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Abstract

In this thesis, we present a video object counting approach using multiple local feature

matching. We explain the development of a dataset with which to test our approach.

Our dataset uses a new approach which we designed to extract object ground truth.

We also provide a comparison of common single object trackers. We develop a multi-

object tracker named Learn-Select-Track and use it to track the colours of objects of

interest to filter out false positive object localisations.

We discuss the implementation of the HDBSCAN algorithm which we use in our

novel approach for matching multiple local feature descriptors. We show that the

detected clusters provide very good matches for the features and demonstrate our

approach to cluster analysis and validation. We develop a simple yet efficient way of

learning the features of the object of interest which is independent of the number of

objects in the frame.

We also develop a computationally simple way of detecting the other objects in the

frame by using a combination of the detected clusters, the features of the object of

interest and vector algebra. Our approach is capable of detecting partially visible

and occluded objects as well. We present three ways of extracting object count

estimations from videos and provide empirical evidence to show that our approach

can be used in a wide variety of scenarios.
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Chapter 1
Introduction

The ability to quantify objects is one of the ways of extracting semantic informa-

tion about a scene. Therefore, object counting using computer vision techniques is

a highly active and evolving research field. The algorithms developed have been ap-

plied in a wide variety of problems across the whole spectrum of human lives. For

example, in large scale industries where thousands of products have to be counted,

object counting algorithms are critical to industrial efficiency and profitability. In

such industrial applications, computer vision based object counting can benefit from

the controllability of the environment. The counting environment background and

lighting are some of the factors that can be tightly controlled. The objects to be

counted are often inanimate, as such, their size, colour and texture are static, allow-

ing for counting algorithms that are tailor made for specific environments.

In such environments, it is common to see algorithms that rely on background sub-

traction in use. In those situations, since the background is known and static, its value

can be removed from the images or video frames, and whatever colour is left can be

considered to belong to the objects of interest. Histogram analysis can be accurately

used in such environments since the size and colour of the objects are known. Other

common algorithms include shape detectors, blob detectors and contour extraction

algorithms.
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Object counting is also being employed by animal conservation societies like Birdlife

International [1] and Convention on International Trade on Endangered Species of

Wild Fauna and Flora (CITES) [2]. Unlike the industrial environments, the animals

are often in remote areas that are not easily accessible and the environment is even less

controlled. Technological advances in areas such as satellite imagery and unmanned

aerial vehicles (UAV) are giving researchers and conservationists access to such hard

to reach places. A good example of use of such technologies can be found in [3],

where the authors demonstrated using super-high resolution NASA satellite images

to count albatrosses in the remote region of Chatham Islands.

In Botswana, Birdlife Botswana [4] published a guideline for monitoring bird popu-

lation [5]. The process requires people to walk around in a set pattern and recording

the count estimations of the birds they see. The obvious downsides to this approach

is the cost in human capital and the inaccuracy of relying on humans to count birds

in motion. Other factors such as fatigue and object density can affect the reliability

of human object counting [6,7]. The document even notes the need for “scientifically

sound low-tech monitoring methodology” while noting the need for their approach to

be implemented by “as many participants as possible”. With vultures across Africa

facing extinction [8,9], Birdlife Botswana also has signs across the country asking the

public for information on vulture sightings.

The increase in accessibility of low cost but high quality imaging devices such as UAVs

and smartphones can provide powerful tools to address the challenges highlighted

above. The bird population monitors can use these devices to record the videos of

birds for analysis later instead of just estimating the numbers based on what they

are seeing then. With algorithms such as the one detailed in this thesis, the videos

can be analysed to obtain more accurate and consistent count estimation. Even the

public can use their smartphones to record the vulture sightings and send the videos

to Birdlife Botswana for analysis.

The other problem in wildlife population monitoring is the widely diverse environ-

ments where the animals can be found. In order to be successful, object counting

algorithms would have to be either designed for specific environments e.g. water,

sky, clouds, forest etc., or they would need an in-built capability to adapt to these
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ever changing parameters. The approach described in this thesis focusses on the

latter which means the algorithm can be deployed in different environments without

any changes to how it processes the videos. Usually algorithms designed for non-

constrained environments require a lot of time and data to train them. With infinite

classes of objects that one may be interested in counting, the problem becomes more

than just counting, the problem extends to counting any object.

In this thesis, the focus is on object counting for videos taken in unconstrained

environments. The idea behind this research is to take a random video containing

multiple instances of an object of interest, and using image and video processing

computer vision algorithms, to identify all the object instances and give a count of the

objects in the video frame. With consumer generated video data, the environments

under which the object count must be extracted is unconstrained which provides a

challenge for algorithms to be generic yet accurate. The scope of this thesis does not

include aggregating the number of objects in the video, but rather, the number of

objects in each video frame.

1.1 Review of Object Counting Approaches

In this section we review some of the recent object counting literature. In this the-

sis, we recognise three groups of object counting approaches. We first discuss the

density estimation approaches which work by using image density maps and local

feature mapping to estimate number of objects. Then we review object counting

using object detection which aim to detect and localise objects of interest in images.

Finally, we discuss counting by trajectory clustering approaches which are designed

for video object counting through object motion detection. We discuss the findings

and the shortcomings of these approaches which work by detecting object movements

in videos.

1.1.1 Counting By Object Density Estimation

Density estimation based counting methods estimate a real valued density function

of pixels in a given image by mapping local features of the image to its density
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map. These methods often require a set of manually labelled training images where

they generate the ground truth density map, then extract local features and finally

apply a regression model to learn the mapping between the local features and their

corresponding density maps. The regression model is then used to estimate the

density map of any image and the object count estimation is extracted by calculating

the integral of the density map.

Density estimation based methods such as the one outlined in [10], tend to degrade

in performance when new objects and scenes are encountered. In [11], the authors

address this problem by proposing a manifold based density estimation counting

method. Their approach is based on an assumption that the neighbouring image

patches are more likely to share similar density patches, hence, images of objects

share information as their density maps regarding the local geometries. As such the

counting problem is converted into the problem of characterising the local geometry

of a given image patch which makes their approach robust against features used and

image resolution.

For this method, [11], the training requires annotated images and their ground truth

density maps. The method then extracts image patches and their counterpart den-

sity patches. These are used in a feature engineering stage to create a hierarchical

clustering tree structure using K-Means algorithm. The tree structure is then used

to estimate the density map for each image patch. The object count can then be

extracted by an integral of the density map. This form of training is a weakness

to this approach as the annotation and ground truth density map generation means

that the learning has to be done offline. The approach has been tested on cells [10],

bees, fishes, birds [12] and pedestrian [13–15] datasets.

Convolutional neural networks (CNN), which are a type of artificial neural networks

(ANNs) designed with image processing in mind, are also a big part of object recog-

nition and classification and have proven in recent years to have state of the art per-

formances. CNNs work by using artificial neurons to learn weights that are needed

to recognise objects in the training dataset. They have been used with great success

in challenges such as the ImageNet LSVRC-2010 challenge where the design outlined

in [16] successfully deployed a CNN achieved top-1 and top-5 error rates of 37.5% and
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17.0% on a test data comprised of high resolution images. The accuracy of CNNs

does not only rely on the dataset, they also rely on the design of the neural networks

itself.

In [17], an adaptive Counting Convolutional Neural Network (A-CCNN) is proposed

which has the ability to handle large scale variations in people sizes and the facility

to generate local density maps within a crowd scene. In the paper, the authors do not

try to use different CCNN architectures [18], instead, they only try to select the most

effective hyper parameters to generate the CNN model. The approach uses as inputs,

an image divided into 16 part and head sizes from different parts of the image detected

using tiny-face detection [19]. The image patches are then fed to the appropriate

CCNN model with a proper hyper parameter by using Fuzzy Inference System. The

CCNN model then produces density maps for each image section which are merged

to obtain final density map. The authors trained and tested their approach on the

UCSD dataset [18], UCF-CC Dataset [13] and the Sydney Train Footage dataset.

1.1.2 Counting By Object Detection

Object recognition/detection is the identification of the presence of a “known object”.

With a near infinite number of objects, the main challenge is how to best describe

what any particular object looks like in such a manner that a computer can then be

able to recognise it in any context. In order to define a particular object, there is need

to break down the object into a set of features that together can be used to identify

an occurrence of the object. The features can then be matched in target images

and frames to locate the objects of interest. The total number of object locations

identified therefore represent the number of objects detected.

Investigations into fish population estimation and species classification is addressed

in [20]. The authors use background subtraction to find the fish and Zernike moments

to classify the species. In [21] a probabilistic approach is proposed where multiple

object instances are detected using Hough Transform. The authors show how to

detect instances without dealing with the problem of multiple peak identification

in Hough images and without invoking non maximum suppression heuristics. Their

approach, instead, detects multiple object instances using maximum-a-posteriori in
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the probabilistic model which contrasts the heuristic peak location and non-maximum

suppression used in traditional Hough Transform.

In [22], a Density-based Clustering of Applications with Noise (DBSCAN) [23] is

applied to Speeded-Up Robust Features (SURF) [24] in order to match a template

to multiple inventory items. The approach extracts SURF features from both the

prototype and the scene. Then DBSCAN is applied to the prototype features before

applying feature mapping of the detected clusters to SURF points from the scene

image. Sum of Squared Difference (SSD) and Nearest Neighbous Ratio (NNR) are

used as matching factors.

DBSCAN is applied again to the scene features that have been matched to the tem-

plate clusters and box information is extracted from the resulting clusters. Each of

the clusters represents an instance of the prototype. Since there are multiple features

within each cluster, there will be multiple boxes per instance. Box fixing is achieved

by applying DBSCAN to the centroid locations to find the final box polygon. The

approach uses hyper parameter tuning to determine the best values for minPts and

ε. This approach is designed for handling images of inanimate inventory objects. As

such, it is not tested on videos or and living objects. The paper also relies on the

prototype and scene objects having enough features to form clusters.

CNNs and other deep learning approaches have two setbacks; dataset requirements

and training requirements. These approaches require a lot of training data, time

and computation. Therefore, they are not suitable for use in real-time to handle

new object types. The datasets often have to be split into training, testing and

validations subsets [25]. These datasets have to be prepared beforehand often through

annotations which takes a lot of time and effort. It also limits their use in object

counting to the learned objects.

The authors of [26] offer an approach towards generic object counting which aims to

minimise the problems encountered when using CNNs. Their approach uses a fully

convolutional network architecture where the input is an image and a hierarchy of

image divisions. While there is an extra need to divide the image into localised divi-

sions and hierarchies, the approach reduces the need for annotating training images
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by global-image counts instead. They test their approach on MS-COCO [27], Pascal-

VOC2007 [28] and CARPK [25] datasets. As a generic object counter, the authors

did not eliminate the need for offline training and dataset preparation.

1.1.3 Counting By Trajectory Clustering

Movement of objects in a video has also been used for object counting. In [29], an

algorithm for counting crowded moving objects by clustering a rich set of extended

tracked features without requiring background subtraction is presented. The ap-

proach uses a highly parallelised KLT tracker to populate the spatio-temporal volume

with a large set of feature trajectories. Normally, the feature trajectories would be

fragmented and noisy, hence, a conditioning algorithm is used to smooth and extend

raw feature trajectories. The conditioned trajectories are clustered using agglomera-

tive clustering into candidate objects using a local rigidity constrained learned from

a small set of training frames. The authors note that the training frames have to

be prepared beforehand by labelling them only with the ground truth count. This

prohibits their algorithm from working with a completely new object.

In [30], an algorithm of counting people (pedestrians) using trajectory clustering is

proposed. The authors address the fragmentation and noise problems in trajectories

by applying a combination of linear transformations, i.e. independent component

analysis (ICA) plus rotation. The approach explores different sets of data repre-

sentations and distance/similarity measures. The data representations are ICA, time

series and maximum of cross-correlation (MSS). ICA is used with Euclidean distance,

time series with longest common subsequence (LCSS) and MSS with Hausdorff dis-

tance.

Their approach in [30] is multi-layered with three levels using agglomerative clus-

tering to avoid having a priori knowledge of how many pedestrians are in the video.

The first two layers are basically pre-processing levels where the first level is a length-

based clustering in which trajectories of similar lengths are grouped together. The

second level is spatial clustering where they acknowledge that different individuals

enter the video frame at different locations, unless two or more individuals are walk-

ing together. The actual counting happens in level three where the discrimination
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between oversampled individuals and different individuals walking together happens.

The datasets used in [29] provide object counts of varying size. The USC [31] dataset

has between zero and twelve people. The other two datasets are from the library

where there are between twenty to fifty people and the cells dataset has fifty to a

hundred blood cells moving at different speeds. These two datasets would provide

a challenge for preparing the training frames as there is a lot of people and cells.

However, this challenge is not addressed in the paper. In [30], the videos used have

less than eleven pedestrians.

With trajectory clustering approach, the objects have to be decomposed to their

movements within the video. This means that a lot of information about the objects’

shape, texture and colour are lost. As such, the approaches are commonly used in

videos where the camera is stationary and there is only one class of objects. Non-

stationary cameras provide a challenge because everything will appear to be moving

including the background. While motion compensation can be used, the objects of

interest must still be moving which is still a limitation.

1.2 Proposed Approach to Object Counting

Generally, object counting approaches are concerned with specific types of objects.

This specificity is often enforced by either the type of features used, such as Circular

Hough transforms to notice circular shapes of blood cells [32], or by the need for

offline training such as in [29] and [17]. In this thesis, we broaden the parameters for

object counting to reduce this specificity. While we do not address all the challenges

that object counting presents, we aim to encompass a lot of the variables as outlined

below:

• We aim to use any video including those that have unconstrained environments

as long as there are multiple instances of the object of interest. In this thesis we

address video properties such as changing background, foreground and lighting.

The restriction to this aim is that the object should be visible enough to have

the features we use for matching.
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• Our approach must learn object features online. This means that we do not

have to know what object we will be counting beforehand. The learning process

should be independent of the number of objects in the video. It also means

that the user interaction in the learning process must also be independent of

the number of objects in the video.

• We aim to count any object regardless of shape, colour and texture. This

property of our algorithm means that we have to be able to notice instances of

the object even through self occlusion and deformities due to animate nature

of live objects. In this thesis, however, we restrict the objects to have the same

colour within the object class. This removes objects such as people who can

wear different coloured clothing and have different skin colours.

The concept of object counting in this thesis is conceptualised as shown in Figure 1.1.

On a frame by frame basis, the key inputs are a region of interest (ROI) of a known

object of interest and the Speeded-Up Robust Features (SURF) [24] of a video frame.

The features of the frame are then compared with features of the known object to find

matching features. For this phase, variations in lighting, scale and rotation provide a

big challenge. Another challenge for this phase comes from the feature representation.

Often, instances of the same feature are not represented by exact values, as such, a

margin of error needs to be established for matching. This margin of error can be

difficult to ascertain and has no one size fits all solution. If the margin of error is too

small, false negatives will be introduced into the final object count estimation and if

it is too big, false positives are introduced instead.

In this thesis we develop an approach of matching multiple feature instances using

a density based clustering algorithm which bypasses the need for determining the

feature matching margin. Once the matches have been found, the locations of the

objects of interest have to be determined. In this phase, scale and rotation have to be

taken into consideration as well. Another challenge is occlusion. While humans can

easily determine and properly identify occluded objects, computers have a difficult

time with it. The question is often about when should objects in occlusion be consid-

ered a single object and when to count them separately. The localisation techniques

also suffer from any inconsistencies from matching phase. This often means some
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CHAPTER 1. INTRODUCTION

Figure 1.1: Concept of object counting for this thesis. On a frame-by-frame basis,
the approach takes as input an ROI identifying one of the objects, and the SURF
features from the frame and produces an estimation of the number of object in the
frame by locating each instance of the object.

techniques are needed to detect the false positives and false negatives.

With object localisation complete, the number of locations represents the number of

object instances detected in the frame. The problems highlighted above mean there

is almost always a margin of error between the object count from computer vision

based algorithms and the ground truth. The object counting algorithms have to be

able to give an error bound for the count estimation. When comparing the count

estimation to ground truths, it is easy to find the error bound. However, when dealing

with the counting for a new video that has no ground truth, there needs to be a way

to provide the certainty measurement of the count estimations.

The first part was to obtain the dataset to be used for testing the approach. As

it turned out, there is no readily available video counting dataset for testing. Most
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research in object counting use images, and often focus on specific objects. In this

thesis, we set out to create a video dataset dedicated specifically to object counting.

The dataset was designed to be as general as possible. The main benchmark of the

dataset is the frame by frame object count that was created using a human-computer

hybrid approach which utilises people’s ability to identify objects in complex en-

vironments and the computer’s ability to quickly and efficiently count well-defined

objects.

The aim for the approach was not just to count, it was to count any object irrespective

of size, colour, texture or rotation. The easiest way to get the dataset needed was to

look for videos on youtube. The dataset was designed not only to contain the videos

with the objects to count, but also the ground truth of each frame in the video.

The ground truths can then be used to verify the accuracy of the object counting

algorithms.

Another requirement for this research was the low cost training for object detection

and localisation. In this thesis, low cost training means that learning necessary

features does not take a long time nor does it require a lot of data. In this context,

cascade classifiers [33] and CNNs and other offline training methods are not viable

options. For this thesis, low level local features, specifically (SURF) are used. These

features can be extracted from each frame and processed frame by frame. The feature

algorithms provide points where the frame has significant features and provide vectors

called descriptors to define the feature.

For feature training, the user provides a region of interest (ROI) as a rectangle around

one of the objects to be counted. Any local feature inside the ROI is then considered

as part of a training set for the current frame while the other features in the frame

are the query dataset. Those features are then matched to other features in the frame

to find matches and possible locations of other objects of interest. In order to avoid

asking the use to select the ROI for each frame, an online tracking algorithm is used

on the initial ROI to track the selected region from one frame to the next.

In order to match the training dataset to the query dataset, a notion of density

based clustering is applied. Local feature matching calculates distances between
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local features descriptors and considers two features to match if the distance between

them is within a specified margin. Applying that to a frame with multiple instances

of the same object, the features within those objects will be close to each other in the

descriptor space, thus forming clusters. The matching task in this work, therefore, is

to identify the clusters that contain the points from the training dataset.

As an example, a common approach is to use Lowe’s ratio test [34] where the ratio

between the two best matches has to be above 0.75. However, during experimentation,

it was found that good matches can easily fall below that limit. The uncertainty in

the margin of error creates the first problem to accurate object feature counting as

discussed earlier. In this thesis, the problem is solved by using a clustering algorithm

that discovers the margin of error for each cluster of features. The algorithm chosen

in this thesis is the Hierarchical Density-based Clustering of Applications with Noise

(HDBSCAN) [35]. The algorithm does an exploratory data analysis on the feature

descriptors to discover the clusters that exist within the dataset and discovering the

densities within the clusters.

The second problem to the accuracy of our approach is the object localisation. The

features within the clusters that contain the features from the ROI give estimation

of where the other objects of interest may be in the frame. The locations are ex-

trapolated from the cluster intersections with the ROI. If a point inside the ROI is

in a valid cluster, the location of that point inside the ROI is used to determine the

possible positions of the objects represented by the other points within that cluster.

To get the final object locations, template matching is applied around the locale of

the matched feature points. The higher the number of objects in the video frame, the

more likely there will be inter-object occlusion. This problem is solved by discarding

new locations if there is a 50% or more intersection with other object locations.

The exploratory data analysis approach to feature matching yielded three types of

results. The first type of results is the over-segmented clusters. These results provided

clusters which after inspection were noted to be of one feature type and should have

been one cluster. The counting estimation from such results leads to a lot of false

negatives and produces much lower object count than desired. The second type of

results produced is the properly clustered, where examination of the clusters showed
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no breaking up of valid cluster into sub-clusters. These results still yielded lower than

desired count estimations for High Object Density Videos (HODV) but significantly

higher than the first type of results. The final set of results is such that the detected

clusters are noisy leading to a lot of false positive locations which gives much higher

object count estimation.

Whatever results were produced from the clustering results, object count estimations

can still be determined. When dealing with the first results, some of the objects

in the frames are skipped because their features are not in the same clusters as the

training features. To discover the missing objects, the clusters that do not intersect

the initial ROI are checked against the newly detected object locations and used to

find new object locations to be added to the count. When dealing with bad clustering

results, the localisations algorithm yielded a lot false negative locations. In this case,

we use one of the contributions in this thesis to detect and remove such locations.

When the ROI is first selected, a colour model learning algorithm is used to find the

colours that best describe the object of interest. The colour model, which evolves

from one frame to the next, is then applied to the detected object locations to detect

and eliminate the false negatives.

The main contributions of this thesis are summarised as follows:

1. We designed a dataset for testing object counting algorithms. While the dataset

currently contains two object classes, birds and cells, the bird class contains

videos with various challenges common to object counting. The dataset contains

videos in different categories with LMDB databases for the ground truths for

each video. We also provide the code for extracting the ground truth. The

structure of the dataset is such that it is easy to add more object classes.

2. We designed a simple yet fast algorithm for learning objects of interest features

online. We designed the algorithm to be independent of the number of objects to

be counted which allows our counting algorithm to handle any object. We also

designed a state-of-the-art online algorithm for learning and tracking colours of

objects of interest. While the colours are located all over the frame, the user

interaction is independent of the number of colour points to track.
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3. We demonstrate an efficient way for detecting multiple feature instances in video

frames using density-based clustering. We also designed a way of analysing

clustering results to determine the validity of the clusters. We show how the

clustering is able to recognise similar features without specifying a measure of

similarity between cluster points.

4. We developed a simple yet powerful algorithm for detecting the locations of

objects as well as handling inter-object occlusions. The algorithm is able to

recognise the location of the object even from only one matched feature. We

developed ways in which to combine the feature learning algorithm, colour

model tracking algorithm and matching algorithm in different ways to handle

different variations in the videos.

1.3 Thesis Outline

The chapters highlighted below form the major contributions of this thesis.

• Chapter 2: We discuss the shortcomings of some available datasets. We also

explain the dataset that was put together for this thesis. We explain the chal-

lenges that the dataset provides as well as the creation of the ground truth. The

output of this chapter is a dataset that is used to test our counting approach.

• Chapter 3: We review and compare the performaces of single object trackers

(SOTs) implemented in the OpenCV library. We also discuss the local feature

extraction and detection algorithms used in this thesis. Finally we review the

density-based clustering algorithms as they pertain to multiple feature matching

used in this thesis as well as analysing cluster quality and validity of the cluster

results.

• Chapter 4: We explore multiple feature instance detection as a density-based

clustering problem. We demonstrate that the clusters detected within the local

features have high degree of accuracy even as they fall below the accepted

measure of matching quality. We also show how to explore various values

of minPts and use the number of clusters detected and the validity of each
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clustering results to select the best value to use in the frame.

• Chapter 5: In this chapter, we introduce an approach to multiple object tracking

that trains online with the user interaction independent of the number of objects

to track. We show how to use it to track the colour model of the objects of

interest which we later use to filter out false positives.

• Chapter 6: We describe the simple yet powerful approach of extracting the

object instance locations from the clusters in Chapter 4. We use a combination

of vector algebra and localised template matching to find object locations and

localised moments to score the similarity between the template object and the

located object instances. We demonstrate a simple and accurate method of

training the template features for matching the sample object with the local

feature clusters.

• Chapter 7: We discuss the results of using our approach to estimate the object

counts on our dataset. We show how different parameters can be used to obtain

a more stable count estimations. We compare the object count estimations from

the three different approaches used in this thesis and show the average times

needed to process each frame.

• Chapter 8: We provide an objective analysis of success and shortfalls of the

approach in this thesis. Future improvements are suggested in this chapter as

well.
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Chapter 2
Development of a Video Object Counting

Dataset

Standardised datasets are a common tool for evaluating performance of object recog-

nition, tracking and counting algorithms. Their widespread use highlight the impor-

tance of having common benchmarks on which to compare algorithm performances.

Over the years, there have been different datasets and benchmarks developed for com-

puter vision and image processing, but most of them are for tracking and recognition.

There is little work on object counting datasets, let alone video object counting.

In object recognition, datasets have played a key role from the beginning. The Yale

Face Database [36] was one of the early datasets that provided a collection of images

of different facial expressions. As years went by, more facial recognition datasets were

introduced including video based ones like Youtube Faces DB [37] and 300 Faces in-

the-Wild [38]. These datasets are restricted in variety as they are about people’s

faces. As such, they are not well suited for the task of counting being detailed in this

thesis.

Caltech-256 [39] provided labelled images for the task of object detection and classifi-

cation. The dataset was designed only for object recognition and as such the images

only contain a few objects per image. Recent years have seen video based datasets
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Figure 2.1: Different challenges presented by a dataset used in [42].

such as in [40], where the dataset was designed for video segmentation and contains

variety of scenes including videos from moving cameras. As such, the dataset provides

no benchmarks for object counting and also the object count in the dataset do not

reach the numbers that we are interested in for this thesis. The dataset in [41] pro-

vides 150 video sequences with 376 annotated objects also dedicated to video object

segmentation but has the same shortfalls as [40].

Object tracking benchmarks and datasets such as [42,43] and [44] were designed with

modern object tracking challenges in mind. These datasets provide challenges and

performance metrics for researchers to test their approaches and compare them to

others. In [42], the dataset provides various challenges shown in Figure 2.1 which are

also challenges encountered in object counting. However, the dataset is not geared

towards multiple objects as such the number of objects in the videos is generally very

low. The multiple object tracking (MOT) dataset MOT16 [43] provides a tracking

dataset for people tracking aimed towards MOT approaches. The dataset however is

not diverse enough for use in general object counting.

The widespread need for quantifying objects in videos has led to research across

multiple disciplines. Lou et al. [45] developed a red blood cell counting approach

based on spectral angle mapping and support vector machines. Venkatalakshmi and

17



CHAPTER 2. DEVELOPMENT OF A VIDEO OBJECT COUNTING DATASET

Thilagavathi [46] undertook the same task by relying on Hough transforms to detect

the circular shape of red blood cells. In both of these cases, the authors relied on

images as their input but do not provide easy access to the images they used.

With urban settings being a major focus of a lot of object recognition and tracking in

recent years, crowd counting has also seen increased research focus. Ryan et al. [47]

proposed crowd counting by using multiple local features. They tested their approach

on a large pedestrian dataset provided by Chan et al. [13]. The dataset lacks the

diversity to test the different scenarios outside crowd monitoring. Yoshinaga et al. [48]

used blob descriptors for real-time people counting. They tested their approach on

the PETS2006 dataset [49] which has been used widely for object tracking approaches

and provides good benchmarks, but the sequences are from stationary cameras and

predominantly feature people.

While object counting is based on object recognition, and can be used with both

object recognition and object tracking datasets, there has been a lack of focus on cre-

ating object counting datasets and benchmarks. Most of the datasets used in testing

object counting algorithms are spatial based and do not allow temporal based anal-

ysis. The problem with using object tracking video datasets is that the benchmarks

are mainly on tracking, not counting.

In this chapter, we set out to create a video dataset that is primarily designed to test

object counting algorithms. The main aim is to provide videos that can be classi-

fied into three categories; low object density videos (LODV), medium object density

videos (MODV) and high object density videos (HODV). For this thesis, we define

LODVs as videos that contain less than 10 objects. With LODVs, a person can com-

fortably count the objects as the video is running. MODVs contain between 11 and

50 objects which allows people to make accurate estimation. HODVs contain more

than 50 objects which is considerably harder to estimate especially when the number

of objects reach hundreds. We created a dataset that for all these categories, there

are different scenes, from simple backgrounds to complex and cluttered background.

The rest of this chapter is structured as follows; Section 2.1 explains the challenges

the dataset provides for object counting algorithms. Section 2.2 details the process of
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creating the object count ground truth on a frame by frame basis. In Section 2.3, we

explain the structure of the dataset including the video files and their basic statistical

ground truth values.

2.1 Object Counting Dataset Challenges

In this section we discuss the challenges our dataset provides and the process of

creating the ground truth for each of them. This dataset is freely available on github1

under the GNU General Public License v3.0 and has 20 bird videos and 4 blood videos

at the time of writing this thesis. The videos were downloaded from youtube and

edited to reduce the lengths. When compiling the videos in this dataset, we aimed

to include many of the challenges encountered by object recognition, object tracking

and object counting algorithms. We also set out to include a lot of the videos where

the camera is also in motion.

2.1.1 Inter Object Occlusion and Partial Visibility

Inter-object occlusion is as old a problem as computer vision. It appears in tasks

such as object recognition and tracking. Since object counting is an extension of

object recognition, it has also become an issue in object counting [50]. In terms of

the object counting dataset, this created a ground truth problem where a person

has to decide how much occlusion the two objects should have before they can no

longer be counted individually. This is such a common occurrence that many of our

videos have the challenge. When creating the ground truth, we opted to count the

object as long as some identifiable part is visible. Figure 2.2 shows the occlusion

problem in voc-18-bd-1 video. Even though there are 3 birds, the occlusion is so

much that an argument can be made for counting only 2 of them. However, there is

still a significant part of the middle bird visible that we encourage counting it in the

ground truth.

