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Dynamics of Laterally-Coupled
Pairs of Spin-VCSELs

Martin Vaughan , Hadi Susanto , Ian Henning, and Mike Adams

Abstract— A newly-developed normal mode model of laser
dynamics in a generalised array of waveguides is applied to
extend the spin-flip model (SFM) to pairs of evanescently-coupled
spin-VCSELS. The effect of high birefringence is explored,
revealing new dynamics and regions of bistability. It is shown
that optical switching of the polarisation states of the lasers may
be controlled through the optical pump and that, under certain
conditions, the polarisation of one laser may be switched by
controlling the intensity and polarisation in the other.

Index Terms— Spin-VCSELs, laser arrays, laser dynamics,
optical switching, spin flip model, coupled lasers.

I. INTRODUCTION

RECENT years have seen a growth of research interest
in the nonlinear dynamics of arrays of vertical cavity

surface-emitting lasers (VCSELs) and in potential applications
of these effects. Notable advances include work on parity-time
symmetry and non-Hermiticity associated with the control
of gain and loss in neighbouring VCSEL cavities [1]–[4].
Progress has also been rapid in the understanding of ultrahigh-
speed resonances that offer the prospect of very high frequency
modulation of coupled VCSELs and nanolasers [5]–[8].
Additional insight into optical coupling between adjacent ele-
ments of a two-dimensional VCSEL array has been achieved
by careful analysis of the effects of varying the injected current
independently on each array element [9]. The coupling was
shown to provide extra optical gain for array elements and
thus lead to additional output power of the array due to
in-phase operation [9], [10], reduced thresholds of individual
elements [9], [11] and even cause unpumped elements to
lase [9].

In almost all the above examples of recent progress,
modelling of the array behaviour based on coupled mode
theory (CMT) has been used to explain experimental results
and develop improved understanding of fundamental effects.
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Conventional CMT describes only the amplitude and phase of
the electric field of the photons and the total concentration
of the electrons. Whilst this is adequate for modelling many
phenomena occurring in laser arrays, it cannot easily be
adapted to include the effects of optical polarisation or electron
spin that are often relevant in vertical cavity lasers. For this
purpose, the spin flip model (SFM) [12] is well-established as
the method of choice, and has been successfully extended to
model mutually coupled VCSELs by adding delayed optical
injection terms [13]. This approach has been successfully
applied recently to proposed applications of mutually coupled
VCSELs in secure key distribution based on chaos synchro-
nization [14] and reservoir computing based on polarization
dynamics [15].

Spin-VCSELs, where the polarisation and dynamics can
be controlled by the injection of spin-polarised carriers, have
recently attracted considerable attention since very high-
speed (>200 GHz) modulation has been demonstrated [16]
by applying mechanical stress to increase the birefringence.
In the present contribution we explore some of the dynam-
ics predicted for coupled pairs of spin-VCSELs based on
a newly-developed theoretical treatment [17] that extends
the SFM to apply to VCSEL arrays. This approach, which
uses normal modes rather than CMT, accounts accurately
for instantaneous coupling via evanescent fields or leaky
waves. It is therefore able to model the details of the optical
guidance in the spin-VCSELs and effects of varying the
spacing between them, thus going beyond the description
offered by adding optical injection terms to the conven-
tional SFM.

The choice of a normal mode model over the coupled mode
treatment is to facilitate the modelling of different elements
being optically pumped with different polarisations (or, equiv-
alently, with different spin currents if/when that becomes
possible in practice). For such a scenario, the coupled mode
model is incapable of describing the output polarisation state
of the array. For example, in the simplest case of two coupled
VCSELs, if one is pumped with circularly polarised light and
the other is pumped with linearly polarised light, we could use
CMT with appropriate treatment for each laser and attempt to
calculate the coupling coefficient, but we would be unable to
describe the resultant polarisation of the output. We could only
find the polarised fields of the separate lasers, which does not
correspond to what would be observed experimentally. The
normal mode expansion offers a practical way to achieve this
goal.
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Fig. 1. Circular guides of radius a and edge-to-edge separation d. In this
work, we set a = 4 μm and allow d to be variable.

The next section gives a brief summary of this treatment
leading to a set of rate equations. Subsequent sections deal
with results, discussion and conclusions.

