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Abstract. Understanding the composition of species in ecosystems on a
large scale is key to developing effective solutions for marine conservation,
hence there is a need to classify imagery automatically and rapidly. In
2019, ImageCLEF proposed for the first time the ImageCLEFcoral task.
The task requires participants to automatically annotate and localize
benthic substrate (such as hard coral, soft coral, algae and sponge) in a
collection of images originating from a growing, large-scale dataset from
coral reefs around the world as part of monitoring programmes. In its
first edition, five groups participated submitting 20 runs using a variety
of machine learning and deep learning approaches. Best runs achieved
0.24 in the annotation and localisation subtask and 0.04 on the pixel-
wise parsing subtask in terms of MAP 0.5 IoU scores which measures the
Mean Average Precision (MAP) when using the performance measure of
Intersection over Union (IoU) bigger to 0.5 of the ground truth.
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1 Introduction

The ImageCLEFcoral task described in this paper is part of the ImageCLEF3

benchmarking campaign [1]. ImageCLEF is part of CLEF4 (Cross Language
Evaluation Forum) and it provides a framework where researchers can share
their expertise and compare their methods based on the exact same data and
evaluation methodology in an annual rhythm. In 2019, there were four tasks
in ImageCLEF: ImageCLEFlifelog; ImageCLEFmedical; ImageCLEFcoral; and
ImageCLEFsecurity.

In its first edition, ImageCLEFcoral follows the successful ImageCLEF an-
notation tasks (2012-2016) [2–6] and requires participants to automatically an-
notate and localize a collection of images with types of benthic substrate, such
as hard coral and sponge.

3 http://www.imageclef.org/
4 http://www.clef-campaign.org/
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The genesis of the ImageCLEFcoral task is from the ever-increasing amount
of data being collected as part of marine conservation efforts. With the rise
in popularity both of Scuba diving and underwater photography, high quality
equipment to archive the underwater world has become inexpensive for marine
biologists and conservation enthusiasts. The performance of so-called “action
cameras” such as GoPros can yield high quality imagery with very little photo-
graphic expertise from the user. Such imagery can be used to assess the health of
a coral reef, for measurements of individual species and wider benthic coverage
of assemblages indicating phase shifts in the marine ecosystem [7]. However, this
creates a volume of data that is too large to be annotated by human labellers,
and this problem is substantially more difficult than the segmentation of other
image types due to the complex morphologies of the objects [8].

A typical computer vision application involves image capture, then segment-
ing regions of interest from the surroundings, and finally classifying them. There
has been a long-standing use of machine learning in the last of these stages
in particular, because alternative strategies such as rule-based classification are
generally less effective. Classifying man-made objects (such as in previous Image-
CLEF annotations tasks), which may have simple, well-defined shapes, is more
straightforward than classifying biological objects because the shape of the lat-
ter varies from one instance to another; correct classification will often involve
a combination of shape and texture.

In the same way, segmenting a natural shape from its surroundings is not
necessarily straightforward. For this task for example, colour might be enough
to segment some parts of a single coral from a rock lying behind it but other
parts of the same coral might lie in front of a similarly-coloured sponge or fish
— this makes the segmenting task much more difficult.

The difficulty in both the segmentation and classification stages explains why
there are two sub-tasks within the coral reef exercise. The first is to identify the
type of substrate present within a region without having to identify its outline
precisely, while the second involves segmenting the coral correctly as well as
classifying it.

The rest of the paper is organised as follows: Section 2 presents the 2019
ImageCLEFcoral task; Section 3 provides an overview and analysis of the col-
lection; Section 4 details the evaluation methodology; Sections 5 and 6 present
and discuss the results of the participants; and finally, Section 7 concludes the
paper indicating possible new directions for the challenge.

2 Tasks

In its first edition, the ImageCLEFcoral task follows a similar format to 2015
and 2016 ImageCLEF annotation tasks [2, 3] and includes two subtasks:

Coral reef image annotation and localisation subtask For each image, partici-
pants produce a set of bounding boxes, predicting the benthic substrate for each
bounding box in the images.



Coral reef image pixel-wise parsing subtask For each image, participants produce
a set of polygons bounding each benthic substrate and predict the benthic sub-
strate for each polygon in the image. This task aims to provide a more detailed
segmentation of the substrate in the image.