Partial visibility is similar to occlusion in that part of the object is invisible. However,

unlike inter-object occlusion, the invisible part of the object is occluded by either the

1https://github.com/ojmakhura/voc-18.git
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Figure 2.2: The occlusion challenge as seen in voc-18-bd-1 video.

edge of the frame or some part of the background. Just like the occlusion problem,

the challenge for both ground truth creation and counting algorithms is how much of

the object should be visible to be considered. In our dataset, we counted every bird

visible no matter how little it is visible. For the counting algorithms, this capability

relies on the type of features used to identify the objects. Features that work at the

pixel levels have a better chance of detecting small objects than those that use groups

of pixels.

2.1.2 High Object Density

High object density presents a challenge because when there is a lot of objects, a

person trying to count would have difficulty getting an accurate count. When objects

start reaching hundreds, this can become a near impossible task as concentration lapse

and fatigue become hindering factors. It also results in an almost certainty that there

will be an occlusion problem. Often, the higher the density, the smaller the objects.

This often means any object counting algorithm has to deal with fewer discernible

features from the objects.

An example of this in our dataset is the voc-18-bl-1 video as shown in Figure 2.3.

The high density in the number of blood cells results in a lot of occlusion and truth

count challenges. It is because of such videos that we created the human-computer

hybrid ground truth extraction process; a person identifies and marks the objects

and the computer counts the marks.
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Figure 2.3: The high object density challenge from voc-18-bl-1 video.

2.1.3 Scale

The problem of scale results when some of the objects of interest are close to the video

recording equipment while others are further away. While the objects are the same,

their size and amount of features available differs. The objects closer to the camera

appear bigger while the ones further away appear smaller. As such, the success of

object counting algorithms in detecting this relies on the features used to identify the

objects.

The challenge in creating truth count comes from not knowing how small the objects

should be before they are ignored. Figure 2.4 shows the scale problem in voc-18-bd-14

video where some of the birds are flying and some of them are sitting down on the

water further from the camera. This video actually presents a very extreme case of

this problem as some of the birds are so small that they show no discernible features.

In this thesis, the ground truth for this video was created by only tagged the birds

which were flying as their features were clearly visible. But even some of the flying

birds had to be ignored as they were too far from the camera.

2.1.4 Vanishing Point

Situations where the camera is tilted forward as it moves across the objects of interest

does not only create a scale problem, it also creates a vanishing point problem.
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Figure 2.4: The scale challenge as seen in voc-18-bd-14 video with the binary image
representation of the ground truth.

Depending on the number of objects, the inter-object occlusion and partial visibility

occurs. This challenge can be seen in Figure 2.5 where the video has so many birds

that the vanishing point problem merges the birds into a mass of pink. This results

in a problem for both ground truth and counting algorithms. It is impossible to

estimate the number of birds in the pink mass. For this video, the ground truth was

created by using a similar approach to the occlusion problem discussed above. We

tagged the birds as long as they can be visually separated from the pink mass.

2.1.5 Complex Background

In this thesis, we refer to complex backgrounds as backgrounds that have a wide

range of characteristics such as colours, texture and other objects. This complexity

22



CHAPTER 2. DEVELOPMENT OF A VIDEO OBJECT COUNTING DATASET

Figure 2.5: The vanishing point challenge in voc-18-bd-18 video with the binary
image representation of the ground truth.

becomes a problem when the features in the background are similar to some of the

features in the objects of interest. An example of such situation can be seen in Figure

2.6. In Figure 2.6a, there is a lot of a black and white colours in the background

which are also present on the ducks. This is also the case in Figure 2.6b which has the

centre of the blood cell being very similar to the background. This problem does not

affect the creation of the ground truth, the object counting algorithms would have to

handle such problems and be able to separate the background from the foreground.
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(a) The complex background from clutter in voc-18-bd-6 video.

(b) Complex foreground in voc-18-bl-3 video when the
object colours are similar to the background.

Figure 2.6: Examples of complex background challenges in our dataset.

2.1.6 Complex Foreground

A complex foreground problem commonly appears when dealing with animate and

deformable objects. In our dataset, flying birds offer this challenge and a lot of the

videos have flying birds. The challenge is that since objects are deformable, they
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can have different appearances in the frames. Also since they are animate, they can

rotate and change shape providing different features. As such, depending on how

flexible the features used by object counting algorithms are, some of the objects can

be missed.

This problem does not necessarily provide a challenge for ground truth extraction as

humans are very good at identifying objects even poorly defined ones. In addition

to showing scale challenges, Figure 2.4 also presents a good example of of complex

foreground. While the birds sitting in the water are a good example of this problem,

the flying birds also present the challenge depending on the position of their wings

in the frame.

2.2 Ground Truth Benchmark

Extracting the ground truth from the video frames requires human interaction. While

the option to use people to count the objects was available, it would suffer from the

usual human related problems such as fatigue, mistakes and slowness, especially when

counting objects in high object density videos such as in Figure 2.3. These problems

were circumvented by using a hybrid human-computer process to extract the ground

truth. This process relies on the ability of humans to identify accurately objects in a

wide variety of situations including inter-object occlusions while computer algorithms

can quickly and accurately count well defined objects. The task of getting well defined

and accurately identified objects was done by a person. While a person has to actually

identify the objects, they do not have to actually count them. Identifying the objects

is considerably easier for humans than actually counting them.

In creating the ground truth, we first extract he frames from the video using Listing

A.5. Each frame needs to be processed independently using an image editing software

to tag each object with a white dot. The tagged image is then thresholded to remove

all the other colours save for the white dots. The final product of this process is a

binary image that can be processed by a computer to count the number of white dots

on a black background (Figure 2.7).

The binary image representations of each video frame are saved in a single directory.
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Figure 2.7: A frame and its binary version for video file voc-18-bl-4.
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The algorithm for extracting the ground truth from them is connected components

labelling (Listing A.6). The algorithm looks through the image and finds all white

pixels that are neighbours and gives them the same label. Each group of pixels is

given a different label. The highest label in the image represents the total number of

white dots thus giving the ground truth for the number of objects in the video frame.

The ground truths are stored in a Lightning Memory-Mapped Database (LMDB) [51]

with the frame number as the key and the ground truth as the value. Even though the

binary images are created by a person, there is always the chance that they might

make a mistake. Therefore, when extracting the ground truth, we used a moving

average over 10 frames to compensate for any human errors during object tagging.

2.3 Dataset Structure

This section describes the structure of the dataset as it appears on github. We

also show the videos in the dataset and the statistical descriptions of the ground

truth (See Tables 2.1, 2.2 and 2.3) as well as the challenges each video provides (See

Table 2.4). Some of the videos have minimum and maximum values that fall in

different categories. We therefore used the count average to decide the categories

for each video. The statistical data can help object counting algorithms to measure

their success. However, it is worth noting that these values are not only influenced

by errors in human identifications of the objects, but also by the actual number of

objects as the camera may be in motion, or the objects in motion or a combination

of both.

The main directory contains four subdirectories. The videos directory contains the

videos. The truth-lmdb directory contains the LMDB databases for the ground truth.

The truth-binary directory contains the binary images for each of the videos. While

we encourage using the LMDB databases, we include this directory in case the object

counting algorithm does not have access to LMDB libraries. The inclusion of the

binary images does not affect the size of the dataset much since the JPEG compression

algorithms works very well for such low detail images. Each of the videos, truth-lmdb

and truth-binary has birds and blood subdirectories for the different classes of objects

in the dataset. This structure allows for a simplified addition of new object classes.
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Figure 2.8: The structure of the VOC-18 dataset as it appears on github.

Table 2.1: Low Object Density Videos

Video
Number

of Frames
Min Max µ σ

voc-18-bd-4 65 4 6 5.49 0.77
voc-18-bd-5 56 2 4 3.09 0.95
voc-18-bd-6 37 3 5 3.89 0.91
voc-18-bd-7 87 3 6 4.82 0.795
voc-18-bd-8 85 7 9 7.98 0.48
voc-18-bd-9 143 3 7 5.54 1.08
voc-18-bd-11 155 4 8 5.68 0.21
voc-18-bd-20 93 3 3 3 0

Table 2.2: Medium Object Density Videos

Video
Number

of Frames
Min Max µ σ

voc-18-bd-2 71 4 23 11.23 5.43
voc-18-bd-10 121 9 18 13.82 2.96
voc-18-bd-16 75 32 40 35.43 1.03
voc-18-bd-19 117 25 37 33.33 3.05
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Table 2.3: High Object Density Videos

Video
Number

of Frames
Min Max µ σ

voc-18-bd-1 78 257 277 266.69 6.35
voc-18-bd-3 103 84 106 92.39 6.68
voc-18-bd-12 73 211 322 296.34 29.63
voc-18-bd-13 99 47 62 51.83 3.89
voc-18-bd-14 110 48 83 69.23 11.73
voc-18-bd-15 115 33 62 52.23 7.23
voc-18-bd-17 85 106 125 116.45 4.47
voc-18-bd-18 97 87 106 97.57 3.81
voc-18-b1-1 73 698 722 698.93 3.36
voc-18-b1-2 94 460 460 460 0
voc-18-b1-3 80 167 186 176.49 6.49
voc-18-b1-4 49 115 130 122.89 5.13
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Table 2.4: Challenges posed by each video.

Video Occlusion Scale
Vanishing
Point

Background Foreground

voc-18-bd-1 3 7 7 7 7

voc-18-bd-2 3 7 7 7 7

voc-18-bd-3 3 7 7 7 3

voc-18-bd-4 7 7 7 3 3

voc-18-bd-5 3 7 7 7 7

voc-18-bd-6 7 7 7 3 3

voc-18-bd-7 3 3 7 7 7

voc-18-bd-8 3 3 7 3 3

voc-18-bd-9 3 3 3 3 3

voc-18-bd-10 3 7 7 7 7

voc-18-bd-11 3 3 7 3 3

voc-18-bd-12 3 7 7 7 3

voc-18-bd-13 3 3 3 7 3

voc-18-bd-14 3 3 3 3 3

voc-18-bd-15 7 3 3 7 3

voc-18-bd-16 3 3 3 3 3

voc-18-bd-17 3 3 3 7 3

voc-18-bd-18 3 3 3 7 7

voc-18-bd-19 3 7 7 3 7

voc-18-bd-20 7 7 7 7 7

voc-18-b1-1 3 7 7 3 7

voc-18-b1-2 3 7 7 7 3

voc-18-b1-3 3 7 7 7 3

voc-18-b1-4 3 7 7 3 3
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2.4 Conclusion

In this chapter, we have presented a video object counting dataset with a simple

benchmark which we use in the following chapters to test different parts of our ob-

ject counting approach. We explained the novel process by which the ground truth

benchmark was extracted even for HODVs and how we counteract the human errors

that might be introduced during the process by using moving averages. The dataset

structure was also explained and it is also available freely.

In Section 2.1, we presented the challenges that the dataset offers. We aimed to

compile the dataset that provided the main challenges common to computer vision.

The dataset provided six challenges which were explained in terms of both the object

counting algorithms and ground truth creation. We noticed that some challenges

such as complex foreground and occlusion affect the counting algorithms and ground

truth differently. Other challenges such as vanishing point and scale offer the same

challenges for both algorithms and ground truth the same.

The creation of the ground truth was covered in Section 2.2. We presented a novel

human-computer hybrid approach to creating frame by frame ground truth. We

leveraged the incredible object recognition ability of humans and the counting speed

of computers. A person creates binary image representations of the video frames

and using connected components analysis we extract the frame object count. We

employed a ten frame running average which we found offsets any errors a person

may make identifying objects on a frame which means only one person can be used

per video.

The dataset structure describes in Section 2.3 offers an easy way to add more object

classes. We believe the simplicity yet well laid out structure will help in further

developments on the dataset. We provided python code for extracting frames from

videos and for counting the objects in the binary images and creating the LMDB

database. We also provided C and C++ code for reading the LMDB database.

At the time of writing this thesis, the dataset had 24 videos. In the future, we plan

to increase the number of videos as well as the classes of objects to be counted.

This will give an opportunity to bring different combinations of the object counting
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challenges. We also plan to introduce multi-class counting where a video contains

more than one type of object. The other powerful benchmark that will be included

in the future is the number of distinct objects in the video. This benchmark will

require algorithms to utilise long-term multi-object tracking to track objects that

come in and out of video frames. In this case, the ground truth will be a single

number defining how many distinct objects have been encountered in the videos.

The usual benchmarks for object tracking will also be included in terms of the object

locations. This benchmark will provide the ability of the the algorithms to determine

how accurate they can locate the objects
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Chapter 3
Object Tracking, Local Features and

Density-Based Clustering

In this chapter we discuss the research literature that is key to the different parts

of the object counting approach outlined in this thesis. We start by looking at the

single object tracking (SOT) algorithms implemented in the OpenCV [52] library. We

then review some of the multi object tracking (MOT) literature to highlight the main

weaknesses of available approaches. We do not do any experimental comparisons, but

rather highlight the problems that we will address when we explain the design of our

own MOT in the coming chapters.

Then we review local feature extraction and feature matching. As with object track-

ing, the focus is on OpenCV implementations, specifically, Scale Invariant Feature

Transform (SIFT) [53] and Speeded-Up Robust Features (SURF) [24]. These two

algorithms have been shown to be very resilient to scale, lighting and rotational vari-

ance. The matching algorithms reviewed are the brute force matcher and the Fast

Library for Approximating nearest Neighbours (FLANN) [54].

The final review section looks at density based clustering as well as explain why it

is important in this thesis. The algorithms reviewed in this section are the Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) [55] and its hierar-
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chical extension HDBSCAN [35]. While DBSCAN is included because it is the main

feature matching algorithm for the work in this thesis, DBSCAN is included to give

context to HDBSCAN since it forms the basis on which HDBSCAN is built. HDB-

SCAN had already been implemented in python and Java, but since our work in this

thesis was in C++, we wrote a new C/C++ implementation with python and Java

bindings.

3.1 Single Object Tracking

As highlighted in Section 1.2, we want to count an unknown number of unknown

objects while keeping the user interaction independent of the number and type of

objects being counted. However, some information needs to be provided by the user

on the objects of interest. In this thesis, the information is provided as a rectangle

around one of the objects of interest in the video frame. We then employ an SOT

[56, 57] to track the object of interest from one frame to the next. This approach

ensures that the user interaction is kept to only one frame in the video.

We tested the SOTs implemented in OpenCV on our dataset which we discussed in

Chapter 2. In our tests, we looked at the ability of the SOTs to properly track the

objects with minimal drift. We also looked at the tracking speed of the algorithms.

In this section, we give an overview of the SOTs and show the final tracking times

and discuss the tracking failures and successes as well as the algorithm of choice for

this thesis.

3.1.1 BOOSTING

Real-time tracking via Online boosting was proposed in [58] to address two main

challenges to object tracking; variation of appearance of target and coping with

background clutter. The given region of interest (ROI) is treated as the positive

sample while negative samples are extracted from same size regions around the pos-

itive sample. The algorithm uses a version of online Ada Boost algorithm to update

the tracking features. For their paper, they used Haar-like features [33], orientation

histograms [59] and local binary patterns [60]. The approach generates a set of weak
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classifiers, which have to only perform slightly better than random guessing. The

weak classifiers are grouped together into a single “global weak classifier” pool. The

pool is then shared among a set of selectors. Each selector is randomly initialised

with a set of weak classifiers from the pool and selects one of them. The selected

weak classifiers are then linearly combined to create a strong classifier.

3.1.2 MIL

Multiple Instance Learning (MIL) tracker [61, 62] addresses the challenge of how to

select positive and negative samples when updating the appearance model that is

encountered by a lot of trackers that attempt to model both the background and the

foreground. The authors argue that it is difficult for a human labeler to be consistent

with respective to how the positive and negative samples are selected. As such, they

propose to use MIL to remove the ambiguity from a person to the learning algorithm.

MIL tracker is composed of three components: image representation, appearance

model and the motion model. The image representation is made up of Haar-like

features computed for each image. The appearance model is made up of discrimina-

tive classifiers that can select the image patches most likely to contain the object of

interest. The motion model is used to update the tracker location which is then used

to update the object model.

3.1.3 KCF

Henriques et al. [63] presented a tracker that uses discriminative learning methods,

but, unlike other trackers, has linear complexity. The virtually limitless amount

of negative samples often leads some trackers to under-sample which limits their

performance. In their paper, the use of the Fourier domain allowed the authors to

demonstrate a tracker that is based on kernel ridge regression but does not suffer

from the “curse of kernelisation”.

Using convolution filters is another way the algorithm achieves fast tracking capa-

bilities. This is because convolving two image patches is equivalent to element-wise

product in the Fourier domain. Using cyclically shifted samples for ridge regression,
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a connection is made with correlation filters which enables fast learning at Olog(n)

with Fast Fourier Transform (FFT) instead of expensive matrix algebra.

At the centre of the KCF tracker is the use of the “kernel trick” which allows for the

use of the more powerful, non-linear regression, the draw-back of which is increased

complexity. In order to achieve fast kernel regression, the paper provides proof that

the kernel matrix is circulant for datasets of cyclic shifts. Since this does not hold in

general, the paper imposes Theorem 1.

Theorem 1 Given a circulant data, C(x), the corresponding matrix K is circulant

if the kernel function satisfies k(x, x
′
) = k(Mx,Mx

′
) for any permutation matrix M.

3.1.4 CSRT

In [64], a discriminative correlation filter (DCF) with spatial and channel reliability

is proposed. Standard DCF trackers use FFT for efficient learning which brings

a restriction that the filter and the search region size should be equal. Efforts to

counteract this limitation such as learning the filter from a larger region degrades the

performance of DCF trackers. Another limitation of DCF tracker is the assumption

that the target shape is well approximated by the axis-aligned rectangle.

In the paper, the authors introduce a spatial reliability map which adapts the filter to

the part of the object worth tracking thus overcoming the problems of circular shift

thereby allowing for arbitrary search region size and the rectangular assumption.

They also introduce channel reliability to filter design which is then used to weight

the per-channel filter responses in localisation.

3.1.5 Median Flow

Median flow tracker was introduced in [65] with the ability to detect tracking failures.

The tracker uses the forward-backward consistency assumption that correct tracking

is independent of the direction of time-flow. The tracker operated in 3 steps:

1. Given the location of a target object at time t a forward trajectory is estimated

at time t+ 1 to obtain a new object location.
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2. A validation trajectory is obtained from the t+1 estimated location by tracking

the location back to t.

3. The two trajectories are compared, if they differ significantly, the tracker is

proved to have failed.

3.1.6 MOSSE

Minimum Output Sum of Squared Error (MOSSE) [66] tracker is a regularised version

of the Average of Synthetic Exact Filters (ASEF) [67] that uses adaptive correlation

filters to model the target and tracks it via convolution. The review of ASEF is

outside the scope of this thesis. As such, the interested reader is directed to the full

article on ASEF for full details.

Given a target, MOSSE trains by correlating the filter over a search window in

the next frame and extracts the location corresponding to the maximum value in

the correlation output. Correlation is an element-wise multiplication in the Fourier

domain, as such, the correlation output G, takes the form G = F �H∗, where F is

the 2D Fourier transform of the image H∗ is the complex conjugate of the Fourier

transform of the filter. Including the transformation back to spatial space of the

correlation output, the online process is O(PlogP ), where P is the number of pixel

in the tracking window.

The FFT convolution algorithm maps the image and the filter to a torus topological

structure. The effect is then reduced by transforming the pixels with a log function,

normalising them to 0.0− 1.0. The results are then multiplied by a cosine window to

gradually reduce pixels near the edge to 0 which has an added advantage of putting

the emphasis on the centre.

3.1.7 TLD

In long-term tracking, the main challenge is the detection of the target when it leaves

the camera view and then reappears. Also, the object may have changed shape,

which makes previous detection information irrelevant. In [68], a new approach called

Tracking-Learning-Detection (TLD) is proposed that approaches long-term tracking
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by decomposing the problem into three components.

The first component is the tracker, which makes use of the assumption that the

target moves smoothly through the video and that it is visible. Using the appearance

information learned from the past, the detector scans the whole frame to localise the

appearances. As can be expected, the detector will produce false positives as well as

false negatives. The learning component of TLD observes the performance of both

the tracker and the detector and estimates detector errors. By assuming that both

the detector and the tracker can fail, the learning component can generate training

examples which help the detector to generalise to more target appearances while

avoiding similar errors in the future.

In frames where there are multiple target instances, some of those instances may be

part of the false positive detections by matching the previous appearance information.

This behaviour can be seen in Figure 3.1 where in three consecutive frames, the

detector localised to three different target instances. An improvement on this could

be for the detector to use the same assumption of smooth motion used by the tracker

to give higher priority to instances detected close to the the previous known location.

3.1.8 GOTURN

Generic Object Tracking Using Regression Networks (GOTURN) [69] is a neural

network based generic SOT. While most deep learning SOTs are slow, GOTURN has

been tested by the authors at 100 fps. The improvement in speed is due to two factors.

First, GOTURN is trained offline, which in itself is a restriction to the versatility of

the algorithm. During testing, the learned weights are frozen and no fine tuning

is necessary during tracking. Second, instead of classifying different image patches

to find the best match, GOTURN uses a feed-forward pass through the network to

regress directly to the object. Both the OpenCV and author implementations of the

tracker are based on the Caffe [70] architecture. In this thesis we tested the OpenCV

implementation and we use the same weights provided by the authors of the paper.
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Figure 3.1: The detector “jumping” problem in TLD with voc-18-bd-3 video.
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3.1.9 Single Object Tracker Comparisons

In our time tests, we used the videos from our datasets discussed in Chapter 2, but

here, we show the average Frames-per-Second (FPS) that each method was able to

process for the voc-18-bd-1 video. As can be seen in Table 3.1, MOSSE provided the

fastest tracking while MEDIAN FLOW was the slowest. BOOSTING tracker ran at

419 FPS while GOTURN was running at 30 FPS. With GOTURN, the speed was

way lower than the speed advertised in the paper, but this is attributed to not using

the GPU for running the tracker.

In terms of tracker drift, BOOSTING provided the most stable tracking while still

running at 99 FPS. The design of the algorithm to handle variation in appearance and

background clutter is evident in voc-18-bd-11 (see Figures 3.2a and 3.3a) in which

the birds are in flight and flapping their wings which dramatically changes their

appearance and the background is also complex. However, the tracker managed to

keep track of the object even through some partial occlusion, only completely loosing

to full occlusion.

GOTURN had the worst drift even with videos that have simple background and

foreground. This is because we did not retrain it for our dataset. In a test with

voc-18-bd-1, the tracker started drifting on the second frame and completely failing

to detect the object by frame 22. In comparison, the next worst performer in that

video was TLD, which did not fail to provide an estimation of the object location,

but rather drifted off the object. As a deep learning based tracker, the problem of

drift for GOTURN can be solved by more training, however, that is out of scope of

this thesis.

Other trackers had varying degrees of successes and failures for various videos. MOSSE

and MIL trackers showed promising stability in tracking but still had some localisa-

tion and drifting problems. In Figure 3.2, MIL showed some vulnerability by drifting

off the object of interest while BOOSTING and MOSSE did not. However, the tracker

then adjusted to one of the other birds and continued to track it properly. Figure

3.3 show the drifting problem for both MOSSE and MIL. In the figure, MOSSE has

lost the actual object and the ROI is now off the target while MIL is still tracking
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Table 3.1: Average FPS of the OpenCV SOTs using the voc-18-bd-1 video.

MIL BOOSTING
MEDIAN
FLOW

TLD KCF GOTURN MOSSE CSRT

16.814 99.46 419.112 11.633 442.68 30.715 4464.85 48.976

(a) BOOSTING tracker at
frame 59 of voc-18-bd-3.

(b) MIL tracker at frame 59
of voc-18-bd-3.

(c) MOSSE tracker at
frame 59 of voc-18-bd-3.

Figure 3.2: Comparisons of BOOSTING, MIL and MOSSE on voc-18-bd-3 video.

just some part of the object. The problem of appearance variation is evident in a lot

of the videos. This can be seen in Figure 3.4 where the CSRT tracker was switching

between two ducks in order to preserve the appearance. As such, in this thesis, we

use BOOSTING tracker, although MIL and MOSSE can work well.
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(a) BOOSTING tracker at
frame 58 of voc-18-bd-11.

(b) MIL tracker at frame 58
of voc-18-bd-11.

(c) MOSSE tracker at
frame 58 of voc-18-bd-11.

Figure 3.3: Comparisons of BOOSTING, MIL and MOSSE on voc-18-bd-11 video.

(a) CSRT tracker at frame 8 of voc-
18-bd-9.

(b) Frame 9: CSRT losing the origi-
nal target object in frame 9 because
it changed appearance.

(c) Frame 10: Still on the same ob-
ject because the appearance has not
changed yet.

(d) Frame 11: CSRT tracker
changed back to the original target.

Figure 3.4: The susceptibility of CSRT to appearance variations.
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3.2 Multiple Object Tracking

Tracking algorithms built around single object tracking discussed in the previous

section rely on the user-given ROI around the object. Unique features are learned

from that ROI and used to track the occurrence of the object in subsequent video

frames. The obvious downside to applying this training to multiple object tracking is

that the user has to provide more ROIs which can become a big challenge when the

objects number in the dozens and downright impractical when they reach hundreds.

The advantage of these algorithms, however, is that the object to be tracked can be

learned on the fly making them more adaptive to new objects.

The other approach is to train the objects to be tracked offline. The features learned

can then be applied online to track the objects. Haar-like features [71] are one such

algorithm that have gained widespread use. Deep learning approaches [72–74] have

also gained traction for multi-object tracking and offer some of the best performances

in the field. While these approaches often achieve state of the art performances with

accurate object detection and tracking, the need for offline training is still a major

problem. The objects to be tracked have to be known beforehand, which usually

requires a lot of data on the objects.

Recent publications such as Zhang et al. [72], Wancun et al. [75] and Chen et al.

[73] have demonstrated how convolutional neural networks can provide state of the

art performances in multi-object tracking. Deep learning platforms such as YOLO

[74], Caffe [70] provide a way of simplifying the training process. However, they

introduce a problem of limiting the number of objects to be tracked to only those

that have been trained on. Any new objects require collecting a lot of data on the

new object including a lot of time to train on the new model. The offline nature of

these approaches is often due to the time it takes to train and the computational

power requirements.

Wu et al. [76] leveraged the power of discriminate correlation filters (DCF) [66] and

the Markov decision process (MDP) to develop an MOT. The use of DCF provides

resilience to occlusion and scale variation in addition to improved accuracy in single

object tracking. They use MDP to integrate two DCF based trackers into the multi-
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object tracker and address the update problem of the appearance model.

Lan et al. [77] propose an MOT approach that exploits interactions between track-

lets. They introduce close and distant tracklet interaction. Close interaction imposes

physical constraint on the temporally overlapping tracklets and distant interactions

handles appearance and motion consistency between two temporally separate track-

lets. While both Lan et al. and Wu et al. as well as scores of other publication in

this field do obtain good performances on dozens of objects, they do not address the

issue of initialisation of targets or propose ways of simplifying that process when the

number of objects to be tracked reaches hundreds.

Other researchers have attempted to address the MOT problem of initialisation in

a variety of ways. In [78], Türetken et al. proposed a way of tracking elliptical

cell populations in videos by using image segmentation and elliptical fitting to find

cell candidates. They create a hierarchy of these candidates and use network flow

integer programming to select the most temporally consistent cell candidates. While

this approach promises good results for cells, it does not generalise well to arbitrary

shapes especially when dealing with live objects which can change shapes in videos.

Object trajectories have been used to successfully track multiple objects. Wang et

al. [79] applied generalised minimum cost flows (MCF) algorithm to jointly opti-

mised consecutive batches to generate a set of conflicting trajectories. They then

apply MCF again to obtain optimal matching between trajectories from consecutive

batches. Maksai et al. [80] used a non-Markovian approach to impose global smooth-

ness constraints on the trajectory segments. The main weakness of trajectory based

methods is the loss of visual features of the objects such as colours and texture. This

loss of information means that differentiating objects from their motion can be a chal-

lenge. Another challenge is that they can only perform well in motionless cameras as

any motion from the camera will make all the objects including the background to

generate trajectories.
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3.3 Local Feature Extraction and Matching

Local feature detectors and descriptors have formed an important part of image

processing with wide spread use from image representation, image classification and

retrieval, motion tracking and object recognition [81]. Over the years there has been

a lot of detectors and descriptors developed. The detectors considered in this thesis

are SIFT [34] and SURF as they have been proven to outperform other local feature

detectors and descriptors in terms of time and computational requirements [82] while

SIFT performs better in terms of accuracy in matching [83]. Between the two, SURF

has been shown to be faster than SIFT, in part because SURF feature descriptors

are 64 dimension vectors while SIFT’s are 128, therefore, SURF is the algorithm

that was used for experiments in this thesis. SURF finds keypoints by using a basic

Hessian matrix approximation which is achieved by finding blob features where the

determinant is maximum. This matrix is shown in Eqn 3.1.

Hess (x, σ) =

[
Lxx(x, σ) −Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

]
(3.1)

Lxx(x, σ) is the convolution of Gaussian 2nd order derivative d2

dx2
g(σ). The deter-

minant of the approximate Hessian matrix is then calculated as det(Hessapprox) =

DxxDyy−(wDxy)
2 where w is the relative weight of the filter responses, andDxx, Dyy, Dxy

are the approximations of Gaussian with σ = 1.2 and represent the lowest scale for

computing blob response maps.