II. DOUBLE-GUIDED STRUCTURE

In Ref. [17], hereafter referred to as P1, a general set of rate
equations for any number of coupled lasers with an arbitrary
waveguide geometry was derived from Maxwell’s equations
and the optical Bloch equations. The model allows for any
number of optical modes, including the optical polarisation,
and the spin polarisation of the carriers. In this model,
the geometry of the waveguides is introduced through the
introduction of overlap factors, defined by

�
(i)
kk′ ≡

∫
(i)

�k(r)�k′(r) dr (1)

where k and k ′ label the modes, �k(r) is the spatial profile of
the kth mode and the integral is over the (i)th guide. In fact, (1)
represents a simplified model for which the gain is assumed to
be uniform over a guide and zero elsewhere. The mathematical
model of P1 allows for a more general treatment, although
this would greatly increase the complexity of the numerical
solution. In an earlier work [18], we showed that the dynamics
of coupled lasers in slab guides could be very sensitive to these
overlap factors and stressed their importance.

In the present work, we consider the particular case of
double-guided structures consisting of two identical circular
guides of radius a = 4 μm, as illustrated in Fig. 1. Note that in
this paper, we take the edge-to-edge separation to be d (rather
than 2d as in P1). We choose values of the cladding refractive
index n2 and the refractive index in the guides n1 such that, for
the operating wavelength of λ = 1.3 μm, there are only two
supported modes with even (for the lower order mode) and
odd parity. We shall refer to these as the symmetric and anti-
symmetric modes and denote them by k = s, a respectively.
The values we choose are n2 = 3.4 and n1 = 3.400971.
By restricting the number of solutions in this way with such
small differences in refractive index, the evanescent tails of
the optical modes tend to extend into the cladding regions to
a significant extent.

A slightly more intuitive sketch of the guiding arrange-
ment (illustrating how such a guiding configuration relates

Fig. 2. A 3D schematic of two coupled circular waveguides encapsulating
the essence of the application to a pair of VCSEL cavities. Shown are
the cylindrical waveguide regions incorporating the active areas. Pumping
is assumed to be confined to these regions. Note that we have omitted the
Bragg stack mirrors and substrate from this figure.

to VCSELs) is shown in Fig 2. This extends the view of
Fig. 1 into the propagation direction of the light and indicates,
schematically, the active regions. To keep the diagram simple,
no attempt has been made to add in further detail such as the
Bragg stack mirrors. Due to their equivalence at this level
of abstraction, we shall use the terms ‘guide’ and ‘laser’
interchangeably throughout the text.

Limiting the number of modes to two, the notation required
to denote the overlap factors may be specialised. Denoting
the guide by the superscript (i), �

(i)
ss is the overlap of the

symmetric modes, �(i)
aa the overlap of the antisymmetric modes

and �
(i)
sa is the cross product. Note that, due to the symmetry

of the guides, we always have �
(1)
sa = −�

(2)
sa , due to the parity

of the modes. Moreover, as the separation d between them

increases, we have �
(i)
sa → 0 and �

(i)
ss → �

(i)
aa → �S/2, where

�S is the optical confinement factor of an isolated guide. The
factor of 1/2 arises since the modes are normalised over all
space, which includes 2 guides.

1) Normalised Rate Equations: The general form of the
normal mode model and its reduction to the double-guided
structure in dimensional and normalised form are derived
in P1. Here we shall just quote the normalised form used
in our numerical calculations. The model has 11 independent
variables: the spin-polarised carrier concentrations in each
guide M(i)

± , where i ∈ {1, 2} labels the guide and +/−
labels the spin up / down components respectively; the optical
amplitudes in each guide Ai,±, where +/− labels the right-
circularly / left-circularly polarised components respectively
and three phase variables φ21++, φ21−− and φ11+−. The φ21±±
are the phase differences between A2,± and A1,±, which we
shall refer to as the spatial phase. This is the phase of the
coupled mode model of Ref [19]. The variable φ11+− is the
phase difference between A1,+ and A1,−, which is the phase
referred to in the literature of the SFM. We shall call this the
polarisation phase. A fourth phase variable φ11+− is related
to the other three via φ22+− = φ21++ − φ21−− + φ11+−.

