monitoring system is proposed,
where captive electrocardiogram and ballistocardiogram data
can be obtained in real-time and recognize fatigue. In contrast
to [101], eye blink activities are also considered in [24] and
therefore the false alarms of fatigue detection can be reduced.

B. Driving Style Recognition

Range prediction and fuel management are closely related to
driving styles. Moreover, driving style recognition also plays
a significant role in driving safety and vehicle security. Due
to the diversity of driving preferences among different drivers,
the accurate evaluation of fuel consumption is a challenging
task for intelligent vehicles, especially with plug-in hybrid
electric vehicles [22]. To predict fuel use more precisely,
various personalized vehicle energy consumption prediction
approaches are proposed [32, 43, 105, 112, 114, 118]. Authors
in [105] develop a personalized multi-modality sensing and
analysis system, which can efficiently extract information of
user-specific driving behaviors and a hybrid electric vehicle
operation profile. User-specific driving behavior messages
(e.g., speed, acceleration, road and traffic conditions) are
fused by wavelet-based disorientation compensation to obtain
accurate vehicle movement information. Hybrid electric vehi-
cle operation profile messages (e.g. fuel use, battery system
information) are used to identify the driver operation mode via
classification and regression tree. The proposed approach can
predict fuel use accurately (0.88-0.996 correlation and 87.8%-
89.9% classification accuracy) which is evaluated with real-
world experiments. In [112, 118], the personalized Distance-
To-Empty prediction is achieved by using participatory sensing
data. Various approaches are implemented and compared in-
cluding a speed profile similarity matching approach, a driving
habit similarity matching approach and a collaborative filtering
approach. According to the experimental results, the driving
habit similarity matching approach outperforms the others.
Unnecessary braking and sharp acceleration cause unwanted
fuel consumption, especially in approaching a traffic signal. To
avoid this unnecessary fuel consumption, a scenario tree based
stochastic model is introduced to adapt to a specific driver so
that vehicle acceleration and braking can be reduced [114].
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TABLE III
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED DRIVER MONITORING SYSTEMS

Type Ref Dataset Inputs Algorithms Pros Cons
Fatigue and
Distraction
Detection

[108] Real-world -Steering entropy; mean absolute
speed prediction error;

Nonlinear
Autoregressive
Exogenous model
+Support Vector
Machines

-Fast runtime; flexi-
ble non-linear capabil-
ity; [48]

-Not easy to select an
appropriate kernel;

[109] Real-world -Labelled images Neural Network -Flexible non-linear
capability; data-driven
method; [48, 49]

-Hard to design lay-
ers and neurons; large
volume of iterations to
converge; [49, 50]

[101] Real-world -Capacitive Electrocardiogram,
Ballistocardiogram

Rule based approach -Simplicity;
robustness;

-Hard to determine
threshold; limited
performance; high
requirement of feature
selections;

[24] Simulation -Capacitive Electrocardiogram,
Ballistocardiogram, Eye blink
activity

Rule based approach -Simplicity;
robustness;

-Hard to determine
threshold; limited
performance; high
requirement of feature
selections;

Driving
Style
Recognition

[105] Real-world -Speed, acceleration, road type,
road condition

Classification and
Regression Tree,
wavelet-based
filtering

-Easy to implement;
well interpretation;
[110]

-Local optima; may
give misleading
results; [110, 111]

[112] Real-world -Continuous average speed, decel-
eration tuple, acceleration tuple,
gyroscope tuple, auxiliary load of
idling, vehicle weight, total idle
duration

Energy consumption
model

-Intuitive
interpretation; easy
to implement;

-Hard to guarantee ac-
curacy;

[113] Real-world -Biometric measures, vehicle dy-
namic measures

Gaussian Mixture
Model

-Low computation load
[52]; easy to imple-
ment; arbitrary feature
distribution;

-Hard to tune param-
eters; not work well
with high dimensional
problem;

[114] Simulation -Distance between vehicle and
traffic signal, durations of red
and green light, traffic light cycle
number

Scenario tree based
stochastic model

-Solve constratined
stochastic optimal
problem [115];
context aware; feasible
computation load
[116];

-Be sensitive to param-
eters [117];

[32, 43] Simulation -Vehicle acceleration, Adjusted
headway time, relative distance,
Relative velocity

Probability weighted
autoregressive exoge-
nous model

-Time-varying
processes; distribution-
free; consider
uncertainty;