SURF descriptors describe the distribution of intensity content within the neighbour-

hood of the interest point. Each descriptor is extracted by overlaying a 4x4 grid over

the interest point as shown in Figure 3.5. For each square, a Haar wavelet response

is calculated in the horizontal (dy) and the vertical (dx). Their absolute values (|dy|
and |dy|) are also calculated to get the information about the polarity of the intensity

changes. This leads to each square having a vector v = (
∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|).

With 16 squares, this leads to a keypoint descriptor vector with 64 dimensions. A

consequence of this is that our counting approach relies on the presence of the fea-
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tures, and since SURF features are not at the pixel level, it also affects the sizes of

the objects we can detect.

Figure 3.5: Oriented quadratic grid with 4x4 square sub-regions is laid over the
interest point and the

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|

In OpenCV, running SURF on a frame gives two sets of data; the keypoints, and the

descriptors. The keypoints provide information on the location of the feature, the

angle from which the feature is calculated, and the size of the meaningful keypoint

neighbourhood while descriptors are 64 dimension vectors describing the distribution

of intensity within the feature size given by the keypoints. For the rest of this thesis,

the following notations are used:

• Fi: the ith frame where i ∈ {1, ..., L} and L is the length of video.

• Xi = {(~k1, ~d1), ..., ( ~kN , ~dN)}: SURF local feature for frame i. k is the keypoint,

d is the corresponding descriptor and N is the number of features in the frame.

• ~k = {p, a, s}: p is the location of the feature within the frame, a is the angle

and s is the size.

• ~d = {d1, ..., d64} is the descriptor vector.

• ~Ki = {k1, ..., kN}: a set of keypoints in frame i.

• ~Di = {d1, ..., dN}: a set of descriptors in frame i.

In this thesis, we describe the basis of the object counting approach in this thesis

which uses local features for object recognition and matching. We achieve this by

matching features of the object of interest to other features from the object instances

in the video frame. Commonly, brute-force and Fast Library for Approximating
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Nearest Neighbours (FLANN) [84], are used to match feature descriptors from a

query set to feature descriptors from the training set.

Brute-force matcher offers the simplest feature matching approach. This algorithm

finds the distance between training and query features and returns best matches by

selecting the smallest distances. The distance is normally calculated using the L1 or

L2 norm, although other distance metrics can be used as well. The problem with this

approach is that the matches are only selected because they are the closest match, not

because they are correct. FLANN is a suite of algorithms that was designed to solve

nearest neighbours matching in high-dimensional spaces. This approach though,

still requires the user to specify the degree of precision for the nearest neighbour

estimation. The common approach is to use Lowe’s Ratio Test [53] which takes the

distance of the closest match and the second closest match. If the ratio is above 0.75,

the detected match is accepted.

In this thesis, we are looking to match multiple feature instances without the burden

of providing the degree of precision as required by FLANN or resorting to one-to-one

matching of brute-force matcher. We view this task in terms of the distribution of the

features in the descriptor space and as such, we develop Hypotheses 1 and 2 below:

Hypothesis 1 : Given multiple object instances in a frame, SURF will detect a

set of descriptors, D, such that matching descriptors will form clusters within the

64-dimension descriptor space.

Hypothesis 2 : The clusters within D can have distance ratio below Lowe’s Ratio

Test while maintaining high degree of similarity.

3.4 Density Based Clustering

The clusters alluded to above can therefore be detected using cluster recognition

algorithms. In this section, we discuss a density-based cluster detection algorithm

that we use to match multiple local features. The criteria we used to select the

algorithm to use was driven by two problems:

1. We do not know how many local features will be detected and how many clusters
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will exist within the descriptor space.

2. We do not know the density of the points within each cluster.

These two problems dictate that the algorithm to be used must be 1) able to find

the clusters without any supervision on the number of clusters, and 2) able to find

clusters of varying densities. Therefore, the algorithm must have parameters that

have nothing to do with the structure of the data. In this section, we discuss the

theory behind the density based clustering algorithms of DBSCAN and HDBSCAN

and explain their importance to the work in this thesis. We also discuss the most

commonly used clustering algorithm and explain why it is not suitable for the work

in this thesis.

3.4.1 K-Means

k-means [85] cluster recognition algorithm is fast, easy to understand and has been

widely implemented. It works by requiring a parameter k, which denoted the expected

number of clusters. Then it randomly selects k points as initial cluster centroids and

assigns the dataset points to the nearest centroid while also optimising centroids by

taking the mean of all the points in the clusters.

As popular as k-means is, it is not a cluster detection algorithm, but rather a data

partitioning algorithm. It simply assigns the data points to one of the k expected

clusters. In this thesis, it is impossible to know how many clusters are in the descriptor

dataset and therefore cannot select the proper value of k. k-means also does not have

a concept of ’noise’, therefore all the data points will be assigned to one of the k

clusters. In a set of descriptors, some of the data points will not have any matches

and must be labelled as such. The random initialisation of the first data points also

means that for different initial points, one can get different clustering results.

In comparison, both DBSCAN and HDBSCAN require parameters that have nothing

to do with number of clusters in the dataset. Furthermore, they have an inbuilt

capability to recognise noise features. Another important feature is that they are

able to recognise arbitrarily shaped clusters whereas k-means clusters assumes the

clusters are globular.

48



CHAPTER 3. OBJECT TRACKING, LOCAL FEATURES AND
DENSITY-BASED CLUSTERING

3.4.2 DBSCAN

DBSCAN [23] is a density-based clustering algorithm that was designed for finding

clusters in large spatial databases. It works by detecting clusters when there are at

least a certain number of points, minPts, within a certain distance ε, of a certain

point, p. The algorithm therefore requires minPts and ε as parameters. Given a

spatial database D, the following definitions are given (See Figures 3.6 and 3.7):

Definition 1: ε-neighbourhood This is defined as Nε(p) = {q ∈ D|dist(p, q)| ≤ ε}.
This definition gives rise to core points, which are points whose ε-neighbourhood

contains at least minPts. The points that are within that neighbourhood but are not

core points are referred to as border points.

Definition 2: directly density-reachable A point p, is directly density-reachable from

a point q if p is in the ε-neighbourhood of q and there are atleast minPts in that

neighbourhood.

Definition 3: density-reachable A point p, is density-reachable from a point q if

there are points p1, ..., pn where p1 = q and pn = p such that pi+1 is directly density

reachable from pi.

Definition 4: density connected A point p, is density-connected to point q if there

is a point o such that both p and q are density-reachable from o.

Definition 5: Cluster A cluster C is a non-empty set of the database D such that

all points in C are density-reachable and density connected to each other.

Definition 6: Noise For all clusters in D, Noise is a set of points that do not belong

to any cluster.

The main weakness of DBSCAN is the parameter ε which essentially describes the

acceptable cluster densities [35]. Even when dealing with low dimension data, select-

ing the best ε is a challenging task. In our case, we are working with 64 dimensions

in the case of SURF or 128 dimension in the case of SIFT, which makes it even more

challenging.

Ye et al. [86] applied a modified version of DBSCAN to image segmentation. In their
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Figure 3.6: Part a shows the concept of border points and core points in a cluster.
Part b shows the ε-neighbourhood of both p and q. In a cluster, the points are such
that the ε-neighbourhood of core points contain the number of points less than or
equal to the value of minPts.

Figure 3.7: Part a illustrates how p is density-reachable from q while the reverse is
not true. Part b shows how point p is density connected to point q.

approach, images were treated as special spatial dataset. They aimed to segment the

images not only using colour but also using the spatial separation. They modified

the algorithm to cater for spatial separation of the points. Instead of using ε, they

introduced two properties, εc and εs. εs is the spatial neighbourhood around a given

pixel and εc is the colour neighbourhood for a given pixel. A core point was defined

as pixel whose εs contains minPts of similar color. Pixel p was said to be directly

reachable from pixel q if p is within εs of q and q is a core pixel.

The value of εs was selected based on the size of the image and minPts was set to be

half the value of εs. Determining εc required color conversion from RGB to Munsell

(HVC) colour space. εc was then formatted as an ellipsoid within that colour space

with radiuses HRadius, VRadius and CRadius. Within that colour space, a core pixel po,

with colour (Ho, Vo, Co) is colour similar to pixel p with colour (H,V,C) if it satisfies
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equation 1 below:

(H −Ho)
2

H2
Radius

− (V − Vo)2

V 2
Radius

− (C − Co)2

C2
Radius

≤ 1 (3.2)

The radius values are determined by using histogram connectivity analysis in H, V

and C bands respectively. Their approach however still relies on a human to define

colour similarity and the spatial neighbourhood. This means that there is a chance

that when a different image is used those parameters would not work as well. Even

more problematic is applying this to videos because of the ever changing scene which

makes it difficult to know beforehand what conditions will be like in the video.

3.4.3 Hierarchical DBSCAN

Hierarchical DBSCAN (HDBSCAN) was developed by Campello et al. [35] to provide

less supervision in cluster detection. While DBSCAN relies on the inputs, ε and

minPts, HDBSCAN only takes minPts and creates all possible clusters for different

values of ε and uses the concept of cluster stability to choose the final clusters. This

leads to clusters that have different values of ε that relies on the points distribution

within it. HDBSCAN’s proper formulation adds the concepts of core and reachability

distances from the OPTICS algorithm [87]. These concepts are defined as follows:

Definition 7: Core Distance Core distance is the minimum ε around point p that

satisfies the condition |Nε(p)| ≥ minPts.

Definition 8: Mutual Reachability Distance The minimum ε for which points p and

q are ε-reachable.

Definition 9,: Mutual Reachability Graph The graph created with vertices as all the

points in D and the edges as the mutual reachability distances between respective

points.

In essence, HDBSCAN produces a tree of possible clusters obtainable for all ε ∈
[0,∞). Obviously that clustering tree would be infinite, so the tree only consists of

ε’s where clusters undergo significant changes, i.e. when a point changes from core
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to noise, when a cluster splits into smaller clusters, and when a cluster completely

disappears.

A minimum spanning tree (MST) is created from the mutual reachability graph which

is then extended with self-edges. The HDBSCAN hierarchy is then extracted from

the extended MST as a dendogram. Making a horizontal cut through the dendogram

to get final clustering would correspond to setting a single density threshold which

may not detect clusters with largely varying local densities. This is not a desirable

outcome so the concept of cluster stability defined below is used instead.

S(Ci) =
∑
xj∈Ci

(
1

εmin(xj, Ci)
− 1

εmax(Ci)

)
(3.3)

If we have a set {C2, ..., Cκ} as a collection of all clusters in the hierarchy tree ex-

cluding the root C1, and S(Ci) as the stability of each cluster, extracting prominent

non-overlapping clusters can be treated as an optimisation problem expressed as:

max
δ2...δκ

J =
κ∑
i=2

δiS(Ci)

subject to


δi ∈ {0, 1}, i = 2, ..., κ

exactly one δ(.) = 1 in each path from leaf

to node

(3.4)

where δi indicates whether Cluster Ci is included into the final cluster solution or

not. The solution can be found by propagating the total stability S(CI) from the leaf

cluster to the root using:

Ŝ(Ci) =


S(Ci) if Ci is a leaf node

max{S(Ci), Ŝ(Cil) + Ŝ(Cir)}

if Ci in an internal node

(3.5)

where Ŝ(Cil) + Ŝ(Cir) is the summation of the total stabilities of the left and right
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nodes of cluster Ci in the case of a binary tree. If the tree is not binary, the sum would

be for all the nodes of the cluster. In this thesis, we consider the set of prominent

clusters ~C = {C1, ..., Cj} and the corresponding labels ~L = {l1, ..., lj} such that for

1 ≤ ĵ ≤ j, the label for Cĵ is lĵ and for ĵ = 1, C1 is the noise cluster and l1 = 0.

3.4.4 HDBSCAN Implementation

The first part of HDBSCAN is the distance calculations, where, given a dataset, D,

the algorithm requires the distances between the elements of D. This process is both

memory and computationally intensive. If ~D has length N, the resulting matrix of

distances will have dimensions N x N. Both the memory and computational time are

O(n2) operations. In order to reduce the amount of memory needed, we need to take

a closer look at the resulting distance array. Given a dataset ~D = {1, 4, 9, 7}, the

distance matrix will be:

D =


0 9 64 36

9 0 25 9

64 25 0 4

36 9 4 0


The distance matrix is symmetric with 0 on the principal diagonal such that such that

Di,j = Dj,i. This property of the distance matrix allows for significant reduction in the

memory requirements by only storing the top half of the matrix. If the length of the

dataset is denoted by Nx, then the new distance matrix as a vector will have length

Nd = Nx(Nx − 1)/2 which is the triangular number of Nx. In our implementation,

the distance calculations are sped up by using OpenMP [88] with the parallelism

provided by multi-core processors available in most computers. The core distances are

extracted using a separate function that also uses OpenMP for parallelism. We found

out that this approach offers higher computational speed than combining distance

calculation and core distance extraction as that would require full N2
d iteration over

the dataset.

Since only the part of the original distance matrix above the diagonal is being saved,

there needs to be a way to encode and decode the distances into the proper locations

in the new distance vector. Using the example above, the new distance vector will
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be ~Dn = {9, 64, 36, 25, 9, 4}. Considering only those values where i < j, distance(Di,
Dj) will be encoded into location idx = i ∗ rows+ j − triangular(i+ 1), where rows

is the length of the dataset ~D, and triangular(i+1) is the triangular number of i+1.

The decoding of the distance location is based on the Algorithm 1.

Algorithm 1: Decoding the index of the distance in the new distance vector
for a given point (i, j)

Data: Point (row, col)
Result: location of the distance
if row < col then

idx← (rows ∗ row + col)− triangular(row + 1)
else

if row == col then
idx← 0

else
idx← (rows ∗ col + row)− triangular(col + 1)

end

end

Our implementation of HDBSCAN expects a 2-dimensional matrix where each row is

a data point within the dataset. In Chapter 4, we use the descriptors as the dataset

and in Chapter 5, we use the RGB values at the feature locations. The optimised

distance calculations are done using Algorithm 2 and the corresponding code sample

A.4.

In our implementation, we realised that in some cases we wanted to vary the value

of the parameter minPts without changing the dataset. We therefore, implemented

HDBSCAN in such a way that the distances are only calculated once and then re-

used with various minPts values. Since the distance calculations occupy the bulk of

memory and computational requirements, this approach speeds up our algorithm in

subsequent values of minPts.

3.4.5 Cluster Analysis and Validation

The post clustering stage in cluster detection is concerned with evaluation and inter-

pretation of the clusters and clustering results validity [89]. This stage can be seen as
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Algorithm 2: Distance calculation

Data: ~D, numNeighbours
Result: ~D :distance vector
for i← 0...length( ~D) do

xi ← row( ~D, i)
for j ← (i+ 1)...length( ~D) do

xj ← row( ~D, j)
di,j ← L2norm(xi, xj)

offset← i ∗ length( ~D)
idx← offset− triangular(i+ 1)
~D(idx)← di,j

end

end

answering three issues; cluster quality, cluster interpretability and cluster tendency.

Good quality clusters will be very different from each other while the data points

within will be very similar. The interpretability of clusters is concerned with the

common features shared by the points within a cluster, and cluster tendency is about

whether there are actually clusters within the dataset. In this section, we review

common approaches to the above issues and propose a new way of calculating cluster

quality and clustering results validity.

3.4.5.1 Cluster Quality

Variations in the points within a cluster are a good indication of the quality of a

cluster. In [89], this is called ‘within-cluster’ variation and is defined by Equation

3.6. In this equation, given a set of clusters ~C = {C1, ..., Ck}, Ck ∈ ~C is the cluster, x

is a member of the cluster and rk is the centroid of the cluster.

wc(Ck) =
1

|Ck|
∑
x∈Ck

d(x, rk)
2 (3.6)

where d(x, rk) is the distance between any point in the cluster and the cluster centroid.

The overall quality of the clustering results also need to be determined. Equation 3.7
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has been used to determine the overall clustering results quality.

BC

WC
(3.7)

where WC is the sum of within-cluster variations and BC is the sum of squared

distances between the cluster centroids:

BC =
∑

i≤j≤k≤K
d(rj, rk) and WC =

K∑
k=1

wc(CK)

In this thesis, we take a different approach to cluster analysis and validation. With

equation 3.6, the smaller the value of wc(Ck), the higher the similarity of the points

within the cluster. This is useful when comparing the clusters in ~C. However, the

value of wc(Ck), like WC, is unbounded. As such, in this thesis, they do not provide

proper measure of cluster quality. Our approach to cluster quality is about measuring

the variations within the cluster as a function of the overall cluster differences such

that we get a percentage value signifying how similar the points within the each

cluster are.

We use both the intra-cluster distances and the cluster core distances to calculate

the quality of the clusters. Using intra-cluster distances allows for measuring the

quality of cluster based on the cluster densities while using core distances allows for

measuring the cluster quality based on the localised distribution of the features. For

each cluster Ck, we calculate the minimum and maximum core distances (Dmin and

Dmax). We then used them to calculate the max : min ratios (coreRatio 3.8 and

disRatio 3.9) for each of the clusters.

Rc =
Cmax
Cmin

(3.8)

Rd =
Dmax

Dmin

(3.9)

The maximum core distance ratio (Rc,m) and maximum intra-cluster distance ratio

(Rd,m) are then used to calculate the percentage confidence in each cluster (Ck)
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according to the core distances and the intra-cluster distances using equations 3.10

and 3.11 respectively. In these equations, Rc,k and Rd,k represent the core distance

ratio and intra-distance ratio for cluster Ck respectively. The results obtained showed

that the cluster confidence values above 50% can be trusted to describe clusters that

have high feature similarity (Details in Chapter 4). It was also observed that any

cluster that has a ratio that is greater than the ratio of the noise cluster will be

visually noisy.

Fc =
Rc,m −Rc,k

Rc,m

∗ 100 (3.10)

Fd =
Rd,m −Rd,k

Rd,m

∗ 100 (3.11)

3.4.5.2 Clustering Validity

Validation of overall cluster detection results is a challenging task as most of the time

it requires an in-depth knowledge of the dataset space. One way of determining if the

dataset has clusters is to use Hopkin’s equation (See Equation 3.12) [89]. A random

sample of the data ~S, is extracted from the main dataset, and a set of randomly

generated data, ~P with the same size as ~S is created. For both ~S and ~P , the distance

between each point and its nearest neighbour is calculated and all the distances are

summed. If the ratio yields a value close to 0.5, it shows that the sample data ~S,

and the random data ~P have roughly the same nearest neighbour distances which is

a strong signal that the data may not have clusters.

H(~P , ~S) =

∑
p,tp∈S

dist(p, tp)∑
m,tm∈P

dist(m, tm) +
∑

p,tp∈S
dist(p, tp)

(3.12)

The use of Hopkin’s equation has two challenges. Firstly, it assumes that the sample

data ~S, will be a proper representation of the dataset. There is no guideline as to

the appropriate size for ~S. Furthermore, the distance calculations between ~P and

S would increase execution time. Secondly, the suggested ration of 0.5 does not
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have a upper or lower limit. It also relies on whether the sample data is a proper

representation of the whole dataset. These two challenges highlight the inadequacy

of Hopkin’s equation in this thesis. The descriptor dataset being used in this thesis is

generated for each frame on the fly. As such, there is no way of assessing the selection

criteria for each frame and each video.

In this thesis, we use Algorithm 3 to calculate bounded discreet values between -1

and 4 inclusively to represent how valid the clustering results are. The algorithm uses

skewness (Equation 3.14) and kurtosis (Equation 3.13) statistical values on the core

and intra-cluster distance ratios explained in the previous sub-section. Incidentally,

equation 3.13 equation requires that at least 3 clusters be detected and equation 3.14

requires at least 2 clusters.

In this thesis, we use skewness to measure the symmetry (or lack thereof) of the

distribution of the distance rations. The work in this thesis assumes that the noise

cluster will have more features that the other clusters. In this case, the noise cluster

will have the largest distance ratio, thus creating positive skewness. We use kurtosis

to measure the peakedness of the distribution of the distance ratios. Working off of

the same assumption as for skewness, kurtosis measures how large the distance ration

of the noise clusters is compared to the other clusters which indicates how much tail

the distribution has. Positive kurtosis therefore indicates that the distribution has

a tail and negative kurtosis indicates there is no difference between the ratios of the

noise cluster and other clusters.

In the context of our distance ratios, when skewness is positive and the kurtosis is

also positive, it indicates that the noise cluster has the largest max:min ration and

also creates the tail in the distribution. This outcome proved to be a good indication

of clustering validity. Using Algorithm 3, we therefore reward positive skewness and

kurtosis and punish negative values. Core distances are less susceptible to cluster

sizes but more susceptible to noise while intra-cluster distance are more susceptible

to cluster sizes but less susceptible to noise. As such, our validity algorithm uses the
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ratios from both distances in order to balance out the weaknesses.

K =
N(N + 1)

(N − 1)(N − 2)(N − 3)

N∑
j=1

(
xj − x
s

)4

− 3(N − 1)2

(N − 2)(N − 3)
(3.13)

ς =
N

(N − 1)(N − 2)

N∑
j=1

(
xj − x
s

)3

(3.14)

Algorithm 3: Calculating validity for overall clustering results for a partic-
ular minPts value.

Data: ςc - Skewness value from core distances
Data: Kc - Kurtosis value from core distances
Data: ςd - Skewness value from intra-cluster distances
Data: Kd - Kurtosis value from intra-cluster distances
Result: validity = 0
if ςd > 0 & Kd > 0 then

validity ← validity + 2
else if ςd < 0 & Kd > 0 then

validity ← validity + 1
else

validity ← validity − 1
end

if ςc > 0 & Kc > 0 then
validity ← validity + 2

else if ςc < 0 & Kc > 0 then
validity ← validity + 1

else
validity ← validity − 1

end

3.5 Summary

In this chapter, we have discussed the single object tracker algorithms that have been

implemented in the OpenCV library. We justified the selection of BOOSTING as the

preferred SOT for this thesis by comparing the execution time and drift resistance.

59



CHAPTER 3. OBJECT TRACKING, LOCAL FEATURES AND
DENSITY-BASED CLUSTERING

While GOTURN showed the ability to adjust to scale of the target but was very

unstable which suggest that it requires more training. TLD’s detector operating on

the whole image resulted in target loss when dealing with multiple target instances.

In Section 3.2, we review the current literature on multi object tracking. While we

did not make any experimental comparisons, we did discuss the key deficiencies in the

literature. The main challenge common to all is the initialisation process. Either the

user has to provide multiple ROIs or they have to train the algorithm off-line, both

of which are impractical for the requirements of this thesis. For our requirements, we

develop our own MOT built around HDBSCAN in Chapter 5.

We also looked at SURF local feature detector and descriptor. We reviewed how

the algorithm works and how the descriptor matching works. We also explained the

inadequacies of the current feature matching algorithms and suggested the use of

density-based clustering as a way of matching multiple feature instances. The HDB-

SCAN algorithm which we use in this thesis for was reviewed as well as explaining the

details that allow our implementation to be fast by employing parallelism and mem-

ory requirements. In addition, we explained how to analyse the clusters detected to

provide discreet values on validity while also providing a measure of similarity within

the clusters.

In the next chapter, we discuss how we use HDBSCAN to detect matching SURF

features in a video frame. We use the cluster quality and validity approaches de-

veloped in this chapter to justify why our multiple feature instance matching works

better than the current approaches. We explore the different types of results we can

obtain and show the steps we can take to get the best possible results.
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Chapter 4
Multiple Local Feature Instance Detection

In Chapter 3, we discussed various background literature relevant to the work in

this thesis. We discussed and compared the various SOT algorithms implemented in

OpenCV. We have explored the literature on multiple object tracking and the current

inadequacies. We also reviewed the current local feature matching approaches and

explained how they are inadequate for our purpose. Finally, we discussed density-

based clustering detection algorithm HDBSCAN as a potential candidate for solving

the current local feature matching algorithms shortfalls.

The approach in this thesis is based on the hypothesis that the small variations in

matching features would form clusters in the descriptors space which can be detected

using HDBSCAN. When working with multiple object instances, we want to do a one-

to-many matching which automatically rules out brute-force matcher. FLANN is not

suitable either because of the parameter k, which cannot be determined beforehand.

We also cannot use Lowe’s Ratio Test [34] to test the quality of the matches as it

was designed to evaluate one-to-one feature matches.

In this chapter, we explore the matching of multiple features as a density-based

clustering problem. By hypotheses 1 and 2, outlined in Chapter 3, we show that

not only do the local features form clusters within the descriptor dataset, Lowe’s

ratio test fails to measure the quality of matches. We validate the cluster quality by
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calculating core-distance and intra-cluster distance confidences as percentages of the

maximum variations within the clusters. We show how the validity calculations in

Section 3.4.5 is used to inform the proper choice of minPts.

4.1 Multiple Features as Density-Based Clusters

On a frame-by-frame basis, our approach detects clusters in each frame’s SURF

features. The quantity of these features varies from frame to frame, and from video

to video. The number of SURF local features in our dataset are shown in Tables

4.1 (LODV), 4.2 (MODV) and 4.3 (HODV). An interesting observation is that some

of the LODVs have higher number of features than some MODVs and HODV. This

is because the number of points in the frames is not only dependent on the number

of objects of interest in the video. Instead, they rely on the global variations in the

video frames. In videos with complex backgrounds, a lot of the local features do come

from the background as opposed to the objects of interest. The size of the objects

also has an effect; the larger the object in the frame, the more the number of features

on the object.

The fact that the larger objects have more features is illustrated in Figure 4.1 where

the first frame of the LODV voc-18-bd-11 had the highest number of features, 329,

due to complexity of the background. In comparison, the MODV video voc-18-bd-16

had 157 features, and the HODV video voc-18-bd-14 had 308 features. In addition,

the two latter video had scale and vanishing point problems which meant that the

objects closer to the camera had more features that those further away. The size

of the birds in voc-18-bd-11 also contributes to the high number of features in the

frame.

In our approach, we ran HDBSCAN on the frame descriptors, ~D, with minPts = 3

and for each frame. We analysed each of the clusters and the overall clustering validity

using the equations 3.8 - 3.14 and Algorithm 3 discussed in Subsection 3.4.5. We

used minPts = 3 because using two is similar to attempting a one-to-one matching of

features. On a frame by frame basis, we discovered that the best clustering results are

achieved when the validity is 4 since lower values of validity often have noise features.
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Table 4.1: The number of SURF features detected for LODVs.

Video Min Max µ σ
voc-18-bd-4 197 321 270 33.71
voc-18-bd-5 136 239 192 39.458
voc-18-bd-6 242 348 292 27.177
voc-18-bd-7 156 258 218 24.031
voc-18-bd-8 343 525 426 56.345
voc-18-bd-9 198 425 314 54.602
voc-18-bd-11 328 501 400 35.893
voc-18-bd-20 75 139 106 18.957

Table 4.2: The number of SURF features detected for MODVs.

Video Min Max µ σ
voc-18-bd-2 47 265 118 58.939
voc-18-bd-10 207 457 358 66.743
voc-18-bd-16 96 200 144 26.016
voc-18-bd-19 851 1046 950 35.348

We also found that the ratios between the minimum and maximum distances within

the clusters can fail Lowe’s Ratio test even though the features selected are visually

very similar.
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Table 4.3: The number of SURF features detected for HODVs.

Video Min Max µ σ
voc-18-bd-1 2949 3451 3272 99.198
voc-18-bd-3 394 607 509 43.243
voc-18-bd-12 1305 2209 1918 248.344
voc-18-bd-13 130 299 199 39.743
voc-18-bd-14 176 360 290 44.828
voc-18-bd-15 317 324 271 22.972
voc-18-bd-17 228 304 256 14.41
voc-18-bd-18 1786 2363 2142 158.16
voc-18-bl-1 3722 6662 6410 466.954
voc-18-bl-2 5961 6041 6000 23.615
voc-18-bl-3 822 3260 2035 844.449
voc-18-bl-4 1613 1699 1659 23.002
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(a) Frame 1 of voc-18-bd-11 which had 329 features.

(b) Frame 1 of voc-18-bd-16 which had 157 features.

(c) Frame 1 of voc-18-bd-14 which had 308 features.

Figure 4.1: Differences in the number of features in LODVs, MODVs and HODVs.
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4.1.1 Lowe’s Ratio in Clusters

In Table 4.4, we show the two of the features from cluster 100 in frame 1 of voc-18-bd-

1 where minPts = 3 was used. The features of reference are shown in bold in row 1

and the table data is arranged in ascending order by the distance from the reference

features. One interesting observation in the table is that there is a noise feature that

is closer in distance to feature 2495 that one of the features in cluster 100. This is

because the shape of a cluster can lead to noise features, or indeed features from

other clusters being closer to one feature that other features in the same cluster.

In terms of Lowe’s Ratio test, we use the distance of the closest feature to the reference

feature. In the first set of results, we use feature 2503, and in the second set of results

we use 2670. We then calculate the ratio using the first noise feature, then using the

first non noise feature that belongs to a different cluster and finally using the furthest

feature in the same cluster.

When the reference point is 2496, the first noise feature is 2574 in row 4 and the

distance ratio is 0.93 which means the test would fail. With the fist non-noise feature

belonging to a different cluster, we use feature 2980 in row 6 and the ratio is 0.75.