3 Collection

The annotated dataset comprises several sets of overlapping images, each set
taken in an area of underwater terrain (see Section 3.1). Figure 1 shows an
example of an image in the collection. Each image was labelled by experts (see
Section 3.2). The training set contains contains 240 images with 6670 substrate
areas annotated and the test set contains 200 images with 5370 substrate areas
annotated.

Fig. 1: An image from the ImageCLEFcoral 2019 task collection.

Some types of benthic substrates are easy to detect with obvious features,
others are much more difficult. For example, hard corals are typified by having
a rigid skeleton unlike soft corals which often have a soft, fluffy appearance. The
classification and descriptions of organic benthic substrate are as follows:

Hard Coral - Branching: Morphologies grow like a tree, with branches com-
ing out from a centre point and continually branching (secondary branching).

Hard Coral - Sub-Massive: Unlike branching colonies, these are columnar
morphologies which do not have secondary branching. All branches come
from the first column and typically they will only have columns.



Hard Coral - Boulder: Coral morphologies that grow in spherical shapes and
are often called massive corals or brain corals (on some species polyp walls
form ridges that look like a human brain).

Hard Coral - Encrusting: Morphologies that form a layer over hard surfaces,
and they follow the contours of the surface. These are more difficult to see
than more 3D corals, but some of those genera that form 3D morphologies
also form encrusting morphologies.

Hard Coral - Table: Corals morphologies that look like a table, typically with
a stalk connecting it with the substratum. Many of these colonies begin as
branching colonies, but their branches form tight networks to create a flat
surface with a table-like appearance.

Hard Coral - Foliose: These morphologies are named after their leaf-like struc-
ture. They are sometimes referred to as cabbage corals.

Hard Coral - Mushroom: These are single polyp corals. Their skeleton looks
like that of an up-turned mushroom, with the ridges mimicking the “gills”
of the underside of a mushroom. These can be found all over a reef, and
are from only one family, the Fungidae. These single polyps are much larger
than the polyps you find in colonies.

Soft coral: Soft corals cover a wide variety of species that are distinguished by
their apparent flexibility, texture and colour. They may have clearly distin-
guishable open polyps. This category covers all soft corals, except Gorgonian
sea fans (see below).

Gorgonian: Gorgonian sea fans are distinctive soft corals that grow as large
branching planar structures that face into the prevailing current. They can
resemble tree-like structures with a thick trunk and branches, as well as more
uniformly branching structures that do not form complete plates.

Sponge: These can have a varied morphology and can also be highly cryptic.
They differ from corals in that they do not have polyps but tiny holes, giving
them a pitted appearance. This category covers all sponges, except barrel
sponges (see below).

Barrel sponge: A sponge with a highly distinctive, dark orange/brown barrel
shape with a wide opening at the top. Barrel sponges were classified mor-
phologically, not taxonomically, so any with this growth form were grouped.

Fire coral (Millepora): This is not actually a coral but rather a colony of
tiny animals called hydroids. They grow in a variety of shapes but typically a
branching staghorn structure. They can also encrust rocks and other organic
substrate such as gorgonian sea fans.

Algae: There are several classes of algae but we are interested only in the
large-leaved foliose macro-algae and not turf algae, crustose coraline algae,
encrusting algae or maerl which are difficult to classify from imagery. This
type of algae can vary from large, vivid green leaves to paler, fluffy bushes.

3.1 Data acquisition

The images for the ImageCLEFcoral task are a subset from a growing, large-
scale collection of images taken of coral reefs around the world as part of a coral



reef monitoring project with the Marine Technology Research Unit (MTRU) at
the University of Essex. The subset used was collected from several locations in
the Wakatobi Marine Reserve in Sulawesi, Indonesia in July 2018. The data was
collected using SJCAM5000 Elite action cameras in underwater housings with
a red filter attached, held at an oblique angle to the reef. Most images have a
tape measure running through a portion of the image because they are part of
a monitoring collection.

3.2 Image annotation

The images were manually annotated using a custom online polygon drawing
tool (see Figure 2 for a screenshot of the tool).

Fig. 2: A screenshot from the polygon annotation tool used for the manual labelling.

