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A Constrained Optimization Approach to
Dynamic State Estimation for Power Systems

including PMU Measurements
Liang Hu, Zidong Wang, Izaz Rahman and Xiaohui Liu

Abstract—In this paper, a hybrid filter algorithm is developed
to deal with the state estimation problem for power systems by
taking into account the impact from the phasor measurement
units (PMU). Our aim is to include PMU measurements when
designing the dynamic state estimators for power systems with
traditional measurements. Also, as data dropouts inevitably occur
in the transmission channels of traditional measurements from
the meters to the control centre, the missing measurement
phenomenon is also tackled in the state estimator design. In the
framework of extended Kalman filter (EKF) algorithm, the PMU
measurements are treated as inequality constraints on the states
with the aid of the statistical criterion, and then the addressed
state estimation problem becomes a constrained optimization one
based on the probability-maximization method. The resulting
constrained optimization problem is then solved by using the
particle swarm optimization (PSO) algorithm together with the
penalty function approach. The proposed algorithm is applied
to estimate the states of the power systems with both traditional
and PMU measurements in the presence of probabilistic data
missing phenomenon. Extensive simulations are carried out on
the IEEE 14-bus test system and it is shown that the proposed
algorithm gives much improved estimation performances over
the traditional EKF method.

Index Terms—Power systems, state estimation, extended
Kalman filter, missing measurements, particle swarm optimiza-
tion, constrained optimization

NOMENCLATURE

k Time index.
k|k − 1 Time index for prediction from instant k − 1 to k.
k|k Time index for update at instant k.
tj The line connecting nodes t and j.
tj0 t side (to the ground) of the line connecting nodes

t and j.
r and i Real and imaginary component.
N Total number of bus nodes of interest.
M Total number of PMUs.
nv Total number of voltage meters.
np Total number of power meters at the nodes.
nf Total number of power meters at the lines.
Ns The set of bus numbers directly connected to node s.
tjl The lth bus directly connected to bus j.

I. INTRODUCTION

State estimation (SE) has long been one of the fundamental
problems in the research on power systems. Traditional SE ap-
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proach is typically static where the single-scan weighted least-
squares estimators are adopted [1]. Static SE method exhibits
the features of fast convergence and easy implementation, but
it suffers from the accuracy problems since the dynamics of
the power system is ignored.

With rapid development of the sensing techniques, online
monitoring has recently become popular which gives rise to the
renewed research interests on the design of the dynamic state
estimator (DSE). Comparing with the static state estimation
scheme, the DSE is capable of achieving better estimation
accuracy since more information about the state evolution is
utilized. Another advantage of the DSE is its potential ability
to provide prediction database that could be adopted as a set of
pseudo-measurements in case of missing data or meter outages
in the power grids.

Note that the missing data phenomenon constitutes one of
the major concerns in state estimation for power systems since
data dropouts inevitably occur in the transmission channels
of traditional measurements from the meters to the control
centre. As discussed in [10], [16], [19], the communication
constraints (e.g. limited bandwidth) have inevitably led to
network-induced phenomena such as random communication
delays and missing measurements. As for missing measure-
ments, a conventional way is to treat them as normal bad data
without in-depth characterization of the dropouts. The robust
optimal placement approach of PMUs has been proposed
in [8] to increase the reliability of the system in case of
a random failure of any PMU. Very recently, the missing
measurement problem has been tackled in [16], [17] where
a certain stochastic variable is involved in the estimator, and
this renders the difficulties in the implementation. In our paper,
instead of the hardware deployment, a software algorithm
is developed to mitigate the effect of missing measurements
through modifying the traditional DSE approaches.

On the other hand, advanced techniques for synchronized
phasor measurements have recently been applied in power
systems. Different from traditional SCADA systems, where
the magnitude of the nodal voltage can be measured directly,
PMUs are capable to measure both the magnitude and the
phase of nodal voltages. And due to their intrinsic advantages,
the phasor measurement units (PMU) have made it possible to
measure the system states in a more accurate and timely way
as compared with the traditional measurements. Unfortunately,
for economic reasons, it is not affordable to replace all the
RTUs with PMUs in the foreseeable future [13], [20]. In
other words, only partial states could be measured directly
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by PMUs and the rest would have to be estimated by using
the conventional RTUs. As such, an emerging research issue
is how to integrate PMU measurements into traditional SE
algorithms, and this issue has started to gain some initial
research attention, see [3], [13], [14], [20], [22]. It should
be noted that all the corresponding results available in the
literature have been concerned with static SE problems, and
the DSE problem in the presence of partial PMU involvements
remains as a challenging topic of research [11]. This situation
motivates our current investigation.

