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Abstract—Mobile edge computing (MEC) has been proposed
in recent years to process resource-intensive and delay-sensitive
applications at the edge of mobile networks, which can break the
hardware limitations and resource constraints at user equipment
(UE). In order to fully use the MEC server resource, how to
maximize the number of offloaded tasks is meaningful especially
for crowded place or disaster area. In this paper, an optimal
partial offloading scheme POSMU (Partial Offloading Strategy
Maximizing the User task number) is proposed to obtain the
optimal offloading ratio, local computing frequency, transmission
power and MEC server computing frequency for each UE. The
problem is formulated as a mixed integer nonlinear program-
ming problem (MINLP), which is NP-hard and challenging to
solve. As such, we convert the problem into multiple nonlinear
programming problems (NLPs) and propose an efficient algo-
rithm to solve them by applying the block coordinate descent
(BCD) as well as convex optimization techniques. Besides, we
can seamlessly apply POSMU to UAV (Unmanned Aerial Vehicle)
enabled MEC system by analyzing the 3D communication model.
The optimality of POSMU is illustrated in numerical results, and
POSMU can approximately maximize the number of offloaded
tasks compared to other schemes.

Index Terms—Offloaded Task Number Maximization, Partial
Offloading, Unmanned Aerial Vehicle, Mobile Edge Computing.

I. INTRODUCTION

MEC technology is gradually changing our world by of-
fering powerful computing and communication resources to
end users. In recent years, with the rapid development of
information technologies (such as data gathering, coverage
management and indoor localization technologies in wireless
network [1] [2] [3], charging scheduling and security protec-
tion technologies in smart grid [4] [5] and routing technolo-
gies in vehicular network [6] etc), many applications need
large amount of computing and communication resources
to enhance their Quality of Experience (QoE). In order to
address this problem, MEC technologies are considered as a
feasible way.

UEs (such as mobile phones, smartphones, tablets, etc.) are
terminal devices and can be used for learning, entertainment,
reading, and working. However, users are often less satisfied

with UEs due to their limited processing power, battery
life and storage capacity [7]. With the emergence of cloud
computing, many services (such as mobile healthcare, mobile
learning, mobile gaming and mobile management) can be
accessed from remote UEs [8], which improves the QoE but
requires much computing and communication resources to
reduce latency.

In order to further reduce latency and improve QoE, MEC
is a feasible way by sinking resources to UEs side and
processing the offloaded terminal tasks in real-time [9]. Task
offloading includes decision, data uploading, MEC execution,
and results return [10], which can effectively reduce the
latency and energy consumption. According to the separability
of tasks, computing offloading can be classified into binary
offloading and partial offloading [11]. The binary offloading
refers that tasks data cannot be further divided, and all the data
should be offloaded to MEC server or executed locally, while
the partial offloading means the task data can be partially
proceed on MEC server, and other part of data is proceed
locally.

In this paper, we study the partial offloading in the scenario
with high UEs density. Each task has a latency limitation. The
UEs energy as well as MEC resource are also limited. As the
number of UEs increases, there are some UEs whose tasks
cannot be offloaded and executed by MEC server. Then how to
maximize the number of offloaded UEs’ tasks is an important
issue for this scenario. In this paper, we aim to address this
problem by formulating it as a MINLP for single MEC server
case. In order to make the MINLP traceable, it is converted
and relaxed to multiple sub-problems. An overall solution
POSMU is proposed by solving these sub-problems based on
BCD method. Besides, we also analyze 3D communication
model, and find that POSMU can be easily transplanted to
UAV scenario.

II. RELATED WORK

MEC has been studied extensively in recent years. Ac-
cording to the main objectives, the computing offloading
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related work has been summarized and untangled. Firstly,
we introduce the work based on MEC system without UAV
assistance, and then the work based on UAV enabled MEC
system is introduced.

A. MEC System Without UAV Assistance

In MEC scenario, how to saving the UEs energy is an
important issue for the energy sensitive UEs. In [12], by
seamlessly integrating two technologies i.e. mobile cloud
computing and microwave power transfer (MPT), You et al.
proposed a novel framework for energy efficient computing,
which aimed at minimizing the energy consumption for local
computing and maximizing the energy savings for offloading.
In their later work, an energy-efficient resource-management
asynchronous mobile-edge computing offloading (MECO)
system was studied in [13], where the mobile devices had
heterogeneous input-data arrival time instants and computa-
tion deadlines. By introducing the concept of wireless aware
joint scheduling and computing offloading (JSCO) for multi-
component applications, in [14] Mahmoodi et al. made an
optimal decision on which components need to be offloaded
as well as the scheduling order of these components to save
the energy of mobile devices. To minimize the total transmit
energy of access point and subject to the constraints of
computational tasks, in [15] Hu et al. studied a MEC system
where two mobile devices were energized by the wireless
power transfer (WPT) from an access point, and considered
cooperative communications in the form of relaying via
the nearer mobile device. By leveraging the variability in
capabilities of mobile devices and user preferences, in [16]
Guo et al. studied the energy efficient computing offloading
management scheme in the MEC system, which minimized
the energy consumption of all UEs via jointly optimizing com-
putation offloading decision making, spectrum, power, and
computation resource allocation. In [17] Mao et al. developed
an online joint radio and computational resource management
algorithm for multi-user MEC systems to minimize the long-
term average weighted sum power consumption of the mobile
devices and the MEC server. In [18] Dai et al. proposed a
novel two-tier computing offloading framework in heteroge-
neous networks and formulated joint computing offloading
and user association problem for multi-task mobile edge
computing system to minimize overall energy consumption. In
[19] Yang et al. formulated an energy optimization problem
of offloading, which aimed to minimize the overall energy
consumption at all system entities and took into account of
the constraints from both computation capabilities and service
delay requirement. In [20], a multi-subtasks-to-multi-servers
model was proposed by Wang et al. to minimize all the energy
consumption for subtasks. In [21] an offloading policy was
proposed by Mazouzi et al. to decide which task should be
offloaded and where to offloaded. The objective is minimize
the total energy consumption for UEs.

