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Abstract—One challenge in video transmission is to deal with4
packet loss. Since the compressed video streams are sensitive5
to data loss, the error resiliency of the encoded video becomes6
important. When video data is lost and retransmission is not7
possible, the missed data should be concealed. But loss concealment8
causes distortion in the lossy frame which also propagates into9
the next frames even if their data are received correctly. One10
promising solution to mitigate this error propagation is intra11
coding. There are three approaches for intra coding: intra coding12
of a number of blocks selected randomly or regularly, intra coding13
of some specific blocks selected by an appropriate cost function,14
or intra coding of a whole frame. But Intra coding reduces the15
compression ratio; therefore, there exists a trade-off between16
bitrate and error resiliency achieved by intra coding. In this paper,17
we study and show the best strategy for getting the best rate-18
distortion performance. Considering the error propagation, an19
objective function is formulated, and with some approximations,20
this objective function is simplified and solved. The solution21
demonstrates that periodical I-frame coding is preferred over22
coding only a number of blocks as intra mode in P-frames. Through23
examination of various test sequences, it is shown that the best intra24
frame period depends on the coding bitrate as well as the packet loss25
rate. We then propose a scheme to estimate this period from curve26
fitting of the experimental results, and show that our proposed27
scheme outperforms other methods of intra coding especially for28
higher loss rates and coding bitrates.

Q1

29

Index Terms—Error resilient video coding, video error30
concealment, intra coding.31

I. INTRODUCTION32

NOWADAYS, real-time digital video transmission over net-33

works is very popular. Due to the tremendous volume of34

the raw video data, video compression is inevitable. But deliver-35

ing compressed data over wired/wireless channels is challenging36
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since the underlying networks are not always reliable and some 37

data losses are usually experienced during transmission. 38

The erroneous and unreceived data corrupts the decompres- 39

sion process and the video fidelity. In this condition, using error 40

concealment techniques alleviates the problem to some extent 41

[1]. At high compression rates, data loss is more destructive; 42

the higher the compression, the more the sensitivity to data loss. 43

For this reason, High Efficiency Video Coding (HEVC), the lat- 44

est standard video codec, is less error resilient than H.264/AVC 45

[2]. Therefore, this makes HEVC video communication over er- 46

ror prone channels a challenging problem for researchers and 47

practitioners in this field. 48

In error concealment techniques, the non-received data are 49

estimated from the received ones. This is done by exploiting 50

the spatio-temporal correlations among the available data at the 51

area of missing information. However, the replaced data will not 52

be exactly the same as the actual data; therefore, there exists a 53

mismatch/distortion between them. If the recovered frame was 54

used as the prediction reference at the encoder, its reconstructed 55

erroneous part would propagate into the next frames at the de- 56

coder. In video coding, a large portion of compression comes 57

from inter frame coding, but inter frame coding increases inter 58

dependency and causes error propagation. In contrast, although 59

intra coding is less efficient for compression, it mitigates the 60

error propagation problem and could be used as a strong error 61

resiliency tool, since it does not use prediction from the other 62

frames [3]–[6]. Therefore, by intra coding, there is a trade-off 63

between error resiliency and compression ratio. That is, intra 64

mode for a block must be selected with sufficient care. For this 65

reason, loss resiliency through intra mode is discussed in several 66

works, as described in Section II. 67

In this paper we show both analytically and experimentally 68

that the best strategy for intra coding is to code some selected 69

frames deliberately in intra mode. For doing so, considering the 70

transmission distortion, the decoder side distortion is formulated 71

and an objective function is developed. Through optimization of 72

this objective function, the optimal solution indicates that coding 73

a whole frame as an I-frame is preferred over coding a certain 74

number of blocks in the frames as intra mode. Our investigations 75

show that the best approach to exploit the error resiliency of intra 76

coding is to reduce the intra period instead of distributing the 77

intra coded blocks among the frames. We had solved a similar 78

problem for Multiple Description Coding (MDC) in [32], but the 79

treatment of a single stream is different from the multi streams 80

of MDC. MDC rarely deals with concealment distortion, since 81

most of the time at least one description is available. Therefore, 82
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the objective functions and approaches taken for solving the83

problem here are different from [32].84

The rest of the paper is structured as follows. Section II85

presents the related work, while in Section III the objective func-86

tion is formulated. Through experimental results, this function87

is first simplified and then solved in Sections IV and V. The88

performance comparison with the other approaches for error re-89

silient intra coding is presented in Section VI and the paper is90

concluded in Section VII.91

II. RELATED WORK92

In the works presented in [7], [8], a recursive algorithm called93

ROPE has been developed. In this algorithm, by pixel-wise op-94

erations, the encoder estimates the receiver-side expected distor-95

tion which is then used for intra/inter mode decision. However,96

this algorithm is too complex due to its pixel-by-pixel computa-97

tions. Its extension for bursty loss channels is presented in [9],98

and the extension of error resilient mode decision to motion es-99

timation and also considering intra-frame prediction for intra100

modes is presented in [10]. ROPE was also used in [11] to opti-101

mally decide between Motion Vector (MV) replication or intra102

coding mode. Using ROPE for motion estimation and reference103

frame generation is presented in [12], while [13] discusses the104

intra/inter mode selection in video transcoding, where the lossy105

frame and its propagated error within the ROPE algorithm is106

exploited. Finally, the extension of ROPE for including con-107

strained intra prediction as candidate modes, in addition to inter108

and intra modes, is presented in [14].109

In another proposal described in [15], frame-level channel dis-110

tortion is analyzed, where through linear models/approximations111

and end-to-end distortion optimization, a scheme for intra mode112

selection and rate control is developed. Some models for trans-113

mission distortion are presented in [16] where parameters such114

as intra prediction, deblocking filtering, sub-pixel motion esti-115

mation and the effect of decoder side temporal error concealment116

are taken into account. With the same approach, an end-to-end117

distortion modeling and optimization method was presented in118

[17] which is then used to develop a faster algorithm for in-119

tra/skip mode decision [18], [19]. In [20], motion estimation and120

mode decision in HEVC are performed based on error propa-121

gation. Another algorithm is presented in [21] where due to122

high sensitivity to error propagation, the algorithm selects the123

intra mode for the Prediction Units (PUs) much more than is124

required, especially for lower content videos. Even though the125

authors try to solve this issue with updating some parameters,126

the intra rates are still high and this degrades its performance at127

low Packet Loss Rates (PLRs) and low bitrates.128

A fast intra mode decision for loss resiliency is developed in129

[22] where, through a linear model, the distortion is estimated130

and an optimal value for Intra Refresh Rate (IRR) is obtained.131

IRR or simply the intra rate is the number of blocks coded in132

intra mode divided by the total number of blocks in the frame.133

A modified model for considering the role of IRR in bitrate and134

distortion is introduced in [23]. Using a linear model and con-135

sidering motion activity and PLR, the optimal IRR and the intra136

coded MBs’ pattern are discussed in [24]. It is shown in [25]137

that for low activity sequences, cyclic intra coding of MBs is 138

more effective than periodic I-frames, and vice-versa for highly 139

active videos. Combining cyclic intra-refreshing with unequal 140

error protection is introduced in [26], [27], though intra-refresh 141

is in conflict with multiple reference selection, as shown in [28]. 142

Error propagation is formulated and the IRR is obtained in [29], 143

then the selected MBs for intra coding are grouped into a com- 144

mon slice group where they are then protected with stronger 145

channel codes. 146

The above mentioned intra coding research works can be cat- 147

egorized into two groups: those which discuss Selecting Intra 148

Mode (SIM) and those which discuss Intra Refresh. In SIM 149

methods, the cost function for inter/intra mode decision is mod- 150

ified to take into account the lossy channel and the transmis- 151

sion distortion; examples are [7]–[21]. In Intra Refresh, the intra 152

rate is determined. Then, the intra coded blocks can be selected 153

randomly, or selected with vertically or horizontally ordered 154

columns/rows, provided that they do not overlap in the succes- 155

sive frames such that the blocks in all positions are intra refreshed 156

after a while; examples are [22]–[29]. 157

Our work is different form the above works since our formu- 158

lation and optimization leads to a straightforward and specific 159

solution: reduce the intra period (coding a whole frame in in- 160

tra mode) to achieve the best error resiliency outcome of intra 161

coding, instead of distributing the intra coded blocks within the 162

frames of the GOP. Afterwards, the best intra period, which de- 163

pends on the content and channel loss rate, is approximately but 164

simply obtained from a function, without additional computa- 165

tional complexity. The experimental results confirm the efficient 166

performance of the proposed scheme, for various loss rates and 167

video contents. 168

Another tool which can help to prevent error propagating is 169

Reference Picture Selection (RPS) which allows the encoder to 170

select one or two frames from a list as inter-prediction references 171

for each prediction block. Several reference frames are exam- 172

ined for the best rate-distortion coding. For error resiliency, this 173

feature is usually in conjunction with decoder feedback which in- 174

forms the encoder not to select the erroneously received frames 175

as the prediction reference [42], [43]. However, this feedback 176

information is not available in many applications; e.g., multi- 177

cast and broadcast applications, or pre-recorded video on de- 178

mand applications. Moreover, responding to various receivers 179

concurrently is not practical, or the feedback messages might 180

be received too late. RPS without a back channel and for error 181

resiliency has been presented in [44]. In this work, the authors 182

propose not to use a single frame as prediction reference of the 183

PUs, but to select from a list of reference frames such that all 184

frames in the list are selected uniformly. However, this method 185

needs to consider a list of frames as candidate reference frames, 186

so it has the complexity of the multi-reference prediction. For 187

example, for five candidate reference frames, the computational 188

complexity of Motion Estimation and Mode Decision becomes 189

five times more. The required encoder/decoder buffer size be- 190

comes larger with the number of reference frames as well. In 191

the error resiliency of the intra coding method proposed in our 192

paper, the only required information is channel loss rate, with- 193

out any additional complexity in the encoder/decoder. It is worth 194
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noting that full frame intra prediction provides random access to195