Each image was hand-annotated by postgraduate coral biology students to
identify benthic substrate and validated by an administrator. Using the online
tool, areas of organic benthic substrate were identified. First a polygon area was
created by clicking points on the image (see Figure 3) and then a substrate type
was chosen and the label completed (see Figure 4).



Fig. 3: A cropped screenshot of the
annotation interface showing how
dots are drawn around the object.

Fig. 4: A cropped screenshot of the annota-
tion interface showing a completed polygon
classified by colour.

Annotators were instructed to ensure the following rules:

– Click points must be in sequence around the object to avoid overlapping
bounding boxes;

– Click points and eventual bounding box should be inside the annotated ob-
ject;

– One bounding box can be used for multiple individuals (substrates) so long
as they are all the same benthic substrate type;

– Bounding boxes must not overlap.

Fig. 5: An example of a training image used by ImageCLEFcoral annotators to ensure
they were annotating correctly.



As a quality control to rank and train annotators, they were provided with
five training images with a rich diversity of substrates, annotated previously
to pixel level (see Figure 5). These training images are considered as “golden
annotations” and used for the per-class agreement of the users and the ground-
truth.

The agreement per class has been calculated, on a pixel level, with the inter-
section over union (IoU) metric:

agreement =
# of true positives

# of false positives + # of false negatives + # of true positives
.

After discarding the annotators with an agreement level smaller than 15%
for quality control, the average annotation agreement and standard deviation
was calculated per category of the benthic substrate type.

3.3 Collection analysis

For the training set, the proportion of “background” pixels (i.e., pixels not an-
notated with any of substrates) was 76.44%. Excluding the background, the
benthic substrate type pixel-distribution can be found in Figure 6. The figure
shows a large imbalance towards soft-corals, whereas seven benthic substrate
types have been underrepresented in less than 3% of the total non-background
pixels (“Hard Coral - Submassive”, “Hard Coral - Table”, “Hard Coral - Foliose”,
“Hard Coral - Mushroom”, “Soft Coral - Gorgonian”, “Fire Coral - Millepora”,
“Algae - Macro or Leaves”).

Fig. 6: Benthic substrate types distribution (per-pixel), excluding background, in the
ImageCLEFcoral 2019 training set.



Figure 7 presents the histograms showing the number of objects (i.e., distinct
polygons) per image and Figure 8 presents the number of points per object
completed by the annotators in the training set. This shows the substrate type
imbalance in the data making the task more challenging.

Fig. 7: Histogram representing the
number objects per image.

Fig. 8: Histogram representing the number
points (or clicks) per object.

4 Evaluation Methodology

The task was evaluated using the methodology of previous ImageCLEF anno-
tation tasks [2, 3],which follows a PASCAL style metric of IoU. We used the
following three measures:

MAP 0.5 IoU : the localised Mean Average Precision (MAP) for each submit-
ted method using the performance measure of IoU >=0.5 of the ground
truth;

R 0.5 IoU : the localised mean recall for each submitted method using the per-
formance measure of IoU >=0.5 of the ground truth;

MAP 0 IoU : the image annotation average for each method in which the con-
cept is detected in the image without any localisation.

In addition, to further analyse the results per types of benthic substrate, the
measure accuracy per substrate was used, in which the segmentation accuracy
for a substrate was assessed using the number of correctly labelled pixels of that
substrate, divided by the number of pixels labelled with that class (in either the
ground truth labelling or the inferred labelling).

5 Results

In 2019, 13 teams registered for the first edition of the ImageCLEFcoral task.
Five individual teams submitted 20 runs. Table 1 gives an overview of all par-



ticipants and their runs. There was a limit of at most 10 runs per team and
subtask.

Table 1: Participating groups

Team Institution # Runs T1 # Runs T2

ISEC [9] Coimbra Institute of Engineering, Portugal 1 0
VIT [10] Vellore Institute of Technology, India 5 0
HHUD [11] Heinrich-Heine-Universität Duesseldorf,

Germany
9 1

SOTON University of Southampton, UK 0 3
MTRU [12] Marine Technology Research Unit, University of

Essex, UK
0 1

5.1 Coral reef image annotation and localisation (subtask 1)

Tables 2 and 3 present the performance of the participants on the coral reef image
annotation and localisation subtask. 15 runs were submitted in this subtask by
3 teams.

