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Abstract

International scientific assessments are transnational knowledge-based expert networks

with a mandate to advise policymakers. A well-known example is the Millennium Ecosys-

tem Assessment (MA), which synthesized research on ecosystem services between 2001 and

2005, utilizing the knowledge of 1,360 expert members. Little, however, is known about

the membership composition and the driving forces behind membership nominations in

the MA and similar organizations. Here we introduce a survey dataset on recruitment

in the MA and analyze nomination patterns among experts as a complex network. The

results indicate that membership recruitment was governed by prior contacts in other

transnational elite organizations and a range of other factors related to personal affinity.

Network analysis demonstrates how some core individuals were particularly influential in

shaping the overall membership composition of the group. These findings add to recently

noted concerns about the lack of diversity of views represented in international scientific

assessments.
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Transnational and transgovernmental coordination among states breeds different organi-

zational forms of cooperation, including policy advice through transnational organizations

founded by the United Nations [1, 2, 3], such as the Millennium Ecosystem Assessment (MA)

or the Intergovernmental Panel on Climate Change (IPCC).

Such international scientific assessments have become increasingly popular as transnational

knowledge-based expert networks with a mandate to advise policymakers. It is important to

understand their logic and composition, as international cooperation around complex policy

topics relies on the credibility and advice of these communities [4]. Yet, the credibility of

some of these transnational expert communities has been disputed. Keohane and Nye argue

that scientific information is in part socially constructed and that a transnational expert

community can only be credible if they produce information through a process that is in

accordance with professional norms and characterized by transparency and procedural fairness

[5, page 92] (see also [6, 7] for a critical discussion of the social construction of the science

of climate change). Despite their many achievements and overwhelmingly positive reputation

as facilitators of international cooperation, international scientific assessments are sometimes

criticized on the basis of their procedures and composition [8, 9, 10]. Therefore, it is important

to understand how scientific assessments recruit new expert members. Taking advantage of

innovations in network analysis, here we analyze an original dataset on collaboration and

membership nomination patterns between members of the Millennium Ecosystem Assessment,

a major environmental assessment that was active between 2001 and 2005.

Like other scientific assessments, the MA had many members (around 1,300 individual ex-

perts), was supported by the United Nations, and was composed of academics and practition-

ers studying an environmental issue of particular concern: biodiversity and ecosystem degrada-

tion. The MA achieved its goal in 2005 when it published its final report [11, 12, 13, 14, 15, 16].

Focusing on one specific community for which data are accessible enables us to assess

recruitment processes. Like a recent study on authorship patterns in the Working Group 3 of

the IPCC [17], our analysis includes all members of the MA at the time of data collection, not

just the scientists. Unlike this analysis by Corbera and colleagues, which focuses on just one
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Working Group in the climate change assessment and authorship patterns, we analyze the

nomination process itself, as it determines who actually contributes to the MA as authors.

The most well-known international scientific assessment is the Intergovernmental Panel on

Climate Change (IPCC). Although the IPCC has been the focus of studies of its outputs (e. g.,

[17]), research has yet to study its nominations process. Therefore, this paper studies the MA

as a somewhat related international scientific assessment. Although its nominations process

was distinct, it followed the IPCC model for recruitment (for a full discussion of similarities

and differences, see [13]). In a 2006 commentary in Nature, Loreau and colleagues compare

the MA to the IPCC, noting that it provided a much-needed conceptual framework and a

synthesis of existing data but criticize the fact that there is currently no mechanism for making

this type of assessment global, systematic and sustained [18, page 246]. More recently, Beck

and colleagues have compared the successor to the MA—the Intergovernmental Platform

on Biodiversity and Ecosystem Services (IPBES), which was formed, in part, as a follow-

up to the MA—to the IPCC [19]. Even in the light of procedural differences, the present

dataset provides a unique opportunity to study the formation of an international assessment

to understand how the nominations process works in an empirical case.

The MA was launched in 2001 by Secretary General of the United Nations Kofi Annan.

Its final report was published in 2005 and was comprised of 68 chapters across three volumes.

Like other collaborative scientific networks, some MA members acted as coordinating lead

authors (CLA), some as lead authors (LA), and others as contributing authors for individual

chapters [20]. Since contributing authors were recruited to participate during the writing

process, which was after our data collection period, this study includes data collected from

all 361 CLAs and LAs who were active during the research period. According to its mission

statement, the Assessment aimed to involve the top scientists from around the world in the

evaluation of the state of the science of biodiversity and ecosystem loss.