video stream, but it also generates large peaks of bitrates. How-196

ever, such large spikes in the bitrate can be eased with either a197

few frames delay, which is acceptable in many applications, or198

compensated by statistical multiplexing with lower bitrates of P-199

and B-frames of other video streams. Therefore, there are many200

circumstances that intra coding is a feasible solution while RPS201

cannot be employed.202

Our application scenario is distribution/broadcast of video203

without assuming any specific limits on delay or bandwidth,204

and assuming the PLR is known by the encoder. PLR can be es-205

timated with or without back channel. The application scenario206

without back channel compromises the great majority of current207

video distribution/broadcast systems today. In such a scenario,208

we assume PLR is estimated by the service/network operator209

from the history of the channel for the specific weekday and210

time of the day, or is calculated offline, or is tested by small ping211

packets periodically, or by traffic modeling [30], or by one-way212

estimation methods that use message segment size, goodput, and213

delay [31] all estimated at the sender side, or by any other esti-214

mation means. Of course PLR can also be estimated with back215

channel, and this would be more accurate. In the latter scenario,216

our proposed method is applicable if this back channel cannot217

inform us of the lost packets immediately due to the delay in218

feedbacks or a long Round-Trip Time; therefore, retransmission219

of the lost data or Reference Picture Selection is not possible.220

This scenario is also assumed by other credible works [8], [13],221

[15], [17], [21]. Finally, since our method introduces a small222

delay of about 92 msec, as will be shown later in the paper,223

we assume that such small delay is acceptable for the target224

application.225

III. THE OBJECTIVE FUNCTION FOR ERROR RESILIENT226

INTRA CODING227

For error resilient coding, the following two aspects of intra228

coding must be considered:229

First aspect - intra coding prevents temporal error propa-230

gation, since it has no reference to the other frames. In in-231

tra coding of advanced video codecs, such as H.264/AVC and232

H.265/HEVC, pixels of the adjacent blocks are used as intra233

prediction references, and these references (in encoded form)234

together with the residual data are encapsulated and transmitted235

in a single packet. However, if the reference pixels had been en-236

coded in inter mode, they themselves might be erroneous, even237

if the residual data is received correctly. In this case, temporally238

propagated errors can propagate spatially into the intra-coded239

blocks. To avoid this condition and exploit the error propagation240

prevention provided by intra coding, the option of “Constrained-241

IntraPred” can be enabled, which restricts the intra mode to use242

only the pixels of adjacent intra coded blocks as prediction ref-243

erences. This way, the received intra coded PUs are correctly244

decodable.245

Second aspect - in no loss conditions, inter mode is obvi-246

ously used more often than intra mode, because inter-coded247

blocks have lower bitrates than intra coded ones. By enabling248

the “ConstrainedIntraPred” option, the compression efficiency249

of intra mode is reduced even more, but it is beneficial for error 250

resiliency [16] when we do have losses. 251

Therefore, in deciding to code a block in intra mode, there is 252

a trade-off between bitrate and error resiliency. In this section, 253

an objective function is developed which, rather than optimizing 254

the encoder side rate-distortion, the decoder side rate-distortion 255

is optimized. In other words, taking into account the channel 256

distortion, the receiver side distortion is estimated at the encoder 257

which is then used as the objective function. 258

Intra/inter mode selection is conventionally carried out based 259

on the following Lagrangian cost function [33], [34]: 260

cost = Dq + λR (1)

where Dq is the quantization distortion in Mean Squared Error 261

(MSE), λ is the Lagrangian coefficient and R is the number of 262

required bits. This cost function is computed for the candidate 263

modes and the mode with the lowest cost is selected as the final 264

mode. However, this cost function does not take the transmission 265

distortion into account. To consider it, with the same approach 266

as presented in [15]–[17], the rate overall-distortion in a frame 267

is represented in (2). The assumption behind this equation is that 268

PLR is known at the transmitter side. 269

D(1) = (1− PLR)D(1)
q + PLR D

(1)
conceal (2)

where D(1), D(1)
q and D

(1)
conceal are the expected total distortion, 270

the quantization distortion, and the error concealment distor- 271

tion for frame 1, respectively. The expected distortion means the 272

average distortion seen over a long enough duration, or equiva- 273

lently over a variant enough packet loss pattern, the latter used in 274

our simulation. Note that the concealment distortion, Dconceal 275

in (2), is the distortion when all packets of the frame are lost and 276

the frame is error concealed. It is evident that the frame is trans- 277

mitted by a single packet; however, as shown in the Appendix, 278

this is also valid when the frame is encoded into n packets and 279

the packets convey the same amount of information. 280

Frame 0 is the initial I-frame of the sequence which is assumed 281

to be received correctly. For frame 1, depending on whether 282

its packets are received or not, the distortion will be D
(1)
q or 283

D
(1)
conceal, respectively. For frame 2, it becomes: 284

D(2) = (1− PLR)D(2)
q

+ PLR D
(2)
conceal + PLR

[
1− β(2)

]
Δ(1) (3)

where β(2) is the intra rate of frame 2 and 285

Δ(1) = E

[(
F (1)
q − F

(1)
conceal

)2]
(4)

is the mean squared difference between frame 1 decoded cor- 286

rectly (F
(1)
q ) and loss concealed (F

(1)
conceal); i.e., Δ(1) denotes 287

the Mismatched Distortion for frame 1 caused by error con- 288

cealment. We assume that only the previous frame is used as 289

prediction reference, as happens most of the times in encoders. 290

Enabling multi-frame prediction results in a slight improvement 291

in quality but at the cost of significant computational cost. 292

Equations (3) and (4) show that the quality of frame 1 directly 293

affects the quality of frame 2, and its effect is controlled by 294
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parameter β(2) in (3). At larger β, the impact of mismatched295

distortion is clearly reduced, since intra coded PUs do not refer296

to the previous frame. As shown in [15], the quantization and297

mismatched distortions are independent of each other and one298

can simply write:299

D
(2)
conceal = D(2)

q +Δ(2) (5)

Substituting (5) into (3) gives:300

D(2) = D(2)
q + PLR

[
Δ(2) +

(
1− β(2)

)
Δ(1)

]

= D(2)
q + PLR Δ(2)

accum (6)

in which301

Δ(2)
accum = Δ(2) +

(
1− β(2)

)
Δ(1) (7)

is the Accumulated Mismatched Distortion seen in frame 2. It302

is evident that for frame 1, Δ(1)
accum = Δ(1) and then (7) can be303

rewritten as:304

Δ(2)
accum = Δ(2) +

(
1− β(2)

)
Δ(1)

accum (8)

Following the above concept, the distortion for the nth frame305

is:306

D(n) = D(n)
q + PLR Δ(n)

accum (9)

where307

Δ(n)
accum = Δ(n) +

(
1− β(n)

)
Δ(n−1)

accum

Δ(0)
accum = 0 (10)

and308

Δ(n) = E

[(
F (n)
q − F

(n)
conceal

)2]
(11)

Therefore, the distortion over a GoP ofN frames is as given in309

(12) (as already mentioned, the 0th frame of the GoP is excluded310

from the summation):311

DGoP =

N∑
i=1

D(i) =

N∑
i=1

(
D(i)

q (β) + PLR Δ(i)
accum (β)

)

(12)
where β = [β(1), β(2), β(3), . . . β(N)] is the vector intra rates312

for the N frames of the GoP. Quantization Parameter (QP) is313

excluded from this formulation, since its variation is usually314

±1 units at the given bitrate, except for sudden changes; e.g.,315

scene-cut or fast/non-translational motions which is difficult for316

compensation with inter prediction. Therefore, we can assume317

that QP does not have significant changes for theN frames under318

consideration.319

With the aim of maximizing the received video quality, the320

objective function with a constraint on the overhead bitrate of321

intra coding is:322

min
β

{
N∑
i=1

(
D(i)

q (β) + PLR Δ(i)
accum (β)

)}

s.t.
N∑
i=1

R
(i)
intra (β) ≤ Rred (13)

where R
(i)
intra is the number of additional bits needed for intra 323

encoding of the ith frame according to the intra rate of β(i); that 324

is, if β(i) = 0, then R
(i)
intra = 0 and no block is codded in intra 325

mode for error resiliency. The termRred in (13) is the total redun- 326

dancy budget allowed for theseN frames for intra coding, which 327

in turn is related to the PLR and the required degree of error 328

resiliency. Increasing the intra rates of frame i; i.e., β(i), reduces 329

Δ
(i)
accum (see equation (10)) but in turn increases bitrate usage. 330

IV. SOLVING THE OBJECTIVE FUNCTION 331

In this section, a solution to the constrained problem of (13) 332

is driven through approximation. The behaviors of terms in this 333

equation are observed and approximated through matching them 334

to the experimental results. The experiments settings, the sim- 335

plifying approximations, and the solution to the problem are 336

provided in subsections A, B and C, respectively. 337

A. The Error Concealment Strategy 338

An important part of distortion in (13) belongs to the dis- 339

tortions caused by error/loss concealment. Error concealment 340

techniques can be categorized into spatial and temporal domain 341

processing techniques. In the spatial domain, the lost area of 342

the frame is concealed using the spatially neighboring pixels. 343

These methods exploit the correlations that usually exist among 344

the neighboring pixels. In the temporal processing techniques, 345

the contents from the previous and/or the future frames are ad- 346

dressed by MVs and used for temporal replacement. The actual 347

MVs are not available and must be estimated or recovered first 348

by the temporal loss concealment methods. 349

If the lost area is large, spatial domain is not effective, as pix- 350

els are very far apart from each other to be useful. The reason for 351

dealing with large lost areas in HEVC is the size of its Coding 352

Tree Unit (CTU), which can be as large as 64 × 64 pixels. An 353

integer number of CTUs are regarded as one slice and an inte- 354

ger number of slices are encapsulated into a single transmission 355

packet. Therefore, packet losses in HEVC streams affect a sig- 356

nificant portion of the picture area especially for smaller picture 357

sizes. As a result, temporal error concealment in HEVC streams 358

is more applicable than spatial concealment. 359

Actually, exploiting the temporal frames’ MVs will provide 360

higher quality error concealment. One simple yet efficient tech- 361

nique is the Motion Copy algorithm where the MV of the col- 362

located block is simply used for motion compensated temporal 363

replacement. If the collocated block is coded in intra mode, Zero 364

MV is used. However, in the case of having a high percentage 365

of intra coded blocks, this approach is not efficient due to lack 366

of MVs for intra blocks. For intra coded blocks, one solution is 367

to recover the MVs by Boundary Matching Algorithm (BMA). 368

A suggestion is to combine Motion Copy for inter coded and 369

reliable collocated blocks, and BMA for intra coded or unre- 370

liable collocated blocks, as presented in [35]. The blocks with 371

high residual signals are labeled as unreliable blocks and their 372

MVs are not used for MV recovery. In [35], loss concealment 373

is performed in two stages: firstly, the lost area is replaced us- 374

ing the Motion Copy algorithm. Then, for the unreliable MVs, 375
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Fig. 1. The variation of D(i)
q (β(i)) with respect to IRR for test sequences and two values of QP.