Table 2: Coral reef image annotation and localisation performance in terms of the
following scores: MAP 0.5 IoU ; R 0.5 IoU ; and MAP 0 IoU .

Run id team MAP 0.5 IoU R 0.5 IoU MAP 0 IoU

27417 HHUD 0.2427 0.1309 0.4877
27416 HHUD 0.2294 0.1307 0.5010
27419 HHUD 0.2199 0.1216 0.4421
27418 HHUD 0.2100 0.1216 0.4547
27349 VIT 0.1400 0.0682 0.4310
27348 VIT 0.1344 0.0723 0.4240
27115 VIT 0.0849 0.0456 0.4240
27350 VIT 0.0483 0.0287 0.2871
27347 VIT 0.0410 0.0274 0.2716
27421 HHUD 0.0026 0.0037 0.2051
27414 HHUD 0.0029 0.0043 0.2284
27415 HHUD 0.0027 0.0045 0.2910
27398 HHUD 0.0026 0.0043 0.2715
27413 HHUD 0.0021 0.0030 0.2028
27497 ISEC 0.0006 0.0006 0.0006

The HHUD team [11] achieved the best results in terms of MAP 0.5 IoU by
applying a state-of-the-art deep learning approach, YOLO. Unlike the regional



convolutional neural network (R-CNN) approach adopted by [10], YOLO works
on the whole image at the same time, by dividing the entire image into square
cells which are predicted to contain bounding boxes of substrate. This should
mean that there are fewer background errors compared to R-CNNs because more
context is taken into account. In addition, the authors devised an approach of
their own, first locating and then classifying, and then utilising machine learning.
The strategy for locating possible substrate is that they differ from background
regions, so the authors partition the image into small “tiles” and construct a
feature vector containing colour, shape and texture measures: normalized his-
tograms, grey-level co-occurrence matrices and Hu moments, respectively. From
these features, a binary classifier is trained to distinguish coral and non-coral
tiles. For classification of the substrate types, both k-nearest neighbour and
convolutional neural network (CNN) approaches were examined, the latter con-
trasting shallow and deep networks and utilised the popular pre-trained VGG19
with transfer learning.

The contribution from the ISEC [9] team took a traditional computer vision
approach. The authors established that colour alone is not a suitable measure for
classification and established a feature vector that encapsulated colour and tex-
ture information: the mean, standard deviation, entropy of a grey-scale version
of the original colour image, plus a hue ratio which measures colour content.
All of these were calculated in a 5 × 5 region around each pixel. Using this
feature vector, the authors explored a variety of machine learning algorithms
(e.g., nearest neighbour, decision trees, discriminant analysis and support vector
machines). They found that the most effective machine learning algorithm was
random forests.

The VIT submission [10] approaches the annotation task using CNNs, which
have been applied to a wide range of image classification tasks in recent years.
A standard CNN would fare badly on this task because it is tuned to the entire
image containing a single instance of the object to be classified, so they have
used a variant known as Faster R-CNN. It overcomes the issue by extracting
“region proposals” from the image, then using an algorithm to combine them
into those passed on to the CNN. They have explored layering this on top of
three existing CNNs: NASnet, Inception V2, and Resnet101. All these models are
provided with the Tensorflow object detection API and are provided pre-trained
using the COCO dataset, which contains 300,000 images in 80 categories of nat-
ural and man-made objects. Using the ImageCLEF training images, the authors
fine-tuned the ability of the various networks to perform the classification task.
They also explored the effect of augmenting the networks’ training dataset by
adding noise, changing the brightness and contrast, and performing geometrical
distortions such as shears, shifts, rotations and mirror imaging. CNNs currently
represent the state-of-the-art in machine learning for image classification, and
this use of well-known techniques provides a good benchmark.