The main purpose of the present research is to design
dynamic state estimators for power systems by making one of
the first attempts to solve the aforementioned two challenging
problems, i.e., 1) how to account for the probabilistic missing
data phenomenon? 2) how to include the PMU measurements
in the state estimator design? In this paper, the phenomenon of
missing measurements is assumed to occur in a random way
and the missing probability for each channel is governed by
an individual random variable satisfying a certain probability
distribution over the interval [0, 1]. The impact of missing mea-
surements on the overall estimation performance is considered
when designing the estimator. On the other hand, to incorpo-
rate the PMU measurements into the widely used extended
Kalman filter (EKF) algorithm, the PMU measurements are
characterized via a set of inequality constraints based on the
well-known 3-sigma rule of the Gaussian distribution, and then
the EKF problem with state constraints becomes a constrained
optimization problem that can be effectively solved by the
particle swarming optimization (PSO) algorithm. As PSO has
been developed primarily as an unconstrained optimization
method, the penalty function approach is utilized to convert
the constrained optimization problem into an unconstrained
one.

In this paper, a hybrid EKF and PSO algorithm is developed
to estimate the states of power system. The main contribution
of this paper is threefold. 1) A new dynamic state estimation
scheme is first proposed to improve the estimation performance
of power system including PMU measurements. Such a scheme
has the advantages of being scalable to the numbers of the
installed PMUs and of being compatible with existing DSE
software. 2) Practical issues of missing measurements in com-
munication network are investigated thoroughly and a mod-
ified EKF algorithm is developed which is insensitive to the
measurement unreliability in terms of acceptable probability.
3) Extensive comparative experiments have been implemented
based on different missing rates of the RTU measurements
and it is confirmed that our proposed estimation algorithm
provides better performance than the traditional EKF in the
presence of the missing measurements.

Notation The notation used here is fairly standard except
where otherwise stated. Im,1 denotes the m-dimensional vec-
tor with all elements equal to 1. For given matrices A and B
with the same dimension, ◦ is the Hadamard product defined
as [A ◦ B]ij = [Aij × Bij ]. E{x} stands for the expectation
of the stochastic variable x. |C| describes the determinants
of a square matrix C. diag{· · · } and diagn{∗} stand for a

block-diagonal matrix and diag{
n︷ ︸︸ ︷

∗, · · · , ∗}, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Model with Missing RTU Measurements

In this paper, the power network is assumed to operate a-
mong quasi-steady states and such kind of steady-state dynam-
ics is typically different from the transient ones generated by
the electro-mechanical power systems. The following model
for representing the slow system dynamics of N buses has
been reported in the past [4-6] and [17,18] :

x(k + 1)− u = A(x(k)− u) + ω(k) (1)

where the state x(k) ∈ R2N is the vector of the
real parts and the imaginary parts of the voltages at
all buses in the rectangular form, that is, x(k) =[
xr,1(k) xr,2(k) · · · xr,N (k) xi,1(k) xi,2(k) · · · xi,N (k)

]T
,

and u ∈ R2N is the trend behavior of the state trajectory. ω(k)
is a Gaussian sequence with zero mean and covariance matrix
W (k). A represents how fast the transitions between states
are. The initial value of state x(0) is a white Gaussian noise
with mean value x̄(0) and covariance matrix Σ(0|0).

In the state transition equation, there are three parameters
to be determined, namely, A, W and u. The parameters can
be obtained by online or offline methods.

For the purpose of simplicity, define B := I − A, then (1)
can be rewritten in the following compact form:

x(k + 1) = Ax(k) +Bu+ ω(k). (2)

The ideal measurement (without missing phenomena)
z(r)(k) ∈ Rm collected by RTUs is given as follows

z(r)(k) = [V T (k) PT (k) QT (k) P fT (k) QfT (k)]T .

