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Abstract

Background: Rice (Oryza sativa L.) yield is limited inherently by environmental stresses, including biotic and abiotic
stresses. Thus, it is of great importance to perform in-depth explorations on the genes that are closely associated
with the stress-resistant traits in rice. The existing rice SNP databases have made considerable contributions to rice
genomic variation information but none of them have a particular focus on integrating stress-resistant variation and
related phenotype data into one web resource.

Results: Rice Stress-Resistant SNP database (http://bioinformatics.fafu.edu.cn/RSRS) mainly focuses on SNPs specific
to biotic and abiotic stress-resistant ability in rice, and presents them in a unified web resource platform. The Rice
Stress-Resistant SNP (RSRS) database contains over 9.5 million stress-resistant SNPs and 797 stress-resistant candidate
genes in rice, which were detected from more than 400 stress-resistant rice varieties. We incorporated the SNPs
function, genome annotation and phenotype information into this database. Besides, the database has a user-
friendly web interface for users to query, browse and visualize a specific SNP efficiently. RSRS database allows users
to query the SNP information and their relevant annotations for individual variety or more varieties. The search
results can be visualized graphically in a genome browser or displayed in formatted tables. Users can also align
SNPs between two or more rice accessions.

Conclusion: RSRS database shows great utility for scientists to further characterize the function of variants related
to environmental stress-resistant ability in rice.
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Background
Rice (Oryza sativa L.) is one of the significant cereal crops,
feeding a large number of worldwide populations. It is also
one of the well-studied model organisms for plant research.
The need to breed robust and high-productivity rice var-
ieties is more critical than ever due to increasingly adverse
environmental conditions and scarce natural resources.
Rice yield is limited inherently by environmental stresses,
including biotic and abiotic stresses. Rice breeders try to
limit yield losses from environmental stresses by incorpor-
ating resistant genes and developing more climatically re-
silient cultivars. Thus, it is of great importance to perform
in-depth explorations on the genes that are closely asso-
ciated with the stress-resistant traits in rice.

The recent advances in rice genome biology has gener-
ated a tremendous amount of valuable data, including a
high-quality reference genome provided by the MSU
Rice Genome Annotation Project (Ouyang et al. 2007)
and the International Rice Genome Sequencing Project’s
(IRGSP) RAPdb (Kawahara et al. 2013; Sakai et al. 2013)
and genome re-sequencing data of 3010 rice accessions
in the rice germplasm core collection (Li et al. 2014).
The achievement of those rice genome datasets and the
discovery of large numbers of single nucleotide polymor-
phisms (SNPs) in genome-scale sequencing initiatives
opening new doors into the study of the genome-wide
distribution of diversity, the design of molecular markers
for genetic mapping of quantitative trait loci (QTLs) or
genes, and the evolutionary dynamics of rice genomes
(Feltus et al. 2004).
The optimal management of the huge amount of bio-

logical information requires the implementation of dedi-
cated bioinformatics facilities. For this reason, a number of
integrative databases and web resources for rice genomic
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variations had been created and curated. IC4R Rice Vari-
ation Database collected almost all the available genome re-
sequenced data for different rice varieties, identified about
18M SNPs and curated the SNP effects by integrating
available genotype-to-phenotype association results (Zhang
et al. 2016). RiceVarMap is another comprehensive data-
base for rice genomic variation and its functional an-
notation (Zhao et al. 2015). Rice SNP-Seek Database
(Alexandrov et al. 2015; Mansueto et al. 2017), which
resulted from 3000 Rice Genomes Project, provided
genotype, phenotype and variety information for rice.
SNP haplotype database is a haplotype map database
which curated validated SNP information collections
from around the world with a specific focus on Japanese
rice collections (Yonemaru et al. 2014). Most of these data-
bases focused mainly on overall variation from a vast set of
rice varieties. On the other hand, some databases have been
designed with particular focus on specialized rice genomic
data, such as OryzaGenome (Ohyanagi et al. 2016), a gen-
ome variation database for 21 wild Oryza species and 446
O. rufipogon varieties. STIFDB2 (Stress Responsive Tran-
scription Factor Database), is a database for transcription
factors and consensus binding sites of stress-responsive
genes in Arabidopsis and rice (Naika et al. 2013), while
PRGdb is a bioinformatics platform for plant resistant gene
analysis (Sanseverino et al. 2010; Osuna-Cruz et al. 2018).
Although the existing related databases have made con-

siderable contributions to rice genomic variation informa-
tion, none of them presented the rice genomic variations
based on special traits such as rice stress resistance/sus-
ceptibility. Additionally, the existing SNP databases have