In delay sensitive scenarios, the latency minimization is
more important than energy saving and should be considered
as the main objective. In [22] Ren et al. proposed a nov-

el partial computing offloading model and then formulated
a weighted-sum latency-minimization problem by optimally
allocating the communication and computation resources, and
in their follow-up work [23], a novel partial compression
offloading system with joint communication and computation
resource allocation was designed, which significantly reduced
the end-to-end latency. With the development of caching tech-
nology, in [24] Yu et al. designed a collaborative offloading
scheme and cached the popular computation results that was
likely to be reused by other mobile users using caching
enhancements to minimize the task latency at the mobile
terminal side. In [25] Samanta et al. considered both the delay-
tolerant and delay-constraint services in order to achieve the
optimized service latency and revenue.

In some research scenarios, the energy consumption and
latency are jointly minimized. In [26] Wang et al. investi-
gated partial computing offloading by jointly optimizing the
computational speed of smart mobile device (SMD), transmit
power of SMD, and offloading ratio with two system design
objectives: energy consumption of SMD minimization (ECM)
and latency of application execution minimization (LM). In
[27], Tang et al. proposed a partial offloading strategy MOTE
considering the mixed overhead of time and energy, the time
and energy are weighted and minimized.

B. UAV Enabled MEC System

In the UAV scenario, the 3D communication model is
adopted. In general, UAV hovers in the air, and is far away
from UEs to cover the ground UEs better. UAVs can be
used as MEC servers to provide various computing offloading
services for UEs. In [28], a novel framework of agent-
enabled task offloading in UAV-aided MEC(UMEC) was put
forth by Wang et al. The intelligence agent was guided to
obtain the optimal offloading plan with aiming at minimum
task execution delay and energy consumption. In [29], an
UAV-enabled MEC system with wireless power transfer was
studied by Du et al. In order to allow parallel transmission, a
new time division multiple access (TDMA) based workflow
model was proposed. The total energy consumption of UAV
was minimized by optimizing the resource allocation, UAV
hovering time etc. In [30], an UAV-enabled MEC network
was proposed to provide services for UEs with fixed-wing
and rotary-wing UAVs. The UAVs 3D trajectory and task
cache strategies were optimized to minimize the energy con-
sumption. In [31], an UAV-Enabled MEC system was studied
by Zhou et al. to maximize the computation rate with the
energy harvesting and UAV speed constraints. In [32] Yang
et al. studied a MEC network with multiple UAVs. The user
association, transmission power and computing capacity allo-
cation, location planning were jointly optimized to minimize
the sum power of UEs. In [33], a MEC system with UAV
assistance was proposed by Hu et al. The weighted sum
energy consumption of UAV and UEs were minimized based
on considering the constraints of tasks, information-causality,
bandwidth allocation and UAVs trajectory. According to the
introduction above, a lot of research work is focus on energy
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consumption minimization problem, and the constraints are
diverse, such as UAV trajectory, energy harvesting, UAV
speed and so on.

C. Summary of Related Work and Our Contributions

According to the work presented above, the energy con-
sumption minimization, latency minimization are the main
research objectives both in the MEC or UAV-enabled MEC
system. Few work had considered the offloaded task number
maximization problem as the optimization target. In this
paper, we will study an interesting problem with aiming at
maximizing the offloaded task number in a crowded scenario.
The problem is formulated as a MINLP, which can be
solved approximately. The main contributions of this paper
are summarized as follows.
• We consider a scenario with high density of UEs, and

the MEC server is only one. In order to maximize
the offloaded UEs’ task number, a partial offloading
optimization model is formulated.

• The optimization model is a MINLP, which is difficult to
solve. By analyzing the property of this model, we de-
couple the primal problem into a series of sub-problems.
These sub-problems can be solved separately by using
the BCD method after analyzing the convexity for each
variable.

• In order to apply our model to the scenario with UAV,
we further analyze the 3D communication model, and
illustrate that our model can be seamlessly transplanted
to the UAV enabled MEC system.

• We evaluate the optimality for POSMU by comparing
it with exhaustive algorithm and smart optimization
algorithm respectively. We also compare POSMU with
other schemes to illustrate its advantages.

The rest of this paper is organized as follows. System model
is presented in section III. The problem is formulated and
solved in section IV. In section V, we discuss the applicability
of POSMU in UAV scenario, and numerical results are
presented in section VI. Finally, the paper is summarized in
section VII.

III. SYSTEM MODEL

In this paper, we consider the scenario, where there are
many UEs and few MEC servers. In our life, the crowded
shopping malls and the disaster relief site have the charac-
teristic. In this scenario, each UE want to upload its task
to MEC server to get better experience. But, because of
the limited MEC servers, many UEs computing offloading
requirements cannot be met in a same time slot. Therefore,
in order to maximize the utilization of MEC server in the
crowded scenario, the offloaded task number maximization
problem is studied in this work.