International scientific assessments have been criticized for being opaque [8], too consensus-

oriented and hence conservative [21], subject to social construction [7, 6, 22, 23], ineffective at

building trust between nations [24], and motivated by self-interest of their members [9, 25]. In
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paraphrasing existing literature, Davis Cross notes that members may just be pursuing their

own personal or professional self-interest and raises the important question whether their

actions may be simply reflecting their own domestic cultures and strategic interest rather

than professional expertise [25]. This reasoning links the aforementioned criticism regarding

the outputs produced by an assessment to its composition and the social aspects underpinning

its formation.

While we cannot give a definitive answer on the individual motivations of the members

of an assessment, we can analyze systematic patterns by which personal networks play a role

in the formation of the institution. In line with criticism that has been echoed in the public

debate and academic research [26, 27, 28], we argue that personal networks between members

of an assessment may take the form of a transnational elite club. In such an arrangement,

persons who are members in some international organizations are likely to nominate people

they already know from these other activities as new members of the MA. To test whether

such transnational elite networks are at work, we test whether an increase in the joint number

of shared IO memberships leads (linearly or non-linearly) to an increase in the probability of

one person nominating the other person (“Institutional co-memberships” and “Institutional

co-memberships (squared)”).

We posit that members nominate potential other members through interpersonal linkages

formed through previous work-related contacts, i. e., persons they have met while being joint

members in other international organizations, like the United Nations Educational, Scientific

and Cultural Organization (UNESCO), the International Human Dimensions Programme on

Global Environmental Change (IHDP), the UN Development Programme (UNDP), the World

Bank, or the IPCC, thereby shaping a transnational “elite club” of “technocrats” [29, 30, 31],

i. e., individuals who transcend multiple IOs that are not readily accessible to the majority

of actors and who are non-partisan and were not elected [32]. We hypothesize that the

probability of member A nominating expert B as a new member is related to the extent of

their shared memberships in other international organizations.
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Figure 1: Full network. Respondents are shown as white nodes, non-respondents (including
former and future LAs and CLAs) as black nodes, and membership nominations as ties, with
nominations among two respondents highlighted in gray.

The selective social nature of such nominations does not strictly imply, however, that elite

club nominations lead to unfavorable outcomes. As a matter of practicality, it is possible

that they may serve to reduce search costs and may be efficient at identifying competent and

willing new members.

Nomination network structure

Figures 1 and 2 reveal the hierarchical nature of the nomination network: a few central nodes—

the founders of the MA—nominated a relatively large number of nodes. These nodes, in turn,

nominated further participants, and so forth, leading to a hierarchical tree-like structure
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Figure 2: Nomination network among the 361 respondents (including isolates). Ties associated
with one shared institutional membership highlighted in medium gray, those with two shared
memberships highlighted in dark gray, and those with three or more memberships in black;
membership nominations without external co-memberships are denoted as very light gray
lines.

similar to snowball sampling, where the origin nodes dominate the remaining nodes in terms

of reachability. There are small deviations from a tree structure because some transitive triads

(ties ij, jk, and ik are present in a triad) can be found in the network, incorporating a small

degree of redundancy in the nomination network (for a full discussion of transitive triads, see

[33]). Cyclical nominations are quite naturally absent.

The structure of this network indicates that agenda-setting power as exerted through

influencing the composition of the epistemic community is distributed very unevenly. A

few members of a selected in-group of persons are able to determine the composition of the
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group to a relatively high degree by selecting other members to their liking who can, in turn,

nominate new members. Table 1 lists the top 15 nodes in terms of reachability centrality,

a custom centrality measure defined in the online methods section, which we consider to be

an operationalization of nomination power, along with a description of their role in the MA.

Additionally, Supplementary Table 1 lists both the outdegree (i. e., number of nominations)

and reachability outdegree for subgroups of leading members of the MA.

A core group of gatekeepers who have diverse interlocking institutional memberships dom-

inate in the MA network. The two most central nodes are Robert T. Watson (c = 164),

co-chair of the MA and chair of the IPCC (among other board affiliations), and Walter V.

