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Abstract

This paper introduces a combined calibrated learning and bandit approach to online distributed

power control in small cell networks operated under the same frequency bandwidth. Each small base

station (SBS) is modelled as an intelligent agent who autonomously decides on its instantaneous transmit

power level by predicting the transmitting policies of the other SBSs, namely the opponent SBSs, in

the network, in real-time. The decision making process is based jointly on the past observations and

the calibrated forecasts of the upcoming power allocation decisions of the opponent SBSs who inflict

the dominant interferences on the agent. Furthermore, we integrate the proposed calibrated forecast

process with a bandit policy to account for the wireless channel conditions unknown a priori, and

develop an autonomous power allocation algorithm that is executable at individual SBSs to enhance the
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accuracy of the autonomous decision making. We evaluate the performance of the proposed algorithm

in cases of maximizing the long-term sum-rate, the overall energy efficiency and the average minimum

achievable data rate. Numerical simulation results demonstrate that the proposed design outperforms the

benchmark scheme with limited amount of information exchange and rapidly approaches towards the

optimal centralized solution for all case studies.

Index Terms

small cell; distributed power control; online learning; calibration

I. INTRODUCTION

Cellular networks have experienced an explosive increase in the number of mobile subscribers

and wireless devices in the last decade [1]. To this end, network densification has become

a general trend for future wireless networks. Hyper-dense deployment of small base stations

(SBSs) that provide short-range, low-power and low-cost transmission in addition to the existing

macrocell cellular networks, is considered a promising technique to meet the requirements of

the mounting growth of mobile data traffic and massive connectivity [2]. To fully exploit the

potentials of small cells, full frequency reuse among small cells is necessary [3]. However, such

densification in cellular networks with limited licensed spectrum will result in increasing intercell

interference (ICI), as increasing transmit power of a transmitter for the improvement of its own

capacity may degrade other links it interferes with. Transmit power control and interference

management mechanisms have been investigated for long to ensure the system-level performance.

Cloud radio access networks that allow centralized radio resource coordination across multiple

cells, have been widely examined in the literature for ICI management and resource allocation

[4]. Although having a central node for signalling coordination is one option for power control

and interference management, it is not always possible or preferable in many scenarios to have a

central coordination node available who can collect the necessary information, e.g., channel state

information (CSI) and user requirements of the entire network, and then perform radio resource
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allocation. In practice, multiple small cell network operators may access shared spectrum [5],

[6]. For instance, Citizen Broadband Radio Service [7] allows shared spectrum use for 3.5

GHz band via a three-tier access model [5], where the users in the lowest tier can access

spectrum unused by the higher tier users. From the network operators’ perspectives, it may not

be practical and preferable to have a central coordination node for the purpose of inter-operator

power control and interference management, as the operators are competitors to each other and

currently no generally acknowledged mechanism is available for the operator-level coordination.

Furthermore, considering the density and randomness of SBS deployment, the backhaul link

between the central node and the SBSs tends to be wireless, which, has limited capacity and can

be vulnerable to dynamic changes in the environment [3]. Besides, relying on the central control

node in hyper-dense small cell networks to collect CSI of the entire network and perform system-

level power control can be computationally complex and may fail to provide quick response to the

channel and traffic variations [8]. Consequently, the SBSs are proposed to manage radio resource

distributively with limited and time-insensitive information exchange over the X2 interface with

each other [8], which necessitates the distributed design of SBSs that can be self-organized and

coordinated autonomously [9].

A. Related Works

The distributed resource allocation problem for collaborative base stations (BSs) has been

widely studied in the literature [10]–[24]. The distributed power control for max-min signal-to-

interference-plus-noise ratio (SINR) problem is studied in [10] in a simple scenario with only

2 SBSs and 2 users. The authors in [11] assume that the ICI is an ergodic Gaussian process

and the induced statistical average ICI power can be estimated by the users and reported to the

BSs. Other conventional literature either models the distributed resource allocation problem as

a noncooperative game and solves it via iterative processes [12]–[14], or uses iterative inter-BS

fronthaul information exchange such as the subgradient method in [15]–[19] and the alternating
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direction method of multipliers (ADMM) technique in [19], [20] to schedule transmit power and

manage ICI among BSs. Focusing on uplink heterogeneous networks (HetNets), the authors in

[13] adopt the Debreu-type noncooperative game and introduce a distributed power allocation

algorithm based on an iterative water-filling best response process. The authors in [14] model

the interference problem between a macrocell BS and multiple SBSs as a Stackelberg game, and

claim that the macrocell BS can make optimal power allocation decisions based on its prediction

of the reactions of SBSs. However, the leader-follower game such as the Stackelberg game that

requests sequential moves may not be suitable for the practical scenario where BSs perform

simultaneous transmissions. The authors in [15]–[20], on the other hand, address the power

allocation problem via inter-BS communications and alternate between independently solving

a convex power optimization problem at individual BSs and circulating key intercell coupling

parameters among BSs. The aforementioned designs, nevertheless, highly rely on the tractable

mathematical models, which may not be available in practical scenarios. Furthermore, they

assume that the channel remains invariant until the iterations are completed or the convergence

is achieved. Such assumption is not very practical as the resulting signalling overhead depending

upon the number of iterations may exceed the short channel coherence time.

Recently, various machine learning based approaches for resource allocation have been de-

veloped in wireless communications [21]–[26]. The authors in [21] adopt calibration based no-

regret bandit learning approach to maximize the transmission rate in D2D network with fixed

transmit power. In [25], the authors propose a centralized supervised learning approach to train a

deep neural network to approximate the resource allocation algorithms. The supervised learning,

however, depends highly on the accuracy of the system model and may require a new set of

training data when key parameters change. The authors in [26] propose a learning to optimize

framework to accelerate the branch-and-bound algorithm for centralized interference channel

binary power control. Considering the quality of service and user fairness, the authors in [22]

propose a cooperative Q-learning based power allocation mechanism in HetNets. However, all of
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the channel information is assumed to be known at BSs and sharing Q-values to reduce search

time of the agents may raise additional signalling overhead issues. The authors in [23], [24]

introduce deep Q-learning approaches to power allocation problem in single user and multi-user

wireless networks, respectively. However, prior to distributed execution at individual BSs, their

proposed approaches require the deep Q network to be trained off-line by a centralized network

trainer via experience replay from the data set pool.