not yet incorporated the variants for some of the rice
stress resistant varieties. On the other hand, the existing
rice stress phenotype databases provide only the pheno-
typic data of the stress resistant/varieties. Therefore, the
we reason the importance of developing a dedicated data-
base for rice stress resistant SNPs, which accommodates
the phenotypic data and genomic variations of rice stress
resistant varieties in one unified bioinformatics platform
would greatly benefit rice researchers. The availability of
such an interactive database to explore genomic variability
in rice stress-resistant varieties will facilitate research stud-
ies, provide scientists a handy tool to access information
regarding genetic variants of abiotic and biotic stress
resistant rice varieties and help them to identify potential
candidate genes for rice stress-resistance.
In this paper, we present a database, the RSRS database

(http://bioinformatics.fafu.edu.cn/ RSRS), which is a spe-
cifically designed database to present the genomic vari-
ation of abiotic and biotic stresses-resistant rice varieties.
We first collected the genomic re-sequencing data of over
400 rice varieties with different resistant ability to different
biotic and abiotic stresses from previous researches,
detected the SNPs in these rice variety genomes, and then
screened the stress-resistant SNPs in the resistant rice
varieties and catalogued these SNPs in a database system.

Materials and Methods
Data Collection and Organization
To compile the rice stress-resistant SNPs dataset, we first
collected the stress resistant/susceptible rice varieties and
their genomic re-sequencing data from previously

Fig. 1 System view of RSRS database (a) Data collection of rice stress resistant/susceptible varieties and their re-sequencing data (b) Variant
detection of the rice stress resistant/susceptible varieties and identification of the stress resistant specific SNPs (c) The RSRS database and web
interface design layout
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conducted studies and publications (Fig. 1a). In this study,
we collected the biotic stress- (rice blast fungus, bacteria,
and pest) or abiotic stress- (heat, cold, flood, salt, alkali
and zinc) resistance rank values for different varieties. The
stress-responsiveness of each variety is ranked as Highly
Resistant (HR), Resistant (R), Moderately Resistant (MR),
HS (Highly Susceptible), Moderately Susceptible (MS) and
Susceptible (S).
To provide a coherent view for the users, the RSRS data-

base was organized on the basis of different stress types.
Under each stress type, the list of stress-resistant rice
varieties, metadata and their resistance rank was pro-
vided. The corresponding SNPs were also categorized
under each stress group so that each SNP site in
different rice varieties could be presented with its
allelic frequency, annotation, the associated gene and
GWAS supporting data if available.

SNP Calling and Annotation
The variant calling pipeline followed the best practices of
SNPs and Insertion/deletion (indel) discovery using Gen-
omic Analysis Toolkit (GATK) v3.8 (Van der Auwera et al.
2013). This pipeline accepts genomic re-sequencing paired-
end reads in SRA or FASTQ formats. The processing work-
flow was created using the snakemake workflow system
(Köster and Rahmann 2012).
The quality check for the re-sequencing data of all the

tested rice varieties was first conducted and the low-
quality reads were trimmed using the Fastp trimming tool
(Chen et al. 2018). After trimming, the clean reads were
aligned to the rice reference genome (Nipponbare, IRGSP
1.0) (Kawahara et al. 2013) with Burrows-Wheeler Aligner
(BWA) (Li and Durbin 2009) and indexed with SAMtools
(Li et al. 2009). The aligned reads were sorted using Picard
SortSam tool. Samples of each variety were merged using
the SAMtools merge tool. The merged reads were
deduplicated and read groups were added using the
Picard MarkDuplicates and AddOrReplaceReadGroups
tools, respectively (Broad Institute 2019). Subsequently,
the GATK tools were used to recalibrate the base
quality scores to obtain more accurate quality scores
for each base.
Variant calling was then performed with a minimum

Phred-scaled confidence threshold of 30 using the
GATK-HaplotypeCaller (Van der Auwera et al. 2013) in
GVCF mode to emit a GVCF file of each variant, and
GATK-GenotypeGVCFs tool genotyped the variant files
with the multi-sample model. Finally, the raw variants
generated from the variant calling steps were further
filtered to identify the high quality variants by using the
GATK-VariantFiltration tool with the GATK recom-
mended filtering criteria, QD < 2.0, FS > 60.0, MQ < 40.0,
MQRankSum < − 12.5 and ReadPosRankSum < − 8.0,
SOR > 4.0 (Van der Auwera et al. 2013).