MVs are obtained using BMA. Some other methods such as376

[36]–[37] are proposed for HEVC error concealment, but they377

work again based on the spatially close boundary pixels, which378

are not always available in the actual scenarios. The algorithm379

presented in [38] works based on MV extrapolation but with380

applying higher weights to the MVs belonging to the larger par-381

titions. However, the problem is that this algorithm is based on382

the MVs of the blocks of the previous frame and therefore it is383

efficient when there are a few intra coded blocks. The method of384

[39] is proposed for error concealment of a sequence of succes-385

sive MBs in H.264/AVC. This error concealment method does386

not need to know the MVs’ neighboring spatially or tempo-387

rally missed blocks, and instead estimates them by BMA. This388

method is also useful for large area losses of HEVC. The chal-389

lenge in using BMA is the fact that the error concealment of one390

block will affect the error concealment of the following blocks391

as well. One solution, proposed in [39], is rank ordering the MBs392

for error concealment based on the texture of the available MBs393

in the surrounding of the lost area. A missed MB with a higher394

texture around it will be error concealed with higher priority.395

The criterion for the higher texture is the standard deviation of396

the luminance pixel values. Another solution for considering the397

interaction of loss concealed blocks is presented in [40], but it398

imposes significant computational complexity without consid-399

erable improvement.400

In this paper, three techniques are used for error concealment:401

Motion Copy, the method presented in [35], and the method402

presented in [39]. The first two methods are appropriate when403

the blocks in the earlier frame are encoded mostly in inter mode, 404

and the third method is suitable when the blocks in the earlier 405

frame are encoded mostly or completely in intra mode. Then, the 406

highest quality output is selected and used for the measurements. 407

It is worth noting that throughout the paper error concealment 408

and loss concealment are used interchangeably, but in fact loss 409

concealment is carried out. The reason is that in highly error 410

prone networks, such as wireless networks, severely erroneous 411

packets cannot be corrected and they are regarded as lost packets 412

by the decoder. However, if the used entropy coder is symmetric, 413

such as that of the H.263 codec, then parts of the data can be 414

retrieved and the lossy area can be less than that of whole packet 415

loss [45]. Since H.265/HEVC does not use symmetric entropy 416

coder, then there would not be any retrieval of erroneous parts 417

and the whole packet can be regarded as lost. Hence, loss con- 418

cealment is a proper choice. 419

B. Simplifying the Objective Function 420

First, the quantization distortion does not significantly change 421

with parameter β(i). That is, D(i)
q (β(i)) is approximately con- 422

stant when β(i) varies from minimum (β = 0) to maximum 423

(β = 1). This can be verified from the simulation results shown 424

in Fig. 1. In this figure, four HD test video sequences are coded 425

with HM16.0, the reference software of HEVC, at two values 426

of QP and six values of IRR. The tested video sequences are 427

Stockholm, Vidyo1, FourPeople and Mobcal. For the given intra 428

rates, a sufficient number of PUs with sizes of 16 × 16 pixels 429
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Fig. 2. The variation of mismatched distortion (Δ(i)) for the frames of test sequences for four values of QP .

are selected randomly and are forced to intra coding mode. As430

already mentioned, the randomly selected PUs do not overlap in431

the frames.432

Fig. 1 shows the ignorable changes of D(i)
q with β(i). It can433

also be seen that the variation in D
(i)
q for QP = 24 is less than434

that of QP = 32. The mathematical reason is that for smaller435

QP s, or smaller quantization step sizes (QSS), the high bitrate436

approximation is more accurate and the quantization distortion437

is nearly equal to Q2
SS

12 [17]. This is fixed for various signals,438

independent of inter or intra coding. However, the difference439

in D
(i)
q s for various βs is still ignorable, even for QP = 32.440

Therefore, D(i)
q is fixed with the optimization arguments and441

equation (13) can be simplified as:442

min
β

{
N∑
i=1

(
PLR Δ(i)

accum (β)
)}

s.t.
N∑
i=1

R
(i)
intra (β) ≤ Rred (14)

An important term in (14) is Δ(i)
accum which is the multiply-443

accumulated of mismatched distortions Δ(i)s, with the multipli-444

cation coefficient of (1− β(i)), as given in (10). Therefore, the445

variation of Δ(i) per frames is important in the behavior of the446

objective function of (13). To measure Δ(i)s, the frames are first447

error concealed with the strategy given in IV.A, and then Δ(i) is448

calculated by (11). The results are shown in Fig. 2 where it can be449

seen that, most of the times and with a good approximation, the450

frames of a sequence have close mismatched distortions, that is:451

Δ(1) ∼= Δ(2) ∼= · · · ∼= Δ (15)

452

Even though it might not be valid for all frames, the variations 453

are smooth in the windows of N frames, as large as the usually 454

used GoP sizes (30–60 frames). This assumption may not be 455

much accurate; however, this assumption, by nature, is similar 456

to the assumption made in Rate-Control (RC) algorithms. In 457

RC algorithms, the goal is to control the total bitrate to be less 458

than the given bound with minimum fluctuation in the quality. 459

Therefore, for a real-time RC, the encoder must assume that the 460

future frames have almost the same behavior in the view of com- 461

pression properties. Even though this assumption is not always 462

valid, it is very efficient and helpful in practice. Similar to RC 463

algorithms, we can assume that the frames behave similarly in 464

the view of mismatched distortion. Therefore, with the assump- 465

tion of (15), Δ(i) is fixed for the frames, and since the employed 466

loss concealment strategy is not much sensitive to the intra/inter 467

coding, it is also fixed with β. Therefore, by substituting the 468

recursive formula given in (8), the objective function of (14) can 469

be expanded as follows: 470

min
β

⎧
⎨
⎩PLR.Δ

⎡
⎣N +

N∑
i=1

⎛
⎝

N−(i−1)∑
j=1

(
i−1∏
k=0

(
1−β(j+k)

))
⎞
⎠
⎤
⎦
⎫
⎬
⎭

s.t.
N∑
i=1

R
(i)
intra (β) ≤ Rred (16)

where PLR and Δ are assumed constant during optimization. 471
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Fig. 3. The variation of bitrate with intra rate for various QPs and test sequences.

Now, for the constraint of (16), we do another simulation: the472

variation of frame bits when β varies from 0 to 1, as depicted in473

Fig. 3. In this figure, the average bitrates needed for sending the474

encoded video frames are measured and shown against the intra475

rate.476

From Fig. 3, we can generally assume that the bitrates are477

increased almost linearly with β. That is:478

R(i) = R
(i)
0 +R

(i)
intra = R

(i)
0 + α(i) β(i)

⇒ R
(i)
intra = α(i) β(i) (17)

where R
(i)
0 is the bitrate of the ith frame for β = 0. The figure479

shows that the curves almost have the same slope; that is, they480

have the same α defined in (17). For this reason, the constraint481

term in (16) can be stated as:482

N∑
i=1

(
α β(i)

)
≤ Rred (18)

or equivalently483

N∑
i=1

β(i) ≤ βred (19)

where βred is the intra rate budget; i.e., the sum of total intra484

rates allowed to be assigned to these N frames. Therefore, the485

objective function of (16) is simplified as 486

min
β

⎧
⎨
⎩PLR.Δ

⎡
⎣N +

N∑
i=1

⎛
⎝

N−(i−1)∑
j=1

(
i−1∏
k=0

(
1− β(j+k)

))
⎞
⎠
⎤
⎦
⎫
⎬
⎭

s.t.
N∑
i=1

β(i) ≤ βred (20)

Since we can assume that PLR and Δ are fixed during opti- 487

mization, the problem in (20) can be rewritten as: 488

ErrorPromin =min
β

⎧
⎨
⎩

N∑
i=1

⎛
⎝

N−(i−1)∑
j=1

(
i−1∏
k=0

(
1− β(j+k)

))
⎞
⎠
⎫
⎬
⎭

s.t.
N∑
i=1

β(i) ≤ βred (21)

It is worth mentioning that for simplicity of deriving the objec- 489

tive function, without loss of generality, there are no B-frames. 490

This is because, in general, some B-frames maybe used as pre- 491

diction reference like P-frames causing error propagation, while 492

others are not used as the reference and hence do not propagate 493

the errors but they become erroneous. Modifying our formula- 494

tions to highlight this matter makes the equations more compli- 495

cated without giving the required information to the reader. 496
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TABLE I
THE OUTPUT OF THE OBJECTIVE FUNCTION OF (21) FOR SOME VALUES OF βred

C. Solving the Simplified Objective Function497

In this subsection, the solution for the objective function given498

in (21) is discussed. The problem is actually minimizing the499

error propagation at a given intra rate budget. As an example,500

this problem is solved for N = 15 and various values of βred;501

the results are tabulated in Table I.502

As can be seen from this table, when βred ≤ 1, the best frame503

for intra coding is the middle frame. If there was more intra504

budget; i.e., 1 < βred ≤ 1.45, β(4) and β(12) begin to grow505

irrespective of whether the intra rate is allocated to the 4th frame506

or the 12th frame. However, when intra rate budget exceeds507

1.45, the optimization function given in (21) recommends other508

frames for intra coding to be chosen; e.g., frames 5 and 10, where509

frame 10 is coded wholly as I-frame, and frame 5 has partially510

intra coded blocks. Equivalently, another package is frames 6 and511

11, where frame 6 is now selected for I-frame coding. One can512

see that these two packages produce the same obstacle against513

the error propagation.514

For some other regions of βred, the selected frames are given515

in Table I. One important point is changing the intra coded frame516

candidates imposed by the objective function of (21). The reason517

is that, if βred is between two integers K1 and K2; that is K1 <518

βred < K2, the optimizers may decide to add another frame for519

intra coding in addition to K1 frames (e.g., one frame between520

them), or decide to select K2 frames for intra coding and reduce521

the intra rate of one of them to comply with the bound of βred.522

Clearly, if βred is close to K1, the former case happens, and the523

latter case happens when βred is close enough to K2. However,524

as shown in Fig. 4,ErrorPromin behaves continuously at these525

border points ofβred. In each interval shown by broken lines, the526

intra coding frame candidates are the same where one or more527

appropriate frames of these candidates consume the allocated528

intra coding budget. As already mentioned, the slope of decay529

in ErrorPromin in each interval is constant. If βred becomes530

larger than 7, the frames are alternately coded as I-frame; that531

is the GOP structure is IPIPIP, and now all P-frames have the532

same priority for intra rate for all βred amounts; therefore; there533

are no broken lines in Fig. 4 for βred > 7.534

This solution proves that to achieve the best error resiliency535

for intra coding, the best strategy is to concentrate on intra536

Fig. 4. Behavior of ErrorPromin with βred.

coding the blocks in the middle frame of the GoP, such that 537

the entire frame is coded as an I-frame. If the intra rate budget 538

(or accordingly bitrate budget) allows, more frames can still be 539

coded in intra mode. In other words, the output of the objec- 540

tive function is to reduce the intra period; this strategy leads 541

to smaller error propagation and hence higher video quality for 542

lossy channels, compared to the case that intra coded blocks are 543

distributed among the frames. 544

V. THE OPTIMAL VALUE FOR THE INTRA PERIOD 545

As shown in Table I, at a larger βred, the number of I-frames 546

in the GoP can increase. This is in favor of mitigation of error 547

propagation; however, the required bitrate for sending the video 548

is increased since the compression ratio is decreased. 549

Having more I-frames is justified in channels with higher loss 550

rates and vice versa. Therefore, PLR and the coding bitrate af- 551

fect the best value for β∗
red. As shown in Table I, β∗

red is directly 552

related to Intra Period (IP); therefore, the problem of finding 553

βred−opt is equivalent to finding an optimal value for IP, denoted 554

as IP ∗. However, to find IP ∗ analytically, one must know the 555

rate-distortion behavior of the frames of the GoP under consid- 556

eration; that is, the behavior of future frames must be known 557

a priori, which is not possible unless it is estimated based on 558

the frames’ history similar to the work presented in [41]. This 559
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Fig. 5. The best IP versus bit/pixel for various PLRs and test sequences.