B. Contribution

This paper focuses on the design of an online distributed1 mechanism for intelligent power

allocation in a small-cell network operating in a shared frequency bandwidth over a long

time horizon. An ε-calibration based bandit approach is developed for each individual SBS

to asymptotically and distributively calibrate its forecast on the possible transmit power levels of

the other SBSs, and react with the best power allocation decision based on the predicted results

as well as the past observations. The contributions of this paper are summarized as follows:

• In contrast to the existing distributed power allocation designs that iteratively exchange

information among SBSs within a channel coherence time [15]–[20], our work considers

a more realistic scenario, where SBSs are autonomous decision makers and they exchange

only the past power information at the end of each time instance.

• The proposed algorithm requires neither prior knowledge of the systems nor the statistical

distribution of the wireless channel conditions. Unlike deep neural network based power

allocation designs [23]–[25] that need to be off-line trained by a centralized network trainer

based on the collected experiences, the proposed distributed design requires no centralized

coordination or training, and performs online calibrated learning during the operation.

1The distributed framework in the strict sense relies only on local statistics available at each end. Throughout this paper, it is

considered in the broad sense, where there is no central coordination unit, and the computational tasks as well as the decision

making processes have been shifted to the individual SBSs at the cost of limited information exchange among SBSs.
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C. Organization and Notations

The rest of this paper is organized as follows. Section II introduces the system model and

formulates a long-term power control problem. In section III, the ε-calibration will be first

introduced, followed by the proposed calibration based online learning algorithm. Numerical

simulation results are analyzed in section IV. Finally, section V concludes the paper.

Notations: w and w, respectively, indicate a scalar w and a vector w. The notations Bn, Rnm

and 0 denote, respectively, the binary space of n-dimension vectors, the sets of m dimensional

real vectors with components in Rn, and an all-zero matrix with appropriate dimensionality.

[w1|w2] indicates the concatenation of vectors w1 and w2. 1{�} is an indicator function that

returns one if {�} holds true and zero otherwise.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This paper considers a distributed downlink small cell network consisting of Nb SBSs, indexed

by Lb = {1, · · · , Nb}, that serve their own Nu users over a shared spectrum. Let the time horizon

T be divided into discrete time slots with slot duration of τ , and indexed as T = {1, · · · , T}.

Each time slot corresponds to a channel coherence time and the channel is assumed to vary

across time slots but remains invariant within each time slot. The time-division multiple access

technology is employed to ensure user fairness via serving the users within the same small cell

one after the other in their respective time slots. For the sake of notational simplicity, let us

assume that the individual SBSs have A discrete power levels and denote by A = {1, · · · , A}

and E = {E1, · · · , EA}, respectively, the indexes and the set of discrete transmit power of the

SBSs. Note that although we consider the same E for each SBS, the proposed approach can be

easily adapted to the scenarios where the power region and/or the number of divisions of transmit

power of each SBS are distinct. Each individual SBS is fully synchronized and has to make its

own decision on selecting a transmit power from the set E , independently and simultaneously, to

serve its scheduled user during time slot t, t ∈ T . Furthermore, the SBSs can communicate their

DRAFT July 3, 2019



SUBMITTED PAPER 7

TABLE I

NOTATION

Symbol Definition

Lb = {1, · · · , Nb} Index set of Nb SBSs

b′ ∈ Lb\b SBS b′, b′ ∈ Lb, b′ 6= b

T = {1, · · · , T} Index set of discrete time slots with slot duration τ

A = {1, · · · , A} Index set of A discrete transmit power levels (actions) of each SBS

E = {E1, · · · , EA} Set of A discrete transmit power of eahc SBS

P tb ∈ E Transmit power from SBS b to its scheduled user at time t

Ψt
bb Channel gain between SBS b and its scheduled user at time t

Rtb Downlink data rate for scheduled user of SBS b at time t

atb ∈ A Actual transmit power level (action) of SBS b at time t

δat
b′
∈ BA Dirac probability distribution on SBS b′’s actual action atb′ at time t

P = 4(A) ⊂ RA Set of candidate probability distributions over A possible outcomes, i.e., A

possible transmit power levels, for calibration

εt ε-calibration at time t for Algorithm 1

Nε Number of candidate probability values for ε-calibration

P̂ = {p1, . . . ,pNε} ⊂ RA Set of Nε candidate probability values for ε-calibration. Each element

pk = [pk,1, . . . , pk,A] ∈ RA, k ∈ {1, . . . , Nε} is the probabilities over all of

the A possible transmit power levels (outcomes) and
∑A
a=1 pk,a = 1.

ptbb′ = [ptbb′,1, . . . , p
t
bb′,A] ∈ P̂ SBS b’s forecasted probabilities over all possible outcomes of SBS b′ at time t

C ⊂ RANε Closed convex target set for approachability theorem

m(k, a) ∈ RANε Vector-valued regret between prediction k of the forecaster and action a of the

opponent at a certain time slot, ∀k ∈ {1, . . . , Nε}, a ∈ A

mT
bb′ ∈ RANε Average vector-valued regrets between SBS b’s predictions on SBS b′ and

SBS b′’s true actions up to time T

ΓC(m
T
bb′) ∈ RANε Projection of mT

bb′ in l2-norm onto C

ψtbb′ = [ψtbb′,1, · · · , ψtbb′,Nε ] ∈ RNε Prediction distribution over P̂ = {p1, . . . ,pNε} at SBS b for SBS b′ at time t

µ̂tb = [µ̂b,1, · · · , µ̂b,A] ∈ RA Estimated mean reward vector of SBS b at time t

µ̄tbb′ = [µ̄bb′,1, · · · , µ̄bb′,A] ∈ RA Discounted mean reward vector at SBS b for SBS b′ at time t

βt Discount factor at time t

γt Adaptive exploration-exploitation trade-off at time t
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past information such as the actual past transmitted power levels (actions) with each other via

capacity-constrained inter-SBS communication links at the end of each time slot. The notations

in this paper are listed in Table I.