The furthest feature in cluster 100 from feature 2495 is 2670 in row 5 and the ratio is

0.83. The results show that the match of feature 2495 to 2503 is not valid when using

the first noise feature closest to 2495. The match was valid when using feature 2980.

The ratio from the furthest feature in the same cluster cannot be used because the

ratio will be affected by the density of the cluster and the size of the area occupied

by the cluster within the feature space.

The distance ratios in the second feature shows that the features within clusters 100

all fail Lowe’s ratio test for the match between features 2666 and 2670 while all the

other features pass. Considering that all the features within a cluster are a match

to each other, the ratio of the match from feature 2666 to feature 2503 with the first

noise feature 2574 is 0.79 which shows that the match is valid. As such, we conclude

that the use of Lowe’s Ratio is not adequate for evaluating many-to-many matches

as the results may fail or pass depending on which feature is used as reference in the

cluster.
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Table 4.4: This table shows the closest features to two features from cluster 100 in
frame 1 of voc-18-bd-1. The cluster had 4 features.

# Cluster Feature Distance
Lowe’s
Ratio

Cluster Feature Distance
Lowe’s
Ratio

1 100 2495 0 0 100 2666 0 0
2 100 2503 0.198 1 100 2670 0.185 1
3 100 2666 0.212 0.94 100 2495 0.212 0.88
4 0 2574 0.213 0.93 100 2503 0.225 0.82
5 100 2670 0.238 0.83 0 2574 0.284 0.72
6 101 2980 0.265 0.75 101 3106 0.295 0.71
7 0 2903 0.267 0.74 0 3258 0.305 0.62
8 101 2838 0.273 0.73 0 3242 0.319 0.61
9 0 3258 0.278 0.71 101 2838 0.319 0.6
10 101 2901 0.281 0.7 0 2835 0.321 0.59
11 101 3106 0.283 0.7 101 2821 0.325 0.58
12 101 2821 0.283 0.7 101 2901 0.333 0.57
13 0 3286 0.297 0.67 0 3247 0.334 0.57
14 101 2657 0.298 0.66 101 2980 0.336 0.57
15 0 2933 0.303 0.65 101 2657 0.342 0.56
16 0 3242 0.313 0.63 265 2626 0.347 0.56
17 0 3322 0.313 0.63 0 3355 0.348 0.56
18 0 3355 0.317 0.62 285 2852 0.352 0.55
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The results of Table 4.4 also show the reason cluster 101 features are close to the

features of cluster 100. This similarity can be seen in Figure 4.2 where the first two

sub-figures, represent clusters 100 (Figure 4.2a) and 101 (Figure 4.2b) respectively.

Both clusters identify the same areas on the necks of the birds which highlights the

potential of cluster over-segmentation. However, the other two closest clusters show

significantly different features as can be seen in Figures 4.2c and 4.2d.

4.1.2 Cluster Feature Similarity

In this section, we show the credibility of the many-to-many matching approach used

in this thesis. We show the results of frame 4 of voc-18-bd-20 with minPts = 4. The

table in this section shows, for each cluster, the minimum and maximum distances

between the cluster features. We then calculate the min:max ratios. However, these

ratios in this section are used to highlight the variance in the density of the clusters.

In Table 4.5, cluster 0, which represent the noise features in the descriptor set, has

the lowest ratio in both core and intra-cluster distances. The similarity confidences

have also been calculated as 0% which makes logical sense since the noise cluster

represents no real match between the features within it. In most cases, the cluster

also has more features than in other clusters. It should be noted that this might not

always be the case. In a situation where the continuity of the non-cluster within the

dataset space has more points than the noise, the span of the cluster might surpass

that of the noise cluster.

As shown in Table 4.5, cluster 0, which represent the noise features in the descriptor

set, has the lowest ratio in both core and intra-cluster distances. The similarity

confidences have also been calculated as 0% which makes logical sense since the noise

cluster represents no real match between the features within it. In most cases, the

cluster also has more features than in other clusters. It should be noted that this

might not always be the case. In a situation where the continuity of the non-cluster

within the dataset space has more points than the noise, the span of the cluster might

surpass that of the noise cluster.
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(a) Cluster 100.

(b) Cluster 101.

(c) Cluster 265.

(d) Cluster 285.

Figure 4.2: Visualisation of some of the clusters from Table 4.4.
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SURF feature descriptors have 64 dimension, which makes visualising the similarities

of the clusters in a graph like manner impossible. In this thesis, we visualise the

similarities by drawing the features in the frames. In Figure 4.3, we show some of the

clusters from Table 4.5. As expected, cluster 0 points do not show any discernible

similarity.

The other clusters show varying degrees of visual similarities with cluster 6 in Figure

4.3b showing the most easily identifiable similarity within the points. An interesting

observation of cluster 6 is that while the points are not on the birds, they do identify

the area around the neck and the outstretched wing. This suggests that the features

in the surrounding of the objects of interest can still be used to identify the objects.

This is contrary to common approaches where object identification using local features

relies on the features on the objects such as in [22].

Another example of how well HDBSCAN performs in recognising similar descriptors

is shown in Figure 4.4. The figure is from the first frame of voc-18-bd-1 where

minPts = 3 was used and validity was 4. In that frame, HDBSCAN detected 146

clusters from 3375 descriptors with the number of points for non-noise clusters ranging

from 3 to 61. The noise cluster had the largest number of points at 2463 and both

confidences at 0%. Cluster 3 (Figure 4.4b) had intra-cluster confidence of 97%. It

also had min : max ratio of 0.859 for core distances and core distance confidence

of 54%. What is most interesting about the cluster is that the points are perfectly

aligned with the heads of the birds.

Clusters 157 (Figure 4.4c) and 294 (Figure 4.4d) show how robust the clusters can be

in handling a lot of features. In cluster 157, there are 50 features with intra-cluster

distance ratio of 0.128 and core distance ratio of 0.536. The similarity can be best

summarised by the 84% inter cluster distance confidence. Visually, cluster 157 has

most of the points in the ‘V’ shape made by the neck and the back of the birds, while

some of the points are on the ‘V’ shape made by head of one bird in occlusion with

the belly of another bird. Cluster 294 is the largest non-noise cluster with 61 features.

These features are located on the backs of the birds with intra-cluster ratio of 0.231

and core distance ratio of 0.596. The visual similarity of the points is confirmed by

the intra-cluster confidence of 91% even though the core confidence is at 33%.
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Table 4.5: Cluster data from voc-18-bd-20 frame 4 with minPts = 4.

Core Distances Intra-Cluster Distances

Cluster
Num.

of
Points

Min Max
Min:Max

Ratio
Confidence

(%)
Min Max

Min:Max
Ratio

Confidence
(%)

0 53 0.298 0.744 0.401 0 0.063 1.322 0.047 0
2 4 0.206 0.436 0.473 15.134 0.094 0.444 0.211 77.244
5 5 0.160 0.301 0.532 24.665 0.117 0.332 0.353 86.405
6 5 0.215 0.364 0.591 32.125 0.213 0.477 0.447 89.273
9 3 0.337 0.345 0.978 59.006 0.184 0.345 0.535 91.035
13 7 0.285 0.324 0.878 54.297 0.064 0.644 0.1 52.04
14 5 0.267 0.342 0.779 48.529 0.187 0.568 0.329 85.401
17 4 0.334 0.378 0.884 54.61 0.329 0.44 0.746 93.572
19 3 0.357 0.362 0.985 59.263 0.357 0.546 0.654 92.662
20 7 0.266 0.340 0.781 48.646 0.048 0.479 0.101 52.254
21 18 0.176 0.337 0.521 23.064 0.115 0.81 0.142 66.297
24 4 0.131 0.161 0.814 50.742 0.08 0.171 0.465 89.691
25 3 0.166 0.186 0.891 54.971 0.07 0.186 0.378 87.313

During our experiments, we observed that for the same value of minPts, the validity

may vary from one frame to the next. These variations are inherited from the slight

variations in the frames as the video progresses. These variation in turn affect the

SURF features being detected such that while in one frame proper clusters were

detected, in the next, some features may disappear while new ones are discovered.

This, in turn, affects the distribution of the features in the descriptor space which

can lead to failure in detecting the clusters.

We also observed that when moving between two frames where one has the validity =

4 and one with lower validity, especially when the lower validity is below two, two

things occur. The first is that there is either big in the number of clusters or a change

in the number of features in the noise cluster as shown in Table 4.6. In voc-18-bd-6,

frame 1 had validity = 0 and frame 2 had validiy = 4. In frame 1, we detected four

non-noise clusters (See Table 4.7) but in frame 2, 18 non-noise clusters were detected.

The noise cluster in frame 1 had 22 out of 246 features (See Figure 4.5a) and the

noise cluster in frame 2 had 149 out of 242 features (See Figure 4.5b). It is worth

noting that this behaviour does not always happen if the validity is between two and

four.

The first thing to note about the change in the number of noise features is that the
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Table 4.6: The first 8 frames of voc-18-bd-6 showing the variations in number of
clusters and the validities from frame to frame.

Frame Feature Size
Num of
Clusters

Validity
Size of

Cluster 0
1 246 4 0 22
2 242 19 4 149
3 251 23 4 150
4 254 16 2 154
5 254 16 2 112
6 254 16 4 161
7 258 3 0 26
8 264 20 4 16

Table 4.7: The clusters detected in frame 1 of voc-18-bd-6. The clustering results had
validity = 0.

Core Distances Intra-Cluster Distances

Cluster
Number

of
Points

Min Max
Min:Max

Ratio
Confidence

(%)
Min Max

Min:Max
Ratio

Confidence
(%)

0 22 0.402 0.592 0.68 49.847 0.364 1.362 0.268 88.126
3 210 0.155 0.456 0.341 0 0.043 1.359 0.032 0
7 5 0.313 0.395 0.791 56.894 0.107 0.569 0.188 83.076
10 3 0.279 0.32 0.87 60.792 0.161 0.32 0.502 93.676
11 6 0.243 0.331 0.734 53.551 0.242 0.452 0.536 94.07
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features in the noise clusters are still very noisy. As shown in Figure 4.5a, there is

no visible similarity between the features even though the intra-cluster confidence in

Table 4.7 is 88%. The second thing to notice is that with the reduction of both the

number of clusters and the number of noise features, one of the non-noise clusters

has the largest number of features. In the case of frame 1, it was cluster 3 with

210 features. It also results in the cluster having the smallest min : max ratios as

such also having 0% confidence. It is worth noting that the other clusters the results

do have features that are visually similar. By the experimental observation of other

video results we concluded that the only results that should be accepted are the ones

where validity is 4.

In Tables 4.8, 4.9 and 4.10 we show the overall validity statistics for the videos in

our dataset. In terms of overall video clustering validities, we noted that the best

results had µ ≥ 3 which signifies that a lot of the frame had validities of 4 and

σ ≤ 1 which signifies that there is little variation between the validities from frame

to frame. As the table shows, keeping minPts at 3 resulted in a lot of videos that we

outside the desired values of validity. Of the 24 videos, only 8 videos had an average

validity greater than 3. Only three of the videos had acceptable mean and standard

deviation. Empirical evidence shows that there is no correlation between the validity

values and the video categories.

Table 4.8: The clustering validity statistics for LODVs for minPts = 3.

Video Min Max µ σ
voc-18-bd-4 2 4 3.69 0.727
voc-18-bd-5 0 4 2.98 1.395
voc-18-bd-6 -1 4 2.62 1.831
voc-18-bd-7 0 4 3.66 0.819
voc-18-bd-8 -1 4 1.98 1.908
voc-18-bd-9 -1 4 3.02 1.456
voc-18-bd-11 -1 4 2.99 1.663
voc-18-bd-20 -1 4 1.4 1.54
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Table 4.9: The clustering validity statistics for MODVs for minPts = 3.

Video Min Max µ σ
voc-18-bd-2 -2 4 -0.352 1.266
voc-18-bd-10 0 4 3.22 1.107
voc-18-bd-16 0 4 2.57 1.317
voc-18-bd-19 -2 4 3.31 1.6

Table 4.10: The clustering validity statistics for HODVs for minPts = 3.

Video Min Max µ σ
voc-18-bd-1 -1 4 2.78 1.889
voc-18-bd-3 -1 4 1.89 1.94
voc-18-bd-12 0 4 3.42 1.394
voc-18-bd-13 -2 4 0.43 1.356
voc-18-bd-14 -2 4 2.89 1.681
voc-18-bd-15 -2 4 0.63 1.484
voc-18-bd-17 -2 4 0.81 1.6
voc-18-bd-18 0 4 2.13 2.066
voc-18-bl-1 -1 2 -0.58 0.644
voc-18-bl-2 0 4 1.83 2.003
voc-18-bl-3 0 4 3.65 1.137
voc-18-bl-4 0 4 3.84 0.799
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(a) The noise cluster.

(b) Cluster 6 with 5 points.

(c) Cluster 13 with 7 points.

(d) Cluster 21 with 18 points.

Figure 4.3: Visualisation of some of the clusters from Table 4.5.
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(a) The noise cluster.

(b) Cluster 3 with 3 features.

(c) Cluster 157 has 50 features.

(d) Cluster 294 with 61 points.

Figure 4.4: Visualisation of some of the clusters from the first frame of voc-18-bd-1
HODV.
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(a) The noise cluster in frame 1 with validity = 0.

(b) The noise cluster in frame 2 with validity = 4.

Figure 4.5: Visualisation of some of the noise clusters between frames 1 and 2 of
voc-18-bd-6 LODV.
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4.2 Varying minPts

Empirically, we found that if minPts = 3 did not produce validity = 4, we can

vary minPts between 3 and 7 inclusively to increase the chance of detecting proper

clusters. If none of the results produced validity = 4, the result with the highest

validity was selected. If multiple values have the same validity, then the validity

with the highest number of clusters is selected, otherwise the results of the smallest

minPts was used. It is worth noting that this approach while it increased the time for

processing each frame, our HDBSCAN implementation reduced the time needed for

subsequent values of minPts by only calculating distance values only for minPts = 3.

The reason changing the value of minPts may improve the validity is due to the

way HDBSCAN discovers the clusters. Given a dataset, core-distances are calculated

from the distance matrix of the data. These core distance are based on the minPts

value and are used in constructing the MST from which the clusters are detected by

finding the sub-trees with the best stabilities. Changing the value of minPts changes

the core-distances which propagates the changes to the MST and subsequently, the

sub-tree stabilities. As such some values of minPts may find more stable clusters

than others.

We show in Tables 4.11, 4.12 and 4.13 that this approach either improved the average

or reduced the standard deviation of the validity for all videos. In fact for all but one

of the videos, both values moved closer to the acceptable values. While previously we

had 8, we now had 12 videos whose average validity was greater than 3, seven of which

had standard deviation less than 1. Only in voc-18-bl-4 video was there no change

observed when varying minPts because none of the other values of minPts produced

greater validities or more number of clusters than minPts = 3. This is because for

the video, with varying minPts, only two of the 65 frames selected minPts other than

3 as explained in Subsection 3.4.4.

The improvement from testing varying values of minPts is shown in Table 4.14. With

minPts = 3, the validity was 0 and there were only 3 clusters detected in frame 17

and 4 detected in frame 18. By changing the value of minPts to 4, we were able to

detect clustering results with validity of 4 for both frames with 78 clusters in frame
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Table 4.11: The clustering validity statistics for LODVs with varying minPts values.

Video Min Max µ σ
voc-18-bd-4 2 4 3.78 0.625
voc-18-bd-5 0 4 3.13 1.28
voc-18-bd-6 -1 4 2.65 1.783
voc-18-bd-7 2 4 3.77 0.642
voc-18-bd-8 -1 4 1.99 1.887
voc-18-bd-9 0 4 3.05 1.421
voc-18-bd-11 -1 4 3.01 1.63
voc-18-bd-20 -1 4 1.5 1.6

Table 4.12: The clustering validity statistics for MODVs for varying minPts values.

Video Min Max µ σ
voc-18-bd-2 -2 4 -0.141 1.138
voc-18-bd-10 2 4 3.59 0.813
voc-18-bd-16 0 4 2.57 1.317
voc-18-bd-19 0 4 3.78 0.821

Table 4.13: The clustering validity statistics for HODVs for varying minPts values.

Video Min Max µ σ
voc-18-bd-1 0 4 3.74 0.992
voc-18-bd-3 -1 4 1.99 1.844
voc-18-bd-12 0 4 3.84 0.727
voc-18-bd-13 -2 4 0.42 1.286
voc-18-bd-14 0 4 2.82 1.632
voc-18-bd-15 -1 4 0.82 1.519
voc-18-bd-17 -1 4 0.89 1.559
voc-18-bd-18 0 4 2.93 1.668
voc-18-bl-1 -1 2 -0.22 0.583
voc-18-bl-2 -1 4 3.18 1.633
voc-18-bl-3 0 4 3.83 0.792
voc-18-bl-4 0 4 3.84 0.799
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Table 4.14: The effects of varying minPts in frames 17 and 18 in voc-18-bl2.

Frame No. minPts Validity Clusters

17
3 0 3
4 4 78

18
3 0 4
4 4 75

17 and 75 in frame 18.

Empirically, we discovered that varying minPts between [minPts, ...,minPts+ 5] is

sufficient. If the validity does not improve within that range, we discovered that using

higher values does not result in better validities. We also found out that starting at

minPts = 3 works for all classes of videos as discussed in Chapter 2. This meant

that when varying minPts, we used values from [3, ..., 8] inclusively.

4.3 Cluster Over-Segmentation with minPts = 2

While varying minPts has some effect in increasing the amount of results with higher

validities, we still have a lot of results with low validities. We, therefore, dropped the

value of minPts to 2. Essentially, we attempted 1-to-1 descriptor matching which

had the effect of breaking up the clusters detected by higher values of minPts. The

overall results of this approach was that all but four the videos in our dataset had

mean validities less than 4 and validity standard deviations greater than 0. However,

even for those four videos, the lowest mean validity was 3.69 and the highest standard

deviation was 0.394.

An obvious effect of breaking up clusters is the increase in the number of clusters

detected. This effect was common across all videos and their frames. An example

of this is can be seen in Figure 4.6. With minPts = 3, 14 clusters were discovered

while 39 clusters were discovered when using minPts = 2. In the figure minPts = 3

produced cluster 12 (Figure 4.6a) with 12 features. This cluster was then split up

when using minPts = 2 into 5 sub-clusters with the 12 features split up among them.

It is worth noting that the break up of clusters does not always happen. As seen
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(a) Cluster 12 with 12 features for voc-18-bd-20 when
using minPts = 3 on frame 1.

(b) Cluster 23 with 4 features for
voc-18-bd-20 when using minPts =
2 on frame 1.

(c) Cluster 27 with 2 features for voc-
18-bd-20 when using minPts = 2 on
frame 1.

(d) Cluster 45 with 2
features for voc-18-bd-20
when using minPts = 2 on
frame 1.

(e) Cluster 70 with 2
features for voc-18-bd-20
when using minPts = 2 on
frame 1.

(f) Cluster 71 with 2
features for voc-18-bd-20
when using minPts = 2 on
frame 1.

Figure 4.6: The splitting of cluster 12 fromminPts = 3 into 5 clusters withminPts =
2.

in Figure 4.7, cluster 5 was discovered when using minPts = 3 (Figure 4.7a). The

same cluster with the same features was discovered when using minPts = 2 (Figure

4.7b). This ability of the cluster to resist breaking up even when using minPts = 2

is a testament of how stable the cluster is within the descriptor space.
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(a) Cluster 5 for voc-18-bd-20 when using minPts = 3.

(b) Cluster 5 for voc-18-bd-20 when using minPts = 2.

Figure 4.7: The same cluster discovered in frame 1 of voc-18-bd-20 with minPts =
[2, 3].

4.4 Rotational Invariance

One of the key properties of SURF features is ‘rotational invariance’, which allows the

same feature to be identified even if it is rotated. In our experiments, we encountered

this in objects that show some symmetry to their appearance such as blood cells and

flying birds. In Figure 4.8a the feature are located on both sides of the neck on two of
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the birds and therefore are mirror images of each other as can be seen in the angles.

Figure 4.8b highlights the same rotational invariance but with features that are not

directly on the blood cells.

(a) Cluster 5 for voc-18-bd-20 when using minPts = 3 showing rotational
invariance in SURF features.

(b) Rotational invariance in blood cells.

Figure 4.8: Rotational invariance in SURF.

As will be demonstrated in the next chapter, ignoring angle of rotation when localising

the objects has adverse effect on our localisation algorithm. One way of addressing
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this would be to rotate the locations detected by the difference between the sample

object features and their matches. In this thesis, we instead incorporate the feature

angles in to the dataset that HDBSCAN processes. OpenCV gives the keypoint

angles in degrees, so we convert them to radians and the normalise them between

[0, 1]. We then add each normalised angle to the end of the corresponding descriptor

vector. This creates a new N by 65 matrix of augmented descriptor dataset such

that ~D = {~d1|α1, . . . , ~dN |αN}, where α is the normalised angle in radians and ~d|α
represents the concatenation of the 64 dimension descriptor vector and the angle.

The effect of this augmentation of descriptors is that the clusters we discovered in

the descriptor space are also similar in their angles. Figure 4.9, shows the results of

augmenting the descriptor vectors. The cluster in Figure 4.8a was split into multiple

clusters using minPts = 3, two of which are shown in Figure 4.9. In Figure 4.9a,

one of the features is on the left side of the birds while others are on the right side.

However, the angle of the feature is ‘similar’ to the other features. The effect of this

will also be discussed in Subsection 6.2.3.

Another example is the breaking up of the cluster in Figure 4.7, however, in this case,

using minPts = 3 resulted in only one viable cluster of three features while the other

two points became noise because together they do not meet the requirements that a

cluster should have at lease three points. If minPts = 2 is used, both the other two

points showed up as another cluster of features with similar angles.
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(a) Cluster 25 which resulted from the breaking up of cluster 19 in Fig.
4.8a.

(b) Cluster 38 which resulted from the breaking up of cluster 19 in Fig.
4.8a.

Figure 4.9: Results of augmenting descriptors with angles in voc-18-bd-15 frame 17.

85



CHAPTER 4. MULTIPLE LOCAL FEATURE INSTANCE DETECTION

4.5 Summary

In this chapter, we have shown how we apply HDBSCAN to SURF feature descriptors

to achieve multiple feature matching which is not possible with available matching

methods. We showed that there is no proper way of using Lowe’s ratio test to

determine the validity of the clusters detected by HDBSCAN. We have used cluster

similarity and clustering results validity methods to validate the descriptor clusters

and showed the high degree of similarity in the points. The similarity was also verified

by drawing the features on the frames which confirmed that visually, the features are

on similar patches of the frame.

We have also discussed the cases where HDBSCAN failed to locate proper clus-

ters within the descriptor dataset. By analysing the different validities in different

frames within the video, we concluded that the acceptable clustering results are when

validity = 4 as this signifies that the non-noise clusters have minimal noise features.

We showed significant properties of failed clustering results by showing the effects of

such failure on the noise cluster and the overall number of clusters. Since varying

minPts does not always yield validity = 4, we also explored cluster over-segmentation

by using minPts = 2. We showed that this results in high average validities and low

validity standard deviations. We also noted that not all clusters split up when using

minPts = 2.

In the next chapter, we explain how we learn the object of interest features and use

them to select the clusters that represent our objects. We then show how we extract

the object locations from clusters, thus locating our objects of interest for counting.

We show the extent to which the clusters can be used to accurately identify object

location. We also present different parameters that can be used to fine-tune the

counting estimation of our approach and compare them with the ground truth that

was discussed in Chapter 2.
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Chapter 5
Colour Model Tracking

In the Chapter 3 (Section 3.2), we introduced the concept of multi-object tracking and

the main challenges of some state-of-the art MOTs. In this chapter, we introduce a

different approach to tracking multiple objects which we call Learn-Select-Track. The

algorithm is designed to have online training where user interaction is independent

of the number of objects to be tracked while having the ability to track hundreds of

objects at the same time. Although the algorithm detail in this chapter is a multi

object tracker, in this thesis, we use colours as features to be tracked in the videos.

The colours are then used in Section 6.5 to find and remove false positive locations

from the localisation results.

The training stage is made up of learning and selection processes. The learning

process discovers the best possible colour separation for the frame and the selection

process relies on the user to select the colours of interest for tracking. In the learning

stage, the algorithm analyses the colours in the video frame to find the best colour

separation as clusters. In the selection stage, the user is given the detected colours

to choose the ones they are interested in. The user interaction is therefore dependent

on the number of colours detected in the video rather than the number of objects to

be tracked.

We separate the colours in the frame by employing a density based clustering al-
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gorithm. We find the colours by using HDBSCAN to discover the frame’s colour

clusters. Due to computational intensity of the algorithm, it is impractical to use

every pixel in the frame. We therefore use a local feature detection algorithm to

detect feature points on the image and use the colours at those locations as input to

the clustering algorithm. The tracking stage combines the colours selected from the

previous frame with the colours in the current frame. HDBSCAN is used again to

find the clusters in the new combined data and the previous selection is used to find

the similar colours in the current frame.

The rest of this chapter is arranged as follows: in Section 5.1, we explain the detail of

our MOT. We discuss the two aspects of the algorithm; the training and the tracking

processes. In section 5.2, we show the results for both the training and the tracking

processes. We show the successes and failures as well as the execution times for each

process to highlight the online nature of the MOT.

5.1 Learn-Select-Track

This section discusses the design of the Learn-Select-Track algorithm. We first discuss

the training process the algorithm goes through to find best colour separation for the

first frame. The colours selected on this frame, along with the minPts are then used

to track and update the colour model by the tracking algorithm. Since SURF features

are created from the surrounding area, we use a Gaussian smoothing algorithm with

a 5 by 5 kernel to remove noise at the feature location.

5.1.1 Training

In the HDBSCAN paper, the authors explained that in the dendogram, the most

prominent clusters survive the longest. While their analysis was about using the

same value of minPts, we find this holds even when varying it. Colour model training

aims to detect these clusters by varying the HDBSCAN parameter minPts for the

dataset made up of the colours at the locations of the local features from 3 to 30

inclusively. We then use the results to detect the best choice of minPts.

The training begins by extracting a new colour space dataset, ~C, from the local feature
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dataset, ~D, and the frame, F . The resulting dataset is an N by 3 matrix where each

row contains the BGR values of the pixel. Given the dataset, incrementally varying

minPts results in four observations of interest to the training algorithm:

• Observation 1: Given two values of minPts, minPtsi and minPtsi−1, where

minPtsi−1 = minPtsi − 1, the cluster sets resulting from them are such that

some of the clusters from minPtsi−1 merge to form a cluster that appears in

the results for minPtsi or become noise.

• Observation 2: Given two values of minPts, minPts1 and minPtsi−1, where

minPtsi−1 = minPtsi− 1, if one of the clusters has the same number of points

as minPtsi−1, and it is distinct from other clusters, its points will be labelled

as noise for minPtsi.

• Observation 3: Changing the value of minPts does not affect the resulting

clusters, but rather results in smaller cluster sizes as some of the outlier points

become noise.

• Observation 4: Changing the value of minPts does not affect the resulting

clusters in any way.

Ideally, the colour model training algorithm should detect a sequence of minPts val-

ues where Observation 4 occurs. However, in practice, this scenario is unlikely as

clusters are not perfectly defined within the dataset. Instead, the algorithm looks

for Observation 3. Within a specified range on minPts values, there is always a

chance that there will be more than one sequence where Observation 3 occurs. The

algorithm gets around this by detecting the longest sequence of minPts. The low-

est minPts value in that sequence is then treated as the optimum value for colour

separation.

It is worth noting that ideally, the lowest possible value of minPts = 3 could be used

to avoid repetitive cluster detection. While the similarity of the points within the

clusters would be high, there is a high likelihood that there will be a high number of

clusters. This provides practicality problems as asking the user to choose between a

lot of colour clusters becomes tedious and error prone.
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Detecting the clusters that appear for consecutive values of minPts can be achieved

in two ways. The first approach requires direct comparison of the clusters. Given two

sets of clusters for two values of minPts, ~Cl = {cl1, ..., cln} and ~Cl−i = {cl−i1 , ..., cl−im },
where l is minPts, n and m are the number of clusters and i is an arbitrary value

such that l − i ≥ 3, the points of each cluster in Cl−1 have to be compared to each

point in each cluster in ~Cl. This approach develops a O(n2) complexity, where n is

the number of points in the dataset.

The approach used in this chapter stems from Observation 3. Starting at the first

value where this observation appears, the number of cluster does not change. Since

most data structures that can be used for managing clusters and their points such as

hash tables, maps and dictionaries already keep a record of their size, the complexity

of this approach is O(1). In the worst case scenario, the number of clusters have to

be counted each time which results in a O(m) complexity, where m is the number of

clusters. Empirically, it has been found that m << n.

Another experimental observation involves the application of the learnt colour model

to subsequent frames. The results show that if the object and some of the background

colours are different shades of the same colour, subsequent frames can end up with

background and object colour clusters merging. While there is nothing wrong with

the clusters merging if they have some similarity, the tracker can lose the colour

model. Assuming i = 1, when the scenario in Observation 1 occurs, the cluster that

results from clusters in ~Ci−1 merging has more points than the sum of the merging

clusters. This is because in order to merge the clusters, some of the points that were

noise in ~Ci−1 are brought in to form part of the new cluster in ~Ci. The inclusion of

these points into the new cluster reduces the similarity of points in the new cluster.

