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CPM Training Waveforms With Autocorrelation
Sidelobes Close To Zero
Zilong Liu, Yong Liang Guan, and Chee-Cheon Chui

Abstract—Continuous phase modulation (CPM) plays an im-
portant role in wireless communications due to its constant enve-
lope signal property and tight spectrum confinement capability.
Although CPM has been studied for many years, CPM training
waveforms having autocorrelations with zero sidelobes have not
been reported before, to the best of our knowledge. Existing
works on CPM system design mostly assume that the channel
fading coefficients are either perfectly known at the receiver
or estimated using random CPM training waveforms. In this
work, we propose a novel class of CPM training waveforms
displaying autocorrelation sidelobes close to zero. The key idea
of our construction is to apply differential encoding to Golay
complementary pair having perfect aperiodic autocorrelation
sum properties.

Index Terms—Continuous phase modulation, Golay comple-
mentary pair (GCP), autocorrelation function, Laurent decom-
position, Rimoldi decomposition, differential encoding, channel
estimation.

I. INTRODUCTION

Continuous phase modulation (CPM) is an attractive non-
linear modulation scheme whose signals exhibit properties of
constant envelope and tight spectrum confinement [1]. The
first property will allow the transmitter to enjoy high power
transmission efficiency as CPM signals have peak-to-average
power ratio (PAPR) of 1 (theoretically). Hence, traditional
transmission techniques (e.g., [2], [3]) to deal with high
PAPR problem in orthogonal frequency-division multiplexing
(OFDM) may be avoided when high-rate transmission is not a
must. The second property implies less amount of out-of-band
power leakage compared to 2- and 4-ary PSK modulations [1],
therefore, causing less interference to other applications (op-
erated over adjacent spectral bands) and leading to relatively
higher spectral efficiency.

Nowadays, CPM has been used in many areas such as global
system for mobile communications (GSM) [4], military and
satellite communications [5], millimeter communications [6],
and machine-type communications in 5G [7], [8]. In dispersive
channels, frequency-domain equalization (FDE) is needed to
suppress the effect of intersymbol interference (ISI), followed
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by CPM demodulation as in flat-fading channels. FDE based
CPM receiver design can be found in [9]–[11], in which the
channel fading coefficients are assumed to be perfectly known
at the receiver. Recently, random sequence based channel
estimation and equalization has been investigated in [12].

Despite of a long history of CPM research, less has been
understood on the training waveform design of CPM. Ac-
cording to [13], the 8 training binary sequences defined in
GSM standard [14] have been found by computer search
over all possible 216 binary sequences. In 2013, Hosseini and
Perrins studied the training sequence design of burst-mode
CPM over additive white Gaussian noise (AWGN) channels
[15], [16]. However, the CPM training sequences proposed in
[15] may not be applicable in frequency-selective channels
(as will be shown in Section IV). Motivated by this, we
target at a systematic construction of CPM training waveforms
for frequency-selective channels. Our main idea is to apply
differential encoding to Golay complementary pair (GCP)
whose aperiodic autocorrelation sums diminish to zero for
all the non-zero time-shifts [17]. Taking advantage of Laurent
decomposition [18], we show that the resultant CPM training
waveform (with modulation index of h = 1/2) displays
autocorrelation sidelobes close to zero.

II. PRELIMINARIES

A. Introduction to CPM

Let j =
√
−1. An equivalent lowpass M -ary CPM

waveform s(t) is expressed as s(t) = exp [jφ(t; I)], where
φ(t; I) = 2πh

∑n
k=0 Ikq(t− kT ) (nT ≤ t ≤ (n+ 1)T ) is the

time-varying phase depending on the information sequence
I = {Ik}nk=0 with Ik being the k-th CPM symbol drawn
from the set of {±1,±3, · · · ,±(M − 1)}, h is the modulation
index, and T is the symbol duration. The phase-shaping
waveform q(t) is defined as the integral of the frequency-
shaping pulse g(t) of duration LT , i.e., q(t) =

∫ t
0
g(τ)dτ ,

with q(t) = 0 for t ≤ 0 and q(t) = 1/2 for t ≥ LT . s(t)
is called full-response if L = 1 and partial-response when
L > 1. Note that φ(t; I) can be written as

φ(t; I) = 2πh
n−L∑
k=0

Ikq(t− kT ) + 2πh
n∑

k=n−L+1

Ikq(t− kT ).