-Poor at long-term pre-
diction; be sensitive
with outlier;

[118] Real-world -Average speed, deceleration tu-
ple, acceleration tuple, total idle
duration, mean absolute of gyro-
scope, Auxiliary load of idling

Similiarty matching +
driving habit match-
ing

-Low complexity; well
interpretation; [119]

-Static model [120];
slow response time
[121];

[122] Real-world -Throttle position, brake pressure,
vehicle speed

Neural network -Flexible non-linear
capability; data-driven
method; [48, 49]

-Hard to design lay-
ers and neurons; large
volume of iterations to
converge; [49, 50]

Affective
State
Recognition

[103] Simulation -kinematic (relative distance, ve-
locity, and acceleration at the lead
vehicle’s brake start time), elec-
troencephalography (mean and
standard deviation of each chan-
nels absolute intensity, relative
levels for each band power, spec-
trum analysis features) and ther-
mal facial analysis (forehead, left
eye, right eye, and nose)

k-nearest neighbors,
random forests

-High accuracy, easy
to implement and used
by industry (k-nearest
neighbors); arbitrary
feature distribution;
well interpretation
(random forests have
tree-based structure);
[110]

-Cost of thermal cam-
era is higher than an
infrared camera or a
RGB camera;

[3] Real-world -Speed, three dimensional accel-
erations

Fuzzy c-means clus-
tering, Gaussian Mix-
ture Model, Support
Vector Machine

-Easy to implement;
arbitrary feature dis-
tribution; unsupervised
approach;

-Hard to define an ap-
propriate distance met-
ric of clustering; Hard
to select kernel func-
tion and tune parame-
ters;
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In [32, 43], probability weighted autoregressive exogenous
models are used to learn individual driving behaviors for
a specific driver so that fuel consumption can be estimated
more precisely. Driving style and state are also important in
driving safety and vehicle security. In [122], a neural network
is trained to build a customized driver model for recognizing
abnormal driving such as drunk driving detection. In [113],
Gaussian Mixture Models are utilized to extract features which
can effectively infer the driver’s identification via vehicle-
related measures.

C. Affective State Recognition

Affective state recognition is another significant direction
for human-in-the-loop systems, especially in personalized
ADAS. In [103], features related to predicting the brake
reaction time of the driver are generated by analyzing kine-
matic, electroencephalography, and thermal facial data. Taking
affective sensing into account, the precision can be enhanced
from 10 % to 40-50 %. Moreover, in order to adapt to different
drivers, the fuzzy c-means clustering algorithm is adopted
in [3] to achieve personalization and then Gaussian mixture
models and support vector machines are compared to find out
the best combination to recognize driver workload.

D. Discussion

Industry status: In recent years, automobile manufacturers
have tended to pay more attention to DMS. Honda proposes a
project called Honda’s automated assistant (HANA) to adjust
control performance based on driver state, where driver state
is measured by features such as facial expressions, voice,
and heart rate [103]. Likewise, the “Sixth Sense” project
of Jaguar Land Rover also intends to detect driver’s stress
and alertness by measuring the driver’s heart rate, respiration
rate, and brain activity [103]. In addition, other automobile
manufacturers also develop their own DMS, including Audi
(Rest Recommendation System), BMW (Active Driving As-
sistant), Bosch (Driver Drowsiness Detection), Ford (Driver
Alert), Volkswagen (Fatigue Detection System), and Volvo
(e.g. Driver Alert Control) [97]. However, all of them attempt
to build an average system rather than a personalized system.

Gains of personalization: DMS can obtain several benefits
by introducing personalization. The primary gain is the im-
proved safety [108]. In [108], the driver’s state (i.e. distracted
or attentive) can reach a high overall accuracy of 95% when
the classifier is trained on individual driver data. A secondary
gain is efficiency, especially in the distance-to-empty predic-
tion. By introducing personalization, the prediction error of
distance-to-empty can be reduced to 5% [118].