The final step in the training algorithm is offering the user a list of detected colour

clusters for them to choose from. In this thesis, we provided the choice by drawing

dots at the locations of the cluster features which helps the user visualise the colours

on the frame. While the training algorithm can select a default minPts value, we

realise that the value may not be optimal, as such, we offer the user the ability to

explore other values of minPts from which they can potentially see the best colour

clusters.
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5.1.2 Track and Update

The track and update algorithm requires the learnt colour model ~Si−1 and the minPts,

sl, at which the model was learnt. In addition, it requires the colour datasets ~Di−1
and ~Di. A new dataset ~D = ~Di−1 ∪ ~Di such that it has length r = p+ q where p and

q are lengths of ~Di−1 and ~Di respectively. With this arrangement, the first p points

of ~D belong to ~Di−1.

HDBSCAN is then applied to ~D with minPts = 2 ∗ sl and the data labels, ~L are

extracted for ~D. ~L is then split into two such that ~L = ~Li−1 ∪ ~Li, where ~Li−1 has p

labels for the dataset ~Di−1 and ~Li has q labels for dataset ~Di. We then need to find

the new labels for the selected points in ~Si−1. It is worth noting that if any of the

points now has a noise label, they are ignored. Using the new ~Si−1 labels, we then

find all the points in ~Di that have the same labels using ~Li. The new selected model
~Si will then be used as input to the track and update for the frame Fi+1.

With this approach using two frames, the method in this thesis is therefore only con-

cerned with frame-by-frame tracking. We also used HDBSCAN on D with minPts =

2∗sl so that we can get clusters that span ~Li−1 and ~Li. If we only used minPts = sl,

the resulting clusters could be such that each of ~Li−1 and ~Li have their own indepen-

dent clusters which would make updating the colour model impossible. In theory, if

we wanted to increase temporal awareness of the track and update algorithm to y

frames, the colour model ~Si−1 would not need to change, but the combined dataset

would have to change such that ~D = ~Di−y−1 ∪ ~Di−y−2 ∪ ... ∪ ~Di.

The MOT in this chapter was tested on the dataset described in Chapter 2. While

it was designed for object counting, the videos contain a variety of scenes with birds

(voc-18-bd-{1-20}) and blood cells (voc-18-bl-{1-4}) which provide a good platform

to test our approach. The dataset is also not annotated and does not have predefined

benchmarks for common object tracking evaluation.

The training algorithm was assessed on the number of clusters the selected minPts

produced. Ideally, the number of clusters considered to be acceptable was set to be

between 2 and 10 not counting the noise cluster. The track and update algorithm was

assessed on the number of frames it took before the colour model was lost. For both
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the training and tracking algorithms, the times were also recorded. For training, we

measured the time it took for the algorithm to analyse the colours and select the best

minPts for detecting colour separation. For tracking, we measured the time it took

for the algorithm to combine the colours in the current and previous frame, detect

clusters and select the colour model for the current frame.

5.2 Colour Model Training and Tracking Results

The algorithms developed in the previous section were tested separately. The training

algorithm was developed to select the best colour separation in the video frame by

finding the best value of minPts. The algorithm then requires the user to choose from

the colours detected by HDBSCAN for the selected value of minpts. The selected

minPts, the number of clusters and the number of clusters chosen were recorded in

Table 5.1.

The tracking algorithm was used to test the minPts selection from the training algo-

rithm. We looked at how long it took in terms of the video frames before the tracker

lost the colour model. The effects of user choice of colours on the tracking algorithm

were also tested. We also tested the times it took to learn the colour model as well

as how long it took to track the features from frame to frame.

5.2.1 Colour Model Training

When evaluating the training results, we first looked at the change in the number of

clusters as minPts is varied from 3 to 30. The important output from this part of

the algorithm is the optimum minPts value and the selected colour model which are

both used for tracking the colours from one frame to the next. The quality of the

choice for these two is evaluated by looking at the tracking results.

The overall trend from the videos we tested the training algorithm on show an expo-

nential decay in the number of clusters for increasing value of minPts. In most cases

the higher values of minPts results in the same clusters being detected with slight

variations in the number of points in each of clusters as well as the number of clusters

found.
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Table 5.1: The training results with VOC-18 dataset. The ‘Points’ column shows
the number of colour points detected in the first frame and ‘Time’ column shows the
amount of time it took to analyse the colours by the training algorithm.

Video Points minPts Clusters Time (s)
voc-18-bd-1 3375 6 7 17.43
voc-18-bd-2 265 7 3 0.3196
voc-18-bd-3 415 4 11 0.355
voc-18-bd-4 198 6 5 0.2354
voc-18-bd-5 141 6 3 0.2049
voc-18-bd-6 246 6 4 0.2161
voc-18-bd-7 201 8 2 0.1312
voc-18-bd-8 379 3 24 0.2773
voc-18-bd-9 222 7 5 0.1869
voc-18-bd-10 219 15 4 0.1571
voc-18-bd-11 329 5 11 0.2711
voc-18-bd-12 1934 10 3 6.1631
voc-18-bd-13 185 6 2 0.1395
voc-18-bd-14 308 3 17 0.3915
voc-18-bd-15 300 4 3 0.3416
voc-18-bd-16 157 6 3 0.0673
voc-18-bd-17 304 3 24 0.1575
voc-18-bd-18 1826 3 151 4.6714
voc-18-bd-19 853 6 4 1.0212
voc-18-bd-20 129 14 2 0.0621
voc-18-bl-1 6631 13 2 37.4817
voc-18-bl-2 6010 24 5 31.601
voc-18-bl-3 3256 15 4 10.1651
voc-18-bl-4 1639 8 3 3.8409
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Figure 5.1 shows the training results from frame 1 of voc-18-bd-1 video. In Figure

5.1b, the trend can be clearly seen as the number of clusters falls from 263 with

minPts = 3 to 2 between minPts = {10, ..., 30}. The dominance of these two

clusters signifies that the video frame has two dominant colours which can be seen

in Figure 5.1a showing flamingoes sitting on water and Figure 5.1c which shows how

the colours of the frame were clustered. While only 2 clusters were detected for the

majority of the minPts values, there was fluctuation between the minPts sequences

that produced 2 and 3 clusters. As per the design of the algorithm both sequences

were rejected. The final selected value resulted in 7 clusters which (Figure 5.1c) is

still low enough for the choice of colours to be simple.

The strictness of the algorithm over the continuity of clusters between varying values

of minPts can cause the selection of a value that has a high number of clusters as

shown in Figure 5.2. In the test video voc-18-bd-18 (Figure 5.2a), the number of

clusters being discovered was irregular. This resulted in minPts = 3 selection, which

had 151 clusters (See Figures 5.2b and 5.2c). This presents a challenge for the part of

the training algorithm that requires a person to select the colours of interest because

there too many clusters at minPts = 3.
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(a) The training frame from voc-18-bd-1 video.

(b) The training results for voc-18-bd-1 video.

(c) A scatter plot of voc-18-bd-1 colours and the results
of the clusters at minPts = 6.

Figure 5.1: Training, and tracking the colour model of voc-18-bd-1.
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(a) The training frame from voc-18-bd-18 video.

(b) The training results for voc-18-bd-18 video.

(c) 3D scatter graph of voc-18-bd-18 video’s first frame.

Figure 5.2: Training, and tracking the colour model of voc-18-bd-18.
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The outcome from the training algorithm is confirmed by Figure 5.2c. The figure

shows that there are no visually clear separation between the colours. Instead, the

colours are distributed in the frame with gradual increase such that they are in a

straight line. In terms of the detected clusters, this gradual distribution of colours

in the frame can be seen in Figure 5.2b where there is big change in the number of

clusters from 151 to 3 between minPts values of 3 and 4. The subsequent values

produce a fluctuating 2 and 3 number of clusters.

Another video where our algorithm had a difficult time separating the colours is voc-

18-bd-3 whose results are shown in Figure 5.3. In the video, there are birds flying over

water with the sun causing a glare over the frame such that there is a gradual change

in the pixel values (See Figures 5.3a and 5.3b). Furthermore, some of the birds’

colours are affected by the glare making it difficult for clear separation of colours.

The 3D scatter (Figure 5.3c) shows that a good argument can be made for 2 groups

of colours in the frame. However, the glare caused too much variance in the colours

affected. This did not only affect the validity values (minPts = {12, ..., 30}), but

also affected the smooth separation of the colours (minPts = {6, ..., 12}). In this

case, cluster 4 was the one chosen to represent the colours of the objects of interest.

The cluster however, does not represent all the birds, nor does it represent their true

colours. The reason for selecting it is because it is consistent throughout the video.

In Figure 5.4, we show the choices offered to the user for selection in video voc-18-bd-

10 when minPts = 11 was selected for optimum cluster detection. The results for

voc-18 dataset in Table 5.1 show that for most of the videos, the training algorithm

managed to select values of minPts with the number of clusters less than 10. We

found that this number of clusters is manageable for selection of object colours. In

two of the videos, voc-18-bd-19 and voc-18-bl-1, the provided clusters did not offer a

good selection of colours as such there were no colours learnt.
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(a) The training frame from voc-18-bd-3
video.

(b) The training results for voc-18-bd-3 video.
For this video, the minPts selected was 4
which had 11 clusters.

(c) 3D scatter plot of the first frame of voc-
18-bd-3 video.

Figure 5.3: Training, and tracking the colour model of voc-18-bd-3.
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(a) The noise colour cluster.

(b) Cluster 3

(c) Cluster 4

(d) Cluster 5.

Figure 5.4: Options for colour selection voc-18-bd-10 video. With selected minPts =
11, 3 non-noise clusters were detected and offered as choices for the colour model.
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5.2.2 Frame by Frame Colour Tracking

The tracking results are shown in Table 5.2. The table does not have results for videos

voc-18-bd-18 and voc-18-bl-1 because the training algorithm did not successfully learn

the colour model. The “Tracker Lost at” column shows the first frame at which the

tracker loses the selected colour model. In analysing the result from the tracker, we

considered two scenarios; instant failure (colour model lost in less than 10 frames),

and successful tracking.

In the 22 videos where the colour model was successfully learned, 7 of them fell in

the instant failure group. In those videos, the results in the frame when the colour

model was lost showed either a significant decrease in the number of clusters detected

or a significant increase in the number of points in the selected colour model (See

Table 5.3). In terms of the number of clusters, the effect is that the points that were

rejected in the previous frame end up being labelled with the colour model points

which causes the tracker to lose the model. This also leads to an increase in the

number of points. In cases where the number of clusters did not change, there was a

significant change to the structure of the clusters. But since we were not doing deep

cluster analysis the tracking algorithm did not recognise the loss of the model.

In videos such as voc-18-bd-12 (Figure 5.5) where there is a distinct difference of

colours between the difference in colours of interest and the background, our algorithm

successfully tracked the chosen colours from beginning to end of the video. This was

observed in 10 of the videos which are characterised by high contrast between the

Figure 5.5: The tracker results for voc-18-bd-12 video showing successful colour model
tracking from the first to the last frame.
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objects and the background. The exception is voc-18-bd-19 where the building had

a lot of colours similar to the birds and as such the building colours were part of

the colour model from the beginning. The rest of the videos in the dataset showed

varying degrees of successful tracking.

The effect of user selection of the colours during the algorithm training can be seen

in voc-18-bl-2 video. Figures 5.6a and 5.6b depict clusters 5 and 6 that the training

algorithm offered as some of the possible choices for the colour model. Cluster 5

points (Figure 5.6a) are on the darker side of the blood cells while cluster 6 points

(Figure 5.6b) are in the middle of the cells. However, the middle of the cells have

colours similar to the background. Selecting cluster 6 as part of the tracked colours

resulted in the introduction of noise in the 34th frame. If cluster 5 is the only one

selected, the tracking algorithm successfully tracked the colours in all the frames.

(a) voc-18-bl-2 video cluster 5. The
points are on the edge of the cells
where the colours are more distinct.

(b) voc-18-bl-2 video cluster 6. The
points are in the middle of the blood
cells which is a lot similar in colour
to the background.

Figure 5.6: The problem posed by object colours that are similar to the background
colours.
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Table 5.2: The results of tracking the colours based on the selected colours.

Video Length
Tracker
Lost at:

voc-18-bd-1 77 77
voc-18-bd-2 71 51
voc-18-bd-3 103 103
voc-18-bd-4 65 4
voc-18-bd-5 56 56
voc-18-bd-6 37 10
voc-18-bd-7 87 2
voc-18-bd-8 85 2
voc-18-bd-9 143 10
voc-18-bd-10 121 121
voc-18-bd-11 155 2
voc-18-bd-12 73 73
voc-18-bd-13 99 22
voc-18-bd-14 110 5
voc-18-bd-15 115 115
voc-18-bd-16 75 3
voc-18-bd-17 85 72
voc-18-bd-19 117 117
voc-18-bd-20 93 76
voc-18-bl-2 94 94
voc-18-bl-3 80 6
voc-18-bl-4 49 11

Table 5.3: The table showing the videos where the tracker lost the model instantly.

Video
Clusters
(I-1)

Clusters
(I)

Points
(I-1)

Points
(I)

voc-18-bd-6 7 4 10 67
voc-18-bd-7 3 3 9 67
voc-18-bd-8 25 4 36 190
voc-18-bd-11 12 3 29 215
voc-18-bd-14 7 2 16 30
voc-18-bd-16 3 3 24 42
voc-18-bl-3 5 2 1291 2318

102



CHAPTER 5. COLOUR MODEL TRACKING

5.2.3 Training and Tracking Times

The bulk of HDBSCAN’s time complexity is dominated by the distance calculation.

The distance matrix is symmetric with 0 on the principal diagonal such that di,j = dj,i

and di,j = 0 if i = j. This property of the distance matrix allows for significant

reduction in the memory requirements by only storing the top half of the matrix. If

the length of the dataset is denoted by N , then the new distance matrix as a vector

will have length Nd = N(N − 1)/2. Our implementation takes advantage of this

property to speed up distance calculations and reduce required memory. However,

the overall complexity of the algorithm is still O(n2). The colour model training

times can be seen in Table 5.1 while the complexity has been highlighted in Figure

5.7.

Table 5.4 shows the average number of point per frame for each of the videos in the

dataset and the average time it took for each frame. The data in the table has also

been arranged in ascending order of the average number of points. It is worth noting

that the number of points per frame may vary widely as they rely on the number of

objects in the video. It is also worth noting that for tracking, we use points from two

frames which means per frame, the algorithm is processing around twice the number

of points. The tracking algorithm still relies on HDBSCAN which mean it is also a

O(n2) as can be seen in Figure 5.8.
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Table 5.4: The average number of features being tracked per frame and the average
time taken to process each frame arranged in ascending order.

Video
Average
Points
Per Video

Average
Duration
Per Frame
(s)

voc-18-bd-2 47 0.06234171
voc-18-bd-20 106 0.03249336
voc-18-bd-16 144 0.00843991
voc-18-bd-9 172 0.01150438
voc-18-bd-5 193 0.05855851
voc-18-bd-13 199 0.05959434
voc-18-bd-7 218 0.03284515
voc-18-bd-17 256 0.03664438
voc-18-bd-15 270 0.03493461
voc-18-bd-4 271 0.06568578
voc-18-bd-14 290 0.05997002
voc-18-bd-6 293 0.15951065
voc-18-bd-9 315 0.06294197
voc-18-bd-10 359 0.07135481
voc-18-bd-11 401 0.18854269
voc-18-bd-8 426 0.09738525
voc-18-bd-3 509 0.10776893
voc-18-bd-19 951 0.15017254
voc-18-bl-4 1659 0.91024479
voc-18-bl-3 1912 1.03131769
voc-18-bd-12 1918 1.47564444
voc-18-bl-18 1950 0.83814666
voc-18-bd-1 3271 3.08022
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Figure 5.7: The graph of number of points vs time for learning the object colour
model on the first frame.

Figure 5.8: The graph of average number of point per frame vs the tracking duration.
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5.3 Summary

In this chapter we have presented an approach for tracking colours of interest in mul-

tiple locations in videos without the need for the user to directly input the locations.

The approach was tested on videos with different properties such as cluttered scenes,

distinct background/foreground and similar background/foreground. We tested the

approach on 24 videos with varying degrees of success. While the chapter uses colours

for tracking, this approach can work with other features that are matched using eu-

clidean distance.

Out of the 24 videos, the training algorithm was able to select minPts values where

the number of clusters was 10 or less in 20 of the videos. In the 6 videos where

this observation did not hold, the results showed a fluctuating number of clusters

and validity values for all values of minPts. Future improvement on the training

algorithm could include an in-depth analysis of the clusters for varying values of

minPts to detect the points that cause the validity of the results to reduce. The

points can then be manually removed from the results in order to obtain more stable

clusters.

The most important feature of the training algorithm in this chapter is the online

training capability that reduces the user input. It also overcomes the weaknesses of

deep learning techniques by reducing the amount of work, time and computational re-

quirements. While deep leaning approaches rely on user labelled data and supervised

offline training, our approach reduces the user interaction to selection of detected

feature clusters. This reduces the training time from hours and days to less than a

minute even when processing thousands of features. The training data requirements

are reduced to just a single frame.

The tracking algorithm showed varying degrees of success, but it is more about the

weakness of colours as a unique feature. In videos that had distinct foreground/back-

ground colours, the algorithm successfully tracked the colours for all frames in the

video. In cluttered scenes of similar foreground/background videos, the tracking al-

gorithm was able to track the objects for a while before background colours started

appearing in the results. The latter of the two types of videos showed more suscep-
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tibility to erroneous results.

In the next chapter, we show how to extract the objects of interest locations from the

clusters detected in Chapter 4. The localisation algorithm described in the chapter

also gives some false positive location. In Section 6.5, we show how to use the colour

model from this chapter to detect and remove the false positive locations.
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Chapter 6
Object Locations and Count Estimations

In Chapter 3, we introduced SOT and tested the algorithms implemented in OpenCV.

We showed that different SOT algorithms had varying degrees of success on our

dataset with BOOSTING tracker performing the best. In Chapter 4, we demon-

strated that given SURF features in a frame, we can use HDBSCAN to detect clus-

ters of descriptors which represents multiple feature instances matches. We showed

that these would fail Lowe’s ratio test which was designed for evaluating one-to-one

matches. We also demonstrated that the validity evaluation method described in

Subsection 3.4.5 can be used successfully to determine whether the clustering results

were good or not.

In this chapter, we use the user-given ROI to learn the object of interest’s features.

We select the non-noise clusters that intersect with the ROI to detect and localise

the object instances in each cluster. In this thesis, a cluster C intersects with an ROI

r, if there is at least one feature whose spatial location is in side r. We then combine

locations from each cluster into frame-wide locations which we use to represent the

object count estimations. Additionally, we show how we detect occlusions as well as

objects whose clusters do not intersect with the initial ROI.

This chapter is organised as follows: in Section 6.1, we discuss how to learn the

object of interest features, track the the object from frame to frame and re-initialise
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the tracker when the object going off the frame. In Section 6.2, we demonstrate how

to find other object using the ROI and the intersecting clusters. Rotational variances

are handled in 6.2.3 and in 6.4, we explain how to find objects whose clusters do not

intersect with the original ROI.

6.1 Object of Interest Feature Learning and Track-

ing

In Chapter 3, we explored the SOTs in OpenCV and found that BOOSTING tracker

provides the most stable tracking abilities and as such was used in this thesis. In

this section, we explain how we use the SOT to provide a template initial object for

our object counting approach. We employ the SOT in our approach so that the user

interaction is limited to selecting the ROI for the object of interest only once. As

such, regardless of how many objects are in the frame, the user interaction is always

O(1).

Given a set of frame keypoints, K, we use the ROI, r, to select K̂ ⊂ K, where for

each k ∈ K̂, the feature location p is inside r. We detect the clusters in the descriptor

dataset D and extract a set of clusters C as described in chapter 4. For each k ∈ K̂,

we extract ROI clusters Ĉ ⊂ C and ROI cluster labels L̂ ⊂ L such that for all Cĵ ∈ Ĉ,
lĵ ∈ L̂ 6= 0. Essentially, we are using this approach to learn the good features of our

object which we then use in the next section to localise object of interest instances

in the frame.

In our video dataset, we compiled videos with a lot of motion, both in terms of the

camera and the object themselves. As such, our tracking has to handle the chance

that the target object will drift off the frame. In this thesis, we address this issue by

using one of the objects detected in the previous frame. We set a ten pixel boundary

around the edge of the frame. If the initial object breaches the boundary, the object

is abandoned and a new object location is selected from the previous frame’s detected

locations to re-initialise the tracker. We first order the previous frame’s located object

in descending order of their matching criteria which will be explained in Section 6.2.

We then select the object that best matches the frame’s initial object, the result of
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(a) The target object about to breach the ten pixel
barrier.

(b) New target object selected from the previous frame.

Figure 6.1: Re-initialisation of the tracker when the target breaches the ten pixel
barrier.

which is shown in Figure 6.1.

The re-initialisation of the tracker approach did not work well in some of our videos.

Most notably, voc-18-bd-16, which has one of the most extreme cases of scale and

vanishing point in our dataset. In fact, it is one of the two videos that have all the

challenges as outlined in Chapter 2. In the video, the initial object is very close to the

camera while a lot more birds are further away. As will be explained in Section 6.2,

the scale problem caused the re-initialisation algorithm to completely lose the initial

object as can be seen in Figure 6.2. In the figure, the initial object in frame 23 is about

to move off the frame, however, the scale of the other objects and other challenges
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(a) The target object about to breach the ten pixel
barrier.

(b) Re-initialisation failure to re-initialise the object in
the next frame.

Figure 6.2: The effect of scale in re-initialising the tracker when the object moves off
the frame.

caused the localisation algorithm (Section 6.2) to fail as such the re-initialisation

algorithm selected the area of the frame that contained the object but with a rather

large ROI that far exceeded the size of the object.

The feature learning approach used in this thesis is comparatively better than the

offline training methods discussed in Section 1.1 [10, 18, 33]. The advantage with

our learning approach is that we do not need to know what the object looks like

beforehand. In fact, the feature learning does no computationally intensive work as

it just looks for features within the initial ROI. The computationally intensive process

of identifying non-noise ROI features is done as part of the matching algorithm defined
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in Chapter 4. This means that at most, the learning algorithm takes as long as the

combination of matching (see Section 4.1) and localisation (see Section 6.2) tasks.

6.2 Object Localisation

Homography [90] is a projective mapping from one plane to another. Given two

matched points p1 and p2, homography provides a mapping such that p1 = H ∗ p2,
where H is a 3 by 3 matrix as shown in Equation 6.1. In feature matching and object

localisation, a minimum of four points are needed to solve for H [91]. In this thesis,

we push the limit of matched features to just one per object. As such, we cannot use

homography to localise the object instances in the frame.

x1y1
1

 =

h00 h01 h02

h10 h11 h12

h20 h21 h22


x2y2

1

 (6.1)

In this section, we discuss how we extract the location of objects from the descriptor

clusters. In addition, we explain how our localisation handles the different challenges

introduced in Chapter 2. We describe how different dataset challenges detailed in

Chapter 2 affect the localisation algorithm and possible mitigation techniques em-

ployed.

6.2.1 Cluster Objects Localisation

In this thesis, we take a different approach to object localisation. Utilising SURF

features’ precision, we use Algorithm 4 to find the location of object of interest

instance from just one match. Given a non-noise cluster Cĵ ∈ Ĉ that intersects with

the ROI r, we find the intersecting feature location pt, and for each of the other

features locations pl, we calculate the difference between the two locations and use

it to shift r to the new location. In cases where there is more than one feature in a

cluster within the r, we set pt to be whichever ROI feature that pl is closest to the

centre of r. We also calculate a matching score by using moments to compare the

template object bounded by r with the new object bounded by rl.
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Algorithm 4: Detecting the new object location using the locations of a
sample feature and a cluster feature.

Data: r - region of interest
Data: pt - location of the sample feature
Data: pl - location of the point in the same cluster with pt
Result: rl - Detected object ROI
Result: ml - Matching score based on moments comparisons.
ps ← pt − pl
rs ← shift(r, ps)
r̂s ← rs ∗ 2
rl ← templateMatch(r̂s, r)
ml ← momentsCompare(rl, r)

As accurate as SURF can be, the new ROI rs is almost always slightly off the located

object instance (See Figure 6.3a). In our approach, we compensate for this by using

localised template matching [92]. We first increase the width and height of the rs by

half before performing the template match with r. Then we locate the best matching

coordinates and re-centre rs at the coordinates as depicted in Figure 6.3b obtaining

the final object location rl. While this method does manages to correct the locations

of the new ROIs, it also suffers from occlusion influence. In Figure 6.3b, the top

right location has been shifted off the bird that actually influenced the feature due to

occlusion. This approach to localisation also shows how we are able to successfully

detect the object instances while using just one feature per instance instead of four

as required when using homography.

The localisation algorithm relies solely on the similarity of the features in the clus-

ter. In some cases, the clusters contain features that are similar but are visually on

different parts of the objects. Such clusters then cause the localisation algorithm to

create some false positive locations as shown in Figure 6.4. In Figure 6.4a, the initial

ROI feature is on the neck of the bird, as are some of the features in the clusters.

However, some of the features in the cluster are on the bellies of the birds which leads

to false positives locations.

It is worth noting that in this instance, the frame clustering results had validity of

4. The cluster had intra-cluster distance ratio of 0.277 and confidence of 98.61%. In
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Table 6.1: Selected clusters in frame 10 of vo-18-bd-1.

Core Distances Intra-Cluster Distances

Cluster
Number
of Points

Min Max Ratio
Confidence

%
Min Max Ratio

Confidence
%

37 5 0.242 0.273 0.888 60.3 0.188 0.336 0.561 99.31
55 12 0.22 0.263 0.84 58.06 0.149 0.537 0.277 98.61
89 17 0.161 0.249 0.645 45.42 0.155 0.502 0.309 98.76
169 36 0.137 0.23 0.596 40.91 0.119 0.459 0.259 98.52
170 22 0.132 0.229 0.579 39.18 0.121 0.435 0.278 98.62
238 53 0.129 0.216 0.595 40.82 0.072 0.518 0.138 97.22

comparison, clusters 169 and 238 had distance ratios of 0.259 and 0.138 respectively

(See Table 6.1), and as shown in Figures 6.4b and 6.4c, localisation had more accurate

locations. This is a further confirmation that distance ratios cannot be used to filter

out clusters that might cause false positives.

6.2.2 Scale Challenges

SURF features detect scaled features by using image pyramids and applying box

filters directly on the integral image [24]. Rather than iteratively reducing the image

(a) Results of
shifting without
compensating for
slight variations
in locations of
features.

(b) Variations in
feature location
compensated by
localised template
matching.

Figure 6.3: Comparison of raw shifting and shifting with template matching.
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(a) False positive locations due to a cluster 55 with
visually different features.

(b) Correct locations detected from cluster 169.

(c) Correct locations detected from cluster 238.

Figure 6.4: Locations of birds in voc-18-bd-1 for different clusters. The first sub-figure
shows the false positive locations while the other two show accurate localisations.
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size, SURF analyses the scale space by up-scaling the filter size. This approach

increases computational efficiency compared to SIFT [34]. The scale at which the

feature is detected is also used to determine the size of the area around the keypoint

from which the descriptor is calculated. This means that for features that are on the

objects, the size of the keypoint can signify the size of the object as can be seen in

Figure 6.5. The feature locations are in the centre of the objects. Since the objects

have the most influence on the descriptor, the size of the keypoint area reflects the

size of the objects and suggests that the size of the keypoint area can be used to scale

the ROI size.

Figure 6.5: Cluster features drawn to show scale invariance of the SURF features.

In this thesis, we do not scale the located object ROI because we discovered that fea-

tures that are not on the objects or are heavily influenced by the object surroundings

can have widely different scales even if the objects are of relatively same size as shown

in Figure 6.6. In Figure 6.6a, the features are located off the objects, but have been

used successfully by our localisation method to locate the objects. However, they

have different sizes and since the objects are of the same size, adjusting the ROIs for

scale would not properly locate the objects. The same problem would be encountered

in Figure 6.6b where even though the features are located on the objects, there is still

a lot of influence from the surrounding which led to significant differences in feature

sizes.

An extreme case of localisation failure due to scale challenges can be seen in Figure
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(a) Features on the object surrounding with different feature sizes.

(b) Features on the object but being influenced by the object surrounding.

Figure 6.6: Evidence of feature scale not representing object size.

6.7. This is the last frame with accurate initial object that was mentioned in Section

6.1 and the value of minPts = 3 was used. Due to the extreme scale challenge be-

tween the initial object and the other objects in the frame, the localisation algorithm

failed to properly locate any other object. The results of such localisation failure for

each cluster can be seen in Figure 6.7a which shows all the cluster locations combined.

As we show in Table 6.2, the intra-cluster distance ratios in the selected clusters were
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(a) Combined locations
from all the selected
clusters.

(b) Object locations from
cluster 7.

(c) Object locations from
cluster 9.

(d) Object locations from
cluster 14.

(e) Object locations from
cluster 16.

(f) Object locations from
cluster 17.