A. Downlink Transmission Model

Let the channel gain between SBS b, b ∈ Lb and its scheduled user at the t-th time slot, t ∈ T ,

be denoted by Ψt
bb. We adopt a block fading channel model [27] for the downlink channel gain,

as

Ψt
bb = |htbb|2αtbb, (1)

where αtbb ≥ 0 captures all large-scale fading effects including path loss and log-normal shad-

owing between SBS b and its scheduled user at time t, and htbb is the small-scale fast fading

component. We adopt Jakes’ model [27] to model the channel variation over the period τ and

denote the Rayleigh distributed small-scale fading component as a first-order Gauss-Markov

process, as

htbb = ρht−1bb +
√

1− ρ2dtbb, (2)

where h0bb ∈ CN(0, 1) is the circularly symmetric complex Gaussian random variable with

unit variance, and dtbb ∈ CN(0, 1) is the independent and identically distributed (i.i.d) channel

discrepancy term. The coefficient 0 ≤ ρ < 1 quantifies the channel correlation between two

consecutive time slots htbb and ht−1bb , and is given by ρ = J0(2πfdτ), where J0(�) is the zero-

order Bessel function of the first kind, fd denotes the maximum Doppler frequency and τ is

the duration of each time slot. Let us denote by P t
b ∈ E the transmit power from SBS b to its

scheduled user at time t. Then, the SINR for the scheduled user served by SBS b, b ∈ Lb at

time slot t, t ∈ T , is given by

SINRt
b =

P t
bΨ

t
bb∑

b′∈Lb\b

P t
b′Ψ

t
b′b + σ2

b

, (3)
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where the numerator of (3) denotes the desired signal power for the served user, the terms in

the denominator denote, respectively, the ICI caused by all other SBSs and the additive white

Gaussian noise (AWGN) with variance of σ2
b at the user. The cross-link channel gain Ψt

b′b can

be fed back by the user to its associated SBS. Then, with the normalized bandwidth, the

instantaneous downlink data rate for the scheduled user served by the b-th SBS, b ∈ Lb, at time

slot t, t ∈ T , can be expressed as

Rt
b = log2(1 + SINRt

b). (4)

B. Problem Formulation

In the considered distributed small cell network, it is assumed that the SBSs are autonomous

decision makers, i.e., they have to make their decisions independently and distributively without

knowing the resulting impacts, such as interference, on one another. It is evident that without

a proper power control mechanism, the presence of interference, coupling with the decisions

of individual SBSs, leads to a conflict of interest: each individual SBS attempts to transmit at

a power level that maximizes its own utility, while the interference incurred by doing so may

degrade the performance of other SBSs. Thus, we formulate the transmit power control problem

for distributed small cell networks as a long-term system-level reward maximization problem to

optimize the power allocation decisions of all SBSs, as

max
{P tb}

{
lim
T→∞

1

T

T∑
t=1

U({Rt
b})

}

s.t. P t
b ≤ Pmax

b , ∀b ∈ Lb,

(5)

where Pmax
b denotes the maximum transmit power of SBS b. U({Rt

b}) is a utility function of

{Rt
b}b∈Lb that indicates the system-level performance over all SBSs, and can be adapted to

various system objectives. Note that in the considered distributed scenario, the SBSs have to

make decisions simultaneously and independently, and only the outdated power information of

the other SBSs is acquirable at each SBS. Based upon this information, the individual SBSs
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attempt to estimate the possible transmit power of the others at current time t, and react with

the best response based on their estimations. Hence, the key issue to be addressed for each

individual SBS is the reliable prediction of the transmit power decisions of the other SBSs. In

the next section, a calibrated learning based online distributed power allocation algorithm will

be proposed for each SBS b, b ∈ Lb, to gradually improve its accuracy in predicting the transmit

power of the other SBSs, i.e., {P t
b′}b′∈Lb\b, and select its most appropriate transmit power, i.e.,

P t
b , such that the system-level performance can be optimized in the long run.

III. CALIBRATION BASED ONLINE LEARNING ALGORITHM

In the sequel, the ε-calibrated forecaster [28] will be firstly introduced for each individual

SBS to gradually improve its accuracy in predicting the transmit power decisions of the other

SBSs, namely the opponent SBSs. It will be followed by the proposed calibrated learning based

online distributed power allocation algorithm that allows each individual SBS to select the most

appropriate transmit power level on the basis of the possible choices as well as the corresponding

impacts of the other SBSs, so as to asymptotically maximize the average reward in the long run.

A. ε-Calibrated Forecaster for the Opponents’ Joint Action

Calibration is a central tool in game theory and in online learning for prediction and forecasting

[28]. The definition of calibration can be presented as follows. Consider a finite set of possible

outcomes. Observing the environment, a forecaster assigns subjective probabilities (forecasts)

over the possible outcomes to future events. The sequence of forecasts is called calibrated if, with

time, the forecasted probabilities converge to the observed long-term empirical (true) probabilities

of the outcomes.