Identification of Stress-Resistant SNPs in Rice
After detecting the SNPs of all the tested varieties, we
screened the stress-resistant SNPs based on the approach
introduced by Silva et al. (2012) and Li et al. (2017). First,
we detected the SNPs from the resistant and susceptible
rice varieties using the variant detection pipeline mentioned
in the SNP calling and annotation section. Second, we fil-
tered out all the variants with read depth less than 3. Third,
we grouped the SNPs into two categories under each stress
type, one was detected from the stress-resistant rice var-
ieties and the other was from the susceptible rice varieties.
Fourth, we selected all the variants, which were detected in
three or more stress-susceptible rice varieties. Fifth, we
filtered out all the common variants observed between the
resistant and susceptible groups and selected the SNPs
unique to the resistant varieties (Fig. 1b). Finally, the effect
of each variant on its target gene was predicted and anno-
tated using the SnpEff 4.3r program (Cingolani et al. 2012),
the SNPs were then classified based on their genomic
region and variant effect.
In this study, we mainly focused on non-synonymous

SNPs (nsSNPs) and other major effect SNPs as they
could lead to amino acid residue change and alter the
functional or structural properties of the target protein.
Furthermore, we classified the genes associated with
non-synonymous variants based on their functional an-
notation using the agrigo online functional annotation
toolkit (Tian et al. 2017). The Physical positions and an-
notations of the rice genes were retrieved from RAP
(https://rapdb.dna.affrc.go.jp/) databases. The GO terms
and assignments for rice genes were downloaded from
Gramene database (http://www.gramene.org/). The RAP
rice gene locus IDs in our database were converted to
MSU IDs using the RAP-DB ID converter tool (http://
rapdb.dna.affrc.go.jp/tools/converter).

Database Design and Web-Application Architecture
Three software components, including an Apache web-
server (https://httpd.apache.org/), MySQL 5.7 relational
database (http://www.mysql.com/) and Flask web deve-
lopment library (http://flask.pocoo.org/), were used to
construct the RSRS database server-side (Fig. 1c).
In the RSRS database, nine MySQL tables were set up,

including a ‘SNP_genotype’ table, a ‘SNP_annotation’
table, a ‘Gene_info’ table, a ‘GO_annotation’ table, a
‘GWAS_Info’ table, three phenotype data tables and a
‘Pheno_SNP’ table. The phenotype data tables stored the
rice variety and stress related information, while the
‘Pheno_SNP’ table stored SNPs associated with each
stress type. ‘var_ID’ uniquely identified each variety and
‘pheno_ID’ was defined to group the varieties resistant/
susceptible to each stress type category. These two keys
were used to link the phenotype data tables. The ‘SNP_
genotype’ table stored the chrom, position, reference and
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genotypes of each SNP retrieved from the variant detec-
tion result files. Each SNP may have more than one al-
lele. The annotation of each SNP allele is stored in the
‘SNP_annotation’ table. ‘SNPID’ was defined to identify
each SNP uniquely and it is the key used to connect the
SNP_genotype table with the SNP_annotation table.
For efficient storage and data retrieval, the genotypes of
each SNP were stored as JSON datatype. The ‘Gene_
Info’ and ‘GO_annotation’ tables were used to store the
detail of each gene and gene ontology annotations
downloaded from the rice annotation database (https://
rapdb.dna.affrc.go.jp/) and gramene database (http://
www.gramene.org) respectively. The ‘gene_ID’ was de-
fined as a primary key in ‘Gene_Info’ table, it linked this
table to the SNP_annotation table to relate the asso-
ciated genes with each SNP. The ‘GWAS_info’ table

stored the GWAS records associated with the SNPs in
each stress type. The entity-relationship (ER) diagram
of the RSRS database is shown in Fig. 2.
RSRS web service was implemented in Python (https://

www.python.org/) and based on the Flask web development
library (http://flask.pocoo.org/). The Web Services consist
of the phenotype and genotype data retrieval and provides
the visualization tools to display the search results. The
searchable terms include phenotype name, SNP ID, gene
ID and chromosome region (Fig. 1c). The user’s query was
passed from the front-end, the server initiated and dis-
played the output from the database module script. All the
extracted information was displayed in a tabular format.
The interactive user interface was developed using the

Bootstrap3 (http://www.getbootstrap.com) framework which
combines HTML, CSS and JavaScript. Visualization of the