Assuming the general two-port π-model for the network
branches, the explicit element for each aforementioned mea-
surement is given as follows (the symbol of time instant, k, is
omitted for brevity):

Vs =
√
x2r,s + x2i,s

Ps = xr,s
∑
j∈Ns

(Gsjxr,j −Bsjxi,j)

+ xi,s
∑
j∈Ns

(Gsjxi,j +Bsjxr,j)

Qs = xi,s
∑
j∈Ns

(Gsjxr,j −Bsjxi,j)

− xr,s
∑
j∈Ns

(Gsjxi,j +Bsjxr,j)

P f
s := P f

tj = (x2r,t + x2i,t)(gtj0 + gtj)− xr,txr,jgtj
− xi,txi,jgtj − xi,txr,jbtj + xr,txi,jbtj

Qf
s := Qf

tj = −(x2r,t + x2i,t)(btj0 + btj)− xi,txr,jgtj
+ xr,txi,jgtj + xr,txr,jbtj + xi,txi,jbtj

(3)

where V (k) = [V1(k) V2(k) · · · Vnv (k)]T denotes the
bus voltage magnitude measurements, P (k) = [P1(k) P2(k)
· · · Pnp

(k)]T and Q(k) = [Q1(k) Q2(k) · · · Qnp
(k)]T stand

for the real and reactive bus power injections measurements,
and P f (k) = [P f

1 (k) P f
2 (k) · · · P f

nl
(k)]T and Qf (k) =
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[Qf
1 (k) Qf

2 (k) · · · Qf
nl

(k)]T are the real and reactive trans-
mission line power flows, respectively. Gsj + jBsj is the sjth
element of the complex bus admittance matrix, gtj + jbtj is
the admittance of the series branch connecting bus t and j,
gtj0 + jbtj0 is the half admittance of the shunt branch of the
line collecting bus t and j in the π-model circuit, and Ns is
the set of bus numbers which are directly connected to bus s.

Taking the measurement noise into consideration, z(r)(k)
can be rewritten as the following compact form

z(r)(k) = h(x(k)) + v1(k) (4)

The nonlinear function h(x) is given as follows:

h(x(k)) = [V T (k), PT (k), QT (k), P fT (k), QfT (k)]T ,

where the variables V (k), P (k), Q(k), P f (k) and Qf (k) are
defined in (3). v1(k) is the RTU measurement noise which is
also a Gaussian noise with zero mean and covariance matrix
R1(k). Assume ω(k) and v1(k) are uncorrelated with x(0)
and with each other.

Considering missing measurements, the actual measurement
z(k) is described by

z(k) = Ξ(k)h(x(k)) + v1(k) (5)

where Ξ(k) = diag{γ1(k), γ2(k), · · · , γm(k)} with γi(k)
(i = 1, 2, · · · ,m) being m unrelated random variables. Ξ(k)
is also unrelated with ω(k), v1(k) and x(0). Furthermore, it
is assumed that the stochastic variable γi(k) is a Bernoulli-
distributed white noise sequence taking values on 0 or 1 with:

Prob{γi(k) = 0} = 1− µi(k), Prob{γi(k) = 1} = µi(k)

where the value of Prob{γi(k) = 0} is also called the missing
rate of the ith measurement.

In RTU measurements, one bus is usually chosen as the
reference bus for all the other buses to obtain the relative phase
angles, while in PMU measurements, all PMU measurements
provide the direct phase angles with respect to the time refer-
ence provided by the GPS system. In this paper, we use both
RTU and PMU measurements, and therefore all the bus phase
angles are relative to the reference dictated by the GPS [13].
As a result, no reference buses are needed. Traditionally, the
phasor angles and magnitudes are treated separately as state
variables, whereas an alternative representation (i.e. the real
and imaginary partsof the bus voltages) (see [4]) is adopted
as state variables in this paper.

B. PMU Measurements and Inequality Constraints

In this paper, both the state variables and measured variables
are in the rectangular form, which makes a linear PMU
measurement model. Assume that the lth PMU is installed at
bus j, and the measurement z(p)l ∈ R2(1+Nj) can be described
as follows

z
(p)
l =

[
z
(p)
r,j z

(p)
i,j z

(p)

r,tj1
z
(p)

i,tj1
· · · z

(p)

r,tjNl

z
(p)

i,tjNl

]T
.