In our considered scenario, the finite set of possible outcomes is a finite set A of transmit

power levels with cardinality of A. Each individual SBS b, b ∈ Lb, can be regarded as a forecaster

that attempts to predict the probabilities over the possible transmit power levels of its opponents,
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i.e., SBS b′, b′ ∈ Lb\b. Let us denote by P = 4(A) ⊂ RA the set of pre-defined candidate

probability distributions over A outcomes and denote by ptbb′ = [ptbb′,1, . . . , p
t
bb′,A] ∈ P the SBS

b’s forecasted probabilities over all of the A possible outcomes of SBS b′ at time t, where∑A
a=1 p

t
bb′,a = 1. At each time slot t, t ∈ T , SBS b outputs its forecasted probabilities ptbb′ ∈ RA

over all possible transmit power levels of SBS b′, whilst SBS b′ selects an outcome, i.e., a

transmit power level atb′ ∈ A. Then, the calibrated forecaster [28] can be defined as follows: for

∀ε > 0, ∀p̂ ∈ P , almost surely,

lim
T→∞

‖ 1

T

T∑
t=1

1{‖pt
bb′−p̂‖≤ε}

(ptbb′ − δat
b′

)‖ = 0, (6)

where δat
b′
∈ BA is the dirac probability distribution on SBS b′’s outcome atb′ at time t, and

1{‖pt
bb′−p̂‖≤ε}

is an indicator function that returns one if ‖ptbb′ − p̂‖ ≤ ε holds true and zero

otherwise.

ε-calibration, on the other hand, can be regarded as a relaxed version of calibration in (6) by

reducing P to a finite set of Nε pre-defined candidate probability values, i.e., {p1, . . . ,pNε}, for

a given ε. Given ε, the forecaster b considers some finite covering of P by Nε balls of radius ε,

where the centers of the balls in the covering is denoted as P̂ = {p1, . . . ,pNε} [29], and SBS b

only outputs its forecasted probabilities of opponent b′ from a finite set P̂ of candidate probability

values, i.e., ptbb′ ∈ {p1, . . . ,pNε}. Then, the ε-calibrated forecaster [29] can be defined as:

lim sup
T→∞

Nε∑
k=1

‖ 1

T

T∑
t=1

1{Kt=k}(p̂k − δat
b′

)‖ ≤ ε, (7)

where Kt denotes the index in {1, . . . , Nε} such that ptbb′ = p̂Kt . As demonstrated in [29],

calibration is a consequence of approachability, i.e., the existence of ε-calibrated forecaster b in

(7) against its opponent b′ is equivalent to the approachability of some closed convex target set

C. Following a similar procedure as in [29], for a given ε, let us define the target set C as follows

C = {x ∈ RANε :
Nε∑
k=1

‖xk‖ ≤ ε}, (8)
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where x = (x1, . . . ,xNε) and xk ∈ RA,∀k ∈ {1, . . . , Nε}. Let us define the vector-valued

regret between the forecaster’s predicted probabilities p̂k and the dirac probability distribution

on opponent’s action a at a certain time slot as ∀k ∈ {1, . . . , Nε}, a ∈ A,

m(k, a) = (0, . . . ,0, p̂k − δa,0, . . . ,0), (9)

where m(k, a) ∈ RANε contains one non-zero vector element of RA located at the k-th position

and Nε − 1 zero vector elements elsewhere. According to Blackwell’s approachability theorem

[30], C is approachable if and only if ∀a ∈ A, ∃k ∈ {1, . . . , Nε}, m(k, a) ∈ C. Then, the

ε-calibration in (7) can be expressed in the following way: there exists a strategy for forecaster

b that ensures that for all strategies (actions) of its opponent b′, the average of the vector-valued

regrets, i.e.,

mT
bb′ =

1

T

T∑
t=1

m(Kt, atb′) =
1

T
(
T∑
t=1

1{Kt=1}(p̂1 − δat
b′

), . . . ,
T∑
t=1

1{Kt=Nε}(p̂Nε − δat
b′

)) (10)

converges to the set C almost surely [29]. It has been proved in [29] that there exists an ε-

calibrated forecaster b, who selects at each time t an aforementioned strategy ptbb′ ∈ {p1, . . . ,pNε}

according to the optimal prediction distribution ψt∗
bb′ = [ψt∗bb′,1, · · · , ψt∗bb′,Nε ] over {p1, . . . ,pNε},

such that for ∀a ∈ A of its opponent b′,

(mt−1
bb′ − ΓC(m

t−1
bb′ )) · (m(ψt∗

bb′ , a)− ΓC(m
t−1
bb′ )) ≤ 0, (11)

where · denotes the inner product, ΓC(m
t−1
bb′ ) represents the projection of mt−1

bb′ in l2-norm onto C,

and m(ψt∗
bb′ , a) =

∑Nε
k=1 ψ

t
bb′,km(k, a) is the weighted sum of vector-valued regret of forecaster b

at time t. In other words, ε-calibration ensures that with time, the average vector-valued regrets

of forecaster b lies in the convex set C almost surely. As such ψt∗
bb′ indeed exists [29], it suffices
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to solve the following problem for finding the optimal prediction distribution ψt∗
bb′ , as

argmin
ψt
bb′

max
a∈A

(mt−1
bb′ − ΓC(m

t−1
bb′ )) ·m(ψt

bb′ , a) =

argmin
ψt
bb′

max
a∈A

Nε∑
k=1

ψtbb′,k(m
t−1
bb′ − ΓC(m

t−1
bb′ )) ·m(k, a)

subject to
Nε∑
k=1

ψtbb′,k = 1,

(12)

which can either be solved exactly via linear programming, or be approximated via the mul-

tiplicative weights algorithm [31]. Recall that each SBS b acts as a forecaster, the other SBSs

b′, b′ ∈ Lb\b, correspond to the opponents, and the actions of the opponents can be regarded as

the other SBSs transmitting to their respective scheduled users at certain discrete power levels.

The procedure of the ε-calibrated forecaster at each SBS b to predict the possible actions of the

other SBSs are summarized in Algorithm 1.