Fig. 2 Entity-Relationship Diagram for the RSRS database. The Pheno_SNP table is the table, which connects the phenotype details with the genotype
details. In this table the pheno_ID field is used to identify the associated stress with the varieties and the snp_ID is used to identify the associated SNPs
with the varieties. The Pheno_SNP table have a 1:N relationship with the Phenotypes and SNP_genotypes tables using pheno_ID and snp_ID keys. The
SNP_genotypes table describes the detail of each SNP, which is characterized by its own unique ID, snp_ID, chrom, position, reference allele and
genotypes of each accession. A SNP may consist of multiple alleles in which the annotation of each allele is stored in the SNP annotation table. The
SNP_annotation table is connected in a 1:N relationship with the Gene_info table, which stores the detail of each gene. The Gene_Info table is
connected to the GO_annotation table to characterize the associated genes with each SNP. The variety and phenotype details are stored in
Variety_Info, Phenotype_data and Phenotypes table, var_ID and pheno_ID are used to connect these tables. The GWAS_info table stores the
associated GWAS record of each SNP with its associated stress. The ER diagram was created by using draw.io at https://www.draw.io/
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data via statistical graphs and the tabular view was imple-
mented using JavaScript charting libraries called Highcharts
(https://www.highcharts.com/) and Datatables (https://data
tables.net/), respectively. We hosted the system on a server
running Ubuntu 16.04LTS powered by Apache server (Apa-
che Version 2.4).

Results and Discussion
Database Content
The whole genome sequencing data of 402 rice (Oryza
sativa L.) varieties with different abiotic and biotic
stress-resistant ability were downloaded from the 3000
rice genome re-sequencing project and other projects in
NCBI SRA database. Following the protocol introduced
in Fig. 1, the abiotic and biotic stress-resistant rice var-
ieties and their SNPs were detected and stored in the
RSRS database.

Phenotype Data
The information for each variety including country of ori-
gin, ID, variety name and variety group was collected from
the IRIC information site (http://iric.irri.org/resources/3
000-genomes-project) and other related studies. The ac-
cession ID and the ID used for the variety is shown in the
Additional file 1: Table S1. Additionally, we also collected
the stress responsiveness of all the tested varieties from
previous studies and phenotype databases. The list of the
varieties in each stress group and the detailed information
of each variety including the related references is also
shown in the Additional file 1: Table S1.

SNP Data After detecting the genetic variants in each
tested rice variety genome and filtering the stress-resistant
SNPs from the stress-resistant rice varieties, more than
9.5 million stress-resistant SNPs in rice were identified
and stored in the RSRS database. Table 1 summarizes the
number and effect of the stress-resistant SNPs located in
the different genomic regions, including genic, intergenic,
intronic and upstream/downstream regions. The stress-
resistant SNPs located in particular positions, such as start
and stop codons, splice donor and acceptor sites, are also
displayed in Fig. 3.

Biotic Stress-Resistant SNPs
In the biotic stress-resistant SNPs category, there are three
sub-group SNPs, which are resistant to 3 kinds of biotic
stresses, including fungus, bacteria and pest infection.

Blast Fungus-Resistant SNPs
A final set of 6,785,349 SNPs were called from 152 blast-
resistant rice varieties using Nipponbare as the reference
genome. We detected 3,324,526 SNPs from 26 highly
blast-susceptible rice varieties using the same pipeline.
After screening the SNPs specific to the blast-resistant
varieties, 3,638,230 potential blast-resistant SNPs were de-
tected and stored in this sub-group.
In these blast-resistant rice varieties, we identified 24,352

genes harboring blast-resistant nsSNPs, which were regarded
as potential blast-resistant genes in rice. Based on the func-
tional annotation of these genes, 609 of the potential blast-
resistant genes were associated with stress stimuli and

Table 1 Number of stress-resistant SNPs located in different regions of rice genome

Stress types 3’UTRb 5’UTRb Downstreamb Intergenicb Intronb CDSa Upstreamb

Heat Stress 93,767 55,759 653,058 635,265 63,162 205,078 2,780,114

Alkali Stress 66,920 37,644 388,645 331,550 43,425 147,100 1,755,014

Salt Stress 79,546 44,882 470,148 409,469 51,300 175,835 2,081,462

Flood Stress 67,419 37,926 391,338 334,562 43,764 142,223 1,787,105

Cold Stress 58,798 33,903 370,763 332,310 40,007 126,918 1,612,926

Zinc Stress 74,843 41,853 411,990 330,483 48,027 161,716 1,908,842

Blast Fungus 81,491 47,765 522,328 480,785 53,365 183,547 2,256,982

Bacteria Leaf Blight 63,649 35,647 368,539 319,163 41,456 138,399 1,633,392

Bacteria Sheath Blight 51,663 29,237 331,287 272,583 34,716 112,617 1,356,611

Bacterial Rice Planthopper 72,686 41,112 417,411 347,624 45,912 155,346 1,890,893

Bacteria Stripe leaf blight 49,221 27,107 269,081 203,861 31,815 103,938 1,274,279