way, the problem can be solved using classical constraint opti-560

mization approaches. However, the complexity of the problem561

and non-trivial solutions have encouraged us to use an empirical562

approach. Therefore, IP ∗ has been found through experimental563

measurements, as follows.564

The videos are encoded in Slice Mode, and each slice contains565

an integer number of CTUs in raster scan order. Each coded slice566

can be as large as 1500 bytes, meeting the Maximum Transmis-567

sion Unit (MTU) of the network, and transmitted as a single568

packet. The channels experience a burst form of loss generated569

by Elliot-Gilbert model [46]. At each PLR, 40 packet loss pat-570

terns with an average burst length of three packets are generated571

and applied on the bit streams.572

The video sequences are encoded at various values of IP ;573

IP = M means every Mth frame of the sequence is coded as574

an I-frame. For example, for IP = 3, there are two P-frames575

after each I-frame, and this pattern is repeated throughout the576

sequence. In a GoP of 30 frames, the videos are encoded with577

IP = 1, 2, . . . , 15 (for GoP ofN frames, IP > N
2 is not reason-578

able). The compressed bit stream is subjected to a specific PLR,579

and the decoded video is loss concealed (as given in IV.A) and580

the resulting quality is measured. Video quality is measured in581

terms of Video Quality Model (VQM) [47] and its average index582

taken over the loss patterns is calculated. VQM is a video quality583

assessment method which considers both spatial and temporal584

distortions, so it is quite suitable to our case. For each test video585

and at the given PLR, the best IP which provides the best quality586

(i.e., the lowest VQM index, since higher quality is equivalent587

to lower VQM index) at the corresponding bitrate is selected.588

Fig. 5 shows the best IPs as a function of bit/pixel for four589

sequences.590

It can be seen that the best IP becomes smaller at higher bi- 591

trates and higher PLRs. Even though some points are not close to 592

the others, they can be fitted on decaying exponential functions, 593

as shown in Fig. 5. The fitted curves can be formulated with the 594

following equations: 595

IP ∗ = 3 + 15 exp

(
− R

R0

)

R0 = 0.15 + 1.4575 exp

(
−PLR

0.01

)
(22)

where R is the bit per pixel. Clearly, IP ∗ obtained from (22) 596

must be rounded to the nearest integer number. Even though the 597

decimal values are also applicable, our empirical approach and 598

curve fitting is not accurate enough for extracting decimal values 599

for frames’ intra rates. 600

One issue is the fact that coding a frame fully in Intra mode 601

might cause sudden changes in the bitrate and hence more con- 602

gestion in the lossy channels. However, for numerous appli- 603

cations, like video broadcast, streaming, multicasting etc., one 604

needs to play the video at almost any time during transmission. 605

This facility can only be provided by Intra coded frames. On the 606

issue of increased I-frame bitrates, one should note that in these 607

applications, normally several video flows are multiplexed, such 608

that higher bitrates of I-frames coincide with lower bitrates of 609

many P- and B-frames of the other flows and are easily smoothed 610

out. Despite this, even for a single video flow, some traffic shap- 611

ing, such as coarser quantization parameter for I-frames can be 612

applied to reduce the bits; however, this solution may lead to 613

quality flicker due to lower qualities of the I-frames if the QPs 614

of I-frame and P-frames are much different. For high motion 615
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Fig. 6 The sudden changes in the frame bits when a frame is encoded as I-frame. Every 8 frames, one frame is Intra coded entirely.

and high texture videos, the difference between I and P frames’616

bits are not so large and this approach might be sufficient there.617

If this was not the case, another solution is to have the same618

QP for I and P frames but use an encoder smoothing buffer to619

regulate the bitrate (e.g., traffic shaping), of course at the cost of620

a few frames delay in video display. How this delay can solve621

the problem is explained below. Let us assume that intra period622

is M frames. If the frame rate of the video is FPS, the average623

bitrate required by the channel is:624

R = FPS
((M − 1)RP +RI)

M
bits/sec (23)

where RP and RI are number of bits needed for coding the625

P-frames and I-frames, respectively. Now if the I-frame has k626

times more bits than the P-frames, then:627

R =
FPS (M − 1 + k)RP

M

=
FPS (M − 1 + k)RI

kM
bits/ sec (k > 1) (24)

At each 1/FPS second, the total sent bits are:628

R =

(
1 +

k − 1

M

)
RP

=

(
M + k − 1

kM

)
RI bits/ sec (k > 1) (25)

Therefore, more than one P-frame or less than one I-frame629

is transmitted at each 1/FPS. That is, compared to the case630

where all frames have the same number of bits (i.e., k = 1),631

delivering P-frames is faster and delivering I-frames is slower.632

However, the issue that may arise here is the transmit and 633

receive buffers’ overflow and underflow in a live streaming 634

application. It can be shown that, with display latency as large 635

as M(k − 1)/(M − 1 + k) frames, there is no overflow or un- 636

derflow in the buffers and continuous playing of the video is 637

preserved (see Appendix B in [32] for the proof). This latency 638

increases with M ; therefore, a smaller M chosen for higher 639

PLRs leads to lower latencies. 640

The value of k is content dependent; Fig. 6 shows the number 641

of bites of I and P frames, withM = 8 for four sequences and two 642

QPs. One can see that k is about 1.5 for Stockholm at QP = 24; 643

that is, k is small and the delay is not significant. For example, for 644

PLRs of 5%, if M is around of 4 as shown in Fig. 5, this gives a 645

latency of about 0.5 frames. However, the ratio k becomes larger 646

at QP=32. And also,M is typically larger for lower bitrates; i.e., 647

for QP = 32. Therefore, the incurred delay is more challenging 648

here; for example, for FourPeople at QP = 32, k is about 10 as 649

shown in Fig. 6, which is relatively very high. Now for M = 15 650

(as inferred from Fig. 5), the delay becomes about 5.5 frames. 651

For FPS of 60, it leads to a delay less than 100 ms which is 652

acceptable for many applications. For smaller delays, we can 653

combine the above two approaches; that is, applying coarser 654

quantizer and forcing a delay. The coarser quantizer to I-frames 655

leads to a smaller k which in turn leads to a smaller delay. 656

VI. PERFORMANCE COMPARISON 657

The analysis explained in the previous sections shows that 658

using I-frames instead of applying IRR is more efficient as 659

an error resiliency tool and gives higher quality in dealing 660

with transmission of encoded videos over lossy channels. The 661
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Fig. 7. Performance comparison of the proposed method for various PLRs and FourPeople, Stockholm, Vidyo1 and Mobcal sequences for burst length of three
packets.

suitable I-frame period is given by (22). As already mentioned662

in Section II, there are two other options for intra coding,663

SIM and Intra Refresh. For performance comparison, our pro-664

posed method is compared against two SIM methods, [17]665

and [21], where the PUs are selected based on an objective666

function for intra or inter coding. Note that as explained in667

Section II, there are also two options for selecting the668

blocks to be forced for intra coding in the Intra Re-669

fresh scheme. They can be selected randomly or in a670

regular manner, such as a column of intra blocks moving frame671

by frame from left to right. Our experiments showed that the672

latter option, called Periodic Intra Refresh (PIR) or cyclic673

intra-refresh generally gives superior performance in terms of674

rate-distortion. Therefore, we have included the results of PIR675

in Figs 7–9. Since there are no appropriate recent related works676

on the best value of IRR, we examine PIR with several possible677

values of IRR for all examined PLRs; these are {0, 0.1, 0.2, 0.4,678

0.6, 0.8}. Note that IRR = 0 is equivalent to not paying any679

attention to channel loss at the encoder. With the experimental680

settings given in Section V, these results are shown in Figs 7–9,681

Fig. 9 is for the average burst length of six packets.682

Despite of the simplifications and approximations made in our 683

method through analysis and curve fitting, it can be seen from 684

Figs 7–8 that our proposed method outperforms the others in 685

many cases. For lower PLRs and smaller bitrates, the proposed 686

method provides actually no gain. In these regions, since the 687

video is less sensitive to packet loss, the curves are actually close 688

to each other. The algorithm of [21] picks many PUs for intra 689

coding; therefore, it applies intra rate much more than required 690

but with a slight gain in quality in lower PLRs. For this reason, 691

this algorithm does not work well for low PLRs. In the cases of 692

higher PLRs and higher bitrates, one can see the VQM quality 693

index of our proposed method is better than the others which is 694

sometimes significant. A reminder that the smaller VQM index 695

means higher quality. Light content video sequences, such as 696

FourPeople and KrisenAndSara, as already mentioned are less 697

sensitive to data loss; hence the VQM curves are again similar 698

while ours are still marginally better. 699

For the PLRs of 5% and 10%, the results of applying average 700

burst length of six packets are shown in Fig. 9. It can be seen that 701

the performance of our proposed method is still better than the 702

others. Actually, the loss pattern does not significantly affect our 703
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Fig. 8 Performance comparison of the proposed method for various PLRs and Kristen and Sara, Shields, Vidyo3 and Vidyo4 sequences for burst length of three
packets.

Fig. 9. Performance comparison of the proposed method for various PLRs and FourPeople, Stockholm, Vidyo1 and Mobcal sequences for burst length of six
packets.
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results due to our loss concealment procedure applied to lossy704

bitstreams generated by any of competing methods.705

The burst loss leads to larger lossy areas in the pictures,706

which is usually handled by the Motion Copy algorithm. Note707

that burst loss will lead to the loss of consecutive frames in low708

bitrate and low resolution videos, while it is not so destructive709

for HD and beyond.710

VII. CONCLUSION711

In this paper, the best strategy for intra coding as an error712

resiliency tool is presented. It was proposed to encode some713

frames entirely in intra mode, rather than the conventional ap-714

proach where some blocks or PUs are selected in PIR manner715

(with a specific intra rate) or by a cost function to be coded in716

intra mode. Considering the error propagation, the receiver side717

distortion is formulated and it is simplified with some obser-718

vations. The simplified objective function has a straightforward719

solution: β(i∗) = 1, where i∗ is the index of the frames sym-720

metrically positioned in the GoP, and the number of I-frames721

depends on βred or equivalently the available bitrate budget for722

intra coding. The output of the objective function is to reduce723

the IP as much as possible and as long as the bitrate overhead724

of intra coding is justified at the given channel loss rate.725

The optimal IP varies with the coding bitrate as well as the726

PLR as shown in Fig. 5. We have fitted a curve to the experi-727

mental points obtained from examining various test sequences,728

as given in (22). With the IP ∗ selected by (22), experimental re-729

sults show that the proposed method achieves lower VQM index730

compared to the conventional SIM and PIR methods.731

APPENDIX732

Assume that frame 1 is transmitted through n packets. If m733

packets are lost, the average distortion after error concealment734

is:735

D(1)
m =

(n−m)

n
D(1)

q +
m

n
D

(1)
conceal (26)

If each packet is lost with a probability of PLR, the proba-736

bility of losing m packets is737

PLRm = C (n,m) PLRm (1− PLR)n−m

=

(
n
m

)
PLRm (1− PLR)n−m (27)

whereC(n,m) is the number of m-combinations fromnpackets.738

Therefore, the expected distortion of frame 1 is as given by (28):739

D(1) =

n∑
m=0

(
PLRm D(1)

m

)

=
D

(1)
q

n

n∑
m=0

[
(n−m)

((
n
m

)
PLRm(1− PLR)n−m

)]

+
D

(1)
conceal

n

n∑
m=0

[
m

((
n
m

)
PLRm(1− PLR)n−m

)]

(28)

Both summations in (28) are the expected values of a Bino- 740

mial distribution with probabilities of (1− PLR) and PLR, 741

respectively. That is D(1) becomes 742

D(1) =
D

(1)
q

n
[n (1− PLR)] +

D
(1)
conceal

n
[n PLR]

= (1− PLR)D(1)
q + PLR D

(1)
conceal (29)

which is the same as equation (2). 743
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Intra Coding Strategy for Video Error Resiliency:
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Abstract—One challenge in video transmission is to deal with4
packet loss. Since the compressed video streams are sensitive5
to data loss, the error resiliency of the encoded video becomes6
important. When video data is lost and retransmission is not7
possible, the missed data should be concealed. But loss concealment8
causes distortion in the lossy frame which also propagates into9
the next frames even if their data are received correctly. One10
promising solution to mitigate this error propagation is intra11
coding. There are three approaches for intra coding: intra coding12
of a number of blocks selected randomly or regularly, intra coding13
of some specific blocks selected by an appropriate cost function,14
or intra coding of a whole frame. But Intra coding reduces the15
compression ratio; therefore, there exists a trade-off between16
bitrate and error resiliency achieved by intra coding. In this paper,17
we study and show the best strategy for getting the best rate-18
distortion performance. Considering the error propagation, an19
objective function is formulated, and with some approximations,20
this objective function is simplified and solved. The solution21
demonstrates that periodical I-frame coding is preferred over22
coding only a number of blocks as intra mode in P-frames. Through23
examination of various test sequences, it is shown that the best intra24
frame period depends on the coding bitrate as well as the packet loss25
rate. We then propose a scheme to estimate this period from curve26
fitting of the experimental results, and show that our proposed27
scheme outperforms other methods of intra coding especially for28
higher loss rates and coding bitrates.