Note that the Ai,± are not the amplitudes of the modal
solutions of the Helmholtz equation but rather ‘composite
modes’ defined in terms of a superposition of the actual



VAUGHAN et al.: DYNAMICS OF LATERALLY-COUPLED PAIRS OF SPIN-VCSELs 2400310

modal solutions (symmetric and anti-symmetric) to better
exploit the symmetry of the waveguide. Specifically, these
become the amplitudes of the local solutions in isolated
guides as the separation between them is increased to infinity,
retaining close similarity at nearer distances. Hence, they offer
a more intuitive, physical representation of the optical field in
each guide. The actual normal modes may be reconstructed
from the composite modes and the phases using the procedure
described in the appendix of P1.

For convenience of formulation in the double-guided struc-
ture model, we introduce new � terms defined in terms of the
optical overlap factors by

�
(i)
± = �

(i)
ss + �

(i)
aa ± 2�

(i)
sa

2
(2)

and

��(i) = �
(i)
ss − �

(i)
aa

2
. (3)

Using these, we introduce further new variables defined via

M12± = �
(1)
+ M(1)

± + �
(2)
+ M(2)

±
�S

, (4)

M21± = �
(1)
− M(1)

± + �
(2)
− M(2)

±
�S

(5)

and

�M± = ��(1)M(1)
± + ��(2)M(2)

±
�S

, (6)

in terms of which the optical rate equations are more concisely
written.

The normalised carrier rate equations are

∂M(i)
±

∂ t
=γ

[
η

(i)
± −

(
1+I(i)

±
)

M(i)
±

]
−γJ

(
M(i)

± −M(i)
∓

)
, (7)

where η
(i)
± are the polarised pumping rates in each guide, γ =

1/τN is the inverse of the carrier lifetime τN , γJ is the spin
relaxation rate and the polarised components of the optical
intensity in each guide are given by

I(i)
± = �

(i)
+

�S
|A1,±|2 + 2

��(i)

�S
|A1,±||A2,±| cos(φ21±±)

+�
(i)
−

�S
|A2,±|2. (8)

Note that in the normalised form of the SFM, the effective
spin relaxation rate γs = γ + 2γJ is often used.

The normalised optical rate equations are, (9)–(11) and (12),
as shown at the bottom of this page.
The parameters of the optical model are the linewidth enhance-
ment factor α, the cavity loss rate κ , the dichroism rate γa ,
the birefringence rate γp and the coupling coefficient μ. Note
that μ is given in terms of the modal frequencies by [17], [20]

μ = νs − νa

2
, (13)

for the symmetric (s) and anti-symmetric (a) modes found
from solution of the Helmholtz equation for the waveguiding
structure.

It will be convenient to define the pump ellipticity in the i th
guide in terms of the right and left circular polarised pumping
rates η

(i)
+ and η

(i)
− by

P(i) = η
(i)
+ − η

(i)
−

η
(i)
+ + η

(i)
−

. (14)

Similarly, we may define the output optical ellipticity in the
(i)th guide via

ε(i) = |Ai,+|2 − |Ai,−|2
|Ai,+|2 + |Ai,−|2 . (15)

∂|A1,±|
∂ t

= κ (M12± − 1) |A1,±| + [
κ�M± (cos(φ21±±) − α sin(φ21±±)) − μ sin(φ21±±)

] |A2,±|
− [

γa cos(φ11+−) ± γp sin(φ11+−)
] |A1,∓|, (9)

∂|A2,±|
∂ t

= κ (M21± − 1) |A2,±| + [
κ�M± (cos(φ21±±) + α sin(φ21±±)) + μ sin(φ21±±)

] |A1,±|
− [

γa cos(φ22+−) ± γp sin(φ22+−)
] |A2,∓|, (10)

∂φ21±±
∂ t

= κα (M21± − M12±) + μ cos(φ21±±)

( |A1,±|
|A2,±| − |A2,±|

|A1,±|
)

+κ�M±
[
α cos(φ21±±)

( |A1,±|
|A2,±| − |A2,±|

|A1,±|
)

− sin(φ21±±)

( |A1,±|
|A2,±| + |A2,±|

|A1,±|
)]

+γp

[
cos(φ11+−)

|A1,∓|
|A1,±| − cos(φ22+−)

|A2,∓|
|A2,±|

]
∓ γa

[
sin(φ11+−)

|A1,∓|
|A1,±| − sin(φ22+−)

|A2,∓|
|A2,±|

]
, (11)

∂φ11+−
∂ t

= κα (M12+ − M12−) + μ

(
cos(φ21++)

|A2,+|
|A1,+| − cos(φ21−−)

|A2,−|
|A1,−|

)