Brown Planthopper Pest 79,293 44,994 475,951 410,522 52,299 173,293 2,109,723

Gall Midge Pest 50,495 29,177 291,121 230,150 32,704 107,667 1,367,183

Small Brown Planthoppers Pest 86,755 47,381 465,586 363,512 55,723 182,484 2,205,066

Whitebacked Planthopper Pest 94,541 53,730 552,635 462,375 61,037 203,404 2,508,144

Rice Leafroller Pest 79,704 44,658 448,760 358,452 50,581 172,603 2,072,717
aCDS includes the SNPs in exonic region including nsSNPs (non-synonymous SNPs) and sSNPs (synonymous SNPs)
bIntergenic, 5’UTR, Intron 3’UTR, Upstream and Downstream indicate that No. of stress-resistant SNPs located in the Intergenic, 5’UTR, Intronic, 3′ UTR, upstream
and downstream regions of a gene
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response ability. Interestingly, 139 of them had been reported
to function as blast-resistant genes in different references,
which were shown in Additional file 2: Table S2.
Among the 139 known blast-resistant genes, 24 genes
were transcription factors, 34 genes were disease resis-
tance genes, and the other 81 genes were involved in
different families of stress-response abilities. In total,
there were 8005 stress-resistant SNPs on these 139
genes, in which 11.5% were missense, 67.0% were in the
upstream/downstream region, 8.6% were synonymous
variants and 12.0% include the others (Fig. 5). These
variants were distributed in the rice varieties with allele
frequency between 0.01 and 1.0 (Fig. 4).

Bacterial Stress-Resistant SNPs
We first collected 74 bacterial-resistant rice varieties,
including 41 bacterial leaf blight-resistant varieties with
a total of 4,307,743 SNPs, 18 bacteria sheath blight-
resistant varieties with a total of 3,991,441 SNPs, 5 bac-
teria stripe leaf blight resistant varieties with a total of 1,
971,323 SNPs and 24 bacteria planthopper-resistant va-
rieties with a total of 4,242,547 SNPs. Similarly, we had
8 bacterial leaf blight-susceptible varieties with 1,856,574
SNPs, 7 bacterial sheath blight-susceptible varieties with
1,999,162 SNPs, 6 bacterial rice planthopper-susceptible
varieties with 1,344,685 SNPs and 3 bacteria stripe leaf
blight-susceptible varieties with a total of 523,829 SNPs.

Finally, we generated 2,608,978, 2,176,113, 2,980,714 and
1,965,432 SNPs resistant to bacterial leaf blight, sheath
blight, rice planthopper and stripe leaf blight in the rice
genome, respectively.
We identified 19,154, 17,711, 20,972 and 17,987 genes

harbouring bacterial leaf blight, sheath blight, rice planthop-
per, and stripe leaf blight-resistant nsSNPs, respectively.
Among them 483, 433, 518 and 447 were associated with
stress stimuli and responses based on the functional annota-
tion. Interestingly, 64 bacterial leaf blight, 11 bacterial sheath
blight, 22 bacterial rice planthopper and 7 rice stripe
disease-resistant potential genes had been confirmed in
different publications, shown in Additional file 2: Table S2.
These genes included 15 transcription factors, 19 disease re-
sistance genes and others associated with defence response
activities. The bacterial stress-resistant SNPs distributed on
these genes consist of 7.43% nsSNPs, 6.78% synonymous
SNPs and 79.5% upstream/downstream (Fig. 5). The allelic
frequency distribution of the SNPs in these genes varies
between 0.022 and 1.0 (Fig. 4). Additionally, (Zhang et al.
2017) verified 121 significantly enriched SNPs which
contributed to bacterial leaf blight-resistance in rice. Among
them, 91 were mapped to the bacterial leaf blight-resistant
SNPs in the RSRS database. In another research work, 46
SNPs were found to be associated with bacterial blight-
resistance in rice (Dilla-Ermita et al. 2017), among which 29
were also detected in the RSRS database.