B. Calibrated Learning Algorithm for Power Allocation

Since the wireless channel conditions vary across time slots and are unknown in advance, in

order to maximize the long-term system-level performance over all SBSs in such a distributed

scenario, the impacts of these uncertain factors on the objective of the problem in (5) need to

be learned over time. Here we propose a distributed bandit approach to take these impacts into

account and to enhance the the autonomous decision making process.

Let us consider a bandit problem that models a system of A actions whose expected rewards are

i.i.d over time with unknown means. The objective is to maximize the accumulated reward over

time via exploring the environment to find profitable actions, while exploiting current knowledge

to make the empirically best decisions among a set of actions [32]. The online distributed power

control problem investigated in this paper can be regarded as a bandit problem, where each

individual SBS acts as an agent and a forecaster, A transmit power levels correspond to A actions,

and the instantaneous reward of individual transmit power levels chosen by SBS b, b ∈ Lb, for
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Algorithm 1 ε-calibrated forecaster at SBS b to predict its opponents’ actions
1: Input: current time-slot t, εt, discount factor βt, actual transmit power level chosen by the

opponent SBSs at previous time slot {at−1b′ }.

2: If t = 1

Set ψt∗
bb′ = [ 1

Nε
, · · · , 1

Nε
], ∀b′ ∈ Lb\b.

3: Else

4: Update the discounted average vector-valued regrets up to time t− 1 as per (10) for each

opponent b′, as mt−1
bb′ = 1

t−1

t−1∑
t′=1

m(Kt′ , at
′

b′)
t−1∏
i=t′

βi, ∀b′ ∈ Lb\b.

5: Calculate the projection ΓC(m
t−1
bb′ ), ∀b′ ∈ Lb\b, by obtaining the optimal solution x∗ ∈

RANε of the following problem

min
x
||x−mt−1

bb′ ||
2
2

s.t. xk ≥ 0, 1 ≤ k ≤ ANε,
∑ANε

k=1 xk ≤ εt.

6: Optimize the prediction distributions {ψt
bb′} by solving problem (12), such that for ∀a ∈ A,

(11) is satisfied [29].

7: End If

8: Select the forecast probabilities ptbb′ according to the optimal prediction distribution ψt∗
bb′

over {p1, . . . ,pNε}, ∀b′ ∈ Lb\b.

9: Output: {ptbb′}

serving its scheduled user at time t, can be defined as the normalized data rate at the t-th time

slot, i.e., Rt
b.

The proposed distributed calibrated learning based power allocation algorithm is governed

by a trade-off between exploring different actions that might yield a better accumulated reward

in the presence of wireless channel random dynamism, and exploiting the best action so far

that maximizes the accumulated reward at the individual SBSs. The details of the proposed
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Algorithm 2 The Main Distributed Calibration based Learning Algorithm at SBS b
1: Initialize: time slot count t = 1; total number of time slots T , estimated mean reward vector

µ̂tb = [µ̂b,1, · · · , µ̂b,A] = 0, discounted mean reward vector µ̄tbb′ = [µ̄bb′,1, · · · , µ̄bb′,A] = 0, εt,

discount factor βt, adaptive exploration-exploitation trade-off γt.

2: while t 6= T do

3: with the probability of γt: Exploration Stage

4: -Transmit to its scheduled user at a random power level.

5: with the probability of 1− γt: Exploitation Stage

6: -Receive the forecasts of probabilities over possible actions of SBS b′, b′ ∈ Lb\b,

for current time slot t, i.e., {ptbb′ = {ptbb′,a′}a′∈A}, from Algorithm 1.

7: -Calculate the estimated mean reward as µ̂tb,a =
∑
sb∈Sb

ptb,sbR̂
t
b(a, sb),∀a ∈ A, where

Sb = {{ab′}b′∈Lb\b |ab′ ∈ A} contains all of the |Sb| = ANb−1 action combinations of the

opponent SBSs and ptb,sb =
∏

b′∈Lb\b

ptbb′,sb(b′) is the joint forecast probability. R̂t
b(a, sb) is the

estimated data rate when SBS b selects action a and the other SBSs pick a joint action

sb ∈ Sb, and can be computed by substituting P t
b = Ea and {P t

b′} = Esb into (4).

8: -Transmit at the power level associated with the highest overall reward, as

atb = argmax
a∈A

U(µ̂tb, {µ̄t−1b′b }), where U(·) is a function of its estimated mean reward µ̂tb

and the discounted mean rewards {µ̄t−1b′b }, which corresponds to the system objective.

9: Observe the true instantaneous reward Rt
b associated to the selected transmit power level.

10: Calculate the discounted mean reward µ̄tbb′ , as

µ̄tbb′,a =

t−1∑
t′=1

1at′
b′=a

Rt′

b

t−1∏
i=t′

βi

∑t−1
t′=1

1
{at′
b′

=a}

∏t−1
i=t′ β

i , ∀a ∈ A, b′ ∈ Lb\b.

11: Share its actual power decision, i.e., atb, and the discounted mean reward information µ̄tbb′

with SBS b′, ∀b′ ∈ Lb\b.

12: increment t = t+ 1.

13: end while
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Fig. 1. Flowchart of the proposed Algorithm 2 at the individual SBSs.

algorithm to be executed at the individual SBSs are described in Algorithm 2 and Fig. 1, where

the individual time slots can either be allocated for exploration with the probability of γt, or for

exploitation with the probability of 1− γt, as explained below:

• Exploration: With the probability of γt, a perturbation procedure is applied to explore the

environment, e.g., the time-varying wireless channel conditions and the possible choice of

the other SBSs, by transmitting at a random power level. Then, each SBS b will receive

the feedback of quality of service, i.e., the associated instantaneous reward Rt
b, from its

scheduled user for future action selection.