(1)

Let θn = πh
n−L∑
k=0

Ik and σn = [In−1, In−2, · · · , In−L+1]. It

is easy to see that the phase φ(t; I) depends on the modulator
state χn = [θn, σn], where θn and σn are called the phase
state and the correlative state, respectively.
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Laurent’s Decomposition: Laurent showed that a binary
partial-response CPM signal can be represented as a superposi-
tion of a number of pulse-amplitude-modulated (PAM) pulses
[18]. To introduce this, we first define

s0(t) =


sin 2πhq(t)

sinπh , 0 ≤ t ≤ LT,
sin[πh−2πhq(t−LT )]

sinπh , LT ≤ t ≤ 2LT,

0, otherwise.
(2)

Also, denote by ap,m ∈ {0, 1} the coefficients of the binary
representation of integer p in the set of {0, 1, · · · , 2L−1 − 1},

i.e., p =
L−1∑
m=1

2m−1ap,m. Then, the CPM signal can be written
as

s(t) =
∑
n

2L−1−1∑
p=0

exp [jπhAp,n] · cp(t− nT ), (3)

where cp(t) = s0(t)
∏L−1
i=1 s0[t + (i + Lap,i)T ], for 0 ≤ t ≤

T × min
i=1,2,··· ,L−1

[L(2 − ap,i) − i], and Ap,n =
n∑

m=0
Im −

L−1∑
m=1

In−map,m. In general, c0(t) is the most important PAM

pulse as it carries more than 99% of the total signal energy
[18]. Therefore, the CPM signal can be approximated as

s(t) ≈ α(t) ,
∑
n

γn · c0(t− nT ), (4)

with

γn , exp[jπhA0,n] = exp

[
jπh ·

n∑
m=0

Im

]
. (5)

For ease of presentation, {γn} are called CPM pseudo-
symbols.

B. Introduction to Golay Complementary Pair (GCP)

Denote by ρC(k) the aperiodic auto-correlation function
(AACF) of C = [C0, C1, · · · , CN−1] which is defined as

ρC(k) =


N−1−k∑
n=0

CnC
∗
n+k, if 0 ≤ k ≤ N − 1;

ρ∗C(−k), if 1−N ≤ k < 0;

0, otherwise.

(6)

Let (C,D) be a pair of sequences with identical length of N .
(C,D) is called a GCP [17] if ρC(k) + ρD(k) = 0 for any
k 6= 0. Note that compared to conventional one-dimensional
sequences, the two constituent sequences in a GCP work in
a cooperative way to ensure that their out-of-phase aperiodic
autocorrelations sum to zero.

Let φC(k) =
∑N−1
k=0 CkC

∗
n+k mod N be the periodic au-

tocorrelation function (PACF) of C at time-shift k. Clearly,
φC(k) + φD(k) = 0 for any k 6= 0 (mod N) if (C,D) is a
GCP.

Denote by Zq the set of integers modulo q. For x =
[x1, x2, · · · , xν ] ∈ Zν2 , a generalized Boolean function (G-
BF) f(x) (or f(x1, x2, · · · , xν)) is defined as a mapping
f : {0, 1}ν → Zq . Let (i1, i2, · · · , iν) be the binary repre-
sentation of the integer i =

∑ν
k=1 ik2

k−1, with iν denoting

the most significant bit. Given f(x) (or f(x1, x2, · · · , xν)),
define fi , f(i1, i2, · · · , iν), and

f ,
[
f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)

]
.