Fig. 3 Number of abiotic and biotic stresses-resistant SNPs in splice region and other large effect SNPs. The large effect SNPs include start/stop
gained, lost or retained, and splice donor and acceptor. Start and stop codon gained or lost SNP induce the gain or loss of the start/stop codon.
SNP located in the stop codon may retain the stop codon function (Stop codon retained). The SNP generating a splice acceptor, donor or region
are named splice acceptors, splice donor of splice region
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Pest Stress-Resistant SNPs
A total of 81 pest-resistant rice varieties were identified,
including 45 brown planthopper pest-resistant varieties
with 6,054,118 SNPs, 4 gall midge pest-resistant varieties
with 3,638,406 SNPs, 8 small brown planthopper pest-
resistant varieties with 4,221,428 SNPs, 35 white backed
planthopper pest-resistant varieties with 5,957,813 SNPs
and 10 rice leafroller pest-resistant varieties with 4,679,
556 SNPs. Similarly, we detected 3,710,640 SNPs from 8
brown planthopper-susceptible rice varieties, 4,637,279
SNPs from 3 gall midge susceptible varieties, 2,392,253
SNPs from 3 small brown planthopper-susceptible var-
ieties, 3,362,269 SNPs from 6 white backed planthopper-
susceptible varieties, and 3,055,842 SNPs from 3 leaf roller
pests-susceptible varieties. Finally, we found 3,357,284
brown planthopper, 2,115,252 gall midge, 3,417,213 small
brown-, 3,948,989 white backed planthopper- and 3,237,
416 rice leafroller pest-resistant SNPs in rice, respectively.
In the pest-resistant varieties, we identified a total of 22,

876, 19,782, 23,721, 24,098, 22,101 genes harboring nsSNPs

in brown planthopper pest, gall midge pest, small-brown
planthopper pest, white-backed planthopper pest and rice
leafroller pest-resistant rice varieties respectively. We classi-
fied these genes based on their functional annotation and
we found that 555, 489, 614, 603 and 540 genes were asso-
ciated with stress and stimuli response related functions.
Among them, 29 genes have been reported to be involved
in pest caused diseases resistance, which is shown in the
Additional file 2: Table S2. These genes were constituted of
3 transcription factors, 14 pathogen resistance genes and
other defence related functions. The total number of
SNPs detected in these genes included 72.1% of
upstream/downstream, 14% of nsSNPs and 7.08 of
synonymous SNPs (Fig. 4). The allelic diversity of the
SNPs varies within the range of 0.022 to 1 (Fig. 5).

Abiotic Stress-Resistant SNPs
In the abiotic stress category, we detected SNPs in the
genome of rice varieties with resistant ability to heat,
alkali, salt, cold, flood and zinc stresses.

Fig. 4 The variants distribution by annotation in different abiotic and biotic stress-resistant genes in rice. The X-axis represents the variant
annotation of the SNPs in these genes and the Y-axis represents the count of each annotation in these genes
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Heat Stress-Resistant SNPs
Twenty heat stress-resistant rice varieties were used in
this study and a total of 5,707,672 SNPs were detected
from this set of rice varieties. Similarly, we detected 1,
233,652 SNPs from 8 highly heat-susceptible rice var-
ieties. Finally, a total of 4,500,192 heat stress-resistant
specific SNPs in rice were identified.
In the genome of heat stress-resistant rice varieties, we

identified a total of 26,357 genes harbouring heat stress-
resistant nsSNPs. Based on the functional annotation,
661 genes of them were associated with stress response
and stimuli. Interestingly, 75 genes had been reported to
be involved in heat stress tolerance in rice. Among these
75 genes, 6 genes were transcription factors and 23 are
heat shock proteins, which are shown in the Additional
file 2: Table S2. The total number of SNPs in these
genes was 3745, including 82% upstream/downstream,
3% nsSNPs, 3.2% synonymous and 12% other variants.
The allele frequency of these variants varied between
0.047 and 1 (Figs. 4 and 5).

Alkali Stress-Resistant SNPs
Twenty-seven alkali stress-resistant rice varieties were used
in this study. The total number of SNPs called from this
group was 4,931,032. From the 10 susceptible rice varieties,
we detected 2,314,097 SNPs. After filtering out the common
variants between the resistant and susceptible varieties, we
generated 2,779,427 alkali stress-resistant SNPs in rice.
In this subcategory, we identified a total of 22,876

genes harbouring alkali stress-resistant nsSNPs. Based
on the functional annotation, 513 genes were asso-
ciated with stress response and stimuli. Among them,
five genes have been reported to be associated with
alkali stress tolerance in rice, which is shown in the
Additional file 2: Table S2. The total number of SNPs
associated with these genes was 182 and the allele
frequency varies between 0.022 and 0.9 (Figs. 4 and 5).