Reid (c = 100), director of the MA and member-at-large on the MA Board (among other

affiliations), followed by other members with scores of 25, 24, 22 etc. Number 15 in the list

receives a score of 13. Although the director has more outgoing nomination ties than the

co-chair, the co-chair nominated the director and thus receives a higher score. It is worth

noting that only three of these leading members are female.

Inferential network model

Table 2 shows the results of the inferential network model. The first group of model terms

contains the main findings related to Hypothesis 1. Figure 3 shows a visualization of in-

stitutional affiliations of MA members, the main independent variable. Controlling for the

sender and receiver main effects, “institutional co-memberships” have a strong, significant,

positive effect on membership nomination. One additional shared affiliation in an interna-

tional body increases the chance of being connected by a nomination tie by about 306 percent

(100 · (exp(1.40) − 1) = 305.52). We also include the squared number of institutional co-

memberships to account for non-linear effects. The negative coefficient of this squared term

indicates a concave effect that levels off with several shared affiliations. In other words, go-

ing from one to two shared affiliations has a stronger marginal effect than, say, going from

four to five shared organizations. Substantively, the strong institutional co-membership effect

demonstrates that personal ties to colleagues from other elite organizations is at least as im-

7



ERGM

Institutional elite memberships
Institutional memberships (receiver) −0.11 (0.05)∗

Institutional memberships (sender) −0.06 (0.02)∗∗

Institutional co-memberships 1.40 (0.23)∗∗∗

Institutional co-memberships2 −0.17 (0.05)∗∗∗

Exogenous controls
Same nationality 1.68 (0.19)∗∗∗

Same employer/university affiliation 3.18 (0.42)∗∗∗

Sender male 0.54 (0.29)
Receiver male 0.20 (0.38)
Sender male, receiver male −0.49 (0.40)
Same area of expertise 0.61 (0.22)∗∗

Joint chapter(s) in the report 3.51 (0.19)∗∗∗

Same type and level of degree −0.38 (0.19)∗

Receiver has a PhD or MD −0.05 (0.23)
Sender has a PhD or MD 0.25 (0.17)
Receiver is a social scientist 0.21 (0.23)
Sender is a social scientist 0.18 (0.14)
Both are social/natural scientists 0.13 (0.19)
Sender is a CLA 0.93 (0.19)∗∗∗

Sender CLA × Institutional co-memberships −0.14 (0.21)
Sender is a Leader 0.62 (0.22)∗∗

Leader × Institutional co-memberships −0.05 (0.19)
Endogenous dependencies

Edges −8.00 (0.57)∗∗∗

Two-stars (incoming) −1.44 (0.34)∗∗∗

Two-stars (outgoing) 0.45 (0.07)∗∗∗

Three-stars (outgoing) −0.04 (0.01)∗∗∗

Two-paths −0.26 (0.10)∗∗

Isolates 0.27 (0.29)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Results of the exponential random graph model

portant a factor in shaping the composition of the epistemic community as factors related to

subject, expertise, and collaboration. Figure 4 supports this claim by demonstrating that the

omission of institutional memberships in the model noticeably hampers predictive dyadic fit.

The second group of model terms considers control variables. While we are primarily

interested in the effect of joint memberships in international organizations on the nomination

of new members, we treat other subject-related and personal factors as control variables.
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Figure 3: Memberships of the 361 respondents as white nodes; 21 international organizations
as gray nodes; membership ties shown as black lines.

We control for whether any two experts are active in the same subject area, such as marine

biology, hydrology, or economics (“Same area of expertise”) because we expect members to

nominate others in order to collaborate on shared subject interests. We also control for actual

collaboration in the final assessment report (“Joint chapter(s) in the report”) as a stricter

(though potentially endogenous) test. As collaboration often takes place between persons of

dissimilar ranks, we check for homophily in terms of degree type and level (“Same type and

level of degree”). We also expect the leadership of the MA will play a role in nominations.