Figure 6.7: Failure of localisation algorithm to find the other objects due to extreme
scale challenges in voc-18-bd-16.

very low, with cluster 7 being the lowest with the ratio of 0.05 and cluster 16 being

the highest with a ratio of 0.27. The extreme case in this video can also be observed

when detecting clusters using minPts = 2 as shown in Table 6.3. In this case, the

largest ratio from using minPts = 2 where the number of features was greater than

2 is cluster 10. In fact, apart from cluster 10, all the other clusters with the number

of features greater than 2 are all below the ratio of 0.5. The clusters that had only

two features were composed of features on the same initial object.

Table 6.2: Distance values of the selected clusters in voc-18-bd-16 frame 23 with
minPts = 3.

Cluster
Num.

of
Features

Min
Distance

Max
Distance

Ratio

7 17 0.0375719 0.796797 0.0471537
9 5 0.0608773 0.335271 0.181576
14 3 0.0401456 0.323144 0.124234
16 8 0.156832 0.59152 0.265133
17 8 0.0811655 0.686787 0.118181
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Table 6.3: Distance values of the selected clusters in voc-18-bd-16 frame 23 with
minPts = 2.

Cluster
Num.

of
Features

Min
Distance

Max
Distance

Ratio

5 2 0.33764 0.33764 1
10 4 0.405366 0.619812 0.654013
13 5 0.0608773 0.335271 0.181576
25 4 0.0375719 0.484922 0.0774802
26 3 0.0401456 0.323144 0.124234
29 2 0.314023 0.314023 1
33 2 0.377196 0.377196 1
37 6 0.0811655 0.521528 0.15563
38 5 0.283829 0.589078 0.481819
48 3 0.156832 0.316224 0.495952

6.2.3 Rotational Invariance

In Section 4.4, we showed that without taking into consideration SURF features’

rotational invariance, we get clusters where the angles may widely vary. We also

showed how we can augment the features with the angle such that HDBSCAN will

detect clusters of features with similar angles. In this section we show the effect of

localising the objects with and without the angles of rotation.

In Figure 6.8a, we localised the objects of interest from Figure 4.8a. As evident

from the figure, there are a lot of false positive locations. In comparison, Figures

6.8b and 6.8c show that with augmented descriptors clusters reduce the number of

false positives. The feature that was identified in Figure 4.9a can be seen in Figure

6.8b having resulted in a false positive location. In this thesis, we use rotational

variance as one of the parameters we can use to fine tune the results of our counting

approach. In line with the aims in this thesis of reducing technical understanding of

the data, the use of this parameter only requires the visual inspection of the object

to determine if the objects in the video have symmetry or not.
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6.2.4 Occlusion and Partial Visibility

One of the challenges posed by our dataset as discussed in Chapter 2 is occlusion and

partial visibility. Our localisation algorithm relies on precision feature description

by SURF and assumes that every feature match can be used alone to identify the

location of the object. We have shown that this is true in the subsections above. As

such, partially visible objects can be properly identified as long as there is a matched

feature on or around the visible part of the objects as shown in the bottom left of

Figure 6.8c.

Detection of partially visible objects relies on whether there were SURF features

detected in and around the partially visible objects and whether the features formed

clusters with any feature inside the ROI. In order to allow for the creation of the

oriented quadratic grid around the detected feature, SURF leaves a boundary at the

edges of the frame (Figure 6.10a). As such, a partially visible object has to extend

inside the boundary in order for any features to be detected on it. Figure 6.10b

shows the detection of partially visible objects where the partially visible birds were

inside the boundary and features were detected on their tails. The features then

formed a cluster with the feature on the tail of the bird inside the initial ROI (the

red rectangle). Our localisation algorithm takes into consideration the possibility of

partial visibility which leads to the detected object ROI exceeding the boundaries of

the frame and as such was able to properly locate the birds.

In terms of occlusion, our localisation algorithm has two weaknesses. The first weak-

ness is the localised template matching. In Figure 6.3a, the cluster provided 3 features

which show features located below the flamingoes. One of the flamingoes which has

a feature is partially occluding the one above it. However the occlusion is small so

the local template matching part identifies the top flamingo instead of the bottom

one which is the one that created the feature.

The second weakness is because of the threshold enforced by our algorithm that two

ROIs identify the same object if they overlap by more than 50% of the area. This

restriction makes our localisation algorithm to be very sensitive to partial occlusion

due to irregular shape of some of the objects, the ROI area may not properly match
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the shape of the object. In Figure 6.9a, the localisation algorithm missed the bottom

object while it located both objects in Figure 6.9b. However, empirical evidence

suggests that dropping the overlap below 50%, objects may be counted multiple

times.

6.2.5 Complex Background

Our approach to locate objects relies only on the clusters we detected without any

further processing to determine whether the matches are accurate. As such, any

matched features from the complex background will be treated as any actual object

features. Such outcomes can be seen in Figure 6.11 where some of the features in

the clusters come from the background and as such have resulted in false positive

locations for that cluster which led to the background feature localisations being

included in the final frame object count estimation.

The presence of background features in a cluster does not necessarily mean that the

cluster is noisy or that the clusters are invalid. However, experimental results show

that the clusters often have low intra-cluster distance ratios. However, this cannot

be conclusively used to filter out the false positive as the distance ratio can vary

widely. As an example, in Figures 6.11a and 6.11b, the distance ratio was 0.153 and

0.017 respectively. In both cases, there were a lot of false positive locations due o

presence of background features in the cluster. In comparison, Figure 6.11b had a

comparable distance ratio of 0.172 but with more visibly similar features and very

good localisation results.
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(a) False positive locations created by not considering
rotational invariance of SURF features.

(b) Object locations detected from clusters with rota-
tional variance consideration.

(c) Object locations detected from clusters with rota-
tional variance consideration.

Figure 6.8: Comparison of object localisation with and without rotational consider-
ation.
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(a) Partial occlusion missed
by the localisation algo-
rithm in Frame 2.

(b) Partial occlusion recog-
nised by the localisation al-
gorithm in Frame 7.

Figure 6.9: Susceptibility of the localisation algorithm to partial occlusion.
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(a) All the SURF features detected in Frame 10 of voc-
18-bd-1.

(b) Detection of partially visible objects.

Figure 6.10: Susceptibility of the localisation algorithm to partial visibility.
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(a) Background features in voc-18-bd-6 affecting object
localisations with intra-cluster distance ratio of 0.153.

(b) Background features in cluster 56 of voc-18-bd-19
affecting object localisations with intra-cluster distance
ratio of 0.017.

(c) Background features in cluster 78 voc-18-bd-19 af-
fecting object localisations with intra-cluster distance
ratio of 0.172 which is comparable to Figure 6.11a.

Figure 6.11: False positives from background features.
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6.3 Frame Count Estimation

We maintain a list of detected object instances for each intersecting cluster, Cĵ,

Rĵ = {r1
ĵ
, . . . , rx

ĵ
}, where rx is the location of new object instances and x is the

number of features in the cluster. For each new discovered location, rl, we first check

if it already exists in the list. We do this by checking if there is an ROI rx ∈ Rĵ such

that rl ∩ rx > 0.5. The effect of this intersection limit can be seen in Figure 6.12d

where cluster 37 had 16 features but the localisation algorithm found eight objects

because some of the intersecting ROIs have been combined.

(a) All the features in frame 1 of voc-
18-bd-10.

(b) Final object localisations for
frame 1 of voc-18-bd-10.

(c) Localisation in cluster 12 in
Frame 1 of voc-18-bd-10.

(d) Localisation in cluster 37 in
Frame 1 of voc-18-bd-10.

Figure 6.12: Final object localisations and multiple clusters identifying the same
objects.

With the method described above, we obtain R̂ = {R1, . . . , Rj} for each frame, where

each Rĵ ∈ R̂ corresponds to locations detected from cluster Cĵ ∈ Ĉ. We then combine

all Rĵ to obtain R = {r̂1, . . . , r̂z}, where z is the number of objects detected within

the frame. The combination of the locations from individual clusters uses the same

approach to add a new location to cluster locations since features from different

clusters may identify the same object instance.
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In Figure 6.12, we show the results of our approach with frame 1 of voc-18-bd-10

using varying minPts approach described in Section 4.2. Figure 6.12a shows all the

SURF keypoints in frame 1, Figure 6.12b shows the final localisation results while

6.12c and 6.12d show two of the clusters in Ĉ. In this frame, minPts = 3 produced

the best results with validity = 2. The final object count estimation was 15 against

the ground truth of 10 due to some false positive detections which will be discussed

in detail, along with some mitigation techniques, in the next sections and in Chapter

7.

Low validities, as discussed in Chapter 4, introduce a lot of noise features into non-

noise clusters. This means the localisation algorithm then suffers from the noise in the

clusters, resulting in a lot of false positive locations found. In Figure 6.13, we show

some examples of these noisy clusters and how they lead to false positive locations.

The approach to mitigating this problem will be discussed in Section 6.5.

(a) The effect of noise in cluster 3 of
frame 3 from voc-18-bd-1.

(b) The effect of noise in cluster 4 of
frame 54 from voc-18-bd-10.

(c) The effect of noise in cluster 32
of frame 1 from voc-18-bd-18.

(d) The effect of noise in cluster 5 of
frame 1 from voc-18-bl-1.

Figure 6.13: Example of noisy clusters in creating false positive locations. In these
images, the noise can be noticed because some features are on the object while others
are on the background where the colours are noticeably different.
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6.4 Iterative Cluster Daisy-Chain

In Section 6.1, we showed how we learn the object of interest features using the ROI

provided by the user. In 6.2, we showed how to filter out noise features from the ROI

features and use the valid features to locate the other objects in the frame. However,

this approach assumes that the single initial object instance provides all the possible

features of the object of interest. Empirically, we found that some valid object feature

clusters may not intersect with r which can lead to some object instances being missed

by the localisation algorithm.

In Figure 6.14, cluster 127 intersected with the initial ROI and the object instances

were properly identified. However, cluster 10 did not intersect with the initial ROI

and as such was left out of the object count even though it clearly identifies some of

the birds in the frame. In this example, the clusters were detected using minPts = 3

with no rotational variance. The problem of missing objects become more pronounced

when cluster over-segmentation (See Section 4.3) is used. UsingminPts = 3 for frame

1 shown above, only seven clusters were found to intersect the initial ROI giving 107

object count estimation while nine were found when using minPts = 2 resulting in

88 object identified. The ground truth for the frame was 273 objects.

In this thesis, we use cluster daisy-chaining to find the clusters that do not intersect

with the initial ROI. Given R0 as the list of object instance locations detected from

using clusters that intersected with the initial ROI, we iterate through the R0, and

for each location, we find all clusters that intersect with the instance ROI that were

not used in the original ROI. We then use the approach described in Subsection 6.2.1,

to find the new object instances location R1. Since a cluster may intersect more than

one ROI, we use the ROI with the best template match score. This iterative cluster

daisy-chaining can be used as often as necessary to get satisfactory results. In this

thesis, we use I to represent the number of iterations such that RI is the final object

locations after I iterations.

The results of one such cluster can be seen in Figure 6.14c where the new object

locations were detected from cluster 10 intersecting one of the object locations de-

tected by cluster 127 which was the one that intersected with the initial ROI. In this
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instance, the overall object count estimation from daisy chaining the clusters rose

to 263 when using minPts = 3 and to 286 when using minPts = 2 with just one

iteration of cluster daisy-chaining. The results of using various iteration values can

be seen in Table 6.4. The table shows that there is a limit to the number of objects

detected which is bounded by the number of clusters detected. It is worth noting

that empirically, we found that HODVs tend to require cluster daisy-chaining the

most while LODVs require it the least.

Table 6.4: Object count estimations using various iteration values for minPts = 2
and 3 on frame 1 of voc-18-bd1.

minPts = 2
clusters = 706

minPts = 3
clusters = 145

Iterations
Selected
Clusters

Estimation
Selected
Clusters

Estimation

0 9 88 7 107
1 380 286 113 260
2 654 329 141 281
3 665 331 143 283
4 665 331 143 283

In this thesis, we make an assumption that if a cluster intersects with an ROI, then

it can be used to find other object locations without any further validations. This

often works well when I = 0 but can introduce false positive locations when using

iterative cluster daisy-chaining. In Table 6.4, we notice that for minPts = 3, we

ended up selecting 143 clusters out of 145 clusters detected in the frame. The result

is that some of the clusters do not properly represent the objects of interest or when

the wrong location is selected as the basis for the intersecting clusters.

In Figure 6.15, we show the introduction of false positives due to daisy-chaining two

clusters in frame 1 of voc-18-bd-1 for I = 3. In Figure 6.15a, the failure is due

to the features being on the surrounding of the objects. Such features are often

influenced by the more than one object as well as the surrounding. The features

also often have different scales which, as discussed in Subsection 6.2.2, leads to false

positive locations. In Figure 6.15b, the daisy-chaining failure is due to the wrong

ROI being selected as a template for cluster 220 which led the new object locations
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to be false-positives.
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(a) Locations from cluster 127 in frame 1 of voc-18-bd-
1.

(b) An example of a good cluster that has been skipped
because it does not intersect the initial ROI.

(c) New objects detected by using cluster daisy-
chaining approach.

Figure 6.14: Iterative cluster daisy-chaining to discover clusters that do not intersect
with the initial ROI in order to reduce false negatives.
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(a) Daisy chaining failure due to off-object features.

(b) Daisy-chain failure due to selection of wrong intersection ROI.

Figure 6.15: Iterative cluster daisy-chaining introducing false positives.
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6.5 False Positive Locations Detection and Elimi-

nation

In this section, we outline ways of reducing the false positive object locations. At

the centre of our approach is the colour model training and tracking described in

Chapter 5. We discuss two ways in which we can limit the presence of false positive

locations in the final object count estimation. In the first subsection, we approach

this problem by detecting the clusters in the frame’s colour descriptors. In the second

subsection, we select the locations from using full frame descriptors which contain

the colour model features.

6.5.1 Frame Object Count using Colour Model Clusters

The first approach to elimination of false positive locations is the detection of the

clusters within the colour model descriptors. Given the colour model keypoints,

Kcm, we create a new descriptor set, Dcm, from the descriptors corresponding to the

keypoints. We then process the descriptors in the same way as explained in Chapter

4 and extract the location of the objects using using the process described in Sections

6.2 and 6.3.

In videos where the colour model was successfully tracked, the number of features

is much less than the frame features. The effect of this reduction is that descriptor

clusters that do not belong to the colour model are removed as well as some of the

noise clusters. This leads to a descriptor dataset that may not have well defined

clusters which makes it difficult to detect the clusters. In terms of clustering results

validities, the effect is lower validity values as well as low confidences for visually

good clusters.

An extreme case of this is shown in Figure 6.16 and Table 6.5 for voc-18-bd-12. The

best colour model was selected at minPts = 15, and the descriptors were processed

using varying minPts values (See section 4.2) with no cluster over-segmentation (See

section 4.3) and no descriptor augmentation (See section 4.4). In frame 1, the total

number of features was 1934 compared with 432 for the colour model and the results

selected were for minPts = 3 with validity = 0 compared to the same minPts and
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Table 6.5: The clusters detected

Core Distances Intra-Cluster Distances
Cluster Number of Points Min Max Ratio Confidence Min Max Ratio Confidence

0 62 0.278 0.392 0.711 54.77 0.261 0.889 0.293 74.16
3 359 0.089 0.277 0.322 0 0.06 0.788 0.076 0
2 11 0.21 0.272 0.77 58.26 0.038 0.423 0.089 14.66

validity = 4 in full frame descriptors. Only two non-noise clusters were detected for

the colour model features compared with 64 for the frame descriptors.

(a) The colour model features. (b) The colour model noise cluster.

(c) Cluster 2 in the colour model fea-
tures.

(d) Cluster 3 in the colour model fea-
tures.

Figure 6.16: Detecting clusters in the colour model features in frame 1 of voc-18-bd-
12.

A key note from such results is the visual similarity of the features in the clusters

(even the noise cluster). This similarity and the nature of the clusters led to the non-

noise cluster 3 being calculated to have 0% confidence using both core distances and

intra-cluster distances. The low confidences are a consequence of the cluster being

so big that it has the largest maximum core and intra-cluster distances, even larger

than the noise cluster. Essentially, the larger the cluster, the higher the possibility

of it occupying a larger potion of the descriptor space leading to a very low min:max

ratio.
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A comparable cluster when detecting clusters in the full frame descriptors was 132

shown in Figure 6.17c which had 147 features compared with 359 features of colour

model cluster 2. The extra features from colour model cluster were either noise, or in

other clusters when detecting when using all frame descriptors. In frame descriptor

clustering, cluster 132 had core and intra-cluster distance ratios of 0.429 and 0.093

respectively while in colour model descriptors, cluster 3 had 0.322 and 0.076 core and

intra-cluster distance ratios respectively. However, in full frame descriptors clusters,

the noise cluster was much larger and had occupied a larger descriptor space. This

led to core and intra-cluster confidences of 18% and 92% respectively.

We show comparable results from frame descriptors in 6.17. For clarity, we removed

the non colour model features from the noise cluster (Figure 6.17a). There is a large

number of features that were noise in the frame descriptors that have now been

detected in a non-noise cluster (Figure 6.16d) while some are still detected as noise.

Figure 6.17b shows cluster 89 from frame descriptor clusters which contains some of

the colour model features that were detected in cluster 2 (Figure 6.16c) of the colour

model descriptors.

The good thing about detecting clusters within the colour model features is that since

we already have high confidence that the features represents our objects, or at the

very least, areas similar in colour to our objects, we can assume that localisation will

results in fewer false positives. A confirmation of this is shown in Figure 6.18 where

the frame localisation results for the colour model results shown in Figure 6.16 and

Table 6.5. In all the results, we used varying minPts with no angle augmentation

and no over-segmentation.

In Figures 6.18a and 6.18b, we show the final localisation results for frame 1 with

both frame descriptors and colour model descriptors cluster detections. In 6.18a, the

objects were properly identified while in 6.18b, the clustering validity was 0 and the

noisy clusters created a lot of locations where the bounding boxes were partially off

the actual objects. The good thing about using the colour model is that even when

the clusters are noisy, the localisation does not stray too far off the actual objects.

Further evidence of the usefulness of colour model in reducing false locations even

135



CHAPTER 6. OBJECT LOCATIONS AND COUNT ESTIMATIONS

when handling low validity clusters is shown in Figures 6.18d. The birds in voc-18-

bd-1 were large enough that they had a lot of features on them while in voc-18-bd-12,

only one feature was on the objects. Therefore, the localisation with noisy clusters

for voc-18-bd-1 had skewed results while in voc-18-bd-12, the localisation was still

accurate. In fact, we could have used the colour model features as it is without

detecting clusters.

6.5.2 Frame Descriptor Locations Combined with Colour Model

Locations

Given the colour model keypoints, Kcm, the object locations from frame descriptors,

Rd , and the object locations from the colour model clusters, Rcm, we combine

locations from Rd and Rcm using Algorithm 5. If any of the locations in Rd have

at least one colour model feature inside, we consider it to be a true object and

append it to Rc. All the locations detected from colour model descriptor clustering

are considered to be true locations and as such, they are just added to Rc. When

adding locations to Rc, we use the same approach described in Section 6.2 to detect

duplicate locations.

Algorithm 5: Combining the locations from frame descriptor clusters and
colour model descriptor clusters.

Data: Kcm - Colour model keypoints
Data: Rcm - Object locations from colour model clusters
Data: Rd - Object locations from frame descriptor clusters
Result: Rc - Combined locations
for r ∈ Rd do

for k ∈ Kcm do
if r contains k then

append(Rc, r)
end

end

end
for r ∈ Rcm do

append(Rc, r)
end
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With this approach, false positive locations from frame descriptor clusters were de-

tected and removed. The effect can be seen in Figure 6.19 where the frame descriptor

clusters (Figure 6.19a) detected 22 birds while colour model clusters (Figure 6.19b)

detected 11 birds. The combination of the two results detected 12 objects. In this

case, the ground truth was 10 and the descriptors were augmented with angles, minPts

was set to 2 and one iteration of cluster daisy-chaining was used.
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(a) Cluster 0 from the full descriptor cluster with non
colour model features removed.

(b) Cluster 89 from frame 1 descriptors of voc-18-bd-12
comparable with cluster 2 in Figure 6.16c.

(c) Cluster 132 from frame 1 descriptors of voc-18-bd-
12 comparable with cluster 3 in Figure 6.16d.

Figure 6.17: The clusters from the frame descriptors.
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(a) voc-18-bd-1 frame 1 descriptor clus-
ters localisation where validity = 4.

(b) voc-18-bd-1 frame 1 colour model
clusters localisation where validity = 0.

(c) voc-18-bd-12 frame 1 descriptor clus-
ters localisation where validity = 4.

(d) voc-18-bd-12 frame 1 colour model
clusters localisation where validity = 0.

Figure 6.18: Comparison between frame descriptor localisation and colour model
localisation. In this figure we used varying minPts and no rotation or cluster over-
segmentation.
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(a) Locations from frame descriptors with a lot of false
positive locations.

(b) Precise locations detected with the colour mode.

(c) Combined results with much less false positives
than descriptor Rd.

Figure 6.19: Combining the locations detected using frame descriptors and colour
model descriptors to get rid of the false positive locations.

140



CHAPTER 6. OBJECT LOCATIONS AND COUNT ESTIMATIONS

6.6 Summary

In this chapter, we showed how we use the descriptor clusters presented in Chapter

4 to detect object of interest instances. We started by showing how we select the

clusters that belong to the object of interest by using the user provided ROI and

selecting non-noise clusters that intersect with it. We then used BOOSTING SOT to

track the initial object of interest from frame to frame and repeat the cluster selection

process. We showed how we handle the object drifting off the frame as well as the

problems created by scale challenges in re-initialising the tracker.

In Section 6.2, we showed how we extract the object locations from the selected

clusters. We explained the approach by discussing it in terms of the challenges our

dataset posed. We explained why we do not use homography in an attempt to find

the objects of interest even when only one feature per object has been detected.

We noted that challenges such as scale cannot be solved by using only one feature

because the scale at which a feature was detected may not reflect the size of the

object. Rotational variance was handled by augmenting the descriptors with the

feature angles which proved effective in countering false positive locations due to

feature rotations. Occlusion was identified as one challenge where our occlusion

detection approach worked in some cases and not in others. A possible improvement

could be to increase the intersection of the ROIs which also risks counting the same

object multiple times.

We combined the cluster locations in Section 6.3 to show how we extract the object

count estimation for each frame. We showed the effect of noisy clusters in introducing

false positive location into the final count. The noisy clusters have been shown to

have very low intra-cluster min : max distance ratio. In future improvements, this

attribute can be used to threshold the cluster selection process at the risk of missing

the good features within the noisy clusters. The plus side of this noisy cluster problem

is that is affects mostly LODVs which do not really need a computer based counting

approach since humans can count easily at those low numbers.

We identified that for HODVs, counting using only clusters that intersect with the

initial ROI is often not enough to find all the objects in the frame. We used cluster
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daisy-chaining to find the clusters that identify the objects of interest but do not

intersect the initial ROI. These clusters were found to intersect one or more of the

objects located through their cluster intersecting with the initial ROI. We showed

that while this approach improves the object count estimation, it also introduces

false positives object locations. We also showed that this approach only works if the

objects have multiple features that form non-noise clusters. During iterative daisy-

chaining, we select the ROI to use by finding the best matching ROI based on the

calculated matching score using moments.

Finally, the problem of false positives is addressed by using the colour model explained

in Chapter 5. We use the colour model first by detecting the clusters within the colour

model descriptors an then extract the object count estimation the same way as in

Section 6.3. We also use the colour model to filter out the false positive locations.

The filtered object locations are also combined with the locations detected using only

the colour model. Finally the object count is also estimated by detecting the clusters

in the frame descriptors but then only using the clusters whose features are also in

the colour model. We showed that this use of colour model only works for videos

where the colour model tracking was successful.

In the next chapter, we set out to show the overall counting estimations for the

videos in our dataset. We show the results using different parameters and explain

the failures and successes for the videos. We explain the failures of our approach for

the some of the videos and explain the reasons for such failures. We also make a

comparison between our count estimation approach and the current object counting

literature.
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Video Object Count Estimations

In the previous chapter, we demonstrated how we use the descriptor clusters to locate

the object of interest in a video frame based on the initial ROI provided by the user.

We showed how we combine the detected object locations from each cluster to get

the locations of the objects within a frame. We also presented a way in which we

can detect and eliminate the false positive locations using the colour model that

was described in Chapter 5. In this chapter we analyse how our object counting

approach performed against our dataset from Chapter 2 and make comparisons to

other approaches discussed in Chapter 1.

We show the best results from each of the three object count estimations methods

described in Chapter 6; frame descriptor clustering, colour model descriptor clustering

and a combination of the two. For each of the methods we use for counting, there

are four parameters that can control the final count estimation. These are shown in

the column “Parameters” of the tables in this chapter. The format of the parameters

is minPts, I, O, R, where minPts is the value of minPts used for HDBSCAN, I

shows the number of iterations for cluster daisy chaining, O denotes whether cluster

over-segmentation was allowed (See Section 4.3) and R denotes augmentation of

descriptors using feature angles (See Section 4.4). The minPts and I parameters are

numbers while O and R are boolean values. For example, if we usedminPts = 3, with

one iteration of cluster daisy chaining, no cluster over-segmentation and augmented

143



CHAPTER 7. VIDEO OBJECT COUNT ESTIMATIONS

descriptors, the “Parameters” column will have 3, 1, N, Y . It should be noted that for

minPts ≥ 3, we use the technique described in 4.2 to find the best clustering results.

If we used minPts = 2, then over-segmentation is enabled hence the parameter ‘O ’

will always be set to ‘Y’.

We also show the average time per frame taken to achieve the results in the tables as

well as the min, max, mean (µ) and standard deviation (σ). The value of σ is used

first to show how stable the estimations were from frame-to-frame and secondly as an

uncertainty measurement such that the other values in the table are min±σ, max±σ
and µ ± σ. Since we were testing our approach on videos that have ground truths,

we selected the counting estimations that were as close as possible to the ground

truth values. We first look for the closest σ and µ and then look for the best min

and max such that there is an overlap between the values in our estimation to the

corresponding values from the ground truth taking into consideration the uncertainty

represented by the σ value. The sample results for each of our videos are shown in

Appendix B.

7.1 Video Count Estimations

In this section, we present the results of estimating the object count in the our

video dataset. The main restriction on our methods is that the SOT as discussed in

Section 6.1, should consistently provide a valid initial object. As such, the results

shown in this section are for videos for which this restriction held. As discovered

during the experiments, in some videos such as voc-18-bd-4 and voc-18-bl-3, the SOT

had trouble tracking the initial objects. However, we do include their results for those

frames where the initial object was successfully tracked. For voc-18-bd-4, that means

the first 40 frames and for voc-18-bl-3, the first 26 frames.

Most notably, our approach could not reliably estimate the number of objects in

voc-18-bd-14 and voc-18-bd-16. These two videos have all the five challenges in our

dataset as shown in Table 2.4. As we explained in Section 6.2, our counting approach

had the most difficulty with scaled objects. Since scale may be gradual like in voc-18-

bd-14 (See Figure 6.5), our algorithm had varying successes based on how extreme
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the scale differences are between the initial object and other objects in the frame.

Another challenge with scale is intra-frame scale changes of the initial object. In

this thesis, we used BOOSTING tracker to find the initial object in each frame. The

tracker does not compensate well for object size changes from frame to frame, as

such, videos like voc-18-bd-7 end up with a tracker bounding box that is much larger

than the object it is tracking.

In fact the weakness of our approach in handling scale is so profound that the results

in Tables 7.1 - 7.3 highlight this as well. The videos that have scale challenges have

the widest differences from the ground truth, most notable in the min, max and σ

values even when the µ value is close to the ground truth value. This wide differences

are due, in large part, to the localisation algorithm’s inability to compensate for

size. We find that when the initial object is larger than the detected object instance,

the bounding box may end up covering up more than one object. When the initial

object is smaller than the detected object instance, the localisation algorithm can

then provide more than one bounding box for different parts of the same object.

At its core, our approach relies on successful detection of SURF features on the

objects of interest. Scale challenge creates a situation where the objects further from

the camera may be too small for detection of SURF features which is the case in some

of our videos. The restriction from SURF features does not only come into play when

there is scale problems, but also when the object are just far from the camera. In

voc-18-bd-12 (Figures 7.1a and 7.1d), there is no scale challenge, but the birds are so

far from the camera that some of the birds have no features especially in the first few

frames. However, in this video, the camera does come close as the video progresses

which leads to the all birds having features on them. For both voc-18-bd-14 (Figures

7.1b and 7.1e) and voc-18-bd-16 (Figures 7.1c and 7.1f) a majority of the birds did

not have SURF features on them.

Selection of the best object count estimations for our approach relies on multiple test

on each video. We first set a minPts value, angle augmentation (R) and cluster over-

segmentation (O). We then run for various iterations (I ) starting at 0 and increasing

until we start getting the values that do not vary too much between iterations. We

then change one of the minPts, R and O parameters and repeat the process. In
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(a) All the features in frame
1 of voc-18-bd-12.

(b) All the features in
frame 1 of voc-18-bd-14.

(c) All the features in frame
1 of voc-18-bd-16.

(d) All the features on the
last frame of voc-18-bd-12.

(e) All the features on the
last frame of voc-18-bd-14.