To be more specific, the voltage measurement in the above
vector is given as follows

z
(p)
r,j = xr,j , z

(p)
i,j = xi,j (6)

The current measurement of the line collecting the bus j
and t is as follows

z
(p)
r,jt = xr,lgjt0 − xi,jbjt0 + (xr,j − xr,t)gjt − (xi,j − xi,t)bjt,

z
(p)
i,jt = xi,lgjt0 + xr,jbjt0 + (xi,j − xi,t)gjt + (xr,j − xr,t)bjt.

Considering the measurement noise, the PMU measurements
can be presented in the following compact vector form:

z(p)(k) = H(p)x(k) + v2(k) (7)

where z(p) is the PMU measurement vector, and v2(k) is the
PMU measurement noise, which is also a Gaussian noise with
zero mean and covariance matrix R2(k). H(p) can be obtained
directly from PMU configurations, and it can be found that the
measurement z(p)(k) is linearly related to the state x(k).

A seemingly natural idea is to treat the PMU measurements
as an additional set similar to the RTU measurements. Note
the fact reported in [3], [13], that the standard deviation
of the errors of PMU measurements is one to two order
magnitude less than the one of traditional RTU measurements.
Unfortunately, since the PMU measurements are much more
accurate than the RTU measurements, including these two
kinds of measurements in the estimation process often results
in ill-conditioned filtering procedure due primarily to the low
covariance matrix for the PMU measurement noises.

As R2(k) is always a real symmetric matrix, we can find
a transformation matrix M(k) of appropriate dimension such
that the matrix M(k)R2(k)MT (k) is diagonal. Accordingly,
we can obtain the following equation from (7):

M(k)z(p)(k) = M(k)H(p)xp(k) +M(k)v2(k) (8)

where M(k)v2(k) is still a Gaussian noise with zero mean
and covariance matrix M(k)R2(k)MT (k).

Based on the well-known 3-sigma rule of Gaussian distri-
bution, we can conclude that the following inequality sets are
satisfied with probability 99.7%:

−3R̃2(k) ≤M(k)z(p)(k)−M(k)H(p)xp(k) ≤ 3R̃2(k) (9)

where R̃2(k) := M(k)R2(k)MT (k)Im1,1. From the perspec-
tive of engineering applications, it is reasonable to assume
that the above inequality sets are satisfied all the time. So
far, we have characterized the PMU measurements by a set of
inequality constraints on the states for the power system.

III. FILTER SCHEMES

A. EKF Design for the System with RTU Measurements

In this subsection, we first introduce the EKF approach to
estimating the system state for the system (2) with missing
measurements (5). The EKF is of the following form:

x̂(k|k − 1) = Ax̂(k − 1|k − 1) +Bu

x̂(k|k) = x̂(k|k − 1) +K(k)[z(k)− Ξ̄(k)h(x̂(k|k − 1))]

where x̂(k|k) is the estimate of x(k) at time instant k
with x̂(0|0) = x̄(0), and x̂(k|k − 1) is the one-step pre-
diction of x(k) at time k − 1. K(k) is the filter gain to
be determined at time instant k, and Ξ̄(k) := E{Ξ(k)} =
diag{µ1(k), µ2(k), . . . , µm(k)}. P (k|k − 1) and P (k|k) are
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the covariance matrices of, respectively, the one-step predic-
tion error and the filtering error defined by

x̃(k|k − 1) = x(k)− x̂(k|k − 1), x̃(k|k) = x(k)− x̂(k|k),

P (k|k − 1) = E{x̃(k|k − 1)x̃(k|k − 1)
T },

P (k|k) = E{x̃(k|k)x̃(k|k)
T }.

Denoting H(k) = ∂h(x(k))
∂x(k)

∣∣∣
x(k)=x̂(k|k−1)

, the filter gain

K(k) can be obtained by using the following recursive al-
gorithm:

P (k|k − 1) = AP (k − 1|k − 1)AT +W (k − 1) (10)
P (k|k) = [I −K(k)Ξ̄(k)H(k)]P−1(k|k − 1) (11)
S(k) = Ξ̃(k) ◦ (h(x̂(k|k − 1))hT (x̂(k|k − 1)))

+Ξ̃(k) ◦ (H(k)P (k|k − 1)HT (k)) +R(k)

+Ξ̄(k)H(k)P (k|k − 1)HT (k)Ξ̄(k) (12)
K(k) = P (k|k − 1)HT (k)Ξ̄(k)S−1(k) (13)

where Ξ̃(k) := diag{µ̃1(k), µ̃2(k), . . . , µ̃m(k)} with µ̃i(k) =
µi(k)(1− µi(k)) (i = 1, 2, . . . ,m).