Salt Stress-Resistant SNPs
Sixty-one salt stress-resistant rice varieties were used in
this study. The number of SNPs identified from this set of

Fig. 5 The alternate allelic frequency distribution in different abiotic and biotic stress-resistant genes in rice. The X axis represents
the allele frequencies of the non-reference alleles and the Y axis represents of the count of each allele frequency of the SNPs in
these genes
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rice varieties was 6,080,805. Similarly, we detected 2,924,
352 from 17 salt stress-susceptible rice varieties. After fil-
tering out the SNPs in salt stress-susceptible rice varieties,
we identified a total of 3,323,770 salt stress-resistant spe-
cific SNPs in the salt stress-resistant varieties.
In these salt-stress resistant varieties, we mapped a total

of 23,461 genes harbouring salt stress-resistant nsSNPs.
Based on the functional annotation, 589 genes were
associated with stress response and stimuli. Interestingly,
209 genes have been reported to be associated with salt-
tolerance in rice, including 30 transcription factors, 26
kinase family genes, and 14 ion transporter family, which
are also shown in Additional file 2: Table S2. There were a
total of 8472 SNPs in these genes, including 4.65% of
missense, 81.4% of upstream and downstream, 4.6% of syn-
onymous variants and others (Fig. 5). The allele frequency
of these variants varied between 0.012 and 1 (Fig. 4).
In a study conducted by Lekklar et al. (2019), they

found 448 significantly enriched SNPs contributing to
salt stress-resistant ability in rice by using Genome-
Wide Association Study (GWAS) method, among which
389 were also detected in the results of this study and
162 were stored as salt stress-resistant SNPs in the RSRS
database. Additionally, Jain et al. (2014) screened 910
SNPs present in the coding region of 346 differentially
expressed genes from 3 salt stress-resistant rice varieties,
of which 862 were consistent with the results of this
study and 301 were stored as salt stress-resistant SNPs
in the RSRS database.

Cold Stress-Resistant SNPs
Twenty-seven cold stress-resistant rice varieties were col-
lected in this study, in which we detected a total number
of 4,906,148 SNPs. From 10 cold-susceptible rice varieties,
we detected a total of 2,560,928 SNPs. Finally, we filtered
a total of 2,584,211 cold stress-resistant SNPs in rice.
We mapped 16,217 genes with cold stress-resistant

nsSNPs in rice. Based on the functional annotation, 476
genes were associated with stress response and stimuli.
Interestingly, 107 genes have been reported to be asso-
ciated with cold tolerance in rice, which is shown in
Additional file 2: Table S2. There were a total of 2998
SNPs located in these genes, in which 88% were up-
stream/downstream, 7.2% were nsSNPs and 4.84% were
synonymous variants (Fig. 5). Their allelic frequency
variation ranged from 0.038 to 1.0 (Fig. 4). Furthermore,
the data in other publications also supported our results.
Wang et al. (2016) found 181 significantly enriched cold
stress-related SNPs in rice of which 169 were consistent
with the SNPs in the RSRS database (Wang et al. 2016).

Flood Stress-Resistant SNPs
Twenty-one flood stress-resistant rice varieties with a total
of 4,851,632 SNPs and 10 flood stress-susceptible rice

varieties with 2,238,878 SNPs were collected in this study.
Finally, we identified 2,813,598 flood stress-resistant SNPs
in flood stress-resistant rice varieties.
In these flood stress-resistant varieties, we identified a

total of 20,818 genes with flood stress-resistant nsSNPs.
Based on the functional annotation, 505 genes were
associated with stress response and stimuli. Twenty-six
of the genes, so far, have been reported to be associated
with submergence tolerance, including five transcription
factors and five ethylene receptor like proteins, which
are also shown in Additional file 2: Table S2. In these 26
genes, we detected 1321 SNPs, of which 80.0% were up-
stream/downstream SNPs, 4.47% were nsSNPs and 4.1%
were synonymous SNPs.

Zinc Stress-Resistant SNPs
A total of 4,215,431 SNPs were detected in 11 zinc
stress-resistant rice varieties, while 1,345,257 SNPs were
found in the five zinc stress-susceptible rice varieties. In
total 2,987,375 zinc stress-resistant SNPs in rice were
identified from the zinc stress-resistant rice varieties.
In these zinc stress-resistant varieties, we identified 20,

818 genes with zinc stress-resistant nsSNPs. Based on
the functional analysis, 530 of the genes were associated
with stress response and stimuli. Six genes, so far, have
been reported to be involved in zinc stress tolerance,
which are mainly involved in Zn uptake and translocation as
shown in the Additional file 2: Table S2. In these six genes,
there were 538 SNPs, including 74% upstream/downstream,
4% nsSNPs, and 6% Synonymous SNPs (Fig. 5). The
allele frequency of these SNPs varied between 0.047
and 0.89 (Fig. 4).