(f) All the features on the
last frame of voc-18-bd-16.

Figure 7.1: The presence of SURF features dictate how many objects our approach
can detect. In voc-18-bd-14 and voc-18-bd-16, the tracker even lost the initial object
due to localisation failure.

videos where there is some symmetry in the features such as voc-18-bd-20 and the

blood videos, parameter R provided the most stable results in both localisation and

count estimations.

7.1.1 Frame Descriptors

In Table 7.1, we show that all LODVs required the use of minPts = 2 and I = 0 to

obtain stable results with frame descriptor clustering. This is because at low object

count, our videos had large objects with enough features that a one-to-one matching

provided enough matches to locate all the objects in the frame. Therefore, we do

not need to use iterative daisy chaining to locate all the other objects. The need

for augmentation of descriptors with feature angles was dependent on the objects

shapes. The same I = 0 is also evident for MODV (See Table 7.2) where minPts

value varied from video to video. However, since we have results from only three of

the four MODVs in our dataset, we cannot draw definite conclusion on the use of

particular parameters.
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Table 7.1: LODV counting estimations using the frame descriptors.

Video
Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-4 0.014 2,0,Y,N 1 11 5.79 2.55
voc-18-bd-5 0.023 2,0,Y,Y 2 11 6.84 3.23
voc-18-bd-6 0.022 2,0,Y,Y 3 12 6.37 2.18
voc-18-bd-7 0.024 2,0,Y,Y 3 14 8.11 2.36
voc-18-bd-8 0.027 2,0,Y,N 4 24 12.25 4.1
voc-18-bd-9 0.027 2,0,Y,Y 4 18 8.83 2.77
voc-18-bd-11 0.069 2,0,Y,N 3 23 12.43 3.95
voc-18-bd-20 0.032 2,0,Y,Y 3 9 5.29 1.31

Table 7.2: MODV counting estimations using the frame descriptors.

Video
Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-2 0.026 2,1,Y,Y 2 29 12.11 5.61
voc-18-bd-10 0.055 2,0,Y,N 7 26 14.44 3.26
voc-18-bd-19 0.086 3,0,Y,Y 0 54 22.3 8.58

In Table 7.3, we show that in videos where objects are present in high density, there

is need to use iterative cluster daisy-chaining to achieve higher and stable accuracy

results. In our dataset, we required I = 1 whenever the stable results were obtained

with minPts = 3 but had to use higher iteration values whenever minPts = 2 was

used, except in the case of voc-18-bd-18. The need for iterative cluster daisy-chaining

in HODVs for minPts = 2 is explained in Sections 4.3 and 6.4.

In some of the HODVs shown in the table, the minimum object count detected was 0.

This comes from frames where the localisation algorithm failed to detect any clusters

that intersect the initial ROI. In voc-18-bd-3 frame 38, 114 non noise clusters were

detected, however, the two features inside the initial ROI (Figure 7.2a) were detected

as noise (See Figure 7.2b). With such outcome, there is no amount of iterative cluster

daisy-chaining that can detect the other objects in the frame.
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Table 7.3: HODV counting estimations using the frame descriptors.

Video
Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-1 1.716 3,1,Y,N 259 408 291.65 27.97
voc-18-bd-3 0.094 2,4,Y,Y 0 123 92.3 18.98
voc-18-bd-12 0.474 3,1,Y,Y 93 459 325.45 80.85
voc-18-bd-13 0.03 3,1,Y,Y 0 110 31.55 18.32
voc-18-bd-15 0.035 2,3,Y,Y 0 76 48.89 13.13
voc-18-bd-17 0.047 3,1,N,Y 13 96 51.91 14.15
voc-18-bd-18 0.41 2,1,Y,Y 7 166 77.71 30.64
voc-18-bl-1 4.34 2,5,Y,Y 0 850 448.27 316.28
voc-18-bl-2 5.354 2,2,Y,Y 250 504 394.45 5.354
voc-18-bl-3 1.461 2,2,Y,Y 100 300 199.12 39.7
voc-18-bl-4 0.884 2,2,Y,Y 109 168 141.41 12.22

(a) All the features in frame 38 of
voc-18-bd-3.

(b) The two features inside the ROI
being part of the noise cluster.

Figure 7.2: An example of how our approach can fail to detect any objects due to
ROI features being labelled as noise.

7.1.2 Colour Model Descriptors

In Chapter 5, we described an MOT for tracking colours of interest in a video. In

Section 6.5, we showed how we can use a frame’s colour model to reduce false positive

locations by detecting clusters in the colour model descriptors. In this subsection we

show the results of using this approach to estimate the object count in our dataset.

This approach relies on the MOT’s ability to learn and track the object of interest’s

colour model successfully throughout the video.
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In 5.2.1, we showed that two of the videos in our dataset, voc-18-bd-18 and voc-18-bl-

1, our MOT failed to learn the colour model and as such we do not show the results

those videos in this subsection. In Table 5.2, we showed that in some videos, the

tracker lost the colour model before the end of the video. This means that we were

selective about on which videos we used the colour model for count estimations. We

selected the videos on which the colour model features were on all the objects for the

majority of the video frames. We also used the videos for which the colour model

was not lost before halfway through the video. We show this by including the “Num.

of Frames” column in the results tables.

By the criteria above, only two videos from the LODV and MODV sets were used for

colour model count estimations (See Tables 7.4 and 7.6). From the HODV set, we

used three videos as shown in Table 7.7. The HODV video voc-18-bd-3 was excluded

because even though the colour model was successfully tracked for all the frames, it

did not cover all the birds while voc-18-bd-12 was included because for most of the

frames in the video, the colour model was detected on all of them.

Empirical evidence shows that the colour model descriptor clustering method are

more accurate with LODVs and MODVs. The removal of surrounding features

changes the demography of the dataset, which can result in a different set of clusters

from the full frame descriptor and also reduces the chance that a surrounding feature

cluster could intersect the initial ROI and cause false positives. As such, the number

of selected features and selected clusters from colour model descriptors is often less

than from frame descriptors. An example can be seen in Table 7.1, where voc-18-bd-5

had higher values than in Table 7.4. In that video’s frame 6, 14 clusters were used

to obtain count estimations of 5 for frame descriptors while 6 clusters were used to

obtain 3 objects with colour model descriptors against a ground truth of 2 as shown

in Figure 7.3.
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Table 7.4: LODV counting estimations using the colour model descriptors.

Video
Num

of
Frames

Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-5 56 0.01 2,0,Y,Y 2 8 3.71 1.34
voc-18-bd-20 76 0.0117 2,0,Y,Y 0 8 3.5 1.63

(a) Detected object locations in frame 6 of voc-18-bd-5
using frame descriptors.

(b) Detected object locations in frame 6 of voc-18-bd-5
using colour model descriptors.

Figure 7.3: Difference between colour model and frame descriptor clustering results.
In both results, augmented descriptor clustering was done with minPts = 2 and no
cluster daisy chaining.
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The accuracy of colour model descriptor clustering can be seen in Table 7.5. The

results in the table show the mean of the count estimations that is very close to the

ground truth mean. In fact, taking into account the standard deviation as uncertainty

in the truth count, the mean count estimations and their standard deviations are all

within acceptable range. In the min column, the first two rows have values much

lower that the ground truth and in the max, the other rows had values much higher

than the ground truth. However, a close look at the frame by frame count estimation

showed this low and high values to be on a few number of frames. The low values in

the first 2 rows were improved by using a single iterative cluster daisy-chaining which

also resulted in high max values. In both 2,1,Y,N and 2,1,Y,Y, the mean improve

to be much closer to the ground truth while the standard deviations increased with

2,1,Y,Y having lower standard deviation than 2,1,Y,N.

From the results in Table 7.5, we selected 2,1,Y,Y as the best parameters to obtain

the best count estimations for voc-18-bd-10 as shown in Table 7.6. It is should be

noted that while the birds had two colours (black and white), we selected white as

the colour model because we noted during experiments that if we selected black as

well, we ended up with more false positives because some of the background features

were selected as well. With cluster over-segmentations and descriptor augmentation

activated, we could account for rotation while making sure than we only got valid

clustering results.

The results for using the colour model to estimate the object numbers were much

more unreliable in HODVs. Removing the ability to identify object from surrounding

features proved very critical in HODVs. As a results, the colour model results showed

a lot of low min values and high standard deviations values as shown in Table 7.7. In

voc-18-bd-1 and voc-18-bd-12, the min is 0 compared with the ground truth of 258 and

211 respectively. While the standard deviation for LODV and MODV decreased for

the same parameters when using colour model descriptors, it increased for HODVs.

This shows that the inconsistency of the count estimations between frames increased.

151



CHAPTER 7. VIDEO OBJECT COUNT ESTIMATIONS

Table 7.5: Colour model clustering estimation results for voc-18-bd-10 whose ground
truth is min = 9,max = 18, µ = 13.82, σ = 2.96 showing the close similarities
between the results for various parameters.

Parameters Min Max µ σ
2,0,Y,N 3 18 9.93 3.16
2,0,Y,Y 3 19 10.68 3.26
2,1,Y,N 6 30 13.3 4.62
2,1,Y,Y 6 25 13.54 3.81
3,0,N,N 5 24 11.33 3.42
3,0,Y,N 6 25 13.11 4.26
3,0,N,Y 5 28 13.74 4.31
3,0,Y,Y 6 28 13.59 4.01

Table 7.6: MODV counting estimations using the colour model descriptors.

Video
Num

of
Frames

Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-2 51 0.008 2,1,Y,Y 0 19 5.62 4.57
voc-18-bd-10 121 0.039 3,0,Y,Y 6 28 13.59 4.01

7.1.3 Combining Frame Descriptors Estimations with Colour

Model Descriptor Estimations

In this subsection, we use the videos where the colour model was successfully tracked

and count estimations extracted from the descriptors as described above. The process

of combining the object locations from the colour model and frame descriptors has

been explained in detail in Subsection 6.5.2. For each of the selected videos, we follow

Table 7.7: HODV counting estimations using the colour model descriptors.

Video
Num

of
Frames

Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-1 77 0.383 2,4,Y,N 0 269 228.94 31.56
voc-18-bd-12 73 0.127 3,1,N,N 0 374 229.56 116.01
voc-18-bl-2 94 1.313 2,3,Y,Y 334 437 390.99 21.78
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the same process of selecting the best results as explained above. In terms of time

complexity, the combined object count estimation does not use HDBSCAN or detect

clusters. Instead, it relies on the locations detected from the colour model and frame

descriptors and as such the amount of time has to include times for both as well as

the time it takes to combine them. In this thesis, we used the same parameters for

frame and colour model descriptors for combination count estimations.

Generally, the effect of combining the two approaches this way is that the two previous

approaches complement each other. Frame descriptor clustering results also used the

features in the surrounding of the objects to locate them while colour model only use

the features within the objects of interest but is prone to false positives especially

when iterative cluster-daisy chaining is used. Colour model descriptor clustering

tends to provide locations that are more accurately on the object and have low false

positive locations. In fact, even the localisations that are not perfectly on the objects,

they still for the most part include a big part of the objects.

The first noticeable improvement to combining the two leads to a higher min value

which moves closer to the ground truth min. While on their own, frame and colour

model descriptors may at one point or another detect very few objects as shown in

Tables 7.1 - 7.7. The evidence of this improvement is shown in Tables 7.8 - 7.10.

The other improvement is that for the same parameters, the frame to frame results

become more consistent and as such, the mean and the standard deviation value tend

to move towards the ground truth values signalling a more stable frame to frame count

estimation.

Table 7.8: LODVs counting estimations using the combined frame and colour model
descriptor locations.

Video
Num

of
Frames

Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-5 56 0.035 2,0,Y,Y 2 9 4.71 1.89
voc-18-bd-20 76 0.046 2,0,Y,Y 3 7 4.43 1.19
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Table 7.9: MODVs counting estimations using the combined frame and colour model
descriptor locations.

Video
Num

of
Frames

Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-2 51 0.065 2,1,Y,Y 4 22 11.67 4.36
voc-18-bd-10 121 0.08 2,0,Y,Y 7 20 13.29 2.77

Table 7.10: HODVs counting estimations using the combined frame and colour model
descriptor locations.

Video
Num

of
Frames

Time
Per

Frame (s)
Parameters Min Max µ σ

voc-18-bd-1 77 1.499 3,1,Y,N 236 310 267.95 15.54
voc-18-bd-12 73 0.604 3,1,N,N 131 390 293.14 66.31
voc-18-bl-2 94 6.685 2,3,Y,Y 312 490 408.79 40.05

7.1.4 VOC-18 Dataset Best Results

In Tables 7.11 - 7.13, we show the best count estimation results for all the videos

in our dataset. We show each video’s ground truth, the method and the parameters

used to find the best count estimations. In videos where the colour model tracking

was unsuccessful, the best results are the same results shown in Tables 7.1 - 7.3. In

videos where the colour model was successfully tracked, the results from combined

frame and colour model descriptor locations provide the best estimations. Even

though we selected the best results from colour model for voc-18-bd-5, the results

from Table 7.10 show that for the same parameters, the results are still very close.

We determined that the main reason colour model results are not the best for the

other videos is because removing the all the other features leaves a descriptor space

with fewer clusters and features that are most likely to be similar and hence making it

difficult to find clusters. The observed results often have higher standard deviations

that the other two methods which shows the lack of consistency in the frame to frame

results.

The most important parameters for our approach proved to be the feature angle
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descriptors augmentation and minPts. From our experiment, we observed that if

the objects of interest have any form of symmetry, then augmentation would mostly

give the best results. In Tables 7.11 - 7.13, it can be seen that of the 24 videos in our

dataset, only 4 have best results where no augmentation was used. The objects in

those video showed little or no symmetry in their appearance. The most important

factor to consider when selecting the value of minPts is the size of the objects followed

by the number of objects in the video.

In our results LODVs all required minPts = 2 while the MODVs and HODVs re-

quired different values depending mostly on the size of the objects. In Tables 7.12 and

7.13, all videos except for voc-18-bd-2 where minPts = 3 was used for best results

had small objects. The use of minPts = 2 for other videos results in over-segmented

clusters which have high similarities as discussed in Section 4.3. However, since the

objects have multiple features directly influenced by their presence, iterative cluster

daisy chaining compensates for the over-segmentation allowing us to find the objects

whose clusters do not intersect the initial ROI.

Our decisions on which is the best counting estimation results in this thesis were

essentially guided by the ground truths from the dataset. However, our approach

was designed with the knowledge that it will not be always possible to know the

ground truth, especially for HODVs. Experimentally, we observed that the best

approach is to gradually increase the iterations for cluster daisy-chaining. The effect

of this is that as more iterations are used, the min,max, µ and σ values become more

stable as can be shown in Figure 7.4 where we show the results when using frame

descriptors for voc-18-bd-1 and voc-18-bl-3. In the figure, as iterations increase, there

is less difference between the values in subsequent iterations. We argue that even

though the values may be higher than the ground truth (due to false positives), this

stabilisation gives a very good estimation of the number of objects. Even though

voc-18-bd-1 shown in had a successfully tracked colour model, we show the results

for using frame descriptors in Figure 7.4a to highlight that our approach still works

well without the colour model.

We note though, that this approach of increasing iterations to find the best results

does not work well for LODVs and and MODVs especially when the colour model
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tracking was not successful. This is because at low and medium object densities,

the presence of false positives has more effect on the final count values. For LODVs,

we noticed that using minPts = 2 and I = 0 almost always gives good results as

can be seen in Table 7.11. MODVs often require iterative cluster daisy chaining

when minPts = 2 but none when using higher values in order to compensate for

over-segmented clusters.

Table 7.11: LODV best counting estimations.

Ground Truth Best Count Estimations
Video Min Max µ σ Method Parameters Min Max µ σ
voc-18-bd-4 4 6 5.31 2.55 Frame 2,0,Y,N 1 11 5.79 2.55
voc-18-bd-5 2 4 3.09 0.96 Colour 2,0,Y,Y 2 8 3.71 1.34
voc-18-bd-6 3 5 3.89 0.91 Frame 2,0,Y,Y 3 12 6.37 2.18
voc-18-bd-7 3 6 4.83 2.13 Frame 2,0,Y,Y 3 14 8.11 2.36
voc-18-bd-8 7 9 7.98 0.49 Frame 2,0,Y,N 4 24 12.24 4.1
voc-18-bd-9 3 7 5.54 1.08 Frame 2,0,Y,Y 4 18 8.83 2.77
voc-18-bd-11 4 8 5.68 1.21 Frame 2,0,Y,Y 3 23 12.43 3.95
voc-18-bd-20 3 3 3 0 Combined 2,0,Y,Y 3 7 4.43 1.19

Table 7.12: MODV best counting estimations.

Ground Truth Best Count Estimations
Video Min Max µ σ Method Parameters Min Max µ σ
voc-18-bd-2 4 23 11.32 5.43 Combined 3,0,N,Y 4 22 11.67 4.36
voc-18-bd-10 9 18 13.82 2.96 Combined 2,1,Y,Y 7 20 13.39 2.77
voc-18-bd-19 25 37 33.31 3.05 Frame 3,0,Y,Y 0 54 22.3 8.58
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Table 7.13: HODV best counting estimations.

Ground Truth Best Count Estimations
Video Min Max µ σ Method Parameters Min Max µ σ
voc-18-bd-1 258 277 266.82 17.77 Combined 3,1,Y,N 236 310 267.95 15.54
voc-18-bd-3 84 106 92.39 6.69 Frame 2,4,Y,Y 0 123 92.3 18.98
voc-18-bd-12 211 322 296.34 29.63 Combined 3,0,N,N 131 390 293.14 66.31
voc-18-bd-13 47 62 51.83 3.89 Frame 3,1,Y,Y 0 110 31.55 18.32
voc-18-bd-15 33 62 45.54 7.23 Frame 2,3,Y,Y 0 76 48.89 13.13
voc-18-bd-17 106 125 116.45 4.47 Frame 3,1,Y,Y 13 96 51.91 14.15
voc-18-bd-18 87 106 97.57 3.81 Frame 2,1,Y,Y 7 166 77.71 30.64
voc-18-bl-1 698 722 698.13 3.36 Frame 2,5,Y,Y 0 850 448.27 316.28
voc-18-bl-2 460 460 460 0 Combined 2,2,Y,Y 312 490 406.79 40.05
voc-18-bl-3 176 186 184.31 2.05 Frame 2,2,Y,Y 100 300 199.12 39.7
voc-18-bl-4 115 130 122.88 5.13 Frame 2,2,Y,Y 109 168 141.41 12.22
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(a) The results for voc-18-bd-1 with increasing iterations on
frame descriptors.

(b) The results for voc-18-bl-3 with increasing iterations on
frame descriptors.

Figure 7.4: Stabilisation of HODV results as more iterations are used.
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7.2 Analysis and Comparison to Counting Litera-

ture

In the previous section, we discussed the performances of our three algorithms on the

videos in our dataset. We showed the performances using the minimum, maximum,

mean and standard deviation. We also showed the average time in seconds of how

long it takes for our approaches to process one frame. In this section, we compare our

approaches to the approaches we discussed in 1.1. While we do not compare them on

a dataset basis, we compare the approaches in terms of how they process the data.

The object counting approach detailed in this thesis essentially falls under the ‘Count-

ing by Object Detection’ discussed in Subsection 1.1.2. Our approach is most similar

to the approach in [22]. Both approaches apply density based clustering to SURF

features in order to locate the objects and extract the object count estimations al-

though in [22], they use DBSCAN while in this thesis we use HDBSCAN. However,

it is worth remembering that HDBSCAN is an extension to DBSCAN and works by

finding all possible DBSCAN solution to get around the density parameter ε and be

able to detect clusters of varying density.

The similarity between the two, however, ends there. The use of DBSCAN in [22]

means that the clusters detected will be of single density. The key difference between

the two is that while in [22], the clusters are detected in spatial space, our object

detection works in descriptor space. The authors look for spatial clusters in the

sample object image and then match those clusters to spatial clusters in the scene

image. This means that the objects in both the sample and scence must be large

and have enough details to have a lot of features that can form spatial clusters. This

approach to detecting the objects means that there is a significant size limitation in

terms of the size of objects that can be detected and counted. The other weakness

in this algorithm assumes that when objects are large enough the features can form

spatial clusters. In videos such as voc-18-bd-20, this is true. This fails to hold for

videos such as voc-18-bd-1 where the features do not clearly form spatial clusters as

shown in Figure 6.10a.

Our approach matches the SURF features in the descriptor space which is by far
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the most important part. It also means that we can go as small as a single feature

per object as shown in Figures 6.18c and 6.18d. Our approach, therefore, allows us

to count objects at much higher number of objects. From their results, the authors

of [22] show no more than 5 objects to be counted, which in our approach, would fall

under the LODVs. The abundance of features in [22] means that the authors can use

homography and perspective transforms to localise the objects which can account for

scaled objects. In our approach, we use a single feature to localise the objects and

have therefore lost the ability to compensate for size differences between sample and

target objects.

The feature learning approaches used in this thesis provide a significant edge against

other approaches reviewed in Chapter 1. The approach described in [11] has similar

intentions of counting high object densities as the approach in this thesis. The ap-

proach uses image density maps which operates at the pixel level while our approach

works at the feature level, which is essentially groups of pixel. As such, in [11], they

can count much smaller objects as evidenced by their use of the datasets from [12].

Our approach however, is limited by the requirement for detection of at least one

feature per object which is why we could not make a direct comparison on the results

between our approach and [11].

Our approach has a much faster training approach than in [12]. In our approach,

we learn the features of the object of interest on the fly. By using the initial ROI

and selecting the features inside it, we simply take the good and the noise features

and separate them during the feature matching phase described in Chapter 4. The

approach in [12] requires the generation of ground truth density maps from some

of the images in the dataset which makes it considerably slower than our approach.

This slow training approach is also a problem with deep learning based methods such

as the one described in [17].

Trajectory clustering approaches such as [29] and [30] have one key weakness; the

object of interest MUST be moving. A lot of the approaches in trajectory clustering

are therefore used for static camera videos. As discussed in Chapter 2, a lot of

the videos in our dataset are from moving cameras. Even with motion compensation

approaches such as described in [93], the objects themselves must be moving otherwise
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the motion compensation will discount the objects of interest as background. The

other weakness is that trajectory clustering approaches end up losing a lot of visual

information about the objects of interest, the approaches can be used in videos where

there is only one object class. As such, or approach provide a more versatile way of

counting objects.

7.3 Summary

In this chapter, we explored the performance of the different approaches we used to

estimate the object numbers in our video datasets. We measured the performances

using the min, max, mean (µ), standard deviation (σ) and the average time for each

video while also providing the information on the number of frames used for the

colour model and combined methods. We first discussed the count estimations using

the frame descriptors, then discussed using colour model and finally the combination

of the two. We provided the evidence under each subsection for the three groups of

the videos in our dataset. We also showed and explained the best results for each

video as well as the method and parameters that produced those results and discussed

ways of selecting the parameters for new videos.

Using frame descriptors in LODVs proved more unstable. The results are often

greater than their ground truth counterparts, especially when starting withminPts =

3. Empirically, we found out that it is far much better to use minPts = 2 with-

out any iterative cluster daisy-chaining. With MODVs, the results for frame de-

scriptors require closer inspection to find the best results. In Table 7.6, one video

required minPts = 3 for best results while the other required minpts = 3 with

over-segmentation.

Using the colour model clusters works very well with LODVs where the objects are

large enough to have a lot of features within their outline. This is the reason the

videos voc-18-bd-{5, 20} were selected from our dataset. The multiple features within

the objects allows for a colour model that has clusters within it. In voc-18-bd-12, the

birds are very small and as such have only one feature on them and this creates an

almost uniform distribution within the colour model. The colour model also works
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well for HODVs, but tends to under-perform with HODVs. Often, when handling

MODVs and HODVs, it is common for the colour model to fail in detecting any other

object in the frame.

In videos where the colour model was successfully learned and tracked, the combina-

tion of frame and colour model descriptor clustering provided the best results for any

parameter combination. The colour model reduces the false positive from the frame

descriptor locations while frame descriptors results bring locations that may have

been missed by using just the colour model. This type of combination means that

this approach is better for HODVs and HODVs. While both voc-18-bd-5 and voc-18-

bd-20 had successful colour mode tracking, the best results for voc-18-bd-5 were from

colour model clustering while voc-18-bd-20 had the best results from the combined

approach. In contrast, all the MODVs and HODVs where the colour model was

successfully tracked had combination results better than both the frame and colour

model descriptor.
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Chapter 8
Conclusion and Future Work

In this thesis, we have detailed an approach to object counting that relies on matching

multiple SURF features using HDBSCAN. We applied our approach to a variety of

challenging videos from a dataset we compiled for the task. We have demonstrated

an approach of restricting the user interaction to constant time complexity even for

high object density videos. We have shown that given a set of SURF features from

a video frame with multiple object instances, we can detect clusters in the feature

descriptors and used the clusters with a novel approach to localise the objects of

interest in the frame. We also showed how we use an MOT developed in this thesis

to detect and remove false positive locations. Finally we presented the best results of

our counting approach and highlighted the parameters needed to achieve the results.

Chapter 2: We presented a new video dataset designed for video object counting. We

discussed the short-comings of available dataset and why they are unsuitable for the

object counting as envisioned in this thesis. The videos in our dataset are split into

three groups and the videos have different lengths. The first group is the low object

density videos where the number of object is less than 10 and has 8 videos. This

group is essentially made up of videos where a human can easily count the number

of object on the fly. The second group is the medium object density video where

the number of objects is between 10 and 50 and has 4 videos. While a person might

have a difficult time actually counting the objects, they can make a very accurate
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estimation. The final group is the high object density videos where the number of

objects in the video is greater than 50 making it very difficult if not impossible for a

person to make an accurate prediction.

In the chapter we presented the ground truth for comparison with the object count-

ing approach presented in this thesis. We developed the approach using a human-

computer hybrid approach. We take advantage of people’s ability to accurately iden-

tify ambiguous objects and the computer’s ability to accurately count well defined

objects. In our approach, for each video frame, the human has a task of identifying

the objects to be counted and tagging them with a white marker before threshholding

all the colours thus creating a binary image of the frame. The binary images are then

processed using a connected components algorithm to count the number of white dots

in the image thus getting the ground truth on the number of objects in the frame.

While the dataset works well for the task in this thesis, there is still a lot of room for

improvement. Currently, the dataset contains two sets of classes; 20 bird videos and

4 blood videos. Future improvement on that would be to include more object classes.

The current benchmark in the dataset is object count ground truth on a frame by

frame basis. The improvement on this is to provide the number of distinct objects

in the video. This would require tracking the objects as they move in and out of

the video frames while keeping track of the ones that are still in the frame. Other

benchmarks common to tracking, identification and segmentation can also be added

to the dataset to allow it to be used with other forms of computer vision tasks.

Chapter 3: We set up the background on most of the techniques used in out object

counting approach. We first discuss the single object tracker as implemented in the

OpenCV library. We compare the performances of the different algorithms in terms

of drift and accuracy. We found that the BOOSTING tracker performed better than

the other algorithms tested. We presented the results of the tests to show the reason

for our SOT of choice.

In Section 3.2, we review the multi object tracker algorithms. We explained our

need for an MOT in terms of removing the false positive locations from out count-

ing approach. We did not directly make comparisons of the algorithms, instead we
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highlighted the big weaknesses and explained why they are unsuitable for the task

explained in Chapters 5 and 6.

In Section 3.3, we gave an overview of local features and reviewed the literature on

SURF features. We highlighted the shortfalls in the current matching algorithms.

We explained that brute force matcher is concerned with one-on-one feature match-

ing compared with one-to-many approach required for the approach in this thesis.

FLANN allows for matching multiple features, but it is concerned with k-nearest

neighbours. This requires the user to know how many features have to match, which

we argue is not possible to know beforehand. We also discussed how the current met-

ric of measuring match quality, the Lowe Ratio Test, does not work when matching

multiple features since it only measures match quality between 2 features. Lastly, we

present Hypothesis 1 to highlight the clustering nature of multiple featues that are

similar and Hypothesis 2 to highlight further why Lowe’s Ration Test will not work

with multiple feature matching.

The algorithms behind the multi matching approach used in this thesis are explored in

Section 3.4. We explore the density-based clustering literature in terms of DBSCAN

and HDBSCAN. In this thesis, we use HDBSCAN which did not have C or C++

implementations. We therefore implemented it using C/C++ with Java and Python

bindings. We also developed a way of analysing the clusters detected and provide a

bound confidence value for each cluster that current clustering methods lack as well

as validity values for overall clustering results.

Chapter 4: The problems with current local feature matching are addressed in this

chapter. We show how to achieve multiple feature matching by detecting the clusters

within the descriptor space of the SURF features. We showed that we can use the

minPts parameter to explore the descriptor dataset to find the best clustering results.

We discovered that the validity of the clustering results may vary from one frame to

the next.

In Section 4.2, we explored the use of varying minPts values to find the best clus-

tering results based on the validity values or the number of clusters detected. The

experiments showed that this approach is very useful at increasing the number of
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clustering results with high validities. This approach was adopted for the rest of

the thesis with the minPts values determined experimentally to be between 3 and 7

inclusively. We also determined that with these minPts values, the mean validities

for the frames was above 3.0 while the standard deviation was acceptable if it was

below 1,0.