Q1

29

Index Terms—Error resilient video coding, video error30
concealment, intra coding.31

I. INTRODUCTION32

NOWADAYS, real-time digital video transmission over net-33

works is very popular. Due to the tremendous volume of34

the raw video data, video compression is inevitable. But deliver-35

ing compressed data over wired/wireless channels is challenging36
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since the underlying networks are not always reliable and some 37

data losses are usually experienced during transmission. 38

The erroneous and unreceived data corrupts the decompres- 39

sion process and the video fidelity. In this condition, using error 40

concealment techniques alleviates the problem to some extent 41

[1]. At high compression rates, data loss is more destructive; 42

the higher the compression, the more the sensitivity to data loss. 43

For this reason, High Efficiency Video Coding (HEVC), the lat- 44

est standard video codec, is less error resilient than H.264/AVC 45

[2]. Therefore, this makes HEVC video communication over er- 46

ror prone channels a challenging problem for researchers and 47

practitioners in this field. 48

In error concealment techniques, the non-received data are 49

estimated from the received ones. This is done by exploiting 50

the spatio-temporal correlations among the available data at the 51

area of missing information. However, the replaced data will not 52

be exactly the same as the actual data; therefore, there exists a 53

mismatch/distortion between them. If the recovered frame was 54

used as the prediction reference at the encoder, its reconstructed 55

erroneous part would propagate into the next frames at the de- 56

coder. In video coding, a large portion of compression comes 57

from inter frame coding, but inter frame coding increases inter 58

dependency and causes error propagation. In contrast, although 59

intra coding is less efficient for compression, it mitigates the 60

error propagation problem and could be used as a strong error 61

resiliency tool, since it does not use prediction from the other 62

frames [3]–[6]. Therefore, by intra coding, there is a trade-off 63

between error resiliency and compression ratio. That is, intra 64

mode for a block must be selected with sufficient care. For this 65

reason, loss resiliency through intra mode is discussed in several 66

works, as described in Section II. 67

In this paper we show both analytically and experimentally 68

that the best strategy for intra coding is to code some selected 69

frames deliberately in intra mode. For doing so, considering the 70

transmission distortion, the decoder side distortion is formulated 71

and an objective function is developed. Through optimization of 72

this objective function, the optimal solution indicates that coding 73

a whole frame as an I-frame is preferred over coding a certain 74

number of blocks in the frames as intra mode. Our investigations 75

show that the best approach to exploit the error resiliency of intra 76

coding is to reduce the intra period instead of distributing the 77

intra coded blocks among the frames. We had solved a similar 78

problem for Multiple Description Coding (MDC) in [32], but the 79

treatment of a single stream is different from the multi streams 80

of MDC. MDC rarely deals with concealment distortion, since 81

most of the time at least one description is available. Therefore, 82

1520-9210 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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the objective functions and approaches taken for solving the83

problem here are different from [32].84

The rest of the paper is structured as follows. Section II85

presents the related work, while in Section III the objective func-86

tion is formulated. Through experimental results, this function87

is first simplified and then solved in Sections IV and V. The88

performance comparison with the other approaches for error re-89

silient intra coding is presented in Section VI and the paper is90

concluded in Section VII.91

II. RELATED WORK92

In the works presented in [7], [8], a recursive algorithm called93

ROPE has been developed. In this algorithm, by pixel-wise op-94

erations, the encoder estimates the receiver-side expected distor-95

tion which is then used for intra/inter mode decision. However,96

this algorithm is too complex due to its pixel-by-pixel computa-97

tions. Its extension for bursty loss channels is presented in [9],98

and the extension of error resilient mode decision to motion es-99

timation and also considering intra-frame prediction for intra100

modes is presented in [10]. ROPE was also used in [11] to opti-101

mally decide between Motion Vector (MV) replication or intra102

coding mode. Using ROPE for motion estimation and reference103

frame generation is presented in [12], while [13] discusses the104

intra/inter mode selection in video transcoding, where the lossy105

frame and its propagated error within the ROPE algorithm is106

exploited. Finally, the extension of ROPE for including con-107

strained intra prediction as candidate modes, in addition to inter108

and intra modes, is presented in [14].109

In another proposal described in [15], frame-level channel dis-110

tortion is analyzed, where through linear models/approximations111

and end-to-end distortion optimization, a scheme for intra mode112

selection and rate control is developed. Some models for trans-113

mission distortion are presented in [16] where parameters such114

as intra prediction, deblocking filtering, sub-pixel motion esti-115

mation and the effect of decoder side temporal error concealment116

are taken into account. With the same approach, an end-to-end117

distortion modeling and optimization method was presented in118

[17] which is then used to develop a faster algorithm for in-119

tra/skip mode decision [18], [19]. In [20], motion estimation and120

mode decision in HEVC are performed based on error propa-121

gation. Another algorithm is presented in [21] where due to122

high sensitivity to error propagation, the algorithm selects the123

intra mode for the Prediction Units (PUs) much more than is124

required, especially for lower content videos. Even though the125

authors try to solve this issue with updating some parameters,126

the intra rates are still high and this degrades its performance at127

low Packet Loss Rates (PLRs) and low bitrates.128

A fast intra mode decision for loss resiliency is developed in129

[22] where, through a linear model, the distortion is estimated130

and an optimal value for Intra Refresh Rate (IRR) is obtained.131

IRR or simply the intra rate is the number of blocks coded in132

intra mode divided by the total number of blocks in the frame.133

A modified model for considering the role of IRR in bitrate and134

distortion is introduced in [23]. Using a linear model and con-135

sidering motion activity and PLR, the optimal IRR and the intra136

coded MBs’ pattern are discussed in [24]. It is shown in [25]137

that for low activity sequences, cyclic intra coding of MBs is 138

more effective than periodic I-frames, and vice-versa for highly 139

active videos. Combining cyclic intra-refreshing with unequal 140

error protection is introduced in [26], [27], though intra-refresh 141

is in conflict with multiple reference selection, as shown in [28]. 142

Error propagation is formulated and the IRR is obtained in [29], 143

then the selected MBs for intra coding are grouped into a com- 144

mon slice group where they are then protected with stronger 145

channel codes. 146

The above mentioned intra coding research works can be cat- 147

egorized into two groups: those which discuss Selecting Intra 148

Mode (SIM) and those which discuss Intra Refresh. In SIM 149

methods, the cost function for inter/intra mode decision is mod- 150

ified to take into account the lossy channel and the transmis- 151

sion distortion; examples are [7]–[21]. In Intra Refresh, the intra 152

rate is determined. Then, the intra coded blocks can be selected 153

randomly, or selected with vertically or horizontally ordered 154

columns/rows, provided that they do not overlap in the succes- 155

sive frames such that the blocks in all positions are intra refreshed 156

after a while; examples are [22]–[29]. 157

Our work is different form the above works since our formu- 158

lation and optimization leads to a straightforward and specific 159

solution: reduce the intra period (coding a whole frame in in- 160

tra mode) to achieve the best error resiliency outcome of intra 161

coding, instead of distributing the intra coded blocks within the 162

frames of the GOP. Afterwards, the best intra period, which de- 163

pends on the content and channel loss rate, is approximately but 164

simply obtained from a function, without additional computa- 165

tional complexity. The experimental results confirm the efficient 166

performance of the proposed scheme, for various loss rates and 167

video contents. 168

Another tool which can help to prevent error propagating is 169

Reference Picture Selection (RPS) which allows the encoder to 170

select one or two frames from a list as inter-prediction references 171

for each prediction block. Several reference frames are exam- 172

ined for the best rate-distortion coding. For error resiliency, this 173

feature is usually in conjunction with decoder feedback which in- 174

forms the encoder not to select the erroneously received frames 175

as the prediction reference [42], [43]. However, this feedback 176

information is not available in many applications; e.g., multi- 177

cast and broadcast applications, or pre-recorded video on de- 178

mand applications. Moreover, responding to various receivers 179

concurrently is not practical, or the feedback messages might 180

be received too late. RPS without a back channel and for error 181

resiliency has been presented in [44]. In this work, the authors 182

propose not to use a single frame as prediction reference of the 183

PUs, but to select from a list of reference frames such that all 184

frames in the list are selected uniformly. However, this method 185

needs to consider a list of frames as candidate reference frames, 186

so it has the complexity of the multi-reference prediction. For 187

example, for five candidate reference frames, the computational 188

complexity of Motion Estimation and Mode Decision becomes 189

five times more. The required encoder/decoder buffer size be- 190

comes larger with the number of reference frames as well. In 191

the error resiliency of the intra coding method proposed in our 192

paper, the only required information is channel loss rate, with- 193

out any additional complexity in the encoder/decoder. It is worth 194
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noting that full frame intra prediction provides random access to195