We present the example below to illustrate GBFs defined
above. One can find it useful in understanding the GCP
construction in Lemma 1 (which is formed by summation of
a series of quadratic and linear terms of GBFs).

Example 1: Let ν = 3 and q = 2. The associated sequences
of 1, x1, x3, x1x3 are

1 = (1, 1, 1, 1, 1, 1, 1, 1),
x1 = (0, 1, 0, 1, 0, 1, 0, 1),
x3 = (0, 0, 0, 0, 1, 1, 1, 1),

x1x3 + 1 = (1, 1, 1, 1, 1, 0, 1, 0),

respectively.
Lemma 1: (Davis-Jedwab Construction of GCP [20]) Let

f(x) ,
q

2

ν−1∑
k=1

xπ(k)xπ(k+1) +
ν∑
k=1

ckxk + c, (7)

where π is a permutation of the set {1, 2, · · · , ν}, and ck, c ∈
Zq (q even integer). Then, for any c′ ∈ Zq , f and f+ q

2xπ(1)+
c′ · 1 form a GCP over Zq of length 2ν .

III. PROPOSED CPM TRAINING WAVEFORM DESIGN

In this section, we will propose a training waveform de-
sign for CPM signal s(t) [or the approximation α(t)] with
periodic autocorrelation sidelobes close to zero. Throughout
the proposed design, we consider binary CPM with h = 1/2.
Therefore, exp[jπh] = j. To get started, we first consider a
sequence of {γn}2N−1n=0 with 2N non-zero elements satisfying
N > L+ 1 and

γn = γn+N , for 0 ≤ n ≤ N − 1. (8)

The PACF of the CPM approximation α(t) [cf. (4)] over
[NT, 2NT ] is defined as

φα(τ) =

∫ 2NT

t=NT

α(t)α∗(t+ τ)dt, (9)

where

α(t+ τ) =

{
α(t+ τ −NT ), if t+ τ > 2NT ;

α(t+ τ +NT ), if t+ τ < NT.
(10)

In addition, the AACF of c0(t), the most significant pulse in
Laurent’s decomposition, is defined as

ρc0(τ) =

∫ +∞

t=−∞
c0(t)c0(t+ τ)dt, (11)

where c0(t) = 0 if t < 0 or t > (L+1)T . Hence, ρc0(τ) = 0
if |τ | > (L+ 1)T . By [19, (6.45b)], we have

φα(τ) =
+∞∑

k=−∞

φγ(k)ρc0(τ − kT ). (12)

(12) implies that the PACF of α(t) [i.e., ρα(τ)] is zero for
any |τ | ≥ (L+ 1)T if

φγ(k) = 0, ∀ k 6= 0. (13)
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Fig. 1: CPM block structure consisting of training sequence
and data payload.

Nevertheless, it is hard to find sequence {γn} satisfy-
ing (5) and (13) simultaneously. Because of this, we con-
sider sequence pair C = [C0, C1, · · · , CN−1] and D =
[D0, D1, · · · , DN−1] over {0, 1}N . Applying the “differential-
encoding”, denoted by diff(·), to C̃ , [C,C], we obtain
IC , diff([C,C]) = [IC,0, IC,1, · · · , IC,2N−1] with

IC,m = (2C̃m − 1) · (2C̃m−1 − 1)

= 4C̃mC̃m−1 − 2C̃m − 2C̃m−1 + 1 ∈ {−1, 1},
(14)

where 0 ≤ m ≤ 2N − 1 and C̃−1 = 1. It is clear that

exp[πhIC,m] = j · (−1)C̃m · (−1)C̃m−1 . (15)

Similarly, applying “differential-encoding” to D̃ , [D,D],
we obtain ID , diff([D,D]) = [ID,0, ID,1, · · · , ID,2N−1]
assuming D̃−1 = 1. As we will see later, differential-encoding
helps to mitigate the correlations among CPM symbols which
facilitates the design of CPM training waveforms with auto-
correlation sidelobes close to zero. Then, send IC and IC for
CPM modulation following the transmission structure shown
in Fig. 1. The “Z tail bits”, placed before IC (or ID), are used
to return the CPM modulator phase state to zero. Systematic
method for the generation of tail bits can be found in [9] using
Rimoldi decomposition [21].