The variable “Sender is a Leader” includes all members who served as the Director, an editor
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of a working group, or on the Assessment Panel. Since the coordinating lead authors (CLAs)

were seen as leaders of the individual chapters of the assessment, we expect “Sender is a

CLA” to play a role in nominations. Using interaction terms, we investigate whether these

leadership roles are consequential for the main hypothesis on elite club nominations. We

also anticipate that experts with a scientific degree may be more interested and experienced

collaboration partners and, therefore, more likely to be nominated (“Receiver has a PhD

or MD”), but also more likely to nominate others because they have a more comprehensive

overview of the field (“Sender has a PhD or MD”). We control whether the sender or the

receiver is a social scientist in order to account for possible differentials in collaboration activity

between the two groups (“Receiver is a social scientist” and “Sender is a social scientist,”

respectively). In terms of additional personal factors in the nomination process, we control for

“Same nationality” because we expect that personal networks operate most visibly through

embeddedness in relevant networks “at home,” and “Same employer/university affiliation”

because we expect members to draw on their work- and education-related networks when they

bring in potential collaborators. Finally, several model terms control whether nominations

follow gender dynamics and take the shape of an “old boys’ club” where male members tend

to nominate other male persons.
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Among the control variables, particularly having the same nationality and/or the same

employer or university affiliation are significant predictors of membership nomination ties.

Person i is approximately five times as likely (exp(1.68) = 5.37) to nominate person j if that

person has the same nationality compared to those members who have a different nationality.

If j has the same employer or university affiliation, this increases the odds of nominating

j by about 2,300 percent compared to persons with a different employer/nationality. One

interpretation may be that i nominates j because of visibility; i. e., i wants to bring in j

because personal favors may pay off in the long run. However, this explanation is not the

only plausible interpretation as nominations of persons from the same university of employer

may well have subject-related reasons. Persons may have self-selected into the same institute

or employer because they are pursuing similar research interests, which would be a legitimate

criterion for collaborating with somebody else. Similarly, it may be the case that persons

come to appreciate the collaboration with their colleagues and want to extend this fruitful

partnership in the MA, which is a similarly legitimate criterion. Future research may shed

light on the causal chain and invidual motivations for these patterns.

Neither the variables that represent gender nor the field of the scientist (social versus

natural scientist) are statistically significant. We do find higher nomination rates for CLAs

and MA members with leadership roles. However, the propensity to engage in elite club

nomination patterns as per our hypothesis does not differ between these individuals and

other members of the MA.

The third group of model terms models endogenous dependencies between the dyadic

membership nomination observations. The membership nomination procedure modeled here

has very specific endogenous characteristics that need to be mapped to network statistics in

order to account for the way nominations are partly contingent on each other. The online

methods section contains details on these endogenous controls and an endogenous goodness-

of-fit assessment (see also Supplementary Figures 1–3).
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Conclusion

If the composition and internal structure of an international scientific assessment is structured

by elite cliques and personal affinity, there are likely repercussions to the output generated by

the expert network. This is likely exacerbated when such nomination mechanisms are coupled

with a skewed power distribution due to the existence of initial seeds in a snowball nomination

system. Establishing and examining the link between input and output in detail, however,

is beyond the scope of this particular study. Moreover, if similar elite-based recruitment is

prevalent also in other international organizations, this finding will consequently lead to self-

reinforcing recruitment among transnational elites in the international system more broadly

and persistence of a hierarchy. Future research should evaluate effects of possible changes to

these procedures given the network formation patterns identified here.

An important part of a future research agenda must be a more detailed analysis of in-

terlocking directorates and gatekeeping between transnational expert networks. The present

analysis suggests that the mechanisms represented in the Millennium Assessment may span

many bodies within and beyond the United Nations system. The extent to which the findings

reported here apply to other scientific assessments is yet unclear. But this research is much

needed considering the multitude of overlapping institutional memberships. In addition, given

the similarity of the nominations process to that of other scientific assessments including the

IPCC, these patterns are likely to be a systematic feature of transnational expert regimes.

From an institutional design perspective, it is a daring decision to design such institutions

in a centralized, hierarchical way and put all the agenda-setting and composition-setting

power into the hands of a few transnational elites, no matter their reputation or scientific

credibility. Since the IPCC is currently gearing up for its Sixth Assessment Report, it is

necessary to understand the nominations process for international scientific assessments and

how recruitment to these assessments is related to who eventually serves.
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Methods

Survey

Of the universe of 1,360 persons who were MA members at some point, 739 unique persons

were authors of chapters in the final assessment report. Of these, 117 acted as coordinating

lead authors (CLA), and 415 of them acted as lead authors (LA), together comprising a set

of 493 persons (due to overlapping roles across chapters). In the winter of 2003–2004, 190 of

these 493 authors and coordinating lead authors were already members of the MA, and an

additional 171 persons with the same designation were present who later dropped out before

the report was written. Data were collected during this time period through an online survey