Remark 1: In this paper, the exact occurrence time for
the randomly missing measurements is not required to be
exactly known, and this reflects the practical situation in
power system. Nonetheless, the statistical law (i.e., the first-
and second- order of moments) of the random occurrence of
missing measurements is needed in the filter design, where the
statistical law could be obtained through statistic tests.

Remark 2: There are mainly two kinds of DSE paradigms
in power system state estimation. These two paradigms differ
from each other in system dynamics model and time scale. In
one paradigm (see e.g. [5], [6], [18] and the references therein)
called forecasting-aided state estimation, the bus voltages are
chosen as state variables and a succession of the quasi steady-
states is assumed to evolve in time. Therefore, a dynamic mod-
el is adopted to describe the slow time evolution of the quasi
steady-state. In the other paradigm (see e.g. [7], [9] and the
references therein), rotor angles and rotor speeds of generators
are chosen as state variables, and the classic dynamic model
of generators is considered. The DSE of such a paradigm is
concerned with the low frequency electromechnical dynamics.

B. The Probability-Maximum Method

For the constrained estimation problem, it is difficult to
incorporate the inequality/equality constraint of system states
into traditional EKF estimator. Fortunately, the probability-
maximum method has been successfully exploited in [15] to
convert the constrained estimation problem into a constrained
optimization one after each step of the EKF algorithm and,
therefore, this method is chosen to handle the constrained EKF
problem in this paper.

For presentation conciseness, the notation for time instant,
k, is omitted in this subsection. It is known from [2] that, based
on the Kalman filter theory, the state estimate of x maximizes
the conditional probability density

P(x|Z) = (2π)
−n

2 |P |− 1
2 exp{−1

2
(x−x̄)TP−1(x−x̄)} (14)

where n is the dimension of x, P is the covariance of the
Kalman filter estimate, Z , {z(0), z(1), . . . , z(k)} denotes
the set of measurements available at time instant 0, 1, . . . , k,
and x̄ is the conditional mean of x given Z.

The constrained EKF can be derived by finding an estimate
x̂ such that the conditional probability P(x̂|Z) is maximized
and x̂ satisfies the constraint (9). Since maximizing P(x̂|Z) is
equivalent to maximizing its natural logarithm, the problem to
be solved can be expressed as

max lnP(x̂|Y )⇒ min(x̂− x̄)TP−1(x̂− x̄)

subject to− 3R̃2 ≤Mz(p) −MH(p)Cx̂ ≤ 3R̃2.
(15)

So far, the constrained state estimation problem has been
converted into an equivalent constrained optimization problem
that can be solved after each time step of the EKF algorithm.
As is impossible to develop a deterministic method for the
constrained nonlinear optimization problem (15) in the global
optimization category, we adopt the PSO algorithm, which
is a popular evolutionary algorithm in solving the nonlinear
optimization problem.

IV. PSO FOR CONSTRAINED OPTIMIZATION PROBLEM

Particle Swarm optimization (PSO) is a metaheuristic that
optimizes a problem by iteratively searching in a large s-
paces of candidate solutions [12]. In PSO, a population of
candidate solutions (called as particles) moves in the search
space according to two simple mathematic formulae over
the particle’s position and velocity. More specifically, each
particle’s movement is influenced by its local best known
position and also the best known positions, which are updated
by other particles, in the search space. By such an iterate
approach, the swarm of the particles moves towards the best
solutions. The velocity and position of the particle at the next
iteration are updated according to the following equations:

vi(s+ 1) = ωvi(s) + c1r1(pi(s)− xi(s))
+ c2r2(pg(s)− xi(s))

xi(s+ 1) = xi(s) + vi(s+ 1)

(16)

where xi(s) = [xi1(s), . . . , xid(s)], xi(s) is the position of the
ith particle at the sth iteration, and xi(s) ∈ [xmin,n, xmax,n],
with xmin,n and xmax,n being the lower and the upper bounds
for all particles’ positions. vi(s) = [vi1(s), . . . , vid(s)], vi(s)
is the velocity of the ith particle at the sth iteration. ω is the
inertia weight, c1 and c2 are called acceleration coefficients,
namely, cognitive and social parameters, respectively. r1 and
r2 are two uniform random number samples from [0, 1]. pi(s)
is the local best position encountered by ith particle at the sth
iteration, and pg(s) is the global best position in the swarm at
the sth iteration.