Application prospects: In fatigue and distraction detection,
the combination of nonlinear autoregressive exogenous models
and support vector machines is a practical approach. The
required features of such approaches are easy to access and
its performance is validated by a test vehicle in real-time
[108]. It may be insufficient to detect drowsiness purely by
eye blinking. For instance, Carsafe can only achieve 60%
detection rate for drowsy driving events. To achieve a high
sensitivity in monitoring driver state, the measurements of

electrocardiography and electroencephalography are combined
with eye blinking detection. However, it is only proved by
using a driving simulator and the cost of electroencephalogra-
phy sensors are also a concern for automobile manufacturers.
In driving style recognition, compared to biometrics-based
signals [113], participatory sensing signals (e.g. mobile mea-
surements, geographic penetrations) are easy to access using
existing navigation systems (e.g. Google Maps and Waze).
In [118], a similarity matching approach based on driving
habits from participatory sensing data proves to be a practical
solution of range prediction for electric vehicles, which is vali-
dated by off-line playback. In state recognition (e.g. workload
levels, emotions), random forests [103], k-nearest neighbors
[103], and support vector machines [3] are promising methods.
Among them, random forests and support vector machines
may be more practical because the computation load of k-
nearest neighbour increases rapidly with the increase of data
dimensions and size. The recognition accuracy of random
forests can achieve 86.7% by considering vehicle kinematics,
thermal facial analysis, and electroencephalography together.

Future focal points: Firstly, affective state recognition
should be a research emphasis due to its significance for
developing provably safe human-in-the-loop systems, espe-
cially for ADAS [104]. Secondly, online unsupervised learning
systems should be developed for personalized DMS. There
are two main reasons: (1) manually labeling a large volume
of personal data is painful and inefficient so unsupervised
methods are required to achieve auto-tagging; (2) the personal
driving characteristics may change with accumulation of more
driving experience which needs to adapt to individual drivers
in an online way.

V. PERSONALIZED IN-VEHICLE INFORMATION SYSTEMS
(IVIS)

IVIS not only can provide navigation services, but also offer
valuable information to drivers (e.g. traffic conditions, time
delays, and alternative routes), entertainments services (e.g.
music recommendation). Moreover, it can determine when,
how and which services should be provided based on the
current situation, which makes services more acceptable and
efficient. In contrast to SDS and DMS, IVIS concentrate on
in-vehicle services including route and entertainment services
recommendations, notification services and interactive assis-
tance. Table IV summarizes categories of the relevant research
literature in personalized IVIS with dataset types, inputs, used
algorithms, pros, and cons.

A. Route Recommendations

Route recommendations are the most common applications
in IVIS. However, previous studies only care about traveling
time and hardly consider business hours and the visit duration
of each Point Of Interest in the route selection process,
such as its attractiveness, operation hours, and order of visit
[33]. Therefore, personalized interactive and traffic-aware trip
planning services have attracted interest in both the academic
community and in industry. TRIPPLANNER achieves person-
alized, interactive and traffic-aware trip planning by combining
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TABLE IV
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED IVIS

Type Ref Dataset Inputs Algorithms Pros Cons
Route
Recommendations

[33] Real-world -Taxi GPS digital
footprints

Location-based
Social Network

-Learn popularity, travel
history from users

-Large volume data

[124] Real-world -Taxi GPS traces Variance-Entropy-
Based Clustering

- Time-variant distribu-
tions

-Precise labels

[125] Simulation -Start and goal lo-
cation

Collaborative
Case-based
Reasoning

-No knowledge elicita-
tion to create rules or
methods; easy to im-
plement and maintain;
share solutions among
agents

-Local optimization; large storing
space; long time to processing;
create cases manually

[126] Real-world -Links of traffic
flow, parking loca-
tion, time index

Autoregressive
model

-Time-varying
processes; distribution-
free;

-Poor at long-term prediction; be
sensitive to outlier;

[127] Simulation -Occupancy of
predictor link,
desired velocity,
occupancy of
downstream links

Artificial neural
networks +
stochastic routing
policy

-Decentralized structure
(lower running load);
good scalability;

-Poor at explicit interpretability;
insufficient performance in long-
term prediction;

Entertainment
Services
Recommendations

[25] Real-world -Weather and
temperature,
season, time of
day, periods, user
location

Bayesian Network -Tackle incomplete
datasets; build casual
relationship; utilize
prior knowledge; avoid
over-fitting;

-High cost of computation; poor
at high dimensional data; compli-
cate interpretation;

[128] Simulation -Usage records of
services in certain
situations

Statistical analysis -Easy to implement; ro-
bustness;

-Adapt to limited scenarios; of-
fline training;

[129] Simulation -Voice Filtered-X Least
Mean Squares

-Simple implementation;
low computation cost;
robustness; [130]

-Slow convergence; [130]