• Exploitation: With the probability of 1 − γt, each SBS b will transmit at the power level

that yields the highest overall reward so far, based on the predicted results, i.e., ptbb′ =

{ptbb′,a′}a′∈A,∀b′ ∈ Lb\b, from Algorithm 1 as well as the discounted mean reward from the

other SBSs at the (t− 1)-th time slot, i.e., {µ̄t−1b′b }.
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C. Signalling Overhead and Computational Complexity Analysis

It is worth noticing that from the perspective of SBS b, the only information that need to be

shared with SBS b′, ∀b′ ∈ Lb\b at the end of time slot t for the proposed algorithm is its actual

action decision, i.e., a scalar value atb, and its discounted mean reward information, i.e., a vector

µ̄tbb′ with A entries. The resulting overall signalling overhead for the entire small cell network

at each time slot is O (Nb(Nb − 1)(A+ 1)). On the contrary, the conventional distributed power

allocation designs that are based on iterative inter-SBS fronthaul information exchange [15]–[20]

require each SBS to exchange Nb positive integer scalars of key ICI coupling parameters with

others in each iteration, resulting in an overall per-time slot inter-SBS communication overhead

of O (ξN2
b (Nb − 1)), where ξ is the total number of iterations within a time slot and a typical

ξ for convergence in a 3-SBS network is ξ = 10 [19]. Hence, the ratio of signalling overhead

required by the proposed design to that of the conventional iterative distributed designs for the

considered scenario is given by ω = A+1
ξNb

. It can be further reduced to ω = 1
ξNb

at some certain

time slots by exchanging the reward information, i.e., µ̄tbb′ of A entries, with SBS b′, b′ ∈ Lb\b

at a much lower frequency with a reasonable accuracy. As will be shown in Section IV, the

reward information can be exchanged at a lower frequency without affecting much the accuracy.

Thus, the proposed algorithm consumes lighter signalling overhead as compared to that of the

conventional iterative distributed power allocation designs, especially for future dense networks,

which can also be interpreted as the improvement of network scalability and latency suffering

from the capacity-constrained fronthaul links.

The computational complexity of the proposed distributed design mainly depends on the

calibrated forecasting part at the individual SBSs, i.e., Algorithm 1, whose complexity is of the

order of (Nb − 1)N
(A−1)
ε , which implies a linearly dependence in Nb, a polynomial dependence

in Nε and an exponential dependence in A. Furthermore, the major complexity of Algorithm 1

comes from the calculation of {ψt∗
bb′} over {p1, . . . ,pNε} for other SBSs b′,∀b′ ∈ Lb\b as per
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Fig. 2. An illustration of the simulation topology.

(12). Instead of solving exactly the min-max problem in (12) via linear programming, we can

use the multiplicative weights algorithm [31] that allows a small violation δ > 0 in each of

A constraints given by (12), to approximate {ψt∗
bb′}, thus reduce significantly the complexity to

O(ANε(Nb−1)
δ2

ln(Nε)) [29]. The computational complexity can be further reduced by adopting a

smaller value of Nε with a reasonable accuracy.

IV. SIMULATION RESULTS

As shown in Fig. 2, we consider a distributed small cell network consisting of 11 adjacent

SBSs, where we only focus on the top Nb = 5 neighboring interferers among all the SBSs.

Nu = 4 users are randomly dropped in the vicinity of the boundary of each small cell to account

for the worst-case ICI effect. The channel gain Ψt
bb, b ∈ Lb, varies across individual time slots

and the large-scale fading component is modeled by αtbb = GbL
t
bbe
−0.5 (σs ln 10)2

100 , where Gb = 15

dBi denotes the antenna gain, the path loss over a distance of l km is modeled as Ltbb = 128.1 +

37.6log10(l) [33], and σs = 8 dB represents the log-normal shadowing standard deviation. Other

simulation parameters, unless otherwise stated, are described as follows, the AWGN variance
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σ2
b = −96 dBm and the maximum Doppler frequency fd = 10 Hz are identical to all users, the

maximum transmit power is Pmax
b = EA = 3 W [33] and the slot duration is τ = 20 ms [27]. It

has been proved in [26] and [34] that the binary power allocation achieves considerably good

performance for sum-rate maximization problem. For the purpose of illustration, let us consider

the scenario of Nb = 5 agents, i.e., 5 top interfering SBSs, with A = 2 discrete transmit power

levels. Unless otherwise stated, transmit power levels 1 and 2 of the individual SBSs are set to

be 0 W and 3 W, respectively, i.e., E = {0, 3} W, where Nε = 6 candidate probability values

over A are set to be {p1, . . . ,pNε} = {(0, 1), (0.2, 0.8), (0.4, 0.6), (0.6, 0.4), (0.8, 0.2), (1, 0)}.

In order to demonstrate the advantages of our proposed distributed power allocation design,

a non-cooperative power allocation design where each SBS autonomously and greedily chooses

the transmit power from E to maximize its own performance without concerning its impact on

others, has been set as the benchmark scheme. A random power allocation design that randomly

selects the transmit power from E at the individual time slots has been employed to indicate the

performance lower bound. Furthermore, an optimal centralized power allocation design that has

full access to CSI and exhaustively searches over all combinations of power levels of the SBSs

for the best transmit power decisions at each time slot at the cost of centralized coordination, is

chosen as the performance upper bound. Note that a performance gap between the centralized

and the distributed algorithms is expected, and our main focus is how much and how fast

this gap can be closed using a distributed algorithm. For fair comparison, identical constraints

have been applied to all power allocation designs and the channel condition varies across each

individual time slot. Unless otherwise stated, each average simulation result for the individual

power allocation designs is obtained by averaging all of the actual experimental points at the

individual time slots over the previous 150 time slots.