+κ�M+ (α cos(φ21++) + sin(φ21++))
|A2,+|
|A1,+| − κ�M− (α cos(φ21−−) + sin(φ21−−))

|A2,−|
|A1,−|

+γa sin(φ11+−)

( |A1,+|
|A1,−| + |A1,−|

|A1,+|
)

+ γp cos(φ11+−)

( |A1,+|
|A1,−| − |A1,−|

|A1,+|
)

(12)
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Fig. 3. Stability boundaries in the η(i) = η
(i)
+ + η

(i)
− verses edge-to-edge

distance d plane for circular guides equally pumped with a pump ellipticity
of P(i) = 0.0 for different values of the birefringence rate γp . The darker
shaded area shows the unstable region in all cases; the dashed lines show the
lower boundary of the stable region for the (polarisation) in-phase solutions
for each value of γp .

We describe this as the ‘modal’ ellipticity since it is in terms
of the composite mode amplitudes. Although this is defined
for each guide, there is a spatial dependence beyond this. The
actual ellipticity we would measure is given in terms of the
spatially dependent components of the optical intensity via

ε(x, y) = I+(x, y) − I−(x, y)

I+(x, y) + I−(x, y)
, (16)

where the I±(x, y) are given in terms of the normal mode
amplitudes Ak,± by

I±(x, y) = ∣∣As,±�s(x, y) + Aa,±�a(x, y)
∣∣2 . (17)

Here, we have used the subscript k to distinguish these
as the amplitudes of the modal solutions of the waveguide
(i.e. the solutions of the Helmholtz equation) rather than the
‘composite modes’ used elsewhere in this paper (as discussed
above), which are denoted by the subscript i . See P1 for
further details of this calculation.

In P1 it is shown that this model reduces to both the
SFM model in CMT (without spin-polarisation) in the appro-
priate limit. In the case of the SFM, we take the limit as
the guide spacing tends to infinity, reducing to the lateral
coupling via the evanescent tail to zero (spatial coupling is not
included in the basic SFM model). For the reduction to CMT,
we remove the coupling between spin polarised components
by setting γJ = γa = γp = 0.

III. RESULTS AND DISCUSSION

A. Stability Boundaries

The dynamics of pairs of laterally-coupled lasers with
circular guides of radius a = 4 μm have been investigated,
having calculated the normal modes using the “Lumerical”
modelling package [21] and the overlap factors via numerical
integration of these modes over the guide regions. Stability
boundaries have been plotted in the η(i) − d plane, where
η(i) = η

(i)
+ +η

(i)
− is the total normalised pumping rate in either

guide and d is the edge-to-edge guide separation (Fig. 3).

These plots are topologically equivalent to the scheme of
�/�th v d/a diagrams used in Refs [18] and P1, where � and
�th are the total pump power and threshold pump respectively.
Here, because we may vary the pump ellipticity in each guide
independently, �th is not well defined and so represents an
inaccurate measure.

The stability boundaries are found using a bisection method
in conjunction with a non-linear solver. The solver calculates
the steady state solution and returns the Jacobian matrix at
given test point. The eigenvalues of the Jacobian matrix are
found and the real parts are examined. If the sign of the largest
real part is negative, the solution is stable, otherwise it is
unstable. An initial point on a stability boundary may then
be found by guessing points either side of it and using a
bisection algorithm to home in on it. Once found, another
bisection/searching routine traces along the boundary in a
given direction.

A similar stability map, in terms of �/�th v d/a has been
shown for the non-polarised case using the coupled mode
model in Fig. 6 of Ref [19]. A remaining discrepancy between
the results of the coupled mode model and the present work
is due to the sensitivity of the dynamics to the overlap factors.
It was shown in Ref [18] that, taking the asymptotic values
of the overlap factors as the guide separation tended to infinity,
the stability map for the non-polarised case reproduced that of
the coupled-mode treatment in Ref [19] exactly. This would
then correspond to a birefringence rate of γp = 0 ns−1, which
is almost indistinguishable from the case of γp = 10 ns−1

plotted in Fig. 3.
For all the stability boundaries investigated here, we keep

the total normalised pumping rate η the same in each guide
and so may be conveniently plotted in the η(i)−d plane. In the
regions of instability, we typically see oscillatory behaviour of
the type reported in Section III-B.3.