Notification
Services

[131] Simulation -Steering wheel
angle, speed,
road-center
distance

Iterative design -Early detection of de-
fects; adjusting model
via feedbacks; cost effi-
ciency;

-Occupy more resources; high re-
quirement of risk analysis; rigid
successive phase;

[132] Real-world -Context factors,
event factors

Incremental naive
Bayes

-Low computational
complexity; online
learning;

-Strong feature independence as-
sumptions;

[133] Simulation -Maximum eyes-
off-road time, Pro-
portion of eyes-
off-road time

Random
coefficient model

-Varied parameters
of models; estimate
shrunken residuals;
[134]

-Neglect correlation among re-
gressors;

Interactive
Assistance

[135] Real-world -Voice (Speaker
Classification);
eye gaze (eye
tracker);

Incremental
Gaussian Mixture
Model + Support
Vector Machine

-Self-adaption; arbitrary
feature distribution;

-Hard to tune parameters; difficult
to determine kernal function;

[136, 137] Simulation -Questionnaire or
manually input
personal data

ANOVA F-values -Robustness; low com-
putation load;

-Assumptions need to be fulfilled;

location-based social network and taxi GPS digital footprints
[33]. In [124], driving behaviors of taxi drivers and end-
users are learned by Variance-Entropy-Based Clustering to
adapt to individual requirements, such that personalized route
recommendations service can be provided to customers. Ad-
ditionally, it is extremely challenging to provide personalized
routes in unfamiliar territory. To mitigate this problem, [125]
shares problem-solving experiences amongst multiple agents
using a collaborative case-based reasoning framework to help
adapt parking guiding to an individual driver’s personal pref-
erences. In [126], personalized routing instructions of parking
guidance are generated by using an autoregressive model
which is able to reduce, amongst other things, driving stress,
as well as saving fuel. With the development of the vehicle
network, road users can share their in-vehicle information such
as intended destination (e.g. location) and vehicle state (e.g.
speed). To this end, [127] meets individual requirements by

using other vehicles’ information, where an artificial neural
network is combined with stochastic routing policy to generate
personalized routing recommendations.

B. Entertainment Services Recommendations

It is significantly important to provide a driver with a proper
service at the right location and time, however a driver’s
preferences should also be taken into account, especially in
mobile applications [25]. In [131], a multi-modal proactive
recommendation system is proposed that provides drivers with
personalized content, termed “Volvo Intelligent News”. “Volvo
Intelligent News” system presents driver information based on
the driver state and driving situation. The driver state and
driving situation are obtained using driver sensors, vehicle
sensors, and environmental sensors. The authors of [128]
develop an intelligent In-Car-Information Systems, which is
able to automatically execute an in-car-information function



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. X, NO. X, MONTH YEAR 11

according to driver preferences in certain situations. It is
achieved by integrating a contextual personalized shortcut
method and a contextual personalized automation method. To
provide media choice for a specific user, a Personalized Audio
Zone system is designed that prevents cacophony by using
Filter-X Least Mean Squares [129].

C. Notification Services

Notification services (e.g., calendar reminders, message and
email alerts, callback reminders and news feeds) for the in-
vehicle environment should be user-adaptive and context-
aware to different drivers so as to guarantee safety and effi-
ciency. In [132], an intelligent notification system is developed
to provide an Intelligent Callback Reminder service, where
incremental naive Bayes is utilized to understand the driver’s
situation for providing callback reminder at a right time. It is
found that text entry tasks tend to increase glance duration
whereas text reading tasks do not, and random coefficient
models can reliably estimate individual performance when
significant differences exist among different drivers [133].
These two findings are able to guide the design of personalized
in-vehicle technologies.

D. Interactive Assistance

To cooperate with driver seamlessly and naturally, digital
driving assistants should be able to recognize emotions or
states of a specific driver by using speech and video as
indicated by [135–137]. In [136, 137], an in-car assistant
robot is developed to interact with a driver socially. Therefore,
the robot can understand a driver’s requirements better so
as to provide proper assistance. It does not only improve
the individual driving experience but is able to explore deep
personalization for a specific driver over time.