Applying IC as a sequence of 2N CPM symbols, the CPM
pseudo-symbols can be expressed as follows.

1) If n ∈ {0, 1, 2, · · · , N − 1}, we have

γC,n = exp

[
jπh ·

n∑
m=0

IC,m

]
= jn+1 · (−1)Cn · (−1)C−1 = jn+3 · (−1)Cn .

(16)

2) If n ∈ {N,N + 1, N + 2, · · · , 2N − 1}, we have

γC,n = exp

[
jπh ·

n∑
m=0

IC,m

]
= jn−N+3 · (−1)Cn−N · jN .

(17)

When N ≡ 0 mod 4, one can see that

[γC,0, γC,1, · · · , γC,N−1] = [γC,N , γC,N+1, · · · , γC,2N−1].
(18)

In this case, (8) holds. This implies that IC is a periodic
transmission of two identical length-N sequences, which in
turn allows the calculation of PACF at the local receiver. The

approximated CPM waveform αC(t) in (4) can be written as

αC(t) =
2N−1∑
n=0

jn+3 · (−1)Cn︸ ︷︷ ︸
γC,n

·c0(t− nT ), for 0 ≤ t ≤ 2NT.

(19)
Denote by αD(t) the approximated CPM waveform (after
“differential encoding”) corresponding to ID. Similar to (18),
we have

[γD,0, γD,1, · · · , γD,N−1] = [γD,N , γD,N+1, · · · , γD,2N−1],
(20)

for N ≡ 0 mod 4. Also, similar to (19), we obtain

αD(t) =
2N−1∑
n=0

jn+3 · (−1)Dn︸ ︷︷ ︸
γD,n

·c0(t− nT − 2NT − ZT ),

(21)

for 2NT + ZT ≤ t ≤ 4NT + ZT .
Next, we will show γC , {γC,n}N−1n=0 and γD , {γD,n}N−1n=0

form a quaternary GCP provided that (C,D) is a binary GCP
generated by the Davis-Jedwab construction (see Lemma 1).
In the context of Lemma 1, let

f =
ν−1∑
k=1

xπ(k)xπ(k+1) +
ν∑
k=1

ckxk + c (mod 2), (22)

and f + xπ(1) + c′ (mod 2) be the GBFs of C and D,
respectively, where N = 2ν (ν ≥ 2 as N should be divisible
by 4). Lifting these two GBFs from Z2 to Z4 and noting that
n =

∑ν
k=1 xk2

k−1, the corresponding GBFs of γC,n and γD,n
can be expressed as

fC = 2

ν−1∑
k=1

xπ(k)xπ(k+1) + 2

ν∑
k=1

ckxk

+ 2c+
ν∑
k=1

xk2
k−1 + 3 (mod 4)

= 2
ν−1∑
k=1

xπ(k)xπ(k+1) + 2
ν∑
k=1

ckxk

+ 2c+ 2x2 + x1 + 3 (mod 4)

= 2
ν−1∑
k=1

xπ(k)xπ(k+1) +
ν∑
k=3

(2ck)xk

+ (2 + 2c2)x2 + (1 + 2c1)x1 + 2c+ 3 (mod 4),
(23)

and fD = fC + 2xπ(1) + 2c′ (mod 4), respectively. It is clear
that fC, fD satisfy the GBF forms in Lemma 1. Thus, γC and
γD are a quaternary GCP. Applying (12) to (19) and (21), we
assert that

φαC(τ) + φαD(τ)

=

+∞∑
k=−∞

[φγC(k) + φγD(k)] ρc0(τ − kT )

=

{
2NTρc0(τ), if 0 ≤ |τ | ≤ (L+ 1)T ;

0, if (L+ 1)T < |τ | ≤ (N − L− 1)T.