Web Interface
RSRS is an integrated rice stress resistant SNP database
allowing users to explore overall data organization, to ob-
tain information including rice stress related information,
stress resistant SNPs and associated genes by querying a
specific genomic region, gene ID or SNP ID, and to
visualize the data of interest in different output format.
The functions of RSRS database were shown in Fig. 1c.
RSRS database allows users to search, compare and

browse the phenotypic and genotypic data of the stress-
resistant rice varieties used in our study. Each rice var-
iety in the RSRS database is assigned with a cultivar ID.
The variety browse function presents the phenotype
detail of each rice cultivar including the geographical
information, population, and the stress-resistance rank.
The SNP browse function provides users to bring up the
overall SNP summary in each stress-resistant group,
SNP summary per chromosome in each cultivar and the
distribution of different type of SNPs in each group.
The searching function is a user-friendly web interface

for users to query SNP related information. The users
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are able to search for different SNPs by a given SNP ID,
gene ID, phenotype, variant annotation, chromosome or
a specific genomic region (Fig. 6a).
Searching by genomic region allows users to search for

SNPs at a selected chromosome in a given range of gen-
ome position. Besides this, retrieval of SNPs using differ-
ent search options like variant annotation, minor allele
frequency can be facilitated in the database.
Searching by SNP ID allows users to search for a specific

SNP by using its ID. Each SNP has a unique identifier with
a format of SNPCHXXXXXXXX. The first letter of the ID
indicates the variant type, such as ‘SNP’ standing for SNP.
The ‘CH’ stands for the chromosome number (01–12)
and XXXXXXXX represents chromosome coordinate of a
variation.
Searching by gene ID allows the user to search for

SNPs associated with a given gene. Similarly, the user
can also set the options to search for the variants of a
selected annotation or range of minor allele frequencies
(Fig. 6a).
The search function results (Fig. 6b) can also be further

expanded and the detail of each SNP can be explored. The
detail of each SNP includes the chromosome position, the

allele distribution, the associated gene information, the
variant effects annotation and the genotype of the SNP in
each cultivar of the selected phenotype. This function
helps the user to figure out the polymorphic SNPs be-
tween two or more rice cultivars (Fig. 6c). Additionally,
we incorporated the GWAS enrichment scores of the
SNPs with published data in this database. The SNPs with
their available enrichment score will be displayed in the
SNP detail page.
Furthermore, the RSRS database system also integrates

the genome browser tool, JBrowse, to navigate the data
in a graphical visualization format (Buels et al. 2016).
JBrowse allows the users to directly visualize the location
of SNPs, display the complete list of annotations, variant
details, and genotype data of each accession. The inter-
active and dynamic genome browser could also display
genomic features for each rice variety, gene and the
corresponding data tracks, as well as variant alignment
(Fig. 6d).

Conclusion
The initial purpose of the RSRS database provides a con-
venient way to search and retrieve biotic and abiotic

Fig. 6 Examples of search functions in RSRS database. Search Interface (a) allows users to search by region, gene ID and SNP ID. Additionally
users can also set options, such as allele frequency, variant types. Search Results (b) retrieves the list of SNPs and displays the allele distribution in
a given range. SNP detail view (c) displays the detail of each SNP and the genotype of each rice accession. Jbrowse visualization (d) displays the
SNP detail in Jbrowse and gives the detail of the associated gene with the SNPs

Tareke Woldegiorgis et al. Rice           (2019) 12:97 Page 10 of 12



stress-resistant SNPs and their annotation for the rice
research community. The RSRS database is built on the
genomic re-sequencing data of different rice cultivars
with different stresses-resistant ability. In total, over 9.5
million stress-resistant SNPs and 797 genes associated
with stress response and stimulus were detected from
more than 400 stress-resistant rice varieties. Interest-
ingly, our results were partially supported by previous
publications, indicating that the results in this study
would give valuable insights for the researchers seeking
to identify novel stress-resistant genes in rice.
We organized and presented the stress-resistant SNPs

with related data, including genotype and phenotype, in
a web-based system. By integrating with comprehensive
information, this platform is growing to be a useful tool
for a wide range of applications in rice genetics, breed-
ing, and comparative genomics. This database will facili-
tate the researchers to investigate the genetic variation
of the stress-resistant genetic variants in rice in a more
streamlined, rapid, and efficient fashion.
We anticipate extending the services of this RSRS

database by including more rice accessions with different
stress-resistant capability as well as more kinds of stresses.
Additionally, we will also make it more comprehensive
knowledgebase for rice abiotic and biotic stress-related
studies by incorporating other omics data, including tran-
scriptome, proteomics, and metabolomics. We will also
endeavour to make the database more user-friendly and
more efficient with the suggestion from rice researchers
and breeders who make use of this first version of RSRS
database.
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