(winter 2003–2004). The survey was endorsed by the directorate of the MA, which led to a

complete cross-section of nomination data without any unit non-response. We expect that

there is a (relatively small) degree of missing data due to recall problems; but ex-post, it is

not possible to assess the extent or properties of these missing data. However, all respondents

had the same opportunity to provide voluntarily the names of persons they had nominated as

members. Missing nomination data were also imputed by asking not only whom a member had

nominated but also by whom a member had been nominated, thereby minimizing measure-

ment error. All 361 lead authors (LA) and coordinating lead authors (CLA) that were engaged

in the assessment at the time were surveyed. It is worth noting that data collection took place

after the Assessment’s structure had been finalized while the individual chapters were being

outlined and drafted (see http://www.millenniumassessment.org/en/History.html for a

complete timeline of the Assessment). Supplementary Figure 4 summarizes the timeline and

selection.

The nomination network includes 178 persons (among them, 100 respondents) who nomi-

nated at least one other person, and 462 persons who were nominated by respondents (248 of

whom were respondents themselves). Overall, the dataset includes a total of 551 nominators

or nominees (279 of whom are respondents). Adding these 551 nominators and nominees to

our list of 361 lead authors and coordinating lead authors leaves us with 633 unique individ-

uals of potential nominators or nominees who were also members, after duplicates have been
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removed. We employ this “extended” network of 633 persons for our descriptive analyses

and visualizations. As covariates are available only for the 361 lead authors and coordinating

lead authors (the set of persons with nomination power), and not mere author members or

past or prospective (coordinating) lead authors at the point of data collection, we estimate

the statistical model on this complete cross-section of 361 lead authors and coordinating lead

authors (i. e., the “core” network of all members with nomination power at the time of data

collection, whether exercised or not).

The MA recruited new members through a nomination process. Through its four working

groups (Sub-Global, Conditions, Scenarios, and Policy Responses), members of the Assess-

ment, its Board, and other participants were given the opportunity to nominate experts to

participate in the Assessment. This process began with multiple nominations from the Di-

rector and Board of the Assessment. Although some people involved in the Assessment were

self-nominated, these self-nominees had to be approved by the Chair of one of the working

groups in order to be invited to participate further in the process. Many of the lowest ranking

authors on each chapter—the contributing authors—were nominated by the other authors of

the chapter themselves to fill gaps in writing. As such, we do not include the contributing

authors in the analysis as they did not exert any influence over the membership composi-

tion of the community and many were not nominated to serve until after our period of data

collection.

Reachability outdegree as a custom centrality measure

To operationalize nomination power, we construct a custom centrality measure (detailed re-

sults shown in Tables 1 and 2 in the main manuscript). First, we compute the reachability

matrix of the directed nomination network. The reachability matrix contains a 1 if row ac-

tor i is strongly connected (i. e., has a directed path of arbitrary length) to column actor

j; otherwise the cell entry in the matrix is 0. This matrix indicates who predates whom in

the network in terms of the nomination chain. Second, we compute outdegree centrality for

this reachability matrix, which corresponds to the row sums of the matrix. These outdegree

18



centralities of the reachability matrix are a direct operationalization of agenda-setting power.

For each actor, the value indicates how many other actors depend directly or indirectly on

nominations originating from this focal actor.

Supplementary Table 1 provides summary statistics for the extended network with 633

members. It shows the nomination outdegree and reachability outdegree for several subgroups

of leading members.

Network visualizations and ERGM

We plot the nomination network among all persons mentioned in the dataset (Figure 1 in

the main manuscript) and, alternatively, among LA and CLA respondents (Figure 3 in the

main manuscript) using standard network layout algorithms [37]. However, only an inferential

network model can control for subject-related and personal factors and properly account for

network dependence in the data-generating process. To infer the generative properties of

the nomination network, we employ an exponential random graph model (ERGM) (Table 2

in the main manuscript). ERGMs are an extension of logistic regression models that permit

modeling of the dependencies among observations on top of exogenous covariates. This process

enables us to circumvent the independence assumption of traditional regression models, and

at the same time it offers interesting possibilities for theorizing about network phenomena

[36], which has been seen as one of the “holy grails of the social sciences” [42, page 245].