Table 3: Coral reef image annotation and localisation performance in terms of the
Intersection over Union (IoU) per benthic substrate.
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27497 ISEC 0.0198 0.0 0.0007 0.0121 0 0.0 0.0 0.0079 0.0 0.0277 0.0 0 0.0
27421 HHUD 0.0007 0.0 0.0167 0.0048 0 0.0006 0.0106 0.0571 0.0 0.0072 0.0 0 0.0
27419 HHUD 0.0261 0.0 0.0315 0.0042 0 0.0023 0.0228 0.0423 0.0005 0.0088 0.0304 0 0.0012
27418 HHUD 0.0246 0.0 0.0321 0.0038 0 0.0 0.0269 0.0447 0.0005 0.0086 0.0318 0 0.0012
27417 HHUD 0.0356 0.0 0.033 0.0069 0 0.0 0.0406 0.0505 0.0008 0.0094 0.0213 0 0.0157
27416 HHUD 0.0346 0.0 0.0343 0.0064 0 0.0 0.0437 0.055 0.0008 0.0094 0.0222 0 0.0158
27415 HHUD 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0731 0.0 0.0 0.0 0 0.0
27414 HHUD 0.0089 0.0 0.016 0.0015 0 0.0 0.0 0.0562 0.0 0.0104 0.0054 0 0.0
27413 HHUD 0.0068 0.0021 0.0063 0.0014 0 0.0022 0.0 0.0523 0.0 0.0063 0.0 0 0.0
27398 HHUD 0.0013 0.0 0.0116 0.0 0 0.0 0.0 0.0702 0.0 0.002 0.0 0 0.0
27350 VIT 0.0597 0.0 0.0305 0.0141 0 0.0 0.0422 0.0808 0.0 0.0299 0.0598 0 0.0
27349 VIT 0.0637 0.0 0.1012 0.0195 0 0.0028 0.0758 0.0804 0.0 0.0329 0.0619 0 0.0004
27348 VIT 0.0548 0.0 0.0956 0.0171 0 0.0129 0.119 0.0782 0.0 0.0365 0.0579 0 0.0
27347 VIT 0.0456 0.0 0.0374 0.0055 0 0.0 0.0204 0.0918 0.0 0.0239 0.0498 0 0.0
27115 VIT 0.0436 0.0 0.0809 0.0168 0 0.0128 0.0664 0.0722 0.0 0.0349 0.0526 0 0.0

5.2 Coral reef image pixel-wise parsing (subtask 2)

Tables 4 and 5 present the performance of the participants on the coral reef im-
age pixel-wise parsing subtask. Five runs were submitted in this subtask by three
teams. In this subtask, a team comprising of researchers at Filament working

Table 4: Coral reef image pixel-wise parsing performance in terms of the following
scores: MAP 0.5 IoU ; R 0.5 IoU ; and MAP 0 IoU .

Run id team MAP 0.5 IoU R 0.5 IoU MAP 0 IoU

27505 HHUD 0.0 0.0 0.0
27500 MTRU 0.0419 0.049 0.2398
27343 SOTON 0.0004 0.0015 0.0484
27324 SOTON 0.0 0.0 0.0899
27212 SOTON 0.0 0.0 0.0712

with the University of Essex [12] achieved best results in terms of MAP 0.5 IoU .
They developed a classification system based around Deeplab V3, a deep CNN
that reduces the amount of post-processing necessary to deliver a final, seman-
tic segmentation and classification. Their post-processing involved connected-
component labelling, morphological opening and closing to delete small regions



Table 5: Coral reef image pixel-wise parsing performance in terms of the Intersection
over Union (IoU) per benthic substrate type.
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27505 HHUD 0.0003 0.0 0.0 0.0 0.0 0.0 0.0 0.0432 0.0 0.0 0.0 0.0 0.0
27500 MTRU 0.0958 0.0 0.1659 0.0446 0.0 0.0065 0.219 0.13 0.0186 0.0573 0.0889 0.0 0.0007
27343 SOTON 0.0235 0.0 0.023 0.0124 0.0 0.0012 0.048 0.1145 0.0 0.0108 0.0 0.0038 0.0
27324 SOTON 0.0262 0.0296 0.0183 0.0188 0.0138 0.0135 0.0025 0.0851 0.0254 0.0283 0.0135 0.0212 0.0167
27212 SOTON 0.0121 0.0047 0.0153 0.0188 0.0 0.0042 0.0021 0.0851 0.0 0.0 0.0156 0.0 0.0008

and polygon approximation, all reasonably conventional image processing func-
tions.

The SOTON team used a Keras implementation of Deeplab V3+, pre-trained
on the well-known Pascal VOC and fine-tuned for each class using a one-versus-
all, pixel-wise classifier which was trained on the ImageCLEF dataset, with the
loss weighted by the ratio of pixels belonging to the class versus not. As is
common with deep networks, the training data were augmented with rotation,
flipping, shearing and elastic distortions. The result was then passed through a
conditional random field (CRF), which allows groups of similar entities to be
assigned the same label.