E. Discussion

Industry status: IVIS do not just provide radio or en-
tertainment or navigation, but also combinations of all of
these. VOLOV develops a proactive recommendation system
called “Volov Intelligent News” to present information at
the appropriate time [131]. In addition, other automotive
companies have developed lots of speech recognizers (such
as BMW Voice Control System, Nissan Pivo, Audi AIDA,
Ford Model U) to enhance interaction between driver and
IVIS [138]. In addition, internet companies (e.g. Google,
Apple) develop IVIS related APPs (Apple CarPlay, Android
Auto) to enhance human-machine interaction [138]. However,
the performance of recommender systems (e,g. entertainment
services, notification services) requires further improvement.
Online learning mechanisms need to be integrated into IVIS
so that a driver’s requirement can be adapted continuously.

Gains of personalization: IVIS can obtain several bene-
fits by introducing personalization. The primary gain is the
improved efficiency [124]. In [124], on average, 50% of
routes can be achieved at least 20% faster than the com-
peting approaches by taking personalization into account.
The secondary gain is the enjoyment, where entertainment

services (e.g. music, radios) and recommendation services (e.g.
restaurants, scenic spots) can be provided at the right time and
in the appropriate place [25, 129]. More precisely, personal-
ized recommender system can achieve a 19% deviation from
baseline driving, which outperforms the generic systems.

Application prospects: In route recommendations, TRIP-
PLANNER [33] is a promising solution and its efficiency and
effectiveness is quantitatively evaluated in terms of computa-
tion time cost and route score using a large real-world dataset
(more than 391900 passenger delivery trips in six months).
In entertainment service recommendations, Bayesian networks
[25] and filtered-X least mean squares [129] are two practical
solutions, which are fast, well-understood, easy to implement,
and tested on a real-world dataset. For entertainment ser-
vice recommendations, playback is a common and effective
method to evaluate performance [128]. In notification services,
iterative design is applied in the “Volvo Intelligent News”
system, but the system is only tested by a simulator [131].
Compared to [131], the incremental naive Bayes approach
is better. This learns a driver’s preferences incrementally
and is embedded into an Android App, named smartNoti.
In interactive assistance, compared to explicit personalization
[136, 137] which relies on manual setting, implicit methods
(e.g. the combination of incremental Gaussian mixture models
and support vector machines [135]) are more convenient and
efficient which is demonstrated in real-time vehicle tests.

Future focal points: Firstly, social interactive assistance
may attract more attentions. Nowadays, the interaction be-
tween driver and IVIS is achieved by speech recognition
and eye tracking [135], which is only partially capable of
understanding the driver’s intentions and behaviors. Social
interaction needs IVIS to have a cognitive understanding of
drivers. For example, the moods (e.g. anger, frustration, and
sadness) of drivers should be further explored to provide the
appropriate interaction (such as pacifying drivers). Second,
personalized on-demand notification and recommendation ser-
vices are more advanced, which can not only provide services
based on personal preferences but also determine when and
how to present service by accommodating context information
(e.g. location, time, priority, and driver’s mood).

VI. OPEN ISSUES

On the basis of the literature review on state-of-the-art
technologies for implicit personalized driving assistance, this
section further highlights some open issues in personalized
driving assistance so as to facilitate its future research.

A. Utilization of Existing Driving Dataset and Personal Data
Collection

Data-driven approaches not only play a significant role in
driving assistance but also for the entire Intelligent Transporta-
tion Systems [139]. Thanks to the great work in [36, 140], lots
of important driving datasets are summarized and described in
detail. In this paper, we attempt to supplement more driving
datasets along with detailed descriptions and their open access
status. Therefore, several existing datasets and their scale,
source types, and potential applications are elaborated in this
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TABLE V
DATASETS AND POTENTIAL APPLICATIONS

Dataset Period Scope Source Type Applications Open Assess
AMUSE N. A 24.4 km driving, 7 trips, 1,169 GB; Omnidirectional multi-camera,

height sensors, IMU, velocity,
GPS;

Environment perception, local-
ization and mapping;

Yes

UAH-
DriveSet

N. A 6 drivers and 500 minutes driving; Camera, accelerometer, gyros,
GPS;

Driving state recognition,
drowsy detection, object
recognition;

Yes

HCILab N. A 10 drivers, 10 trips, approximate 30
minutes for per trip;

Camera, GPS, SCR, ECG, Tem-
perature sensor, brightness sensor,
accelerometer;

Driver workload estimation; Yes

IVSSG N. A 3 drivers and 10 passes in each of
the 6 possible manoeuvres at a T-
intersection;

GNSS, IMU; Driver intention prediction,
analysis of driver behaviors at
T-intersection;