In P1, stability boundaries were plotted for devices with a
small birefringence rate γp of 2 ns−1, which gives very little
coupling between the right and left circularly polarised compo-
nents of the optical field. These gave rise to Hopf bifurcations
qualitatively similar to the curve for γp = 10 ns−1 shown
in Fig. 3, up to around d = 25 μm (in these calculations,
all other parameters have been kept the same as in P1 for
the purposes of comparison). In this earlier work, the stable,
steady state solutions found above the curve were termed ‘out-
of-phase’ solutions, in keeping with the terminology of the
coupled mode model [19]. In terms of the normal mode model,
such out-of-phase solutions correspond to the anti-symmetric
normal modes (at large separation, these tend to the solutions
of isolated guides with a phase difference of π between them,
meaning the amplitudes are inverted). This phase relation is
associated with the φ21±± variables, i.e. at large separation
φ21±± = π . Earlier, we designated this the spatial phase to
distinguish it from the polarisation phase associated with the
φii+− variables.

The graphs in Fig. 3 are calculated for pump ellipticities of

P(i) = P(1) = P(2) = 0 (i.e. for linearly polarised pumps).
In P1 it was shown that, in general, the stability boundaries
tended to move towards the origin as the pump ellipticity



VAUGHAN et al.: DYNAMICS OF LATERALLY-COUPLED PAIRS OF SPIN-VCSELs 2400310

Fig. 4. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η−
verses edge-to-edge distance d plane for circular guides equally pumped with
a pump ellipticity of P(i) = 0.0. The solid lines are for the (polarisation) in-
phase solutions and the dashed for the out-of-phase solutions. Stable in-phase
solutions lie above the solid line, whilst stable out-of-phase solutions lie to
the right and beneath the dashed line. The area in-between is the region of
bistability where both types of solution are stable.

TABLE I

PARAMETERS USED IN NUMERICAL SIMULATIONS

moves away from zero. In this work, we investigate the effect
of increasing the birefringence rate γp, which has the effect
of coupling power between the opposite circular components
of the optical polarisation. Here, we see the emergence of a
new stability boundary moving roughly horizontally across the
plane and increasing in η as γp increases. These boundaries
are plotted for the polarisation in-phase solutions, for which
φii+− is close to zero. These are characterised by the fact that
the output optical ellipticity takes the same sign as the pump
ellipticity. On the other hand, the ellipticity of the polarisation
out-of-phase solutions, for which φii+− is close to π , has the
opposite sign to the pump ellipticity.

Stability boundaries for both in-phase and out-of-phase
solutions for for γp = 30 ns−1 and values of P(i) = P(1) =
P(2) from 0 to 0.8 are shown in Figs 4 to 8 (from here on,
we shall be referring to the polarisation phase whenever we
speak of in-phase or out-of-phase solutions without specific
qualification). These show the out-of-phase stability bound-
aries as dashed lines with the stable solutions to the right
of the curved borders and beneath the horizontal borders.

Fig. 5. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η−
verses edge-to-edge distance d plane for circular guides equally pumped with
a pump ellipticity of P(i) = 0.2. The grey lines show continuations of the
Hopf bifurcation into the unstable region. Note that, unlike the other stability
maps shown, in this case there is no region of bistability.

Fig. 6. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η−
verses edge-to-edge distance d plane for circular guides equally pumped with
a pump ellipticity of P(i) = 0.4 (details as for Fig. 4). Note that in this case,
we only have a very narrow region of bistability.

Investigating the sharp kinks in the borders, we find that
this is due to the continuation of Hopf bifurcations into the
unstable regions. An example is shown in Fig. 5 in the case
of P(i) = 0.2

A clear feature of these stability boundaries is that, in most
cases, the out-of-phase boundary crosses that of the in-phase
boundary creating regions of bistability where both types of
solution are stable. These are shown as the shaded areas and
suggest the possibility of optical switching between these
stable states. This is investigated in the next sub-section,
where we find that optical switching via pump power and/or
ellipticity is indeed achievable.

In the case of P(i) = 0.2, we note that, unlike the other
cases shown, there is no region of bistability in domain plotted.
At this point, however, we can offer no definitive explanation
for this behaviour.

B. Bistability

1) Switching Both Lasers Together on Pump Power:
We have examined the dynamics within the bistable regions
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Fig. 7. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η−
verses edge-to-edge distance d plane for circular guides equally pumped with
a pump ellipticity of P(i) = 0.6 (details as for Fig. 4).