video stream, but it also generates large peaks of bitrates. How-196

ever, such large spikes in the bitrate can be eased with either a197

few frames delay, which is acceptable in many applications, or198

compensated by statistical multiplexing with lower bitrates of P-199

and B-frames of other video streams. Therefore, there are many200

circumstances that intra coding is a feasible solution while RPS201

cannot be employed.202

Our application scenario is distribution/broadcast of video203

without assuming any specific limits on delay or bandwidth,204

and assuming the PLR is known by the encoder. PLR can be es-205

timated with or without back channel. The application scenario206

without back channel compromises the great majority of current207

video distribution/broadcast systems today. In such a scenario,208

we assume PLR is estimated by the service/network operator209

from the history of the channel for the specific weekday and210

time of the day, or is calculated offline, or is tested by small ping211

packets periodically, or by traffic modeling [30], or by one-way212

estimation methods that use message segment size, goodput, and213

delay [31] all estimated at the sender side, or by any other esti-214

mation means. Of course PLR can also be estimated with back215

channel, and this would be more accurate. In the latter scenario,216

our proposed method is applicable if this back channel cannot217

inform us of the lost packets immediately due to the delay in218

feedbacks or a long Round-Trip Time; therefore, retransmission219

of the lost data or Reference Picture Selection is not possible.220

This scenario is also assumed by other credible works [8], [13],221

[15], [17], [21]. Finally, since our method introduces a small222

delay of about 92 msec, as will be shown later in the paper,223

we assume that such small delay is acceptable for the target224

application.225

III. THE OBJECTIVE FUNCTION FOR ERROR RESILIENT226

INTRA CODING227

For error resilient coding, the following two aspects of intra228

coding must be considered:229

First aspect - intra coding prevents temporal error propa-230

gation, since it has no reference to the other frames. In in-231

tra coding of advanced video codecs, such as H.264/AVC and232

H.265/HEVC, pixels of the adjacent blocks are used as intra233

prediction references, and these references (in encoded form)234

together with the residual data are encapsulated and transmitted235

in a single packet. However, if the reference pixels had been en-236

coded in inter mode, they themselves might be erroneous, even237

if the residual data is received correctly. In this case, temporally238

propagated errors can propagate spatially into the intra-coded239

blocks. To avoid this condition and exploit the error propagation240

prevention provided by intra coding, the option of “Constrained-241

IntraPred” can be enabled, which restricts the intra mode to use242

only the pixels of adjacent intra coded blocks as prediction ref-243

erences. This way, the received intra coded PUs are correctly244

decodable.245

Second aspect - in no loss conditions, inter mode is obvi-246

ously used more often than intra mode, because inter-coded247

blocks have lower bitrates than intra coded ones. By enabling248

the “ConstrainedIntraPred” option, the compression efficiency249

of intra mode is reduced even more, but it is beneficial for error 250

resiliency [16] when we do have losses. 251

Therefore, in deciding to code a block in intra mode, there is 252

a trade-off between bitrate and error resiliency. In this section, 253

an objective function is developed which, rather than optimizing 254

the encoder side rate-distortion, the decoder side rate-distortion 255

is optimized. In other words, taking into account the channel 256

distortion, the receiver side distortion is estimated at the encoder 257

which is then used as the objective function. 258

Intra/inter mode selection is conventionally carried out based 259

on the following Lagrangian cost function [33], [34]: 260

cost = Dq + λR (1)

where Dq is the quantization distortion in Mean Squared Error 261

(MSE), λ is the Lagrangian coefficient and R is the number of 262

required bits. This cost function is computed for the candidate 263

modes and the mode with the lowest cost is selected as the final 264

mode. However, this cost function does not take the transmission 265

distortion into account. To consider it, with the same approach 266

as presented in [15]–[17], the rate overall-distortion in a frame 267

is represented in (2). The assumption behind this equation is that 268

PLR is known at the transmitter side. 269

D(1) = (1− PLR)D(1)
q + PLR D

(1)
conceal (2)

where D(1), D(1)
q and D

(1)
conceal are the expected total distortion, 270

the quantization distortion, and the error concealment distor- 271

tion for frame 1, respectively. The expected distortion means the 272

average distortion seen over a long enough duration, or equiva- 273

lently over a variant enough packet loss pattern, the latter used in 274

our simulation. Note that the concealment distortion, Dconceal 275

in (2), is the distortion when all packets of the frame are lost and 276

the frame is error concealed. It is evident that the frame is trans- 277

mitted by a single packet; however, as shown in the Appendix, 278

this is also valid when the frame is encoded into n packets and 279

the packets convey the same amount of information. 280

Frame 0 is the initial I-frame of the sequence which is assumed 281

to be received correctly. For frame 1, depending on whether 282

its packets are received or not, the distortion will be D
(1)
q or 283

D
(1)
conceal, respectively. For frame 2, it becomes: 284

D(2) = (1− PLR)D(2)
q

+ PLR D
(2)
conceal + PLR

[
1− β(2)

]
Δ(1) (3)

where β(2) is the intra rate of frame 2 and 285

Δ(1) = E

[(
F (1)
q − F

(1)
conceal

)2]
(4)

is the mean squared difference between frame 1 decoded cor- 286

rectly (F
(1)
q ) and loss concealed (F

(1)
conceal); i.e., Δ(1) denotes 287

the Mismatched Distortion for frame 1 caused by error con- 288

cealment. We assume that only the previous frame is used as 289

prediction reference, as happens most of the times in encoders. 290

Enabling multi-frame prediction results in a slight improvement 291

in quality but at the cost of significant computational cost. 292

Equations (3) and (4) show that the quality of frame 1 directly 293

affects the quality of frame 2, and its effect is controlled by 294
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parameter β(2) in (3). At larger β, the impact of mismatched295

distortion is clearly reduced, since intra coded PUs do not refer296

to the previous frame. As shown in [15], the quantization and297

mismatched distortions are independent of each other and one298

can simply write:299

D
(2)
conceal = D(2)

q +Δ(2) (5)

Substituting (5) into (3) gives:300

D(2) = D(2)
q + PLR

[
Δ(2) +

(
1− β(2)

)
Δ(1)

]

= D(2)
q + PLR Δ(2)

accum (6)

in which301

Δ(2)
accum = Δ(2) +

(
1− β(2)

)
Δ(1) (7)

is the Accumulated Mismatched Distortion seen in frame 2. It302

is evident that for frame 1, Δ(1)
accum = Δ(1) and then (7) can be303

rewritten as:304

Δ(2)
accum = Δ(2) +

(
1− β(2)

)
Δ(1)

accum (8)

Following the above concept, the distortion for the nth frame305

is:306

D(n) = D(n)
q + PLR Δ(n)

accum (9)

where307

Δ(n)
accum = Δ(n) +

(
1− β(n)

)
Δ(n−1)

accum

Δ(0)
accum = 0 (10)

and308

Δ(n) = E

[(
F (n)
q − F

(n)
conceal

)2]
(11)

Therefore, the distortion over a GoP ofN frames is as given in309

(12) (as already mentioned, the 0th frame of the GoP is excluded310

from the summation):311

DGoP =

N∑
i=1

D(i) =

N∑
i=1

(
D(i)

q (β) + PLR Δ(i)
accum (β)

)

(12)
where β = [β(1), β(2), β(3), . . . β(N)] is the vector intra rates312

for the N frames of the GoP. Quantization Parameter (QP) is313

excluded from this formulation, since its variation is usually314

±1 units at the given bitrate, except for sudden changes; e.g.,315

scene-cut or fast/non-translational motions which is difficult for316

compensation with inter prediction. Therefore, we can assume317

that QP does not have significant changes for theN frames under318

consideration.319

With the aim of maximizing the received video quality, the320

objective function with a constraint on the overhead bitrate of321

intra coding is:322

min
β

{
N∑
i=1

(
D(i)

q (β) + PLR Δ(i)
accum (β)

)}

s.t.
N∑
i=1

R
(i)
intra (β) ≤ Rred (13)

where R
(i)
intra is the number of additional bits needed for intra 323

encoding of the ith frame according to the intra rate of β(i); that 324

is, if β(i) = 0, then R
(i)
intra = 0 and no block is codded in intra 325

mode for error resiliency. The termRred in (13) is the total redun- 326

dancy budget allowed for theseN frames for intra coding, which 327

in turn is related to the PLR and the required degree of error 328

resiliency. Increasing the intra rates of frame i; i.e., β(i), reduces 329

Δ
(i)
accum (see equation (10)) but in turn increases bitrate usage. 330

IV. SOLVING THE OBJECTIVE FUNCTION 331

In this section, a solution to the constrained problem of (13) 332

is driven through approximation. The behaviors of terms in this 333

equation are observed and approximated through matching them 334

to the experimental results. The experiments settings, the sim- 335

plifying approximations, and the solution to the problem are 336

provided in subsections A, B and C, respectively. 337

A. The Error Concealment Strategy 338

An important part of distortion in (13) belongs to the dis- 339

tortions caused by error/loss concealment. Error concealment 340

techniques can be categorized into spatial and temporal domain 341

processing techniques. In the spatial domain, the lost area of 342

the frame is concealed using the spatially neighboring pixels. 343

These methods exploit the correlations that usually exist among 344

the neighboring pixels. In the temporal processing techniques, 345

the contents from the previous and/or the future frames are ad- 346

dressed by MVs and used for temporal replacement. The actual 347

MVs are not available and must be estimated or recovered first 348

by the temporal loss concealment methods. 349

If the lost area is large, spatial domain is not effective, as pix- 350

els are very far apart from each other to be useful. The reason for 351

dealing with large lost areas in HEVC is the size of its Coding 352

Tree Unit (CTU), which can be as large as 64 × 64 pixels. An 353

integer number of CTUs are regarded as one slice and an inte- 354

ger number of slices are encapsulated into a single transmission 355

packet. Therefore, packet losses in HEVC streams affect a sig- 356

nificant portion of the picture area especially for smaller picture 357

sizes. As a result, temporal error concealment in HEVC streams 358

is more applicable than spatial concealment. 359

Actually, exploiting the temporal frames’ MVs will provide 360

higher quality error concealment. One simple yet efficient tech- 361

nique is the Motion Copy algorithm where the MV of the col- 362

located block is simply used for motion compensated temporal 363

replacement. If the collocated block is coded in intra mode, Zero 364

MV is used. However, in the case of having a high percentage 365

of intra coded blocks, this approach is not efficient due to lack 366

of MVs for intra blocks. For intra coded blocks, one solution is 367

to recover the MVs by Boundary Matching Algorithm (BMA). 368

A suggestion is to combine Motion Copy for inter coded and 369

reliable collocated blocks, and BMA for intra coded or unre- 370

liable collocated blocks, as presented in [35]. The blocks with 371

high residual signals are labeled as unreliable blocks and their 372

MVs are not used for MV recovery. In [35], loss concealment 373

is performed in two stages: firstly, the lost area is replaced us- 374

ing the Motion Copy algorithm. Then, for the unreliable MVs, 375
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Fig. 1. The variation of D(i)
q (β(i)) with respect to IRR for test sequences and two values of QP.