(24)
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Consider the CPM training waveform over {s(t) : 0 ≤ t ≤
(4N + Z)T} and let

S
(1)
C = {s(t) : 0 ≤ t ≤ NT},
S
(2)
C = {s(t) : NT ≤ t ≤ 2NT},
S
(1)
D = {s(t) : (2N + Z)T ≤ t ≤ (3N + Z)T},
S
(2)
D = {s(t) : (3N + Z)T ≤ t ≤ (4N + Z)T}.

(25)

At the receiver, S(2)
C and S(2)

D are taken as two local reference
waveforms for correlation with S

(1)
C and S

(1)
D , respectively.

This is because S(1)
C (and S

(1)
D ) will be spread into the time

window of NT ≤ t ≤ 2NT [and (3N + Z)T ≤ t ≤ (4N +
Z)T ] owing to the multipath propagation. Finally, we have the
following assertion.

φ
S

(1)
C ,S

(2)
C

(τ) + φ
S

(1)
D ,S

(2)
D

(τ)

≈ φαC(τ) + φαD(τ)

≈ 0, if (L+ 1)T < |τ | ≤ (N − L− 1)T.

(26)

IV. SIMULATION RESULTS

In the context of Lemma 1, let q = 2, ν = 4 (i.e., N = 2ν =
16) and c = 0, c′ = 1. Consider two GCPs, with π = [1, 2, 3, 4]
and [c1, c2, c3, c4] = [1, 0, 1, 1] for GCP 1, and π = [2, 3, 4, 1]
and [c1, c2, c3, c4] = [1, 1, 0, 1] for GCP 2. The resultant GCPs
are given below.

GCP 1 =

[
+−++−+++−+−−−+++
−−−+++−++++−++−+

]
,

GCP 2 =

[
+−−+−+−+++−−++++
−+−++−−+−−−−−−++

]
.

Applying differential encoding to GCPs 1 and 2, we obtain
differentially-encoded pairs, denoted by “Diff-GCP 1” and
“Diff-GCP 2”, respectively. Each pair will be sent as IC
and ID (see Section III) for CPM modulation following the
transmission structure in Fig. 1. For comparison, differential
encoding is also applied to GSM sequence [+−+++−−−
−+−−−+−−] [14]. The resultant sequence is referred to
as “Diff-GSM” and will be sent as IC only for CPM training.
For simulation, we consider the GMSK frequency pulse g(t)
below.

g(t) =
1

2T

[
Q

( t
T + 1

2

σ

)
−Q

( t
T −

1
2

σ

)]
,

where Q(t) =
∫ +∞
t

1√
2π

exp
(
−x

2

2

)
dx and σ2 = In2

4π2(BT )2 .
Considering GMSK frequency pulse with BT = 0.3 and
truncated frequency pulse length of L = 3, we obtain CPM
training waveform {s(t) : 0 ≤ t ≤ (4N+Z)T}, where Z = 3
in this example. The (normalized) autocorrelation magnitudes
of CPM waveforms, i.e.,

∣∣∣φS(1)
C ,S

(2)
C

(τ) + φ
S

(1)
D ,S

(2)
D

(τ)
∣∣∣, are

shown in Fig. 2. One can see that the proposed training
waveforms 1 and 2 (corresponding to Diff-GCPs 1 and 2,
respectively) exhibit autocorrelation sidelobes close to zero
for time-shifts larger than (L + 1)T . In contrast, the training
waveform from the Diff-GSM sequence exhibits considerably
large autocorrelation sidelobes when time-shift is larger than
6T . To show the effectiveness of differential-encoding, we also

-8 -6 -4 -2 0 2 4 6 8
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0.7
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1

uncoded transmission

Diff-coded transmission

Fig. 2: Autocorrelation comparison of different CPM wave-
forms

depict the autocorrelation magnitudes of uncoded GCPs 1 and
2, and uncoded GSM sequence. It is shown that CPM wave-
forms after differential-encoding exhibit lower autocorrelation
sidelobes compared to the uncoded ones.