July 3, 2019 DRAFT



20 IEEE TRANSACTIONS ON COMMUNICATIONS

A. Maximization of sum data rate

In this case study, we aim at maximizing the long-term overall sum-rate among all SBSs. Due

to the fact that the users within the same small cell are served sequentially in their respective

time slots in the considered scenario, the objective function in (5) can be expressed as

max
{P tb}

{
lim
T→∞

1

T

T∑
t=1

Nb∑
b=1

(Rt
b)

}
. (13)

Note that we have further adapted the step 8 of Algorithm 2 such that the selected transmit power

level is associated with the highest overall reward corresponding to the maximum estimated sum-

rate, i.e., atb = argmax
a∈A

(µ̂tb +

Nb∑
b′=1,b′ 6=b

µ̄t−1b′b ).

Fig. 3 depicts the average sum-rate of various power allocation designs for both the highly

uncertain environment, i.e., fd = 15 Hz in Fig. 3(a) and fd = 10 Hz in Fig. 3(b), and the

near-static environment, i.e., fd ≈ 0 Hz in Fig. 3(c). For the purpose of better illustration, the

performance, i.e., the average sum-rate, of all power allocation designs at individual time slots is

obtained by averaging over all past time slots. As can be seen from the figure, the performance

gap between the proposed distributed design and the optimal centralized design is narrowed with

increasing time for both cases of fd = 10 Hz and fd = 15 Hz, whilst the performance of the

proposed distributed design in Fig. 3(a) slightly degrades as compared to that of Fig. 3(b). This is

due to the fact that instead of tracking the instantaneous channel conditions at the individual time

slots, the proposed design adaptively tracks the recent trend of the wireless channel variations

via gradually improving the predictions of the individual SBSs on others, and asymptotically

optimizes the transmit power decisions at the SBSs.

In order to better illustrate the performance of our proposed design, we select SBS 2 and

SBS 4 as two representatives to show the evolution of their power decisions and the resulting

average data rates. Fig. 4 illustrates the average data rate of SBS 2 and SBS 4 for various power

allocation designs, respectively, for the near-static environment. As can be concluded from the

figure, the proposed distributed design rapidly approaches towards the optimal centralized design
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Fig. 3. Sum-rate of various power allocation designs for (a) fd = 15 Hz, (b) fd = 10 Hz, (c) fd ≈ 0 Hz.
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Fig. 4. Average data rate of (a) SBS2, (b) SBS4 for various power allocation designs.

within the first 200 time slots and follows it closely from the 500th time slot onwards, for both

SBS 2 and SBS 4. In comparison with Fig. 3(c), one may conclude that although choosing

the maximum transmit power yields higher average data rate for SBS 2, the proposed design

encourages the SBSs to select proper actions such that the system-level long-term sum data rate

among all SBSs is maximized. Furthermore, Fig. 4 indicates that the non-cooperative power

allocation design is not suitable for the optimization of the system-level performance as the

individual SBSs aggressively choose the maximum transmit power regardless of others.

Table II depicts the possible sum data rate that could be achieved for various combinations

of transmit power levels for the SBSs at the final time slot. One may observe from the table

that the maximization of sum data rate of 10.0206 bps/Hz is achieved when the SBSs transmit,

respectively, at power levels 2, 1, 1, 2 and 1.

Fig. 5 describes the prediction distribution of SBS 2, i.e., {ψt
2b′}, over candidate probability

values {p1, . . . ,pNε} = {(0, 1), . . . , (1, 0)} against SBS 1, SBS 3, SBS 4 and SBS 5 at the

initial and the final time slots, respectively. Fig. 5(a) illustrates the uniformly distributed {ψt
2b′}

at the initial time slot, where {p1, . . . ,pNε} have equal likelihood to occur. Fig. 5(b) shows the
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TABLE II

REWARD TABLE FOR SBSS AT FINAL TIME SLOT

Action combinations (1,1,1,1,1) (1,1,1,1,2) (1,1,1,2,1) (1,1,1,2,2) (1,1,2,1,1) (1,1,2,1,2) (1,1,2,2,1) (1,1,2,2,2)

Sum-rate (bps/Hz) 8.4554 8.4579 10.0197 10.0194 8.3360 8.3390 9.9015 9.9013

Action combinations (1,2,1,1,1) (1,2,1,1,2) (1,2,1,2,1) (1,2,1,2,2) (1,2,2,1,1) (1,2,2,1,2) (1,2,2,2,1) (1,2,2,2,2)

Sum-rate (bps/Hz) 8.2374 8.2387 9.7643 9.7636 8.1297 8.1320 9.6634 9.6631

Action combinations (2,1,1,1,1) (2,1,1,1,2) (2,1,1,2,1) (2,1,1,2,2) (2,1,2,1,1) (2,1,2,1,2) (2,1,2,2,1) (2,1,2,2,2)

Sum-rate (bps/Hz) 8.4588 8.4613 10.0206 10.0201 8.3399 8.3428 9.9025 9.9023

Action combinations (2,2,1,1,1) (2,2,1,1,2) (2,2,1,2,1) (2,2,1,2,2) (2,2,2,1,1) (2,2,2,1,2) (2,2,2,2,1) (2,2,2,2,2)

Sum-rate (bps/Hz) 8.2409 8.2422 9.7652 9.7646 8.1338 8.1360 9.6646 9.6642
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Fig. 5. Prediction distribution of SBS 2 of Nε = 6 candidate probability values over A at (a) the initial time slot, and (b) the

final time slot.

optimal prediction distribution {ψt∗
2b′} after the convergence. To be specific, SBS 2’s prediction

distribution over {p1, . . . ,pNε} = {(0, 1), (0.2, 0.8), (0.4, 0.6), (0.6, 0.4), (0.8, 0.2), (1, 0)} for

SBS 5 is ψt∗
25 = [0.007, 0.019, 0.042, 0.107, 0.770, 0.055]. In the light of Algorithm 1, SBS 2

will output its forecast result pt25 of SBS 5 according to ψt∗
25. For instance, with the probability
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Fig. 6. Sum-rate of various power allocation designs for (a) 5 SBSs with E = {0, 3} W, (b) 5 SBSs with E = {1, 3} W, (c) 4

SBSs with E = {1, 3} W, (d) 5 SBSs with E = {1, 3} W and less frequent reward information exchange at every 5 time slots.

of 0.770, SBS 2 will forecast pt25 = [0.8, 0.2] over SBS 5’s possible transmit power levels 1

and 2, respectively, indicating that SBS 2’s prediction of SBS 5 is highly likely to be power

level 1. Then it is obvious from the figure that the SBSs 1, 3, 4 and 5 are highly likely to be

expected by SBS 2 to choose actions 2, 1, 2 and 1, respectively. This conclusion is in agreement

with Table II, where the individual SBSs selecting the combinations of transmit power levels of

(2, 1, 1, 2, 1) lead to the maximization of sum rate.