PSO has been successfully applied to various optimization
problems. As to constrained optimization problem, PSO is still
valid with the aid of the popular constraint-handling technique:
the penalty function approach. By using the penalty function
approach, a constrained optimization problem can be converted
into a corresponding unconstrained optimization one by adding
a penalty term to the original objective function [21].



SUBMITTED 5

TABLE I
THE TREND VOLTAGE AT NORMAL STATES

Bus 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Real Parts 1.0600 1.0368 0.9609 0.9858 0.9958 1.0016 1.0022 1.0270 0.9827 0.9769 0.9850 0.9806 0.9755 0.9552

Imaginary Parts 0 0.0943 0.2173 0.1821 0.1563 0.2694 0.2512 0.2643 0.2743 0.2744 0.2724 0.2759 0.2748 0.2812
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Fig. 1. The estimated states of bus 2 from the traditional EKF and our proposed EKF
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Fig. 2. The estimated states of bus 5 from the traditional EKF and our proposed EKF

In this paper, the penalty function F (x) is defined as

F (x) = f(x) + h(s)g(x), x ∈ Rn (17)

where f(x) is the original objective function of the constrained
optimization problem in (15), h(s) is a dynamic penalty
coefficients with the sth iteration steps, g(x) is a penalty factor
defined as g(x) = θ

∑m1

i=1 q
2
i (x). Here qi(x) = max{0, ci(x)}

with ci(x) = |Mi(k)(z
(p)−H(p)xp)|

3R̃2i(k)
− 1, i = 1, . . . ,m1, where

Mi(k) and R̃2i(k) are the ith row of M(k) and R̃2(k) in
inequality (9).

V. SIMULATION RESULTS

In this section, the proposed hybrid algorithm of EKF and
PSO is tested in the case study of the IEEE 14-bus test system.
The simulation is implemented in Matlab with the Matpower
package [23]. First, the IEEE 14-bus test system can be model
as (1) with parameters A = diag28{0.98}, B = diag28{0.02}

and W (k) = diag28{0.012}. The trend u of the normal state is
the base-case voltages given in Table I. Furthermore, assume
that the initial voltages of all buses are at flat start, that is,
xr,l(0) = 1 p.u, xi,l(0) = 0 for all l = 1, 2, . . . , 14.

The measurement configuration is the same as the one used
in [13], where RTU measurements consist of three categories:
the voltage magnitude at bus 1, power injections at bus 3, 5,
13 and 14, and power flows at branches 1-2, 1-5, 2-5, 3-4,
4-7, 4-9, 6-11, 6-12, 6-13, 7-8, 7-9, 9-10, 9-14, 10-11, 12-
13 and 13-14. In addition, PMUs are deployed at buses 2, 7
and 9. Furthermore, the covariance matrices of the traditional
RTU measurement and PMU measurement noise are R1(k) =
diag43{0.12} and R2(k) = diag28{0.012}, respectively.

The algorithm is implemented in Matlab R2010a. The
simulation is performed on a PC with a Intel(R) Core(TM)
CPU i5-2500 @3.30 GHz and 4 GB RAM. The time required
by the proposed EKF without PSO algorithm at each step
is 0.81 seconds. For the proposed EKF with PSO algorithm,
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the computation time is related to the population of the
swarm (ps) and the iterations (iter). In the simulation, we
have set ps = 100 and iter = 200, and the time required
by the proposed EKF with PSO algorithm at each step is
1.47 seconds. It can be concluded that the proposed EKF
with PSO algorithm is quite fast and hence is suitable for
online implementations. Moreover, the integration of PSO into
EKF slows the computational speed slightly, yet improves the
performance of state estimation obviously.