We assume that there are a set of N users N =
{1, 2, 3, ..., N} and a mobile edge computing server (MEC
server) in the scenario. For a UE task, the data size is D,
and CPU cycles required to complete the task is F . UE also
has a latency limitation τ for its task. As illustrated in Fig.1,

which shows a typical MEC scenario consists of user devices
and edge server, where UE can offload their intensive task
to the MEC server. As shown in the figure, only one MEC
server processes a lot of UEs tasks. Because of limited MEC
resource, there must be some UEs tasks cannot be offloaded
to MEC server. The MEC server is working at full capacity.
Fig.2 shows our computing offloading model, which is a full
granularity partial offloading, that is, for a certain task, only
part of its data can be offloaded to the MEC server, and other
data is locally proceeded.

UE2

UE3 UE4 UE5 UE6

UE1

MEC Server UE7

UE8
UE9UEn

Unsuccessful Offloading Successful Offloading 

Fig. 1. The offloading scenario with massive UEs

MEC Server

User Equipment (UE)

Part 1 of UE Task  Data 
Offloaded to MEC Server

Part 2 of UE Task Data 
Used for Local Computing

Part 2Part 1

UE Task Data

Full Granularity 
Partial Offloading

Local Computing

Edge Side

UE Side

Fig. 2. The principle of full granularity partial offloading

A. Local Computing

As for UE i, the task data size is Di, which consumes Fi
CPU cycles to complete the task. In this paper, we assume
there is a linear relationship between Fi and Di [34]:

Fi = αDi (1)

where α depends on the nature of application. As for the full
granularity partial offloading [35], we define λi as a ratio for
the non-offloaded data. Therefore, the number of data bits
executed locally is λiDi, and the data size executed by the
MEC server is (1− λi)Di.
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We let f li denote the local computing frequency of UE i.
Then the local task data processing time is:

T li =
λiFi
f li

(2)

According to [36]- [37], the energy consumption of UE i
performed locally is:

Eli = k · (f li )2λi · Fi (3)

where k is the coefficient depending on the chip structure,
and typically k = 10−26.

B. MEC Server Computing

When UE offloads task on MEC server, the uplink data rate
of UE i is:

ri = Blog2

(
1 +

pihi
N0

)
(4)

where pi is the transmission power of UE i, and B represents
the channel bandwidth. N0 is the noise power. In this model,
we assume there are many orthogonal sub-channels. Besides,
the frequency reuse techniques or interference coordination
are adopted to mitigate the interference [38]. So, the trans-
mitting interference is not considered in this work. hi is the
channel gain between UE i and the MEC server. Because the
MEC server is nearby the UEs, the distance influence is not
considered in this model, and we assume all the UEs have the
same channel gain hi. Then, the task data transmission time
is given as:

T trai =
(1− λi)Di

Blog2(1 +
pihi
N0

)

(5)

As for the MEC server, we define f ci as the computing
frequency of MEC server allocated to the task of UE i.
Therefore the task data processing time on MEC server is:

T proi =
(1− λi)Fi

f ci
(6)

Then, the task time consumed on MEC server is:

T ci = T trai + T proi

=
(1− λi)Di

Blog2

(
1 +

pihi
N0

) +
(1− λi)Fi

f ci
(7)

In this paper, we neglect the time delay for MEC server
sending the processed results back to the UE. This is because
the size of task result is much smaller than that of task data
[39]. The UE’s energy consumption in the offloading process
is only the transmission energy:

Etrai = pi
(1− λi)Di

Blog2(1 +
pihi
N0

)

(8)

C. Problem Formulation

In the optimization model, we consider how to maximize
the offloaded task number of UEs, and assume that in one

time slot one UE only has a task. The optimization problem
is formulated as follows:

P1:

maximize
N,f l

i ,f
c
i ,pi,λi

N

s.t.

C1 :
N∑
i=1

f ci ≤ fc,max,∀i ∈ N

C2 :
λiFi
f li
≤ τi,∀i ∈ N

C3 : k(f li )
2λiFi + pi

(1− λi)Di

Blog2

(
1 +

pihi
N0

) ≤ Ei,∀i ∈ N

C4 : 0 ≤ pi ≤ pi,max,∀i ∈ N
C5 : 0 ≤ λi ≤ 1,∀i ∈ N

C6 :
(1− λi)Di

Blog2

(
1 +

pihi
N0

) +
(1− λi)Fi

f ci
≤ τi,∀i ∈ N

C7 : 0 ≤ f li ≤ f li,max,∀i ∈ N

where the constraint C1 ensures that the total required com-
puting frequency for the offloaded tasks should not exceed
the computing frequency capacity fc,max of MEC server.
The constraint C2 represents that the local execution time
should not bigger than the latency limitation τi of UE i.
Constraint C3 means the total energy consumption should not
exceed the total residual energy Ei of UE i. C3 contains two
parts, which are local computing energy consumption and data
transmission energy consumption. Constraints C4, C5 and C7
are the domains for pi, λi and f li respectively. pi,max is upper
bound for pi. f li,max is upper bound for f li . Constraint C6
means the time consumed of the offloaded task data should
not exceed the latency limitation τi. C6 contains two parts,
which are task data uploading time and executed time on the
MEC server.

Both in C3 and C6, the transmission rate hasn’t included
the interference among UEs. The local computing and MEC
server computing can be executed at the same time. C3 is
the time constraint for local computing, and C6 is the time
constraint for MEC computing. In this model, the energy
consumption saving is not our main purpose, and energy
consumption is only considered in C3. This is because in
the crowded scenario with limited MEC resources how to
maximize the offloaded UEs tasks number is meaningful.
Besides, in order to control the energy consumption for a
task, the value of Ei can be preset or limited by UEs.