Fig. 8. Stability boundaries for γp = 30 ns−1 in the η(i) = η+ + η−
verses edge-to-edge distance d plane for circular guides equally pumped with
a pump ellipticity of P(i) = 0.8 (details as for Fig. 4). The area bounded by
the dashed lines is the region of stability for the out-of-phase solutions.

via time series solutions of the rate equations using the Runge
Kutta method (technical details are given in P1). Each time
series is run for a simulation time of 400 ns for a given pump
power and ellipticity in each guide. The output solutions at the
end of each solution are then used as the intial conditions for
the next simulation with different pumping parameters. In this
way, we can see how the system behaves as we vary these
parameters smoothly or in sharp jumps.

For an initial set of simulations, we keep the birefringence
at γp = 30 ns−1, take the edge-to-edge separation to be
d = 20 μm and the pump ellipticity in either guide to be
P(i) = P(1) = P(2) = 0.6. The stability boundaries in this
case are shown in Fig. 7. We start the simulation with equal
pump power η(i) = η(1) = η(2) = η

(i)
+ +η

(i)
− = 12. From Fig. 7

we can see that this is in a region of instability for the in-phase
solution but just on the edge of the stable region for the out-
of-phase solution. We then start increasing the pump power in
both guides and track the modal output optical ellipticity ε(i),

given by (15). This is shown in Fig. 9, where at η(i) = 12 we
have ε(i) = −0.2 and track down to η(i) = 22, ε(i) = −0.44
following the direction of the red solid arrow. After this point,

Fig. 9. Hysteresis curve of the ellipticity for equally pumped guides with
γp = 30 ns−1, an edge-to-edge separation of d = 20 μm and pump ellipticity
P(i) = 0.6. The points trace out the dynamics as the total pump power η is
changed gradually in the direction of the arrows.

Fig. 10. Time series showing the response of equally pumped guides with
an edge-to-edge separation of d = 20 μm and pump ellipticity P(i) = 0.6,
to stepped total pump powers of η(i) = 22, 56, 22, 12 and 22 again. This
demonstrates a mechanism of switching between two stable solutions for
η(i) = 22 with optical ellipticities of the opposite sign (indicated by the
dashed lines).

we enter into a region of unstable dynamics where the system
fails to settle down to the in-phase steady state solution until
the power reaches η(i) = 56. This is indicated by the dashed
red arrow. At this point, we track back, ramping down the
power. This time, the system remains in the in-phase steady
state solution all the way through the bistable region until it
cross the Hopf bifurcation delimiting the in-phase dynamics
and the system drops to the out-of-phase solution.

It is natural to ask whether we may obtain switching behav-
iour by applying step changes to the pump. To investigate this,
we start the system off in an out-of-phase steady state solution
with η(i) = 22 in both lasers. This gives an output ellipticity
of ε(i) = −0.44. We then step up the power to η(i) = 56 for
a period of 20 ns. This settles down to a steady-state in-phase
solution with ε(i) = 0.3 after about 9 ns as shown in Fig 10.
After this, the power is dropped back down to η(i) = 22.
However, the system now settles down in an in-phase steady-
state with ε(i) = 0.2. Again, it takes around 9 to 10 ns for the
system to settle to the steady-state solution. Following this,
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Fig. 11. Detail of Fig. 10 between t = 19.5 ns and t = 21.5 ns. The system
starts in the out-of-phase steady-state solution for η(i) = 22. As the pump
power in each guide is stepped up η(i) = 56, the ellipticity initially undergoes
oscillations with an angular frequency of approximately 64 rad·ns−1 before
settling down to a stable steady state in-phase solution.

Fig. 12. Detail of Fig. 10 between t = 39.5 ns and t = 41.5 ns. Starting
from the in-phase solution for η(i) = 56, the pump power in each guide is
stepped down to η(i) = 22. The ellipticity initially undergoes oscillations
with an angular frequency of approximately 72 rad·ns−1 and a much smaller
amplitude than in Fig. 11 before decaying to the constant in-phase solution
for η(i) = 22.

the power is further dropped to η(i) = 22 and the system
switches to an out-of-phase solution with ε(i) = −0.2. Finally,
stepping the power back up to η(i) = 22, we arrive back at the
out-of-phase solution with ε(i) = −0.44. Hence, we can use
the pump power for the purposes of optical switching, with
an overal switching time of around 20 ns in this case (giving
a possible switching rate of around 8 MHz).