Fig. 6 shows the comparison results of our proposed design against various power allocation
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Fig. 7. Average sum rate for various number of Nε candidate probability values for the proposed design for fd = 15 Hz.

designs for different system settings. For the purpose of better illustration, the average sum-rate

is obtained by averaging over all past time slots. Fig. 6(a) and Fig. 6(b) indicate the sum-

rate performance for different transmit power levels, whilst Fig. 6(b) and Fig. 6(c) describe

the sum-rate performance when different numbers of interfering SBSs are considered. One may

conclude from the figures that binary power control, i.e., E = {0, 3} W, achieves better average

sum-rate performance for both optimal centralized design and our proposed distributed design.

Furthermore, the sum-rate performance degrades when smaller number of interfering SBSs is

considered. This is due to the fact that though SBS 5 is not participating in the power control,

it still poses interference on users associated to the other SBSs. As can be observed from Fig.

6(b) and Fig. 6(d), though exchanging reward information at a lower frequency may decrease the

convergence speed, the accuracy remains similar to the case where the SBSs exchange reward

information at the end of every time slot.

Fig. 7 shows the average sum rate for various number of Nε, i.e., number of candidate

probability values over A, for the proposed design for fd = 15 Hz. For the purpose of better

illustration, the average sum-rate is obtained by averaging over all past time slots. As can be
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Fig. 8. Overall energy efficiency of various power allocation designs for (a) fd = 10 Hz, (b) fd ≈ 0 Hz.

observed from the figure, the performance of the proposed design for various number of Nε

approaches towards roughly the same point. However, the convergence speed is significantly

improved when the number of Nε increases from 5 to 10, whilst minor differences can be

observed for the performance of Nε = 10 and Nε = 15. Therefore, the computational complexity

the our proposed design can be further reduced by selecting a smaller value of Nε with a

reasonable convergence speed and accuracy.

B. Maximization of overall energy efficiency

Next, we consider the problem of maximizing the long-term overall energy efficiency among

all SBSs, and convert the objective function in (5) as

max
{P tb}

{
lim
T→∞

1

T

T∑
t=1

∑Nb
b=1 Rt

b∑Nb
b=1 P

t
b + Pc

}
, (14)

where Pc = 2 W is the total hardware circuit power consumption of the network. Furthermore,

the step 8 of Algorithm 2 is adapted as atb = argmax
a∈A

(
µ̂tb +

∑Nb
b′=1,b′ 6=b µ̄

t−1
b′b

P t
b +

∑Nb
b′=1,b′ 6=b

∑A
a=1 p

t
aEa + Pc

), to

select the transmit power level associated with the highest estimated overall energy efficiency.
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Fig. 8 presents the average overall energy efficiency of various power allocation designs for

the time-varying wireless channel conditions in Fig. 8(a), and the near-static environment in Fig.

8(b), respectively. One may observe from Fig. 8 that the proposed distributed design closely

follows the optimal centralized design from approximately the 600th time slot onwards for the

case of fd ≈ 0 Hz, whilst for the case of uncertain channel variations, the performance gap

between the proposed design and the centralized design decreases with increasing time, which

demonstrates the improvement of forecast accuracy at the individual SBSs.

C. Maximization of minimum achievable data rate

Finally, we consider the problem of maximizing the minimum achievable data rate among all

SBSs. For the purpose of better illustration, let us set E = {1, 3} W and recast the objective

function in (5) as

max
{P tb}

{
lim
T→∞

1

T

T∑
t=1

min
b

(Rt
b)

}
. (15)

We further adapt the step 8 of Algorithm 2 as atb = argmax
a∈A

min([µ̂tb|{µ̄t−1b′b }]), to select the

transmit power level associated with the highest estimated overall max-min reward.
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Fig. 9. Minimum data rate of various power allocation designs for (a) fd = 10 Hz, (b) fd ≈ 0 Hz.
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Fig. 9 presents the average minimum data rate for various power allocation designs for the

time-varying wireless channels in Fig. 9(a), and the near-static channel conditions in Fig. 9(b),

respectively. As can be seen from Fig. 9, the proposed design sharply approaches towards the

optimal centralized design for the case of near-static environment within approximately 500 time

slots and has a slightly degraded performance for the case of highly uncertain environment, whilst

the performance gap between the proposed design and the centralized design is narrowed with

increasing number of time slots. In addition, the proposed design outperforms the benchmark

scheme in both cases. This is due to the fact that in the benchmark scheme, each individual SBS

autonomously selects its transmit power level without taking into account either the impact it

may have on its counterparts or the variations in wireless channel conditions.

V. CONCLUSION

This paper proposes a combined calibrated learning and bandit approach to online transmit

power control in distributed small cell networks operated under a single frequency band, which

asymptotically maximizes the average reward in the long run. The proposed design allows the

individual SBSs to gradually improve their predictions on the behaviour of the other SBSs, and

react with the best response based on the forecasted results as well as the past observations

at the individual time slots. Numerical simulation results validate that the proposed distributed

design outperforms the benchmark scheme and closely follows the optimal centralized design

with limited amount of information exchange for all case studies.
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