IV. PROBLEM SOLVING

According to P1, only C1 has coupled all the UEs variables
f ci , and the constraints from C2 to C6 are all about single
UE. Because the MEC server resource is limited in high
density UEs scenario, and if the f ci is minimized while other
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constraints are satisfied, the offloaded UEs task number can
be maximized. Then the primal problem P1 can be converted
into the following N sub-problems, which minimize the MEC
server computing frequency f ci for each UE’s task.

P2:

minimize
f l
i ,f

c
i ,pi,λi

f ci ∀i ∈ N

s.t.

C2 :
λiFi
f li
≤ τi

C3 : k(f li )
2λiFi + pi

(1− λi)Di

Blog2

(
1 +

pihi
N0

) ≤ Ei

C4 : 0 ≤ pi ≤ pi,max
C5 : 0 ≤ λi ≤ 1

C6 :
(1− λi)Di

Blog2

(
1 +

pihi
N0

) +
(1− λi)Fi

f ci
≤ τi

C7 : 0 ≤ f li ≤ f li,max

According to P2, if all the sub-problems are solved, the
minimal MEC server computing frequency for UEs can be
obtained, and then the maximal UE number N can be calcu-
lated by sorting ascending and summing all the f ci s without
exceeding the maximal computing frequency of MEC server
fc,max. In the following sections, we only consider one sub-
problem of UE i for simplicity.

Although P2 is a NLP, the objective function only contains
the variable f ci . According to C6, the variable f ci only exists
in this condition, and a lower bound for f ci is:

f ci ≥
(1− λi)Fi

τi −
(1− λi)Di

Blog2

(
1 +

pihi
N0

)
(9)

which needs an addition constraint C8 to make (9) hold:

(1− λi)Di

Blog2

(
1 +

pihi
N0

) − τi ≤ 0 (10)

According to (9), the optimal solution for f ci can be
obtained at the lower bounder. Then, the variable f ci is
eliminated. The remaining problem is:

P3:

minimize
f l
i ,pi,λi

(1− λi)Fi
τi −

(1− λi)Di

Blog2

(
1 +

pihi
N0

)

s.t.

C2 :
λiFi
f li
≤ τi

C3 : k(f li )
2λiFi + pi

(1− λi)Di

Blog2

(
1 +

pihi
N0

) ≤ Ei

C4 : 0 ≤ pi ≤ pi,max
C5 : 0 ≤ λi ≤ 1

C7 : 0 ≤ f li ≤ f li,max

C8 :
(1− λi)Di

Blog2

(
1 +

pihi
N0

) − τi ≤ 0

P3 is not a jointly convex problem with regard to (w.r.t) f li ,
pi and λi. But the problem is convex for a single variable, then
we can use the block coordinated descent (BCD) method [40]
to solve each variable individually to obtain an approximately
optimal solution.

A. Optimal Local Computing Frequency

Because the variable f li is not exist in the objective func-
tion, which results that the value of f li can not effect the
objective function directly. But it can effect the objective
function by affecting other variables such as λi.

According to P3, C2 is a linear constraint for f li , and C3 is
a quadratic function constraint for f li . The objective function
do not contains f li . Thus, P3 is a convex problem with regard
to f li . The sub-problem is:

P3.1:

minimize
f l
i

(1− λi)Fi
τi −

(1− λi)Di

Blog2

(
1 +

pihi
N0

)

s.t.

C2 :
λiFi
f li
≤ τi

C3 : k(f li )
2λiFi + pi

(1− λi)Di

Blog2

(
1 +

pihi
N0

) ≤ Ei

C7 : 0 ≤ f li ≤ f li,max

According to C2, C3 and C7, we get a new domain for f li :

λiFi
τi
≤ f li ≤ f̄ li (11)
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where:

f̄ li = min




√√√√√√√
Ei − pi

(1− λi)Di

Blog2

(
1 +

pihi
N0

)

kλiFi
, f li,max




(12)

According to P3.1, each UE should require the minimal MEC
server’s computing frequency to maximize the number of
offloaded UEs tasks. Then f li should be the upper bound to
process as much task data as possible. If f li is bigger, the
less time it takes for local computing, which results the more
task data proceeded locally and the smaller MEC server’s
computing resources requirement. Therefore, optimal solution
of f li is:

f l∗i =





f̄ li , if f̄
l
i ≥

λiFi
τi

no feasible solution, else
(13)

B. Optimal Local Computing Ratio

The local computing ratio λi is the ratio of locally proceed-
ed data volume to total task data volume. According to P3,
the objective function is a monotonically decreasing function
w.r.t λi. The sub-problem is:

P3.2:

minimize
λi

(1− λi)Fi
τi −

(1− λi)Di

Blog2

(
1 +

pihi
N0

)

s.t.

C2 :
λiFi
f li
≤ τi

C3 : k(f li )
2λiFi + pi

(1− λi)Di

Blog2

(
1 +

pihi
N0

) ≤ Ei

C5 : 0 ≤ λi ≤ 1

C8 :
(1− λi)Di

Blog2

(
1 +

pihi
N0

) − τi ≤ 0

In order to get the upper bound of λi, we calculate out a
new value range according to C2, C3, C5 and C8.