The switching dynamics are explored in more detail
in Figs. 11 to 14 on the sub-nanosecond time-scale. Fig. 11
shows the dynamics as the system is switched from the out-of-
phase solution at η(i) = 22 to the in-phase at η(i) = 56. We see
on this scale that the behaviour is oscillatory, varying between
around ε(i) = −0.9 to ε(i) = 0.9 with an angular frequency
of approximately 64 rad·ns−1 (∼10 GHz). Figs. 12 to 13
show the steps from η(i) = 56 to η(i) = 22 and η(i) = 22
to η(i) = 12 respectively on the same scale, with similar
angular frequencies of 72 rad·ns−1 (∼11 GHz) and 66 rad·ns−1

(∼11 GHz). In the final step from η(i) = 12 to η(i) = 22
shown in Fig. 14, the system settles down much faster.

Fig. 13. Detail of Fig. 10 between t = 59.5 ns and t = 61.5 ns. From
the in-phase solution with η(i) = 22, the pump power is stepped down to
η(i) = 12, leading to oscillations in the ellipticity with an angular frequency
of approximately 66 rad·ns−1. In this case the amplitude of the oscillation
increases until it is varying between -1 and 1 before suddenly collapsing to
a steady state out-of-phase solution.

Fig. 14. Detail of Fig. 10 between t = 79.5 ns and t = 81.5 ns. With
the system in an out-of-phase steady state solution at η(i) = 12, the pump
power is stepped up to η(i) = 22. The ellipticity oscillates with an angular
frequency of approximately 58 rad·ns−1 and then very rapidly decays to the
out-of-phase steady state solution.

The angular frequency of the oscillations in this case is around
58 rad·ns−1 (∼9.2 GHz).

It may seem natural to seek an explanation for this oscil-
latory behaviour in terms of relaxation oscillations. We can
explore this possibility using the expression for the angular
frequency ωR of damped oscillations given in Ref. [19] derived
from a stability analysis of the coupled mode model

ω2
R = 2γ κ (η − 1) − γ 2

D, (18)

where γD is the damping rate given by

γD = −γ η

2
. (19)

However, for values of η = 56, 22 and 12, using (18) we
obtain values of ωR = 83, 53 and 39 ns−1 respectively,
showing a strong dependence on the pump power η.

Instead, we note that in the analysis of spin-polarised
VCSELS [16], [22], [23], it has been found that the frequency
of birefringence-induced oscillations was mainly determined
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Fig. 15. Optical ellipticity switching by varying the pump ellipticity in
guide 2. Here γp = 30 ns−1, d = 18 μm, P(1) = 0.6 and η(i) = 20. The
grey squares show the optical ellipticity in guide 1 and the white diamonds
show the ellipticity in guide 2, for which the pump ellipticity was directly
varied. The red arrows show the sequence in which the pump ellipticity in
guide 2, P(2), was varied.

by the birefringence rate γp , given approximately by γp/π for
large γp (in GHz if γp is given in ns−1). In our case, we have
γp = 30 ns−1, giving γp/π = 9.5 GHz, which is very close
to the observed frequency in the numerical simulations.

2) Switching One Laser via the Other: Having verified that
is possible to switch the ellipticity of the lasers in the bistable
region by varying the pump powers in each simultaneously,
we next investigate the possibility of switching one laser
purely by varying the pump on the other, hence via the
coupling between them. The following is a proof of concept
and is not supposed to represent the optimal conditions for
such functionality.

The edge-to-edge separation is taken to be a little shorter
at d = 18 μm and for the initial investigation, the total
pump power in either guide is held fixed at η(i) = 20.
The birefringence is γp = 30 ns−1 as before. Initially, the
pump ellipticity is set at P(i) = 0.6 in both guides and
the simulation is started with both lasers in the steady-state
in-phase solution. P(1) is kept fixed throughout and P(2) is
then varied, initially being increased to P(2) = 1 and then
reduced again to P(2) = 0.5 (see Fig. 15). Throughout this
range, both solutions remain in a stable in-phase solution.
However, below P(2) = 0.5, both lasers drop to an out-of-
phase steady-state solution, which then varies smoothly as P(2)

is reduced to −0.7. During this variation, the laser in guide (1)
remains in an out-of-phase solution, whilst the ellipticity in
guide (2) varies linearly from an out-of-phase solution to an
in-phase solution. Beyond P(2) = −0.7, neither laser settles
to a steady-state.