Next, we apply a set of CPM training waveforms, which are
normalized to have identical energy in the transmission, for
estimation of a 16-path channel (separated by integer symbols
duration) having uniform power delay profile. Specifically,
we consider h[t] =

∑15
n=0 hiδ[t − nT ], where hi’s are

complex-valued Gaussian random variables with zero mean
and E(|hi|2) = 1/16. These CPM training waveforms are
generated based on Diff-GCPs 1 and 2, Diff-GSM, uncoded
random sequences, “Diff-Rand” sequences (i.e., differentially-
encoded random “on-the-fly” sequences), uncoded Hosseini-
Perrins (HP) sequence [−−−−++++++++−−−−]
[15], and “Diff-HP” sequence. Using least squares (LS) esti-
mator, comparison of channel estimation mean-squared-errors
(MSEs) of different CPM training waveforms is shown in
Fig. 3. The CPM training waveforms from uncoded random
sequences, Diff-Rand sequences, uncoded HP sequence, and
Diff-HP sequence result in relatively higher MSEs due to
their autocorrelation sidelobes with larger variations and rank-
deficient (sometimes) LS estimator. The GSM training wave-
form leads to MSE performance 8.5dB away from the Cramér-
Rao lower bound (CRLB)1. The MSEs of using the proposed
training waveforms (based on differentially encoded GCPs)
exhibit MSEs much closer to CRLB, as close as 4dB from the
CRLB for the case of “Diff-GCP 1” (compared to 5dB distance
for “Diff-GCP 2”). This is understandable as the training
waveform from Diff-GCP 1 displays the best autocorrelation
performance with uniformly low sidelobes, as shown in Figure
2. It should be noted that the estimates of h1 and h15 are
more likely to suffer from larger MSEs due to the roll-off
autocorrelation sidelobes at ±T (see Figure 2).

Furthermore, under the same frequency-selective channel
model, Fig. 4 compares the uncoded bit-error-rates (BERs) of

1This CRLB is derived for perfect CPM training waveform with zero
autocorrelation sidelobes for all the non-zero time-shifts [22].



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2867680, IEEE
Transactions on Vehicular Technology

5

0 5 10 15 20 25 30 35 40
-60

-50

-40

-30

-20

-10

0

10

20

24 26 28 30 32
-50

-40

-30

Fig. 3: Comparison of channel estimation MSEs using differ-
ent CPM training waveforms
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Fig. 4: Comparison of BERs (without error-correcting codes)
using different CPM training waveforms

GMSK systems using perfect channel state information (CSI)
and estimated CSI from the proposed CPM training waveform-
s. Here, we follow the CPM receiver design developed in [9],
where single-carrier frequency-domain equalization (SC-FDE)
with minimum MSE is adopted. It is seen that the BER curves
corresponding to the two Diff-GCPs are very close, and are
about 1.4dB to the BER curve with perfect CSI. On the other
hand, the BER curve corresponding to Diff-GSM displays 5dB
distance to that with perfect CSI.

V. CONCLUSIONS

A systematic construction of CPM training waveform dis-
playing autocorrelation sidelobes close to zero has been pro-
posed. Our idea is to apply differential-encoding to a GCP and
then send the encoded component sequences one after another,
separated by tail bits, to the CPM modulator. Note that this
work is focused on binary CPM with modulation index of
1/2. It would be interesting to extend the presented training
waveform design to generic CPM schemes (e.g., non-binary

modulation orders, rational/integer modulation indices) using
CPM decompositions reported in [23] and [24].
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