According to C2, we have:

λi ≤
τif

l
i

Fi
(14)

According to C3, we derive that:

λiqi ≤ hi (15)

where:
hi = Ei − pi

Di

Blog2

(
1 +

pihi
N0

) (16)

qi =


k(f li )

2
Fi − pi

Di

Blog2

(
1 +

pihi
N0

)


 (17)

Then, if hi ≥ 0 and qi ≥ 0, we have:

λi ≤
hi
qi

(18)

if hi ≥ 0 and qi < 0, we have:

λi ≥
hi
qi

(19)

According to the value interval C5, we see that (19) is always
hold and contained by C5. Then, the condition for (19) can
be ignored.

if hi < 0 and qi ≥ 0, we have:

λi ≤
hi
qi

(20)

According to C5, we know that λi is a non-negative value,
which contraries to (20). Then, (20) is not hold.

if hi < 0 and qi < 0, we have:

λi ≥
hi
qi

(21)

According to C8, we have:

λi ≥ 1−
τiBlog2

(
1 +

pihi
N0

)

Di
(22)

Therefore, we get the new upper and lower bounds for λi:

λi,max =





min

{
τif

l
i

Fi
, 1,

hi
qi

}
, if hi ≥ 0, qi ≥ 0

no feasible value, if hi < 0, qi ≥ 0

min

{
τif

l
i

Fi
, 1

}
, otherwise

(23)

λi,min =





max

{
0, si,

hi
qi

}
, if hi < 0, qi < 0

max {0, si} , otherwise
(24)

where:

si = 1−
τiBlog2

(
1 +

pihi
N0

)

Di
(25)

Then, the optimal value for λi is:

λ∗i =

{
λi,max, if λi,max ≥ λi,min

no feasible solution, if λi,max < λi,min
(26)
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C. Optimal Transmission Power

According to P3, the sub-problem for solving the transmis-
sion power is:

P3.3:

minimize
pi

(1− λi)Fi
τi −

(1− λi)Di

Blog2

(
1 +

pihi
N0

)

s.t.

C3 : k(f li )
2λiFi + pi

(1− λi)Di

Blog2

(
1 +

pihi
N0

) ≤ Ei

C4 : 0 ≤ pi ≤ pi,max
C8 :

(1− λi)Di

Blog2

(
1 +

pihi
N0

) − τi ≤ 0

In P3.3, the objective function is monotonically decreasing
w.r.t pi. Then, if we get a new value range for pi according
to C3, C4 and C8, the optimal value can be obtained.

According to C8, we have:

pi ≥

N0


2

(1− λi)Di

Bτi − 1




hi
(27)

According to C3, we get the following condition:

g (pi) = pi
(1− λi)Di

Blog2

(
1 +

pihi
N0

) + k(f li )
2λiFi−Ei ≤ 0 (28)

Theorem 1: g (pi) is a quasi-convex function in the domain.
Proof 1: According to [41], we firstly calculate the first

derivative of g (pi):

g′ (pi) =

(1− λi)Di

(
ln

(
1 + pi

hi
N0

)(
1 + pi

hi
N0

)
− pi

hi
N0

)

ln (2)Blog2

(
1 + pi

hi
N0

)2(
1 + pi

hi
N0

)

(29)
Then, we let g′ (pi) = 0, and get the following condition:

ln

(
1 + pi

hi
N0

)
=

pi
hi
N0(

1 + pi
hi
N0

) (30)

Then, we continue to calculate the second-order derivative of
g (pi):

g′′ (pi) =
(1− λi)Di

hi
N0

v

ln2 (2)Blog2

(
1 + pi

hi
N0

)3(
1 + pi

hi
N0

)2 (31)

where v is:

v (pi) = −pi
hi
N0

ln

(
1 + pi

hi
N0

)
+2pi

hi
N0
−2 ln

(
1 + pi

hi
N0

)

(32)
Then, substitute condition (30) into (32), and we have:

v (pi) =
1(

1 + pi
hi
N0

)
(
pi
hi
N0

)2

≥ 0 (33)

Then the second-order derivative g′′ (pi) ≥ 0 when pi is the
solution for equation g′ (pi) = 0. Thus, g (pi) is a quasi-
convex function in the domain [41]. �

In order to solve (28) to get a new bound for pi, we convert
the inequality (28) into:

g1 (pi) =

pi (1− λi)Di +Blog2

(
1 +

pihi
N0

)(
k(f li )

2
λiF − Ei

)
≤ 0

(34)
We can see that when pi = 0, the g1 (pi) = 0, then pi = 0
is a lower bound of feasible solution for the (34). Because
g (pi) is a quasi-convex function in the domain, there is an
upper bound of feasible solution for (28), which is solved by
using the binary search method presented in Algorithm 1.

Algorithm 1: Upper Bound Search Algorithm (UBSA)

Input: pi,max, pi,min, k, f
l
i , λi, Fi, Di, B, hi, N0, Ei, ε

Output: p̄i
1 p0 = pi,max;
2 calculate

g (p0)← p0
(1− λi)Di

Blog2

(
1 +

p0hi
N0

) + k(f li )
2λiFi − Ei

3 if g (p0) ≤ 0 then
4 p̄i = p0
5 end
6 if g (p0) > 0 then
7 ps = pi,min;
8 pt = p0;
9 repeat

10 pl = (ps + pt)/2;
11 calculate

g (pl)← pl
(1− λi)Di

Blog2

(
1 +

plhi
N0

)+k(f li )
2λiFi−Ei;

12 if g (pl) ≤ 0 then
13 ps = pl;
14 end
15 if g (pl) > 0 then
16 pt = pl;
17 end
18 until |pt − ps| ≤ ε;
19 p̄i = (ps + pt)/2;
20 end
21 return p̄i.
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After the constraint C3 and C8 being solved, the new
bounds for pi is:

p̂i,min = max





0,

N0


2

(1− λi)Di

Bτi − 1




hi





(35)

and
p̂i,max = min {pi,max, p̄i} (36)