In this test system, three comparative experiments regarding
the estimation accuracy are carried out as follows:

Case 1)Both the proposed EKF considering measurements
with certain missing rate and the traditional EKF
ignoring the missing measurements are implemented
for the system with missing measurements;

Case 2)When the missing rate of the measurements varies
from zero to higher values, the proposed EKF is
implemented in all the cases;

Case 3)The state estimations based on the proposed EKF
with/without PSO algorithm are compared.

In order to have more general and significant experimental
results, 100 Monte-Carol simulations are run in Cases 2 and
3. The notion mean square error (MSE) is adopted to evaluate
the estimation accuracy, where MSEi denotes MSE for the
estimate of the ith state, i.e. MSEi(k) = 1

100

∑100
j=1(xi(k) −

x̂i(k))2. To evaluate the average estimation performance of
all states, average mean square error (AMSE) is defined as
AMSE(k) := 1

n

∑n
j=1 MSEj(k), where n is the number of

the state variables. In all the figures, “R.V” and “I.V” denote
the real and imaginary part of voltage, respectively.

A. Traditional EKF vs. the Proposed EKF

In this case, the probability density function for the missing
Ξ(k) is Prob{Ξi(k) = 0} = 0.5, Prob{Ξi(k) = 1} = 0.5.
The expectation can be easily calculated as µi(k) = 0.5. The
estimated states of the representative buses 2, 5 obtained from
traditional EKF without considering the missing measurements
are plotted in Fig. 1, while the counterparts obtained from the
proposed EKF considering missing measurements are plotted
in Fig. 2. From the comparison, it can be found that our
proposed EKF algorithm performs well in the presence of
missing measurements, whereas the state estimate obtained
from the traditional EKF cannot track the real states when
missing measurements occur randomly.

B. EKF with Individual Missing Measurements

In order to see how different missing rates impact on the
estimation accuracy, three missing rates of 0.15, 0.02 and 0
(without missing measurements) are considered. The MSEs of
the estimated states of buses 2, 5 for all the three missing rates
are compared in Figs. 3 and 4. The AMSE(k) in all three cases
are given in the first three rows of Table II, for k = 1, . . . , 15.
From the comparisons, it can be found the less the missing
rate is, the more accurate the state estimation obtained from
the proposed EKF algorithm will be.

C. EKF vs. Hybrid EKF and PSO Algorithm

We are now in a position to evaluate the effectiveness of
including the PSO scheme in the EKF design. A comparison
is made between the EKF algorithm alone and the hybrid EKF
and PSO algorithm. For this purpose, the missing rate is fixed
as 0.15. Regarding the penalty function parameters, θ = 1000
and h(s) = s are chosen in all the iteration steps.

For the same test system, one realization of the EKF and
one realization of the hybrid algorithm are simulated simulta-
neously, and the estimated states of bus voltages 2, 5 obtained
from the two algorithms are illustrated in Figs. 5 and 6. It is
seen that the trajectory by the proposed hybrid approach is
much closer to the true state trajectory than the one only by
the EKF. The MSE2 and MSE5 at all time instants for both
algorithms are plotted in Fig. 7. It can be found that for the
same state variable, the MSE of EKF-based state estimation
is bigger than the MSE of the state estimation obtained from
the hybrid algorithm. Especially, when the accumulated error
of EKF-based state estimation becomes bigger after several
integrations, the subsequent PSO algorithm can refine the state
estimation and diminish the error. The AMSEs of EKF and of
the proposed hybrid algorithm are given in the last two rows
of Table II. It can be found the AMSE(k) of EKF is bigger
than the one of the proposed hybrid algorithm at each step.

From the comparative experiments, it can be concluded that
our proposed hybrid EKF and PSO algorithm outperforms
the traditional EKF algorithm in the presence of probabilistic
missing measurements by including PMU measurements.

VI. CONCLUSION

In this paper, we have developed a hybrid EKF and PSO
algorithm for power system dynamic state estimation. In
consideration of the missing traditional measurements, a novel
EKF estimator has been designed for the power system. The
PMU measurements have been incorporated in the designed
EKF estimator via the characterization of a set of inequality
constraints. The constrained state estimation problem has been
transformed to a constrained optimization problem. Then,
the PSO algorithm together with the penalty function has
been employed to solve the constrained optimization problem.
Simulations have confirmed the effectiveness of the propose
method. In our future work, we will develop our algorithms
to detect the presence of contingency.
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