The HHUD [11] team also participated in this subtask and used a similar
approach from subtask 1 (see Section 5.1).

HHUD and SOTON submitted self-intersecting polygons, like the one in
Figure 9, which were excluded from the evaluation.

Fig. 9: An example of a self-intersecting polygon submitted to the ImageCLEFcoral
coral reef image pixel-wise parsing subtask that were excluded from the evaluation.



6 Discussion

The ultimate goal of this ImageCLEF task is the reconstruction of 3D models
of coral reefs from images and using measurements of complexity, surface area
and volume from the reconstructed models for advances in marine conservation
monitoring. The 3D reconstruction process is known as visual structure from
motion (SfM) and requires only a set of uncalibrated images of the object to
work from. This has been used for a wide variety of reconstructions ranging from
small archæological finds to large-scale environments with some success. In the
context of this work, reconstructions range from individual coral specimens (from
about 100 images) up to entire reefs, the latter using an innovative multi-camera
capture system. To assess the health of a coral reef, marine biologists need to
measure individual specimens and it has been established that reconstructions
are accurate enough for this to be possible. However, this cannot be automated
because there is no easy way to establish which reconstructed points belong to
which substrate type; indeed, this problem is substantially more difficult than the
segmentation of images. Hence, we have conjectured that, given annotated image
regions in 2D, it should be possible to carry the assigned class labels forward
through the SfM processing pipeline, resulting in a 3D model in which individual
substrates are labelled [13]. The 2D labelling task is what this ImageCLEF task
addresses.

As such the task is different from similar image classification and marine
substrate classification tasks [14–16]. Firstly, the images were collected using
low-cost action cameras (approx. $200 per camera) with a fixed lens and firing
on a three second lapse. The effect of this on the imagery is that there is some
blurring (in some images this is quite bad), the colour balance is not always cor-
rect (as the camera adjusts the white balance automatically based on changing
environmental variables) and final image quality is lower than what could be
achieved using high-end action cameras or DSLRs which are more typically used
in this type of research. However, all of the images used in the task are used for
building the 3D model and therefore have useful information in the pipeline. Low
cost cameras were used to show this approach could be replicated affordably for
marine conservation projects.

Additionally, the distance and angle the camera was facing the reef was
unpredictable due to how they were placed on the multicamera array. This meant
that some images were close-range and downward facing whilst other images were
oblique across the reef. This has a big impact on the number of objects in the
field of view and the ability of annotators to label them.

Tables 3 and 5 shows how the accuracy of the proposed approach varied be-
tween benthic substrate types. In fact, a marine dataset is difficult to annotate
due to the wide variety of growth forms of benthic organisms that causes errors
in image hand-annotation. Sponges are widely varied in their morphology and
can often look like both hard and soft coral species, particularly encrusting vari-
eties. Branching and submassive hard coral growth forms can be easily mistaken
for each other due to their similar morphologies and the difficulty of noting sec-
ondary branching from images alone. Branching hard coral and lobed soft coral



are also difficult to distinguish. However, some morphologies are easier to detect,
such as gorgonian sea fans and barrel sponges, hence these were annotated as
separate categories.

Despite the difficulties, the participants applied a variety of machine learning
and deep learning approaches with promising results. We noticed that in the
coral reef image pixel-wise parsing subtask many self-intersecting polygons were
submitted and the evaluation approach excluded this type of polygon which
could cause the low performance in the subtask.

7 Conclusions

The first edition of the ImageCLEFcoral task required participants to automati-
cally annotate and localize benthic substrate (such as hard coral, soft coral, algae
and sponge) in a collection of images used for marine conservation monitoring.
Five groups participated in the task with a variety of machine learning and deep
learning approaches.

We hope that future editions of this task will include images from different
geographical areas, meaning that the visual features of the substrate classes will
be different; however, it may be possible to employ a cross-learning technique
from training data from other regions. Additionally, we hope to develop methods
for evaluating the subtasks based on insitu evaluation and photogrammetric eval-
uation, giving participants a richer set of metadata to use within their computer
vision approaches.
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