Then, the optimal solution for pi is:

p∗i =

{
p̂i,max, if p̂i,max ≥ p̂i,min

no feasible solution, if p̂i,max < p̂i,min
(37)

D. Overall Algorithm for POSMU
The algorithm for solving P3 is presented in Algorithm 2.

Algorithm 2: Algorithm for Solving P3

Input: pi,max, pi,min, k, f
l
i,max, λi, Fi, Ei, Di, B, hi, N0

Output: f c∗i
1 initialize λi, f li , pi;
2 repeat
3 calculate the optimal local computing frequency f l∗i

by calling (13);
4 calculate the optimal local computing ratio λ∗i by

calling (26);
5 calculate the optimal transmission power p∗i by

calling (37);
6 update the objective function value:

f (λ∗i , p
∗
i )←

(1− λ∗i )Fi
τi −

(1− λ∗i )Di

Blog2

(
1 +

p∗i hi
N0

)
;

7 until f (λ∗i , p
∗
i ) is not changed;

8 f c∗i ← f (λ∗i , p
∗
i );

9 return f c∗i .

When an UE i has completely solved its optimization
problem P3, the minimal MEC server frequency f c∗i can
be obtained. But the primal problem P1 is still not solved.
Because P3 is less than P1 a constraint C1, then the following
Algorithm 3 is proposed to get the maximal number of
offloaded tasks N∗ and satisfy C1.

POSMU contains two parts. The first part is calling the
Algorithm 2 to get the minimal f c∗i s, and the second part is
calculating the maximal number of offloaded UEs tasks N∗

by calling Algorithm 3. Then the primal problem P1 is solved
completely.

V. DISCUSSION FOR UAV ENABLED MEC SYSTEM

Due to their high mobility and flexible deployment, UAV
can be used for the 5G communication. UAV can be used as a

Algorithm 3: Algorithm for Calculating the Maximal
Number of Offloaded Tasks

Input: f c∗i ,∀i ∈ N , fc,max

Output: N∗
1 put all the f c∗i in to set F ;
2 initialize ftotal ← 0, Nuser ← 0;
3 repeat
4 get the minimal f c∗i from F , denoted by f c,min

i ;
5 ftotal ← ftotal + f c,min

i ;
6 Nuser ← Nuser + 1;

7 F ← F\
{
f c,min
i

}

8 until ftotal ≥ fc,max;
9 N∗ ← Nuser;

10 return N∗.

aerial platform to provide service for UEs, such as aerial base
station, edge computing server for UEs, mobile-hubs for data
collection, etc [42]. In order to realize the above usages, UAV-
ground communication technology has made great progress.
Different from the terrestrial communication, UAV-ground
communication is applied in 3D space, and the uplink rate
is affected by the distance between UAV and UE [43]:

ri = Blog2


1 +

pih0(
H2 + ‖q − wi‖2

)
N0


 (38)

where h0 represents the received power at the reference
distance d = 1m. q is the UAV plane coordinates (xuav, yuav),
and wi is plane coordinates (xi, yi) of UE i. H is altitude of
UAV.

According to the rate model, we find that if an UAV is hov-
ering in the sky, it can be regarded as a MEC server with more
distances from UEs compared with traditional MEC server
nearby UEs. In our optimization model, the mobility of UAV
is not considered. Therefore, the optimization problem P1 can
be used in UAV enabled MEC system with the changing of
rate formula. Besides, each UE’s plane coordinates should
be preset and used by the rate formula. The solution idea
of UAV enabled MEC system’s optimization problem is the
same as POSMU. Firstly, the primal problem is decoupled
into multiple sub-problems, then relax and solve them based
on BCD method. In order to get the maximal offloaded task
number, Algorithm 3 can be adopted. Therefore, our partial
offloading strategy can be seamlessly adapted to UAV enabled
MEC system.

VI. NUMERICAL RESULTS

A. Parameters Settings

The bandwidth B is 1 × 107Hz. α is set to 2.7 [35]. The
channel gain for each UE hi is set to −30dB. The noise power
N0 is −60dBm. The energy coefficient k is set to 10−26.

We set the maximal transmission power pi,max for each
UE to 0.4W. The maximal local computing frequency f li,max
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for each UE is 8×107Hz. The maximal computing frequency
fc,max of the MEC server is set to 8× 1011Hz. Each UE has
the initial energy Ei as 2J.

B. Comparison Schemes

According to POSMU, if f ci is smaller, the number of
offloaded tasks N will be larger. Therefore, we can verify
the optimality of POSMU by comparing the minimal value
of f ci . Two schemes are proposed to evaluate the optimality.
The first one is exhaustive algorithm (EA), which uniformly
discretizes the domain of each variable in P3 into 200 points.
A large number of value combinations can be got by taking
different discrete values of all the variables. By calculating the
objective function values of these combinations one by one,
the global optimal objective value of P3 can be obtained. The
second one is a monte carlo simulation (MCS) algorithm.
In MCS, the domain of each variable in P3 is discretized
into 1000 points, and 107 combinations of these variables are
sampled.

When illustrating advantages of POSMU, other two
schemes are put forward. The first one is fixing the local
computing frequency (FLCF) f li as 0.5f li,max for each UE.
The second one is fixing the transmission power (FTP) pi
as 0.2pi,max for each UE. Other parts of the two schemes
are the same as that of POSMU. The delay for each UE is
set to 2 seconds. The reason about using the two schemes
for comparison is that few research work directly aims to
maximize the offloaded task number. If POSMU is compared
with other optimization schemes without the same objectives,
it may cause some unfairness.