Yes

UDRIVE 2.5 years 120 car drivers from France, Ger-
many, Netherlands, Poland, UK; 40
drivers of powered two-wheelers;

Cameras, IMU sensors, Mobil Eye
smart camera, CAN data, sound
level;

Driver behavior analysis; Eco-
driving;

No

Naturalistic
Teen
Driving
Study

18 months 42 teenage drivers, 446,040 km
driving;

Kinematic data, GPS, video
recorder;

Prevent crash and near-crash,
kinematic risky driving recog-
nition, distraction detection;

No

SHRP2
NDS

3 years 5.4 million trips, 3147 drivers,
nearly 50 million miles of driving
from Indiana, Central Pennsylva-
nia, Florida, New York, North Car-
olina, Washington in U.S.

Cameras, eyes forward monitor,
lane tracker, accelerometer, rate
sensors, GPS, forward radar, cell
phone, illuminance sensor, passive
alcohol sensor, incident push button
(audio), turn signal, vehicle net-
work data;

Safety on curves; Rear-end
crashes; Driver inattention;
Offset left-turn lanes;

No

Oxford
RobotCar
Dataset

20 months 20 million images, 1000 km driving
in central oxford;

Cameras, LIDAR, GPS, INS; Multiple object recognition, lo-
calization and mapping;

Yes

Naturalistic
Truck
Driving
Study

N. A 100 participants, approximately
735,000 vehicles miles and 14,500
hours of driving data;

Camera, forward radar, accelerom-
eters, gyro, GPS, CAN data;

Identifying safety critical
event;

No

section and summarized in Table V. In particular, AMUSE
Dataset consists of inertial and other complementary sensor
data combined with monocular, omnidirectional, high frame
rate visual data taken in real traffic scenes during multiple
test drives [141]. UAH-DriveSet is a publicly available dataset
which was collected in 2016 by using a smartphone app
DriveSafe for in-depth analysis of driving behaviors [28].
HCILab Dataset is collected to assess driver workload and
includes a variety of physiological data, video data, GPS,
accelerometer data are measured [142]. IVSSG is collected
from a vehicle driving around urban street around the Aus-
tralian Centre for Field Robotics in Sydney and includes
data from a GPS, gyroscopes, and odometers are adopted
[143]. UDRIVE is the first large-scale European Naturalistic
Driving Study on cars, trucks and powered two-wheelers.
The acronym stands for European naturalistic Driving and
Riding for Infrastructure & Vehicle safety and Environment.
The purpose of the study is to gain a better understanding of
what happens on the road in everyday traffic situations [144].
SHRP2 NDS is a very large-scale follow-up study which is the
second Strategic Highway Research Program (SHRP2) [145].
This study involved more than 3000 participants in six sites
of U.S. Naturalistic Truck Driving Study fits nine trucks with
a suite of sensors. This study recruited 100 drivers from four
different trucking fleets across seven terminals for exploring
commercial motor vehicle risk by identifying safety-critical
events [146]. Oxford RobotCar Dataset is collected by the

Oxford Robotics Institute. The driving data was recorded from
May 2014 to December 2015. As a result, 1000 km driving
data were collected including image, LIDAR, GPS and INS
data [147]. Naturalistic Teenage Driving Study is focused on
teenage drivers to explore their risks in driving. The study
lasted for 18 months and involved 42 teenage drivers [145].

However, most of the aforementioned datasets do not pro-
vide unique IDs to indicate different drivers, which causes
difficulties to test personalized driving assistance services. It
should be noted that personal data collection is the basis of per-
sonalized services. The personalized systems can outperform
the average systems when sufficient personal data is available.
Until now, most data acquisition systems collect driving data
indiscriminately. As a result, personalized driving characteris-
tics and preferences of individual drivers are overlooked when
several drivers share a vehicle. Therefore, how to implement
personal data collection is an important outstanding problem
for personalized driving assistance.

B. Cold-start Problems

Cold-start problems occur when insufficient personalized
data is available for a new user and consist of two categories:
cold-start items and cold-start users [148]. In driving assistance
applications, the cold-start item problems relate to service
recommendations such as route and music recommendations.
Cold-start users refer to a fast adaptation of an individual to
provide a better driving experience. Cold-start problems are
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significant for driving assistance applications because drivers
may abandon the applications if false positive rate is too high
during its initial phase.