The ERGM is estimated by Markov Chain Monte Carlo Maximum Likelihood Estimation

(MCMC-MLE). Extensive degeneracy and convergence tests were conducted to ensure that

the model fits well (Supplementary Figure 1) and the estimation converges (Supplementary

Figures 2 and 3). We used the network package [35] and the sna package [34] for the statistical

computing environment R [41] for descriptive analysis and the ergm package [38] for parameter

estimation. For goodness-of-fit assessment, we employed the R package xergm [40], and for

reporting the statistical results, we used the texreg package for R [39].

The edges term acts as an intercept like in a regression model. The two-stars and three-

stars terms govern the degree distributions of the nodes. An incoming two-star is a local
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network configuration where a node has two incoming ties. The term therefore captures the

clustering of incoming edges into popular nodes. The negative two-stars term indicates that

fewer two-stars are present than expected by chance, which is a sign of “anti-popularity”

of nodes. In other words, there is a tendency to have fewer incoming ties than expected

in a random graph because non-members can usually be nominated only once before they

become a member. This pattern is evident when looking at the network: most nodes have

only one single incoming connection, hence the negative coefficient. A positive outgoing two-

stars term and a negative outgoing three-stars term jointly represent very skewed outdegree

distributions, similar to polynomial terms in a regression framework. This captures the fact

that some of the members of the nomination network had an overwhelming influence on the

nomination network when the community was founded. We can clearly observe this finding in

the nomination network in Figure 1 in the main manuscript, where a few original nominators

are responsible for a relatively large fraction of nominations. The negative two-paths term

indicates that fewer directed two-paths (ijk) exist than pure chance would predict, given the

other model terms. The isolates term accounts for the tendency of many nodes not to be

connected to other nodes.

Endogenous model terms

Membership nominations follow a temporal pattern where somebody who has been nomi-

nated cannot be nominated again (with an exception being the reception of two simultaneous

nominations). In the topology of the network, this leads to a specific distribution of indegree

centrality (controlled by the incoming two-star model term), where most nodes only receive

a single nomination tie, and to the absence of redundant paths, meaning that two-paths in

the network tend not to be closed by direct ties. A related consequence is that nodes further

downward along the nomination chain get to nominate fewer persons on average because the

set of eligible experts shrinks as more people have been nominated successfully (outgoing

*stars). Together, these endogenous model terms capture the network dependencies of the
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MA nomination network well. This claim is supported by the comparative goodness-of-fit

assessment in Supplementary Figure 1.

Endogenous model fit

Supplementary Figure 1 assesses the endogenous model fit of the model presented in the

main document (first and second row) and a model without endogenous dependencies (for

comparison with a standard logistic regression model). One thousand networks are simu-

lated from the respective model, and the distributions of endogenous network properties like

geodesic distance or shared partners across the simulations (the boxplots in the figures) are

plotted against the observed values of the same network statistics (the solid black line). The

observed and simulated networks are very much in line for the full model (first and second

row) but deviate in the model without endogenous dependencies (third and fourth row). This

demonstrates that the additional model complexity of the ERGM is worth the effort.

MCMC diagnostics

Supplementary Figures 2 and 3 present the MCMC trace and the distribution of parameter

changes along the MCMC chain for each model term. The model shows no signs of degeneracy

or convergence problems.

Interpretation of institutional co-membership effect

The institutional co-membership effect is introduced as a main effect and a squared term to

capture a concave functional form. Supplementary Figure 5 shows a marginal effects plot

for the Institutional co-memberships. The average effect is positive up to the point of eight

shared co-memberships. After that, the effect becomes negative. However, the bar plot shown

in Supplementary Figure 6 demonstrates that this is not substantively important as there are

very few observations with more than four shared institutional memberships; the maximum

number is 13. Supplementary Figure 7 plots the predicted probabilities for the most common

groups, i. e., up to four institutional co-memberships, including the 95 percent confidence
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interval around the predictions. After that point, the probability would level off, but there

are few observations.