Simulation results compare two indexes, which are max-
imum number of offloaded task N∗ and minimized MEC
computing frequency f c∗i . The reason why f c∗i is simulated is
that f c∗i is the optimal value of subproblem P3, and it affects
the maximum number of offloaded tasks N∗. Through the
comparison of f c∗i , it is easy to find out why the number of
offloaded tasks N∗ of POSMU is always the largest.

C. Optimality Evaluation

Each UE’s task data Di varies from 1 × 108bits to 4 ×
108bits with the step as 0.3× 108bits. The simulation results
are presented in Fig.3. In the Fig.3, the optimized f ci for UE
i is always the minimal compared with that of EA and MCS,
which illustrates that POSMU can obtain an approximately
global solution for the problem P3.

Besides, we also find that at some points such as 370, 340,
etc the EA is not the best solution. This is because each of the
variable domain is only discretized into 200 points, which may
cause the optimal solution is not contained by this discretized
points. The same reason is also suitable for MCS, which is
because MCS samples 107 combinations of these variables
but the total combinations number is 109.

D. Compared with FLCF and FTP

1) Changing the Data Size Di: We randomly generate
2000 UEs tasks data with the formula 107 × (x + 10 ×

100 130 160 190 220 250 280 310 340 370
Data Size (Mbits)

0.0

0.5

1.0

1.5

2.0

2.5

M
in
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ize

d 
fc i (

Hz
)

×109

POSMU
EA
MCS

Fig. 3. Optimality of POSMU

rand(1, 2000)), where x is data size increment factor and
varies from 30 to 60 with the step as 2 and rand(1, 2000)
means randomly generate 2000 random numbers belonging to
[0, 1]. The simulation results are presented in Fig.4 and Fig.5.
In addition, we set the bandwidth B to 2× 107Hz for better
illustration.

30 40 50 60
x

0.25

0.50

0.75

1.00

1.25

 N
*

×103

POSMU
FLCF
FTP

Fig. 4. Maximized Offloaded Tasks Number N∗ Versus Data Size Increment
Factor x

In the Fig.4, if the UEs tasks data size increases with x,
the maximized offloaded tasks number N∗ decreases. This is
because if the data size increases, the computing frequency
required from MEC server also increases, and then N∗ will
decrease. We also find that the N∗ of POSMU is the maximal
compared with FLCF and FTP.

In the Fig.5, if the UEs tasks data increases the total
required computing frequency of all UEs’ tasks increase
rapidly especially when x is bigger than 55. Besides, the total
required computing frequency optimized by POSMU is the
least compared with FLCF and FTP, which makes the N∗ of
POSMU the maximal shown in Fig.4.

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



30 35 40 45 50 55 60
x

0.5

1.0

1.5

2.0

2.5

Su
m

 o
f A

ll 
th

e 
UE

s O
pt

im
ize

d 
fc i (

Hz
)

×1013

POSMU
FLCF
FTP

Fig. 5. Sum of All UEs’ Optimized fci Versus Data Size Increment Factor
x

2) Changing the Maximal MEC Server Computing Fre-
quency fc,max: fc,max varies from 1×1011Hz to 16×1011Hz
with the step as 1× 1011Hz. The bandwidth B is 2× 107Hz.
All the user data sizes are generated by the formula 107 ×
(40 + 10 × rand(1, 2000)). Simulation results are presented
in Fig.6.
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Maximal MEC Server Computing Frequency fc, max (Hz) 1e12
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Fig. 6. Maximized Offloaded Tasks Number N∗ Versus Maximal MEC
Server Computing Frequency fc,max

According to the Fig.6, when the fc,max increases, the
maximal number of offloaded UEs tasks N∗ also increases.
This is because the increasing of fc,max improves the com-
puting frequency of MEC server, which further can offload
more UEs tasks. In addition, the performance of POSMU
is the best compared with FLCF and FTP. The differences
between POSMU and other two schemes gradually grow
with the increase of fc,max. This is because the performance
of POSMU is always the best for each UE, i.e. each UE
in POSMU has the minimal f ci compared with FLCF and
FTP. Then, the same growth amount of fc,max results more
offloaded UEs tasks of POSMU compared with FLCF and

FTP.
3) Changing the Bandwidth B: Each UE’s task data size

is generated by formula 107 × (40 + 10 × rand(1, 2000)).
Bandwidth B varies from 2 × 107Hz to 5 × 107Hz with the
step as 0.2×107Hz. fc,max is set to 8×1011Hz. The simulation
results are presented in Fig.7 and Fig.8.
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Fig. 7. Maximized Offloaded Tasks Number N∗ Versus Bandwidth B

In the Fig.7, N∗ increases with bandwidth B. This is
because according to the transmission rate formulation (4),
when the bandwidth B increases, the transmission rate grows,
which reduces the data transmitting time and increases the
time for MEC server processing. Thus, many UEs tasks can
reduce their MEC server’s computing frequency requirement
and finally N∗ becomes bigger. Besides, POSMU performs
the best at all the simulation points.
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Fig. 8. Sum of All UEs’ Optimized fci Versus Bandwidth B

In the Fig.8, all the summed f c∗i decreases as the bandwidth
B increases. This is because if the bandwidth B increases,
the time consumed for data transmission is reduced, which
makes the processing time of MEC server increased. Then,
the computing frequency f ci can be reduced. All the summed
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f c∗i of POSMU is the minimal compared with that of other
schemes.