As P(2) = −0.7 is increased to P(2) = 0.7, the ellipticity
tracks back over its previous values and then continues to
vary smoothly past the point where the in-phase solution
dropped to the out-of-phase solution. These behaviours are
shown in Fig. 15 where the square points show the ellipticity in
guide (1), the diamond points show the ellipticity in guide (2)
and the red arrows indicate the directions in which P(2) is
varied.

Fig. 16. Oscillations in the optical ellipticity for guide 1 (black) and guide 2
(grey) with a separation of d = 20 μm. Here γp = 30 ns−1, P(1) = 0.6,
P(2) = 0.3 and η(i) = 22.

Fig. 17. Minima and maxima of the oscillations in the optical ellipticity for
guide 1 (squares) and guide 2 (diamonds) with a separation of d = 20 μm
as P(2) is varied. Here γp = 30 ns−1, P(1) = 0.6, and η(i) = 22.

In fact, it is found that once the system is on the lower
line of Fig. 15 with guide (1) in an out-of-phase steady-state
solution, it cannot be switched back to an in-phase state by
varying P(2). This can only be achieved by varying the pump
power. However, it can be achieved by only varying the pump
power in laser (2), so the goal of switching one laser purely
by coupling with the other is achievable.

Specifically, we can use the following sequence: Starting
with η(i) = 20 and P(i) = 0.6 in the in-phase solution,
we have �(1) = 0.19. Stepping P(2) to 0.4, �(1) drops
to −0.40. Putting P(2) back to 0.6, �(1) changes very little,
with �(1) = −0.39. If we now step η(2) up to 60, the ellipticity
in guide (1) then changes to �(1) = 0.19. Dropping the
power in guide (2) back down to 20, we end up again in the
original in-phase solution with �(1) = 0.19. For this particular
set of parameters, the switching time is quite slow, taking
around 100 ns to settle down to the steady-state solutions.

3) Oscillations in the Ellipticity: This switching behaviour
on the basis of variation of P(2) does not occur under all con-
ditions within a bistable region. At d = 20 μm, the variation in
the output ellipticities is similar to that shown in Fig. 15 except
that there is drop from the steady-state in-phase solutions to the
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out-of-phase steady-state solutions as P(2) is reduced. Instead,
the system becomes unstable with the ellipticity oscillating as
shown in Fig. 16 for P(2) = 0.3.

The time period for the oscillations shown in Fig. 16 is
approximately T = 0.1 ns (i.e. a frequency of 10 GHz). This
does not change as P(2) is varied from 0.3 to -1, although the
maxima and minima of the oscillations do. This variation is
shown in Fig. 17. We note a qualitative break in behaviour
between P(2) = −0.6 and P(2) = −0.7.

IV. CONCLUSION

A recently-developed theory of evanescently-coupled pairs
of spin-VCSELs has been applied to study the dynamics of
structures with two identical circular cylindrical waveguides
and realistic material parameters. Stability boundaries in the
plane of total normalised pump power versus edge-to-edge
spacing of the lasers have been presented for the cases of
(1) zero pump polarization ellipticity with varying birefrin-
gence rate, and (2) fixed birefringence and varying pump
ellipticity, with equal pump power in each laser for all cases.
Boundaries for in-phase and out-of-phase solutions are found
in terms of the spatial phase of the normal modes of the
system. It is shown that intersection of these boundaries can
give rise to sharp ‘kinks’ in the overall stability boundaries
for some pump ellipticities, whilst for others crossing of
the in-phase and out-of-phase solutions can yield regions of
bistability. The dynamics of the coupled spin-VCSELs in the
bistable regions have been examined by time series solutions
of the rate equations. It is shown that it is possible to switch
the output ellipticity of the lasers by varying the pump powers
in each simultaneously. It is also possible to switch the output
elllipticity of one laser by varying the pump ellipticity or
pump power of the other, under certain operating conditions.
For other conditions, however, values of the pump ellipticity
of one laser can be found that produce oscillatory behaviour
of the output ellipticities of both lasers. Thus, it has been
demonstrated that evanescently-coupled pairs of spin-lasers
can yield a rich variety of different dynamics. Further work
is needed to explore the effects of varying material, device
and operating parameters and hence to investigated potential
applications of these dynamics.
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