C. Personalization in Driver Monitoring Systems

It is outlined in Section IV that several human factor
challenges, such as trust, acceptance, and unpredictability [98,
103, 104], may slow down the development of DMS. For now,
not many studies have been conducted on personalized DMS.
Most studies in DMS are to build average models, find more
relevant indicators or improve performance by developing or
using more advanced algorithms. To fill this research gap,
more research about personalized driver monitoring systems
needs to be done for trustworthy collaboration between human
drivers and vehicles.

D. Personalization for Surrounding Vehicles

Driving is a cooperative task, where ego-vehicle needs to
interact with surrounding vehicles [149]. This requires the
ability to make decisions in dynamic and potentially uncertain
environments [150]. The uncertainty does not only come from
noisy sensor data, but also is due to the fact that human actions
and behaviors are very difficult to predict [98]. In order to
enhance prediction accuracy, the surrounding vehicles should
be personalized (e.g. aggressive driver, conservative driver) so
that the intentions of surrounding vehicles can be made more
predictable. The problem can be summarized as: (1) what
is the most useful indicators? (2) how to predict a driver’s
intention by only observing her/his driving behaviors for a
short period (minutes, even seconds)?

E. Online Unsupervised Personalized Learning Problems

Personalization is often viewed as a static process. Once a
personalized model is constructed, its parameters and construc-
tion cannot be tuned or changed any more until the personal-
ized model is completely retrained. In real-life applications,
a personalized system needs to be updated and improved
continuously by using cues from driver interaction, i.e. online
personalized learning systems. This is due to the fact that
driving preferences and characteristics may change with time
even for the same driver. For instance, driving preferences and
characteristics may change from a cautious style to a normal
style when drivers accumulate more driving experience. This
issue is also highlighted in [42]. However, only achieving
online learning is not enough for personalized application.
This is due to the fact that manually labeling personal data is
laborious and inefficient. To this end, realizing personalization
in the online and unsupervised way is a big challenge for
personalized driving assistance systems.

F. Social Interactive Assistance

Another poorly explored aspect is the social interactive
assistance between a personalized smart vehicle and a driver.
Compared to a conventional human-machine interface design,

social interactive assistance is more advanced and more chal-
lenging which needs to provide humanized services at the cor-
rect context (e.g. time and place) and in the appropriate manner
(e.g. mood, audio, and vision). The interaction between vehi-
cles and drivers affects the quality of personalization. A user
may make a trade-off between side effects (e.g., high false
alarm rate, complex operation) and benefits of personalized
systems. This issue is discussed comprehensively in [151].

VII. CONCLUSIONS

This paper provided an overview of state-of-the-art de-
velopments in implicit personalized driving assistance and
discussed open issues that still need to be addressed. The
previous achievements of personalized driving assistance were
investigated in SDS, DMS, and IVIS. Based on this review,
some open issues were discovered such as utilization of
existing driving dataset and personal data collection, cold-start
problems, limited work in personalized DMS, online unsuper-
vised personalized learning, personalization for surrounding
vehicles, and personalized social interactive assistance. Addi-
tionally, implicit personalized driving assistance was generally
implemented by using data-driven approaches which are data-
intensive applications. Therefore, we also summarized existing
driving datasets and explored their potential applications. It is
anticipated that this survey paper would be particularly useful
for researchers who are about to enter this exciting area.

To aid drivers with appropriate assistance at the right time,
driving assistance systems require a deeper understanding
of drivers’ behaviors. Data-driven approaches are promising
solutions which can process large-scale data and adapt to
individual drivers. With more personalized data, future work
shall concentrate on mining of big data suggesting that more
advanced machine learning algorithms should be applied in
formulating personalized preferences and characteristics such
as deep reinforcement learning and transfer learning. Another
trend shall focus on seamlessly integrating personalized learn-
ing algorithms and vehicle control systems. A barrier of popu-
larizing driverless cars is about how to make drivers trust and
enjoy driverless cars so as to enhance the riding experience.
Personalized driving assistance could provide a promising
answer to this question. Personalized driving assistance is not
only important to support manual driving but also making fully
autonomous driving better for individual needs.

Moreover, this paper is mainly focused on categorizing driv-
ing assistance systems according to their application domains,
which include SDS (vehicle dynamics and control related
functions), DMS (human driver surveillance and forewarning),
and IVIS (information provision and interaction). However,
driving assistance systems can also be categorized based on
automation levels and/or human-vehicle shared control types.
This is not covered due to length limitation, but is treated
future work for interested researchers.
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