4) Changing the Latency Limitation: We change the value
of τi from 1.0 second to 2.0 seconds with the step as 0.05
seconds, and assume that each task has the same latency
limitation. The bandwidth B is set as 2×107Hz, and the UE’s
task data size is generated by 107×(20+10×rand(1, 2000)).
The simulation results are shown in Fig.9 and Fig.10.
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Fig. 9. Maximized Offloaded Tasks Number N∗ Versus Latency Limitation
τi

In the Fig.9, if the latency limitation τi increases, N∗

grows accordingly. This is because when the τi increases,
the processing time of MEC server also grows. Then the
computing frequency f ci required to process the same data is
reduced, which makes N∗ increased. When the τi is bigger
than 1.9, N∗ is 2000 and not changed. This is because all
the UEs tasks are offloaded to the MEC server. Besides, the
performance of POSMU is the best among these algorithms.
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Fig. 10. Sum of All UEs’ Optimized fci Versus Latency Limitation τi

In the Fig.10, all the summed f c∗i decreases with the growth
of latency limitation τi. The reason is same as that presented
in Fig.9. When the τi grows, the differences between POSMU

and other two schemes become smaller. This is because
when τi increases, each UE needs smaller MEC computing
frequency f ci . In addition, because FLCF and FTP require
more f ci than that of POSMU to process the same data, if the
τi increases the reduction of f ci of FLCF and FTP is bigger
than that of POSMU, thus the differences between POSMU
and two schemes gradually become smaller. However, in any
case all the summed f c∗i of POSMU is the best among
compared three schemes.

5) Changing the Maximal Local Computing Frequency
f li,max: f li,max varies from 6×107Hz to 14×107Hz with the
step as 0.5×107Hz. The latency limitation τi is set to 1.5 sec-
onds for all tasks. Bandwidth B is set to 2×107Hz. Each UE’s
task data size is generated by 107×(20+10×rand(1, 2000)).
Simulation results are presented in Fig.11 and Fig.12.
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Fig. 11. Maximized Offloaded Tasks Number N∗ Versus Maximal Local
Computing Frequency f li,max

In the Fig.11, N∗ grows with the increasing of f li,max,
which is because if f li,max increases the time consumption
for local computing can be reduced. Then, the time for
MEC server processing grows and the optimized MEC server
frequency f ci is reduced. Thus, if f li,max increases, N∗ grows
due to the reduction of f ci . Besides, the growth rate of FLCF
is less than that of POSMU and FTP. This is because in FLCF
the local computing frequency is fixed as 0.5f li,max, while in
POSMU and FTP the local computing frequency is optimized
as an upper of f li . Thus, the local computing frequency of
FLCF is much less than that of POSMU and FTP, which
results the slow growth of FLCF. In addition, N∗ of POSMU
is the largest at all the simulation points.

In the Fig.12, all the summed optimized f ci gradually
decreases with the growth of f li,max. The reason is same as
introduced in the Fig.11. Besides, descent rate of FLCF is the
least because local computing frequency of FLCF is the least
among three schemes. In addition, the summed optimized f ci
of POSMU is the least.

6) Changing the Maximal Transmission Power pi,max:
pi,max varies from 0.1KW to 2.0KW with the step as 0.1KW.
The latency limitation τi is set to 1.8 seconds. The maximal
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Fig. 12. Sum of All UEs’ Optimized fci Versus Maximal Local Computing
Frequency f li,max

local computing frequency f li,max is set to 8 × 107Hz. The
UE’s task data size is generated by 107 × (20 + 10 ×
rand(1, 2000)). Simulation results are presented in Fig.13 and
Fig.14.

0.5 1.0 1.5 2.0
Maximal Transmission Power pi, max (kw)

1.6

1.7

1.8

1.9

2.0

 N
*

×103

POSMU
FLCF
FTP

Fig. 13. Maximized Offloaded Tasks Number N∗ Versus Maximal Trans-
mission Power pi,max

In the Fig.13, N∗ approximately grows with the increasing
of pi,max. This is because when pi,max increases the optimized
transmission power p∗i can also increases, which reduces
the data transmission time. As a result, the time for MEC
server processing becomes more, and then the MEC server
computing frequency f ci can be reduced. Therefore, the total
required MEC server’s computing frequency is reduced and
N∗ grows.

In the Fig.14, all summed optimized f ci decreases with the
growth of pi,max, and the reason is same as that introduced
in the Fig.13. In addition, both in the Fig.13 and 14, the
performance of POSMU is the best among three schemes.
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Fig. 14. Sum of All UEs’ Optimized fci Versus Maximal Transmission Power
pi,max

VII. CONCLUSION

In this paper, we investigate a problem about maximizing
the offloaded UEs tasks number in MEC system. Firstly, we
formulate the problem as a MINLP, and then by analyzing
the model, it is converted into N sub-problems, which are
NLPs. In order to solve these N NLP sub-problems better,
we relax the NLP problems and finally get the optimization
sub-problem P3, which is analyzed and solved by using
the BCD method, and finally an optimal scheme POSMU
is proposed. In the evaluation section, the optimality of
POSMU is illustrated, and also the performance of POSMU
is compared with that of two schemes FLCF and FTP. All
the evaluation results verify that POSMU is the best among
compared schemes.

In the future, we will extend this work in the following
aspects. Firstly, we will consider how to maximize the number
of tasks to be offloaded in the scenario of multiple MEC
servers with different characteristics. Secondly, due to the
large number of UEs, it will cause serious interference.
We will consider the communication interference between
multiple UEs, and then optimize the maximum number of
tasks that can be offloaded in this circumstances.
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