MVs are obtained using BMA. Some other methods such as376

[36]–[37] are proposed for HEVC error concealment, but they377

work again based on the spatially close boundary pixels, which378

are not always available in the actual scenarios. The algorithm379

presented in [38] works based on MV extrapolation but with380

applying higher weights to the MVs belonging to the larger par-381

titions. However, the problem is that this algorithm is based on382

the MVs of the blocks of the previous frame and therefore it is383

efficient when there are a few intra coded blocks. The method of384

[39] is proposed for error concealment of a sequence of succes-385

sive MBs in H.264/AVC. This error concealment method does386

not need to know the MVs’ neighboring spatially or tempo-387

rally missed blocks, and instead estimates them by BMA. This388

method is also useful for large area losses of HEVC. The chal-389

lenge in using BMA is the fact that the error concealment of one390

block will affect the error concealment of the following blocks391

as well. One solution, proposed in [39], is rank ordering the MBs392

for error concealment based on the texture of the available MBs393

in the surrounding of the lost area. A missed MB with a higher394

texture around it will be error concealed with higher priority.395

The criterion for the higher texture is the standard deviation of396

the luminance pixel values. Another solution for considering the397

interaction of loss concealed blocks is presented in [40], but it398

imposes significant computational complexity without consid-399

erable improvement.400

In this paper, three techniques are used for error concealment:401

Motion Copy, the method presented in [35], and the method402

presented in [39]. The first two methods are appropriate when403

the blocks in the earlier frame are encoded mostly in inter mode, 404

and the third method is suitable when the blocks in the earlier 405

frame are encoded mostly or completely in intra mode. Then, the 406

highest quality output is selected and used for the measurements. 407

It is worth noting that throughout the paper error concealment 408

and loss concealment are used interchangeably, but in fact loss 409

concealment is carried out. The reason is that in highly error 410

prone networks, such as wireless networks, severely erroneous 411

packets cannot be corrected and they are regarded as lost packets 412

by the decoder. However, if the used entropy coder is symmetric, 413

such as that of the H.263 codec, then parts of the data can be 414

retrieved and the lossy area can be less than that of whole packet 415

loss [45]. Since H.265/HEVC does not use symmetric entropy 416

coder, then there would not be any retrieval of erroneous parts 417

and the whole packet can be regarded as lost. Hence, loss con- 418

cealment is a proper choice. 419

B. Simplifying the Objective Function 420

First, the quantization distortion does not significantly change 421

with parameter β(i). That is, D(i)
q (β(i)) is approximately con- 422

stant when β(i) varies from minimum (β = 0) to maximum 423

(β = 1). This can be verified from the simulation results shown 424

in Fig. 1. In this figure, four HD test video sequences are coded 425

with HM16.0, the reference software of HEVC, at two values 426

of QP and six values of IRR. The tested video sequences are 427

Stockholm, Vidyo1, FourPeople and Mobcal. For the given intra 428

rates, a sufficient number of PUs with sizes of 16 × 16 pixels 429



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON MULTIMEDIA

Fig. 2. The variation of mismatched distortion (Δ(i)) for the frames of test sequences for four values of QP .

are selected randomly and are forced to intra coding mode. As430

already mentioned, the randomly selected PUs do not overlap in431

the frames.432

Fig. 1 shows the ignorable changes of D(i)
q with β(i). It can433

also be seen that the variation in D
(i)
q for QP = 24 is less than434

that of QP = 32. The mathematical reason is that for smaller435

QP s, or smaller quantization step sizes (QSS), the high bitrate436

approximation is more accurate and the quantization distortion437

is nearly equal to Q2
SS

12 [17]. This is fixed for various signals,438

independent of inter or intra coding. However, the difference439

in D
(i)
q s for various βs is still ignorable, even for QP = 32.440

Therefore, D(i)
q is fixed with the optimization arguments and441

equation (13) can be simplified as:442

min
β

{
N∑
i=1

(
PLR Δ(i)

accum (β)
)}

s.t.
N∑
i=1

R
(i)
intra (β) ≤ Rred (14)

An important term in (14) is Δ(i)
accum which is the multiply-443

accumulated of mismatched distortions Δ(i)s, with the multipli-444

cation coefficient of (1− β(i)), as given in (10). Therefore, the445

variation of Δ(i) per frames is important in the behavior of the446

objective function of (13). To measure Δ(i)s, the frames are first447

error concealed with the strategy given in IV.A, and then Δ(i) is448

calculated by (11). The results are shown in Fig. 2 where it can be449

seen that, most of the times and with a good approximation, the450

frames of a sequence have close mismatched distortions, that is:451

Δ(1) ∼= Δ(2) ∼= · · · ∼= Δ (15)

452

Even though it might not be valid for all frames, the variations 453

are smooth in the windows of N frames, as large as the usually 454

used GoP sizes (30–60 frames). This assumption may not be 455

much accurate; however, this assumption, by nature, is similar 456

to the assumption made in Rate-Control (RC) algorithms. In 457

RC algorithms, the goal is to control the total bitrate to be less 458

than the given bound with minimum fluctuation in the quality. 459

Therefore, for a real-time RC, the encoder must assume that the 460

future frames have almost the same behavior in the view of com- 461

pression properties. Even though this assumption is not always 462

valid, it is very efficient and helpful in practice. Similar to RC 463

algorithms, we can assume that the frames behave similarly in 464

the view of mismatched distortion. Therefore, with the assump- 465

tion of (15), Δ(i) is fixed for the frames, and since the employed 466

loss concealment strategy is not much sensitive to the intra/inter 467

coding, it is also fixed with β. Therefore, by substituting the 468

recursive formula given in (8), the objective function of (14) can 469

be expanded as follows: 470

min
β

⎧
⎨
⎩PLR.Δ

⎡
⎣N +

N∑
i=1

⎛
⎝

N−(i−1)∑
j=1

(
i−1∏
k=0

(
1−β(j+k)

))
⎞
⎠
⎤
⎦
⎫
⎬
⎭

s.t.
N∑
i=1

R
(i)
intra (β) ≤ Rred (16)

where PLR and Δ are assumed constant during optimization. 471
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Fig. 3. The variation of bitrate with intra rate for various QPs and test sequences.

Now, for the constraint of (16), we do another simulation: the472

variation of frame bits when β varies from 0 to 1, as depicted in473

Fig. 3. In this figure, the average bitrates needed for sending the474

encoded video frames are measured and shown against the intra475

rate.476

From Fig. 3, we can generally assume that the bitrates are477

increased almost linearly with β. That is:478

R(i) = R
(i)
0 +R

(i)
intra = R

(i)
0 + α(i) β(i)

⇒ R
(i)
intra = α(i) β(i) (17)

where R
(i)
0 is the bitrate of the ith frame for β = 0. The figure479

shows that the curves almost have the same slope; that is, they480

have the same α defined in (17). For this reason, the constraint481

term in (16) can be stated as:482

N∑
i=1

(
α β(i)

)
≤ Rred (18)

or equivalently483

N∑
i=1

β(i) ≤ βred (19)

where βred is the intra rate budget; i.e., the sum of total intra484

rates allowed to be assigned to these N frames. Therefore, the485

objective function of (16) is simplified as 486

min
β

⎧
⎨
⎩PLR.Δ

⎡
⎣N +

N∑
i=1

⎛
⎝

N−(i−1)∑
j=1

(
i−1∏
k=0

(
1− β(j+k)

))
⎞
⎠
⎤
⎦
⎫
⎬
⎭

s.t.
N∑
i=1

β(i) ≤ βred (20)

Since we can assume that PLR and Δ are fixed during opti- 487

mization, the problem in (20) can be rewritten as: 488

ErrorPromin =min
β

⎧
⎨
⎩

N∑
i=1

⎛
⎝

N−(i−1)∑
j=1

(
i−1∏
k=0

(
1− β(j+k)

))
⎞
⎠
⎫
⎬
⎭

s.t.
N∑
i=1

β(i) ≤ βred (21)

It is worth mentioning that for simplicity of deriving the objec- 489

tive function, without loss of generality, there are no B-frames. 490

This is because, in general, some B-frames maybe used as pre- 491

diction reference like P-frames causing error propagation, while 492

others are not used as the reference and hence do not propagate 493

the errors but they become erroneous. Modifying our formula- 494

tions to highlight this matter makes the equations more compli- 495

cated without giving the required information to the reader. 496
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TABLE I
THE OUTPUT OF THE OBJECTIVE FUNCTION OF (21) FOR SOME VALUES OF βred

C. Solving the Simplified Objective Function497

In this subsection, the solution for the objective function given498

in (21) is discussed. The problem is actually minimizing the499

error propagation at a given intra rate budget. As an example,500

this problem is solved for N = 15 and various values of βred;501

the results are tabulated in Table I.502

As can be seen from this table, when βred ≤ 1, the best frame503

for intra coding is the middle frame. If there was more intra504

budget; i.e., 1 < βred ≤ 1.45, β(4) and β(12) begin to grow505

irrespective of whether the intra rate is allocated to the 4th frame506

or the 12th frame. However, when intra rate budget exceeds507

1.45, the optimization function given in (21) recommends other508

frames for intra coding to be chosen; e.g., frames 5 and 10, where509

frame 10 is coded wholly as I-frame, and frame 5 has partially510

intra coded blocks. Equivalently, another package is frames 6 and511

11, where frame 6 is now selected for I-frame coding. One can512

see that these two packages produce the same obstacle against513

the error propagation.514

For some other regions of βred, the selected frames are given515

in Table I. One important point is changing the intra coded frame516

candidates imposed by the objective function of (21). The reason517

is that, if βred is between two integers K1 and K2; that is K1 <518

βred < K2, the optimizers may decide to add another frame for519

intra coding in addition to K1 frames (e.g., one frame between520

them), or decide to select K2 frames for intra coding and reduce521

the intra rate of one of them to comply with the bound of βred.522

Clearly, if βred is close to K1, the former case happens, and the523

latter case happens when βred is close enough to K2. However,524

as shown in Fig. 4,ErrorPromin behaves continuously at these525

border points ofβred. In each interval shown by broken lines, the526

intra coding frame candidates are the same where one or more527

appropriate frames of these candidates consume the allocated528

intra coding budget. As already mentioned, the slope of decay529

in ErrorPromin in each interval is constant. If βred becomes530

larger than 7, the frames are alternately coded as I-frame; that531

is the GOP structure is IPIPIP, and now all P-frames have the532

same priority for intra rate for all βred amounts; therefore; there533

are no broken lines in Fig. 4 for βred > 7.534

This solution proves that to achieve the best error resiliency535

for intra coding, the best strategy is to concentrate on intra536

Fig. 4. Behavior of ErrorPromin with βred.

coding the blocks in the middle frame of the GoP, such that 537

the entire frame is coded as an I-frame. If the intra rate budget 538

(or accordingly bitrate budget) allows, more frames can still be 539

coded in intra mode. In other words, the output of the objec- 540

tive function is to reduce the intra period; this strategy leads 541

to smaller error propagation and hence higher video quality for 542

lossy channels, compared to the case that intra coded blocks are 543

distributed among the frames. 544

V. THE OPTIMAL VALUE FOR THE INTRA PERIOD 545

As shown in Table I, at a larger βred, the number of I-frames 546

in the GoP can increase. This is in favor of mitigation of error 547

propagation; however, the required bitrate for sending the video 548

is increased since the compression ratio is decreased. 549

Having more I-frames is justified in channels with higher loss 550

rates and vice versa. Therefore, PLR and the coding bitrate af- 551

fect the best value for β∗
red. As shown in Table I, β∗

red is directly 552

related to Intra Period (IP); therefore, the problem of finding 553

βred−opt is equivalent to finding an optimal value for IP, denoted 554

as IP ∗. However, to find IP ∗ analytically, one must know the 555

rate-distortion behavior of the frames of the GoP under consid- 556

eration; that is, the behavior of future frames must be known 557

a priori, which is not possible unless it is estimated based on 558

the frames’ history similar to the work presented in [41]. This 559
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Fig. 5. The best IP versus bit/pixel for various PLRs and test sequences.