Ethics statement and data availability

Data were collected in accordance with Columbia University policies on Human Subjects

research (Columbia University IRB Protocol #AAAA2069). Informed consent was obtained

from all subjects. The survey instrument, the script used for data analysis, and the log file

are archived at the Harvard Dataverse (http://dx.doi.org/10.7910/DVN/TTCTIY).
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Nomination Reachability
N outdegree SD outdegree SD

All members 633 0.78 1.93 2.65 8.18
Coordinating Lead Authors 46 2.61 3.18 4.70 4.76
Lead Authors 197 0.72 2.14 3.20 13.73
Director 1 17.00 0.00 100.00 0.00
Assessment Panel 13 3.23 3.06 20.08 43.81
Working Group Editors 10 2.80 2.30 8.60 6.93

Supplementary Table 1: Outdegree and reachability outdegree of leading members
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Supplementary Figure 1: Endogenous goodness of fit of the parametric model (first and
second row) and the same model without any endogenous network dependency terms
(third and fourth row). 1,000 simulated networks based on the model (boxplots) versus
the observed network (black line) according to six auxiliary network statistics. Horizon-
tal lines in the boxplots denote the median of a statistic across simulated network, boxes
denote upper and lower quartile, and upper and lower wiskers denote maximum and
minimum values excluding outliers. The logistic regression model (third and fourth
row) fits considerably worse than the ERGM because network dependencies are not
modeled.



0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
40

0
20

40
60

Iterations

Trace of edges Density of edges

−40 −20 0 20 40 60

0.
00

0
0.

01
5

0.
03

0

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
10

0
10

20

Iterations

Trace of istar2 Density of istar2

−10 0 10 20

0.
00

0.
04

0.
08

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
20

0
0

20
0

40
0

Iterations

Trace of ostar2 Density of ostar2

−200 0 100 200 300 400

0.
00

0
0.

00
2

0.
00

4

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
50

0
50

0
15

00

Iterations

Trace of ostar3 Density of ostar3

−1000 0 500 1500

0e
+

00
4e

−
04

8e
−

04

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
40

0
40

80

Iterations

Trace of twopath Density of twopath

−50 0 50 100

0.
00

0
0.

01
0

0.
02

0

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
40

0
20

40

Iterations

Trace of isolates Density of isolates

−40 −20 0 20 40

0.
00

0
0.

01
5

0.
03

0
0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
20

0
10

20

Iterations

Trace of nodematch.nationality Density of nodematch.nationality

−20 −10 0 10 20

0.
00

0.
02

0.
04

0.
06

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
5

0
5

10

Iterations

Trace of nodematch.employer Density of nodematch.employer

−5 0 5 10
0.

00
0.

05
0.

10
0.

15

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
40

0
20

40
60

Iterations

Trace of nodeofactor.gender.Male Density of nodeofactor.gender.Male

−40 −20 0 20 40 60

0.
00

0
0.

01
0

0.
02

0
0.

03
0

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
30

−
10

10
30

Iterations

Trace of nodeifactor.gender.Male Density of nodeifactor.gender.Male

−20 0 20 40

0.
00

0.
02

0.
04

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
20

0
20

40

Iterations

Trace of mix.gender.Male.Male Density of mix.gender.Male.Male

−20 0 20 40

0.
00

0.
02

0.
04

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
10

0
0

50
15

0

Iterations

Trace of nodeicov.inst.num Density of nodeicov.inst.num

−150 −50 0 50 100 150

0.
00

0
0.

00
4

0.
00

8
0.

01
2

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
20

0
0

20
0

40
0

Trace of nodeocov.inst.num Density of nodeocov.inst.num

−200 0 200 400

0.
00

0
0.

00
2

0.
00

4

0.0e+00 4.0e+07 8.0e+07 1.2e+08

−
40

0
20

60

Trace of edgecov.inst.cooc Density of edgecov.inst.cooc

−40 −20 0 20 40 60

0.
00

0
0.

01
0

0.
02

0

Supplementary Figure 2: MCMC trace and density of parameter changes along the
MCMC chain (part 1).
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Supplementary Figure 3: MCMC trace and density of parameter changes along the
MCMC chain (part 2).
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Total: 1,360 members (incl. dropout)

Report: 493 authors with nomination authority (LA and CLA)

Survey: 361 members with nomination authority (LA and CLA)

Supplementary Figure 4: Timeline and selection of MA members for the survey.
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Supplementary Figure 5: Marginal effect plot for Institutional co-memberships.
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Supplementary Figure 6: Absolute frequencies of dyadic institutional co-memberships.
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Supplementary Figure 7: Predicted probabilities for the most prevalent values on the
Institutional co-memberships variable. The gray area denotes the 95 percent confidence
interval around the line, which represents the mean predicted probability.