In an effort to get more clustering results that have higher mean validity and low

standard deviation, we explore the use of minPts = 2 in Section 4.3. This essentially

allows us to attempt a one-to-one matching of features. This proved very effective at

increasing the mean and decreasing the standard deviation of validities. The other

effect of this approach is the break-up of clusters that would have had high confidences

with higher values of minPts. which has the effect of returning lot of clusters with

just two features. We did however find out that in some cases, the clusters do not

break up if they are stable enough.

The rotationally invariant nature of SURF features was addressed in Section 4.4. We

proposed augmentation of the descriptor set with the angles detected by SURF for

each feature. We showed that with this augmentation, HDBSCAN clusters within the

results tend to have features with similar angles. The augmentation of the descriptors

with the angles did not always improve the validities of the clusters.

In this thesis, we matched feature descriptors within the frame which has the dis-

advantage of losing the temporal information available in videos. A proposed im-

provement to the current approach is to match the descriptors both in the spatial

and temporal domains. This approach would bring more stability to the descriptor

clusters by increasing the number of similar features within the dataset.

Chapter 5: In this chapter, we developed a multi-object tracker. This novel approach

to multi object tracking allows for tracking multiple objects without having prior

knowledge about the number of objects in the video. While we did not use the

approach to track actual objects in this thesis, we showed that our approach can

learn the features needed to track multiple objects. The results showed that even

when dealing with thousands of possible features to track, the fast implementation of

HDBSCAN helps the approach to train much faster. The provision of colour clusters
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allows the user to provide supervision to the learning algorithm while not suffering

the effects of the large number of features in the video.

In our approach, we used colours at the detected SURF feature location as features

to be tracked using two frames at a time. This approach was shown to have mixed

results in tracking colour models and is highly reliant on the features detected by

SURF. Several improvements can be added to our tracking features to improve the

robustness of the tracking algorithm:

• Use more than two frames for tracking. While this will increase the tracking

time by increasing the number of features being processed, there is a potential

benefit of more stable tracking results. This increased processing times may not

be a problem when dealing with LODVs. In voc-18-bd-5, there was on average

141 frames (See Subsection 5.2.1) while voc-18-bd-1 had an average of 3375

features.

• Use feature descriptors instead of colours. Arguably, descriptors offer more

precision in similarity than colours and are more resilient to noisy frames.

• Explore other features and image manipulations as features to track. Features

such as HoG and optical flow provide more information on structure and move-

ment of objects which may help increase the robustness of our multi-tracker.

Chapter 6: We used the descriptor clusters we detected in Chapter 4 to locate the

objects in frame. We first explained the object of interest feature learning that

identifies the SURF features located inside an initial ROI. We extracted all clusters

that intersect the initial ROI and used the points of intersection to find the locations

of the other objects. We explained the reasons we could not use homography and

showed that our method of shifting and localised template matching works well for

locating objects identified through the features in the clusters.

We highlighted the weakness of our localisation algorithm against scale challenges.

We showed that the scale of the feature does not necessarily translate to the scale

of the object. Currently, the search area for localised template matching is set to

be twice the width and height of the sample area. Future improvements can use
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the feature area size to determine the size to the target area. A constraint to this

approach is that this would only have to apply where the target feature has a larger

size since template matching cannot work when the template is smaller than the

target.

The other weakness for our algorithm is the detection of false positives. Our current

approach is to rely on the cluster matches to give good locations. However, we

encountered situations where the localisation algorithm provided false positives. We

countered rotational false positives by augmenting the descriptors with feature angles.

We countered low validity clustering results by varying minPts and cluster over-

segmentation. Finally, we used the colour model to minimise false positive in two

ways; first, by detecting the clusters within the colour model descriptors and then

combining the frame descriptor clustering locations with the colour model descriptor

clustering locations. Future improvement to our localisation algorithm could include:

• Use the moments to fine tune the localisations. This can be used instead of

template matching although it might not work well for scale.

• Use histograms to better detect the differences in sizes of the template object

and the detected locations which can help reduce scale localisation problems.

• Research ways to better detect an object being counted multiple times.

• Research ways to better detect occlusions that lead to one of the object being

discarded.

Chapter 7: In this chapter, we showed the the performance of our counting algorithms

on our dataset videos. We showed the best results under each of the count estimation

methods we developed in this thesis. We showed the best results for each video

based on the three counting methods. We discovered that in videos where the colour

model was successfully tracked, the combination method provides the best count

estimations. We explained how to use our methods to count the objects in HODVs

where the ground truth by showing that iterative cluster daisy-chaining stabilises the

results which provide very good indications of the number of objects in the videos.

In Section 7.2, we discuss the merits and deficiencies of our approach. Essentially,
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compared with ‘Object Density Estimation’ which work at the pixel level, our ap-

proach performs best in terms of the feature learning but does not handle small

objects very well. Against ‘Trajectory Clustering’, our method performs better by

being not being restricted to the moving objects. Compared with the ‘Object Detec-

tion’, our approach does not perform as accurately as deep learning based approaches

but makes up for by learning the object features online while still being able to count

generic objects unlike shape-based approaches such as hough transform for blood cell

counting.

The approach detailed in this thesis works on a frame-by-frame basis. As such the

information of the object detected in the previous frame is never used to fine tune the

localisation in the current frame localisation. This is noticeable when looking at the

counting results in which in one frame the objects were properly located while in the

next they were not. We also had situations where an object in the middle is missed

in one frame but detected in the next. Currently we have no ways of validating its

appearance in the new frame.

Future improvements to the approach will use location information from previous

frames. The use of such information also provides a way of achieving long-term

object tracking which would be a significant step towards extraction of aggregated

video object count. The aggregated count would be verified through the aggregated

ground truth suggested above. The location information from the previous frames

would also help reduce frame-to-frame object count estimation variations.
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[43] A. Milan, L. Leal-Taixé, I. D. Reid, S. Roth, and K. Schindler, “MOT16: A

benchmark for multi-object tracking,” CoRR, vol. abs/1603.00831, 2016.

[44] M. Müller, A. Bibi, S. Giancola, S. Al-Subaihi, and B. Ghanem, “Trackingnet:

A large-scale dataset and benchmark for object tracking in the wild,” arXiv

preprint arXiv:1803.10794, 2018.

174



BIBLIOGRAPHY

[45] J. Lou, M. Zhou, Q. Li, C. Yuan, and H. Liu, “An automatic red blood cell count-

ing method based on spectral images,” in 2016 9th International Congress on

Image and Signal Processing, BioMedical Engineering and Informatics (CISP-

BMEI), pp. 1391–1396, Oct 2016.

[46] B. Venkatalakshmi and K. Thilagavathi, “Automatic red blood cell counting us-

ing hough transform,” in 2013 IEEE Conference on Information Communication

Technologies, pp. 267–271, April 2013.

[47] D. Ryan, S. Denman, C. Fookes, and S. S., “Crowd counting using multiple

local features,” in 2009 Digital Image Computing: Techniques and Applications,

pp. 81–88, Dec 2009.

[48] S. Yoshinaga, A. Shimada, and R. ichiro Taniguchi, “Real-time people count-

ing using blob descriptor,” Procedia - Social and Behavioral Sciences, vol. 2,

no. 1, pp. 143–152, 2010. The 1st International Conference on Security Camera

Network, Privacy Protection and Community Safety 2009.

[49] F. Bashir and F. Porikli, “Performance Evaluation of Object Detection and

Tracking Systems,” in IEEE International Workshop on Performance Evaluation

of Tracking and Surveillance (PETS2006), June 2006.

[50] S. Bera, “Partially occluded object detection and counting,” in Proceedings of

the 2015 Third International Conference on Computer, Communication, Control

and Information Technology (C3IT), pp. 1–6, Feb 2015.

[51] “Lightning memory-mapped database manager (lmdb).” http://www.lmdb.

tech/doc/, 2015. (Date last accessed 18-Jan-2019).

[52] OpenCV, “Open source computer vision library.” https://github.com/

opencv/opencv, 2015. (Date last accessed 8-May-2018).

[53] D. G. Lowe, “Object recognition from local scale-invariant features,” in Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE International Confer-

ence on, vol. 2, pp. 1150–1157 vol.2, 1999.

175

http://www.lmdb.tech/doc/
http://www.lmdb.tech/doc/
https://github.com/opencv/opencv
https://github.com/opencv/opencv


BIBLIOGRAPHY

[54] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic

algorithm configuration,” in International Conference on Computer Vision The-

ory and Application VISSAPP’09), pp. 331–340, INSTICC Press, 2009.

[55] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise,” pp. 226–231, AAAI

Press, 1996.

[56] S. V. Kothiya and K. B. Mistree, “A review on real time object tracking in video

sequences,” in Electrical, Electronics, Signals, Communication and Optimization

(EESCO), 2015 International Conference on, pp. 1–4, Jan 2015.

[57] Y. Wu, J. Lim, and M. H. Yang, “Online object tracking: A benchmark,” in

Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,

pp. 2411–2418, June 2013.

[58] H. Grabner, M. Grabner, and H. Bischof, “Real-time tracking via on-line boost-

ing,” pp. 6–11, 01 2006.

[59] R. McConnell, “Method of and apparatus for pattern recognition,” 1982. US

Patent Application US06/927,832; Current Assignee Research Foundation of

State University of New York.

[60] T. Ojala, M. Pietikainen, and D. Harwood, “Performance evaluation of texture

measures with classification based on kullback discrimination of distributions,”

in Proceedings of 12th International Conference on Pattern Recognition, vol. 1,

pp. 582–585 vol.1, Oct 1994.

[61] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the multiple
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Appendix A
Code Samples

A.1 HDBSCAN Code Snippets

uint t r i a n g l u l a r ( u int n) {
re turn (n ∗ n + n) / 2 ;

}

Listing A.1: Function for encoding and decoding the indices into the optimised

distance array.

double d i s t a n c e g e t ( d i s t ance ∗ dis , u int row , u int c o l ) {
uint idx ;

i f ( row < c o l ) {
idx = ( dis−>rows ∗ row + c o l ) − t r i a n g l u l a r ( row + 1) ;

} e l s e i f ( row == c o l ) {
re turn 0 ;

} e l s e {
idx = ( dis−>rows ∗ c o l + row ) − t r i a n g l u l a r ( c o l + 1) ;

}
re turn dis−>d i s t a n c e s [ idx ] ;

}

Listing A.2: Function for retrieving the distance values from the optimised distance

array.
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void d i s t a n c e g e t c o r e d i s t a n c e s ( d i s t anc e ∗ d i s ) {

double so r t edDi s tance [ d i s−>rows ] ;

#pragma omp p a r a l l e l f o r p r i v a t e ( so r t edDi s tance )

f o r ( u int i = 0 ; i < dis−>rows ; i++) {
f o r ( u int j = 0 ; j < dis−>rows ; j++) {

so r t edDi s tance [ j ] = d i s t a n c e g e t ( d is , i , j ) ;

}
qso r t ( sor tedDis tance , d i s−>rows , s i z e o f ( double ) , cmpdouble ) ;

d i s−>co r eD i s tance s [ i ] = sor t edDi s tance [ d is−>numNeighbors ] ;

}
}

Listing A.3: Getting the core distances from the optimised array.

void distance compute ( d i s t anc e ∗ dis , void ∗ dataset , i n t rows , i n t co l s ,

i n t numNeighbors ) {
dis−>numNeighbors = numNeighbors ;

setDimenst ions ( dis , rows , c o l s ) ;

#pragma omp p a r a l l e l f o r

f o r ( u int i = 0 ; i < dis−>rows ; i++) {
f o r ( u int j = i ; j < dis−>rows ; j++) {

double sum , d i f f = 0 . 0 ;

u int o f f s e t 1 ;

sum = 0 ;

f o r ( u int k = 0 ; ( ( k < dis−>c o l s ) && ( i != j ) ) ; k++) {
d i f f = g e t d i f f ( d is , dataset , i , j , k ) ;

sum += ( d i f f ∗ d i f f ) ;

}

sum = s q r t (sum) ;

i n t c ;

i f ( j > i ) {
// Ca lcu la te the l i n e a r i s e d upper t r i a n g u l a r matrix o f f s e t

o f f s e t 1 = i ∗ dis−>rows + j ;
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c = o f f s e t 1 − t r i a n g u l a r ( i + 1) ;

d i s−>d i s t a n c e s [ c ] = sum ;

} e l s e i f ( i == j ) {
c = −1;

} e l s e {
o f f s e t 1 = j ∗ dis−>rows + i ;

c = o f f s e t 1 − t r i a n g u l a r ( j + 1) ;

}
}

}
d i s t a n c e g e t c o r e d i s t a n c e s ( d i s ) ;

}

Listing A.4: Function for calculating euclidean distances given an array of vectors.

The distances are stored in an array optimised for memory. The function uses

OpenMP to parallelise the ditance calculations.

A.2 Video Dataset Code Snippets

cap = cv2 . VideoCapture ( v i d F i l e )

frameCount = 0

whi le True :

ret , frame = cap . read ( )

i f cv2 . waitKey (1 ) & 0xFF == ord ( ’ q ’ ) or not r e t :

break

frameCount += 1

cv2 . imshow ( ’ frame ’ , frame )

frameName = outFolder + ”/” + s t r ( frameCount ) + ” ” + ” frame . jpg ”

cv2 . imwrite ( frameName , frame )

Listing A.5: Extracting and saving video frames

de f extractGroundTruth ( t count ) :

f i l e s = [ f f o r f in os . l i s t d i r ( opt ions [ ’ i ’ ] ) i f os . path . i s f i l e ( os . path

. j o i n ( opt ions [ ’ i ’ ] , f ) ) ]
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f o r f in f i l e s :

f name = os . path . j o i n ( opt ions [ ’ i ’ ] , f )

dna = sc ipy . misc . imread ( f name )

dnaf = ndimage . g a u s s i a n f i l t e r ( dna , 3)

T = 25

labe l ed , n r o b j e c t s = ndimage . l a b e l ( dnaf > T)

fnum = f . s t r i p ( ) . s p l i t ( ) [ 0 ]

t count [ fnum ] = s t r ( n r o b j e c t s )

Listing A.6: Extracting ground truth from binary images

de f createDB ( fname , t count ) :

lmdb env = lmdb . open ( fname , map size=i n t (1 e9 ) )

f o r key , va lue in t count . i tems ( ) :

with lmdb env . begin ( wr i t e=True ) as lmdb txn :

lmdb txn . put ( key . encode ( ’ ut f−8 ’ ) , va lue . encode ( ’ ut f−8 ’ ) )

Listing A.7: Creating an LMDB database for the ground truth

de f readDB ( fname ) :

dc = {}
lmdb env = lmdb . open ( fname )

lmdb txn = lmdb env . begin ( )

lmdb cursor = lmdb txn . cur so r ( )

f o r key , va lue in lmdb cursor :

dc [ i n t ( key . decode ( ” utf−8” ) ) ] = i n t ( va lue . decode ( ” utf−8” ) )

re turn dc

Listing A.8: Reading the ground truth from the LMDB database
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Appendix B
Best Counting Estimation Results

This appendix shows the best results from our approaches as discussed in Chapter

7. For each of the videos, we show results for the first five frames in the form of

a table showing the number of features in each frame, the number of features used

to estimate the count, the estimation and the ground truth and the time it took to

process each video and other useful test values. In the cases where the best results

were obtained using the colour model - descriptor combination (See Subsection 6.5.2),

only the frame number, count estimation, ground truth, accuracy and duration are

shown. We also show the figures of the first four frames with the final localisation

results for each video.
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APPENDIX B. BEST COUNTING ESTIMATION RESULTS

B.1 VOC-18-BD-1

Ground Truth : min = 258,max = 277, µ = 266.82, σ = 17.17

Table B.1: Count estimation for voc-18-bd-1 using combined frame and colour model
descriptor results and parameters minPts = 3, I = 1, O = Y,R = N .

Frame #
Count
Estimation

Ground
Truth

Accuracy
Duration

(s)
1 287 273 105.128 1.529
2 264 272 97.0588 1.014
3 288 275 104.727 3.129
4 252 274 91.9708 1.626
5 272 272 100 1.129

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.1: Combined object localisations for the first 4 frames of voc-18-bd-1.
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B.2 VOC-18-BD-2

Ground Truth: min = 4,max = 23, µ = 11.32, σ = 5.43

Table B.2: Count estimation for voc-18-bd-2 using combined frame and colour model
descriptor results and parameters minPts = 3, I = 0, O = N,R = Y .

Frame #
Count
Estimation

Ground
Truth

Accuracy
Duration

(s)
1 21 23 91.3 0.1022
2 22 23 95.65 0.1328
3 13 22 59.09 0.0719
4 18 21 85.71 0.1056
5 16 20 80 0.0994

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.2: Combined object localisations for the first 4 frames of voc-18-bd-2.
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B.3 VOC-18-BD-3

Ground Truth: min = 84,max = 106, µ = 92.39, σ = 6.69

Table B.3: Count estimation for voc-18-bd-3 using frame descriptors and parameters
minPts = 2, I = 4, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 415 250 81 77 92 2 4 83.69 0.0839
2 431 232 77 72 92 2 4 78.26 0.0595
3 394 238 78 84 91 2 4 92.3 0.0639
4 407 269 81 82 90 2 4 91.11 0.0751
5 430 252 79 85 90 2 4 94.44 0.0707

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.3: Object localisations for the first 4 frames of voc-18-bd-3.
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B.4 VOC-18-BD-4

Ground Truth: min = 4,max = 6, µ = 5.31, σ = 2.55

Table B.4: Count estimation for voc-18-bd-4 using frame descriptors and parameters
minPts = 2, I = 0, O = Y,R = N .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy Duration (s)

1 198 19 9 5 4 2 4 125 0.0194
2 210 21 9 4 4 2 4 100 0.0091
3 206 35 13 11 4 2 4 275 0.0173
4 208 20 9 3 4 2 4 75 0.012
5 200 29 9 9 4 2 4 225 0.0116

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.4: Object localisations for the first 4 frames of voc-18-bd-4.
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B.5 VOC-18-BD-5

Ground Truth: min = 2,max = 4, µ = 3.09, σ = 0.96

Table B.5: Count estimation for voc-18-bd-5 using colour model descriptors and
parameters minPts = 2, I = 0, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 23 22 8 3 2 2 0 150 0.0113
2 22 17 5 2 2 2 0 100 0.0089
3 26 20 8 2 2 2 4 100 0.0101
4 24 19 9 3 2 2 4 150 0.0072
5 22 19 6 3 2 2 0 150 0.0118

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.5: Object localisations for the first 4 frames of voc-18-bd-5.
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B.6 VOC-18-BD-6

Ground Truth: min = 3,max = 5, µ = 3.89, σ = 0.91

Table B.6: Count estimation for voc-18-bd-6 using frame descriptors and parameters
minPts = 2, I = 0, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 246 28 10 7 3 2 4 233.333 0.0188
2 242 26 10 4 3 2 4 133.333 0.0143
3 251 22 9 5 3 2 4 166.667 0.0134
4 254 20 10 3 3 2 4 100 0.0147
5 254 27 12 4 3 2 4 133.333 0.0227

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.6: Object localisations for the first 4 frames of voc-18-bd-6.
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B.7 VOC-18-BD-7

Ground Truth: min = 3,max = 6, µ = 4.83, σ = 2.13

Table B.7: Count estimation for voc-18-bd-7 using frame descriptors and parameters
minPts = 2, I = 0, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy Duration (s)

1 201 58 22 7 4 2 4 175 0.0333
2 197 60 22 6 4 2 4 150 0.0227
3 212 70 19 5 4 2 4 125 0.0239
4 221 70 25 6 4 2 4 150 0.0225
5 213 59 20 4 4 2 4 100 0.0207

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.7: Object localisations for the first 4 frames of voc-18-bd-7.

193



APPENDIX B. BEST COUNTING ESTIMATION RESULTS

B.8 VOC-18-BD-8

Ground Truth: min = 7,max = 9, µ = 7.98, σ = 0.49

Table B.8: Count estimation for voc-18-bd-8 using frame descriptors and parameters
minPts = 2, I = 0, O = Y,R = N .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy Duration (s)

1 379 66 22 23 9 2 4 255.556 0.0378
2 380 28 12 11 9 2 4 122.222 0.0201
3 355 43 14 14 9 2 4 155.556 0.0235
4 375 22 11 9 9 2 4 100 0.0175
5 374 33 13 11 9 2 4 122.222 0.0188

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.8: Object localisations for the first 4 frames of voc-18-bd-8.
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B.9 VOC-18-BD-9

Ground Truth: min = 3,max = 7, µ = 5.54, σ = 1.08

Table B.9: Count estimation for voc-18-bd-9 using frame descriptors and parameters
minPts = 2, I = 0, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 222 56 22 9 6 2 4 150 0.0349
2 240 62 21 10 6 2 4 166.667 0.0263
3 247 33 12 8 6 2 4 133.333 0.0204
4 229 50 19 10 6 2 4 166.667 0.0244
5 208 40 12 10 6 2 4 166.667 0.0215

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.9: Object localisations for the first 4 frames of voc-18-bd-6.

195



APPENDIX B. BEST COUNTING ESTIMATION RESULTS

B.10 VOC-18-BD-10

Ground Truth: min = 9,max = 18, µ = 13.82, σ = 2.96

Table B.10: Count estimation for voc-18-bd-10 using combined frame and colour
model descriptor results and parameters minPts = 2, I = 0, O = Y,R = Y .

Frame #
Count
Estimation

Ground
Truth

Accuracy
Duration

(s)
1 11 10 110 0.0757
2 10 10 100 0.0686
3 9 10 90 0.0989
4 10 9 111.11 0.0786
5 10 9 111.1 0.0915

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.10: Combined object localisations for the first 4 frames of voc-18-bd-10.
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B.11 VOC-18-BD-11

Ground Truth: min = 4,max = 8, µ = 5.68, σ = 1.21

Table B.11: Count estimation for voc-18-bd-11 using frame descriptors and parame-
ters minPts = 2, I = 0, O = Y,R = N .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy Duration (s)

1 329 45 15 11 8 2 4 137.5 0.0559
2 356 50 17 14 8 2 4 175 0.0508
3 351 40 15 10 8 2 4 125 0.051
4 337 28 10 11 8 2 4 137.5 0.0409
5 330 22 9 9 8 2 4 112.5 0.0361

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.11: Object localisations for the first 4 frames of voc-18-bd-11.
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B.12 VOC-18-BD-12

Ground Truth: min = 211,max = 322, µ = 296.34, σ = 29.63

Table B.12: Count estimation for voc-18-bd-12 using combined frame and colour
model descriptor results and parameters minPts = 3, I = 1, O = N,R = N .

Frame #
Count
Estimation

Ground
Truth

Accuracy
Duration

(s)
1 341 287 118.815 0.4756
2 342 286 119.58 0.7537
3 306 288 106.25 0.5158
4 292 288 101.389 1.0002
5 314 289 108.651 0.4381

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.12: Combined object localisations for the first 4 frames of voc-18-bd-12.
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B.13 VOC-18-BD-13

Ground Truth: min = 47,max = 62, µ = 51.83, σ = 3.89

Table B.13: Count estimation for voc-18-bd-13 using frame descriptors and parame-
ters minPts = 3, I = 1, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 185 48 13 25 53 2 4 47.17 0.0318
2 188 28 10 15 49 2 4 30.61 0.0254
3 205 21 8 12 49 2 4 24.49 0.0278
4 205 21 8 12 49 2 4 24.49 0.0303
5 210 84 10 51 49 3 4 104.08 0.0168

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.13: Object localisations for the first 4 frames of voc-18-bd-13.
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B.14 VOC-18-BD-15

Ground Truth: min = 33,max = 62, µ = 45.54, σ = 7.23

Table B.14: Count estimation for voc-18-bd-15 using frame descriptors and parame-
ters minPts = 2, I = 3, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 300 163 63 46 60 2 4 76.67 0.0347
2 296 183 66 51 62 2 4 82.26 0.0376
3 291 183 61 50 61 2 4 81.97 0.0352
4 268 163 52 52 60 2 4 86.67 0.0369
5 288 201 63 65 58 2 4 112.07 0.0431

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.14: Object localisations for the first 4 frames of voc-18-bd-15.
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B.15 VOC-18-BD-17

Ground Truth: min = 106,max = 125, µ = 116.45, σ = 4.47

Table B.15: Count estimation for voc-18-bd-17 using frame descriptors and parame-
ters minPts = 3, I = 1, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 304 145 23 50 109 3 4 45.87 0.0434
2 293 153 18 55 110 3 4 50 0.0437
3 281 108 15 48 113 3 4 42.48 0.0328
4 269 136 24 40 115 3 4 34.78 0.0365
5 270 129 17 43 114 3 2 37.72 0.0499

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.15: Object localisations for the first 4 frames of voc-18-bd-17.
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B.16 VOC-18-BD-18

Ground Truth: min = 87,max = 106, µ = 97.57, σ = 3.81

Table B.16: Count estimation for voc-18-bd-18 using frame descriptors and parame-
ters minPts = 2, I = 1, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 1826 330 108 92 87 2 4 105.75 0.331
2 1809 207 69 66 94 2 4 70.21 0.301
3 1786 194 62 67 95 2 4 70.53 0.288
4 1812 247 81 77 96 2 4 80.21 0.301
5 1850 173 62 52 97 2 4 53.61 0.312

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.16: Object localisations for the first 4 frames of voc-18-bd-18.
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B.17 VOC-18-BD-19

Ground Truth: min = 25,max = 37, µ = 33.31, σ = 3.05

Table B.17: Count estimation for voc-18-bd-19 using frame descriptors and parame-
ters minPts = 3, I = 0, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 853 35 4 23 26 3 4 88.4615 0.0653
2 851 12 4 9 25 3 4 36 0.0604
3 867 18 4 14 25 3 4 56 0.0544
4 862 20 4 18 25 3 4 72 0.0636
5 865 27 4 22 25 3 4 88 0.0627

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.17: Object localisations for the first 4 frames of voc-18-bd-19.

203



APPENDIX B. BEST COUNTING ESTIMATION RESULTS

B.18 VOC-18-BD-20

Ground Truth: min = 3,max = 3, µ = 3, σ = 0

Table B.18: Count estimation for voc-18-bd-20 using combined frame and colour
model descriptor results and parameters minPts = 2, I = 0, O = Y,R = Y .

Frame #
Count
Estimation

Ground
Truth

Accuracy
Duration

(s)
1 6 3 200 0.0645
2 4 3 133.333 0.0501
3 4 3 133.333 0.0543
4 4 3 133.333 0.0458
5 4 3 133.333 0.0495

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.18: Object localisations for the first 4 frames of voc-18-bd-20.
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B.19 VOC-18-BL-1

Ground Truth: min = 698,max = 722, µ = 698.13, σ = 3.36

Table B.19: Count estimation for voc-18-bl-1 using frame descriptors and parameters
minPts = 2, I = 5, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 6631 2052 725 726 722 2 4 100.55 4.412
2 6635 1208 423 494 710 2 4 69.58 4.247
3 6662 0 2 0 706 2 4 0 4.456
4 6655 3025 1095 965 704 2 4 137.07 6.572
5 6661 2 3 2 702 2 4 0.28 7.629

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.19: Object localisations for the first 4 frames of voc-18-bl-1.
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B.20 VOC-18-BL-2

Ground Truth: min = 460,max = 460, µ = 460, σ = 0

Table B.20: Count estimation for voc-18-bd-20 using combined frame and colour
model descriptor results and parameters minPts = 2, I = 2, O = Y,R = Y .

Frame #
Count
Estimation

Ground
Truth

Accuracy
Duration

(s)
1 391 460 85 4.936
2 373 460 81.09 5.371
3 390 460 84.78 7.207
4 428 460 93.04 5.515
5 355 460 77.17 5.101

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.20: Object localisations for the first 4 frames of voc-18-bl-2.
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B.21 VOC-18-BL-3

Ground Truth: min = 176,max = 186, µ = 184.31, σ = 2.05

Table B.21: Count estimation for voc-18-bl-1 using frame descriptors and parameters
minPts = 2, I = 2, O = Y,R = Y for the first 26 frames where the initial object was
successfully tracked.

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 3256 1942 699 231 179 2 4 129.05 2.336
2 3194 1968 676 300 180 2 4 166.67 2.001
3 3252 1652 574 204 181 2 4 112.71 1.828
4 3224 1828 657 204 182 2 4 112.09 1.919
5 3233 1872 673 246 183 2 4 134.43 2.554

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.21: Object localisations for the first 4 frames of voc-18-bl-3.
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B.22 VOC-18-BL-4

Ground Truth: min = 115,max = 130, µ = 122.88, σ = 5.13

Table B.22: Count estimation for voc-18-bl-1 using frame descriptors and parameters
minPts = 2, I = 2, O = Y,R = Y .

Frame #
Feature
Size

Selected
Features

# Clusters
Count
Estimation

Ground
Truth

minPts Validity Accuracy
Duration

(s)
1 1639 630 221 135 117 2 4 115.39 0.634
2 1624 776 277 153 120 2 4 127.5 0.689
3 1613 676 242 130 121 2 4 107.44 0.632
4 1650 822 289 139 122 2 4 113.93 0.699
5 1647 726 256 127 122 2 4 104.09 0.708

(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

Figure B.22: Object localisations for the first 4 frames of voc-18-bl-4.
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