way, the problem can be solved using classical constraint opti-560

mization approaches. However, the complexity of the problem561

and non-trivial solutions have encouraged us to use an empirical562

approach. Therefore, IP ∗ has been found through experimental563

measurements, as follows.564

The videos are encoded in Slice Mode, and each slice contains565

an integer number of CTUs in raster scan order. Each coded slice566

can be as large as 1500 bytes, meeting the Maximum Transmis-567

sion Unit (MTU) of the network, and transmitted as a single568

packet. The channels experience a burst form of loss generated569

by Elliot-Gilbert model [46]. At each PLR, 40 packet loss pat-570

terns with an average burst length of three packets are generated571

and applied on the bit streams.572

The video sequences are encoded at various values of IP ;573

IP = M means every Mth frame of the sequence is coded as574

an I-frame. For example, for IP = 3, there are two P-frames575

after each I-frame, and this pattern is repeated throughout the576

sequence. In a GoP of 30 frames, the videos are encoded with577

IP = 1, 2, . . . , 15 (for GoP ofN frames, IP > N
2 is not reason-578

able). The compressed bit stream is subjected to a specific PLR,579

and the decoded video is loss concealed (as given in IV.A) and580

the resulting quality is measured. Video quality is measured in581

terms of Video Quality Model (VQM) [47] and its average index582

taken over the loss patterns is calculated. VQM is a video quality583

assessment method which considers both spatial and temporal584

distortions, so it is quite suitable to our case. For each test video585

and at the given PLR, the best IP which provides the best quality586

(i.e., the lowest VQM index, since higher quality is equivalent587

to lower VQM index) at the corresponding bitrate is selected.588

Fig. 5 shows the best IPs as a function of bit/pixel for four589

sequences.590

It can be seen that the best IP becomes smaller at higher bi- 591

trates and higher PLRs. Even though some points are not close to 592

the others, they can be fitted on decaying exponential functions, 593

as shown in Fig. 5. The fitted curves can be formulated with the 594

following equations: 595

IP ∗ = 3 + 15 exp

(
− R

R0

)

R0 = 0.15 + 1.4575 exp

(
−PLR

0.01

)
(22)

where R is the bit per pixel. Clearly, IP ∗ obtained from (22) 596

must be rounded to the nearest integer number. Even though the 597

decimal values are also applicable, our empirical approach and 598

curve fitting is not accurate enough for extracting decimal values 599

for frames’ intra rates. 600

One issue is the fact that coding a frame fully in Intra mode 601

might cause sudden changes in the bitrate and hence more con- 602

gestion in the lossy channels. However, for numerous appli- 603

cations, like video broadcast, streaming, multicasting etc., one 604

needs to play the video at almost any time during transmission. 605

This facility can only be provided by Intra coded frames. On the 606

issue of increased I-frame bitrates, one should note that in these 607

applications, normally several video flows are multiplexed, such 608

that higher bitrates of I-frames coincide with lower bitrates of 609

many P- and B-frames of the other flows and are easily smoothed 610

out. Despite this, even for a single video flow, some traffic shap- 611

ing, such as coarser quantization parameter for I-frames can be 612

applied to reduce the bits; however, this solution may lead to 613

quality flicker due to lower qualities of the I-frames if the QPs 614

of I-frame and P-frames are much different. For high motion 615
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Fig. 6 The sudden changes in the frame bits when a frame is encoded as I-frame. Every 8 frames, one frame is Intra coded entirely.

and high texture videos, the difference between I and P frames’616

bits are not so large and this approach might be sufficient there.617

If this was not the case, another solution is to have the same618

QP for I and P frames but use an encoder smoothing buffer to619

regulate the bitrate (e.g., traffic shaping), of course at the cost of620

a few frames delay in video display. How this delay can solve621

the problem is explained below. Let us assume that intra period622

is M frames. If the frame rate of the video is FPS, the average623

bitrate required by the channel is:624

R = FPS
((M − 1)RP +RI)

M
bits/sec (23)

where RP and RI are number of bits needed for coding the625

P-frames and I-frames, respectively. Now if the I-frame has k626

times more bits than the P-frames, then:627

R =
FPS (M − 1 + k)RP

M

=
FPS (M − 1 + k)RI

kM
bits/ sec (k > 1) (24)

At each 1/FPS second, the total sent bits are:628

R =

(
1 +

k − 1

M

)
RP

=

(
M + k − 1

kM

)
RI bits/ sec (k > 1) (25)

Therefore, more than one P-frame or less than one I-frame629

is transmitted at each 1/FPS. That is, compared to the case630

where all frames have the same number of bits (i.e., k = 1),631

delivering P-frames is faster and delivering I-frames is slower.632

However, the issue that may arise here is the transmit and 633

receive buffers’ overflow and underflow in a live streaming 634

application. It can be shown that, with display latency as large 635

as M(k − 1)/(M − 1 + k) frames, there is no overflow or un- 636

derflow in the buffers and continuous playing of the video is 637

preserved (see Appendix B in [32] for the proof). This latency 638

increases with M ; therefore, a smaller M chosen for higher 639

PLRs leads to lower latencies. 640

The value of k is content dependent; Fig. 6 shows the number 641

of bites of I and P frames, withM = 8 for four sequences and two 642

QPs. One can see that k is about 1.5 for Stockholm at QP = 24; 643

that is, k is small and the delay is not significant. For example, for 644

PLRs of 5%, if M is around of 4 as shown in Fig. 5, this gives a 645

latency of about 0.5 frames. However, the ratio k becomes larger 646

at QP=32. And also,M is typically larger for lower bitrates; i.e., 647

for QP = 32. Therefore, the incurred delay is more challenging 648

here; for example, for FourPeople at QP = 32, k is about 10 as 649

shown in Fig. 6, which is relatively very high. Now for M = 15 650

(as inferred from Fig. 5), the delay becomes about 5.5 frames. 651

For FPS of 60, it leads to a delay less than 100 ms which is 652

acceptable for many applications. For smaller delays, we can 653

combine the above two approaches; that is, applying coarser 654

quantizer and forcing a delay. The coarser quantizer to I-frames 655

leads to a smaller k which in turn leads to a smaller delay. 656

VI. PERFORMANCE COMPARISON 657

The analysis explained in the previous sections shows that 658

using I-frames instead of applying IRR is more efficient as 659

an error resiliency tool and gives higher quality in dealing 660

with transmission of encoded videos over lossy channels. The 661
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Fig. 7. Performance comparison of the proposed method for various PLRs and FourPeople, Stockholm, Vidyo1 and Mobcal sequences for burst length of three
packets.

suitable I-frame period is given by (22). As already mentioned662

in Section II, there are two other options for intra coding,663

SIM and Intra Refresh. For performance comparison, our pro-664

posed method is compared against two SIM methods, [17]665

and [21], where the PUs are selected based on an objective666

function for intra or inter coding. Note that as explained in667

Section II, there are also two options for selecting the668

blocks to be forced for intra coding in the Intra Re-669

fresh scheme. They can be selected randomly or in a670

regular manner, such as a column of intra blocks moving frame671

by frame from left to right. Our experiments showed that the672

latter option, called Periodic Intra Refresh (PIR) or cyclic673

intra-refresh generally gives superior performance in terms of674

rate-distortion. Therefore, we have included the results of PIR675

in Figs 7–9. Since there are no appropriate recent related works676

on the best value of IRR, we examine PIR with several possible677

values of IRR for all examined PLRs; these are {0, 0.1, 0.2, 0.4,678

0.6, 0.8}. Note that IRR = 0 is equivalent to not paying any679

attention to channel loss at the encoder. With the experimental680

settings given in Section V, these results are shown in Figs 7–9,681

Fig. 9 is for the average burst length of six packets.682

Despite of the simplifications and approximations made in our 683

method through analysis and curve fitting, it can be seen from 684

Figs 7–8 that our proposed method outperforms the others in 685

many cases. For lower PLRs and smaller bitrates, the proposed 686

method provides actually no gain. In these regions, since the 687

video is less sensitive to packet loss, the curves are actually close 688

to each other. The algorithm of [21] picks many PUs for intra 689

coding; therefore, it applies intra rate much more than required 690

but with a slight gain in quality in lower PLRs. For this reason, 691

this algorithm does not work well for low PLRs. In the cases of 692

higher PLRs and higher bitrates, one can see the VQM quality 693

index of our proposed method is better than the others which is 694

sometimes significant. A reminder that the smaller VQM index 695

means higher quality. Light content video sequences, such as 696

FourPeople and KrisenAndSara, as already mentioned are less 697

sensitive to data loss; hence the VQM curves are again similar 698

while ours are still marginally better. 699

For the PLRs of 5% and 10%, the results of applying average 700

burst length of six packets are shown in Fig. 9. It can be seen that 701

the performance of our proposed method is still better than the 702

others. Actually, the loss pattern does not significantly affect our 703
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Fig. 8 Performance comparison of the proposed method for various PLRs and Kristen and Sara, Shields, Vidyo3 and Vidyo4 sequences for burst length of three
packets.

Fig. 9. Performance comparison of the proposed method for various PLRs and FourPeople, Stockholm, Vidyo1 and Mobcal sequences for burst length of six
packets.
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results due to our loss concealment procedure applied to lossy704

bitstreams generated by any of competing methods.705

The burst loss leads to larger lossy areas in the pictures,706

which is usually handled by the Motion Copy algorithm. Note707

that burst loss will lead to the loss of consecutive frames in low708

bitrate and low resolution videos, while it is not so destructive709

for HD and beyond.710

VII. CONCLUSION711

In this paper, the best strategy for intra coding as an error712

resiliency tool is presented. It was proposed to encode some713

frames entirely in intra mode, rather than the conventional ap-714

proach where some blocks or PUs are selected in PIR manner715

(with a specific intra rate) or by a cost function to be coded in716

intra mode. Considering the error propagation, the receiver side717

distortion is formulated and it is simplified with some obser-718

vations. The simplified objective function has a straightforward719

solution: β(i∗) = 1, where i∗ is the index of the frames sym-720

metrically positioned in the GoP, and the number of I-frames721

depends on βred or equivalently the available bitrate budget for722

intra coding. The output of the objective function is to reduce723

the IP as much as possible and as long as the bitrate overhead724

of intra coding is justified at the given channel loss rate.725

The optimal IP varies with the coding bitrate as well as the726

PLR as shown in Fig. 5. We have fitted a curve to the experi-727

mental points obtained from examining various test sequences,728

as given in (22). With the IP ∗ selected by (22), experimental re-729

sults show that the proposed method achieves lower VQM index730

compared to the conventional SIM and PIR methods.731

APPENDIX732

Assume that frame 1 is transmitted through n packets. If m733

packets are lost, the average distortion after error concealment734

is:735

D(1)
m =

(n−m)

n
D(1)

q +
m

n
D

(1)
conceal (26)

If each packet is lost with a probability of PLR, the proba-736

bility of losing m packets is737

PLRm = C (n,m) PLRm (1− PLR)n−m

=

(
n
m

)
PLRm (1− PLR)n−m (27)

whereC(n,m) is the number of m-combinations fromnpackets.738

Therefore, the expected distortion of frame 1 is as given by (28):739

D(1) =

n∑
m=0

(
PLRm D(1)

m

)

=
D

(1)
q

n

n∑
m=0

[
(n−m)

((
n
m

)
PLRm(1− PLR)n−m

)]

+
D

(1)
conceal

n

n∑
m=0

[
m

((
n
m

)
PLRm(1− PLR)n−m

)]

(28)

Both summations in (28) are the expected values of a Bino- 740

mial distribution with probabilities of (1− PLR) and PLR, 741

respectively. That is D(1) becomes 742

D(1) =
D

(1)
q

n
[n (1− PLR)] +

D
(1)
conceal

n
[n PLR]

= (1− PLR)D(1)
q + PLR D

(1)
conceal (29)

which is the same as equation (2). 743
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