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Abstract

This research aims to (1) extend our knowledge on the response of peripheral nerves
to artificial stimulation for sensory feedback provision from neural interfaces, and (2)
create a computational tool to facilitate this study. We were interested in studying
how ephaptic coupling between myelinated fibers influences activity in nerve trunks
under artificial stimulation and during action potential propagation. Ephaptic in-
teraction simulations in nerve trunks were performed to quantify this influence. For
this, we created peripheral nerve models containing electrodes for electrical stimula-
tion and recording within a tool that can be further used in electrode design optimi-
sation and neural activity research. The created model can use a self-contained or a
hybrid field-neuron method. The self-contained method uses a resistor network that
electrically couples all axons, tissues, electrodes, and surrounding medium, and is
solved by the NEURON simulation environment. The resistor network uses weighted
Voronoi tessellations in the Laguerre geometry to define the electrical connections
between all nerve elements given any cross-sectional anatomy. The hybrid field-
neuron approach also uses the resistor network to compute the fields, but uses them
stimulate fiber in a separate simulation. The self-contained model was designed so
that it could simulate artificial stimulation, neural activity with ephaptic coupling
and electrode recordings simultaneously. Researchers often assume ephaptic cou-
pling is weak among myelinated axons, and therefore, tend to ignore it. Simulations
carried out in this work, however, show that ephaptic coupling increases axon re-
cruitment during artificial stimulation. This effect should be taken into account
in further research. On the other hand, ephaptic coupling during propagation in
realistic bundles with large numbers of heterogeneous myelinated fibers is weaker,
unstable, and more complex than what is known from previous studies on bundles
of few homogeneous fibers. This research provides detailed results and insights on
these aspects of peripheral neural activity.

Keywords: Peripheral nerves; myelinated axons; computational modelling;
ephaptic coupling; electrical stimulation
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Chapter 1

Introduction

1.1 Overview

Human body is formed by sets of organs ensembled in systems that, interacting with
each other, provide the necessary functionalities for its correct operation. Whenever
one or more organs suffer an injury, dysfunction or removal, they become an obstacle
for such correct operation, usually limiting a person’s ability to interact with the
environment.

A common strategy along history to alleviate the effects on the life quality of
people with organ-related limitations has been to attempt to restore the compro-
mised functionalities. In cases where tissue loss or malfunction does not represent an
important portion of an organ, this goal can be achieved using repairing techniques
or implanting new tissue. When the loss is more severe, the strategy is usually
to use replacement organs coming from other living bodies or technological devices
aimed to provide approximate replacement for the missing functions. This set of
techniques conforms what is commonly known as implants.

The nervous system is an essential component of the human body which is as
much at risk of suffering injuries and amputations as any other. However, the
implications of damages in the nervous system are generally different in nature to
those of other systems, and can lead to very severe impairments that may span
from sensory, motor and cognitive to vital body dysfunctions. In particular, sensory
and motor dysfunctions limit a person’s capabilities to normally interact with her
environment, which can produce serious discomforts and decrease life quality. If
sensory and motor dysfunctions are severe enough, and if the person is not living in
a controlled environment, they can even lead to death.

Neural implants are becoming nowadays a major technique to restore functions
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Figure 1.1: Overview of somatosensory feedback as implemented in the
SenseBack (UK’s EPSRC) project. The electrical signal generated by sen-
sors is processed and translated into stimulation waveforms applied in pe-
ripheral nerves by transverse intrafascicular electrodes to stimulate sensory
axon fibres. [1]

of the nervous system that have been lost or damaged. They span an extensive range
of applications that responds to the wide variety of functions and organs that the
nervous system contains. Implants aimed to recover motor or sensory functions are
connected either to the Peripheral Nervous System (PNS) or to the Central Nervous
System (CNS).

Neural injuries are varied in their nature, and so are the strategies adopted to
overcome them. For instance, when a nerve is locally damaged or cut, implants can
create a bridge between the two sides of the injury. This can be done by implanting
a healthy piece of another nerve to fill a gap [16,17], tubulisation [18], neurorrhaphy
with suturation [19], or by implanting an electronic system such as a brain-machine-
spinal cord interface (BMSI) [20–22], which communicates the brain with the spinal
cord below an injury. Loss of sensory functions can be overcome with sensory
substitution techniques. These include prostheses and devices for restoring audition
(cochlear implants [23–25] or auditory brainstem implants [26]), vision (implantable
retinal prostheses [27]) and connected to the PNS, prostheses for tactile sensation
and proprioception (the latter two are discussed below). Other connections to the
CNS for restoring or enhancing auditory, visual, cognitive functions and even motor
control involve cortical implants [28–30], which are in direct contact with the affected
area of the cortex. Amputations require a different approach to injuries because
the treatment involves the substitution of lost organs. For a patient, loss of limbs
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implies the loss of movement, perception of the surrounding environment and proper
physical interaction with the world. In the last century, the restoration of motor
control and sensory feedback in limb prostheses have started being addressed thanks
to the rapid growth of technological innovations.

A common technique to control the movement of artificial limbs is the use of
electromyography (EMG) [31,32]. Other more experimental methods do not involve
attaching prostheses to the body, and make use of brain-computer interfaces (BCI)
to control robotic devices [30]. Motor control is a feature that has been achieved in
limb prostheses to a reasonable level of success [31].

Somatosensory perception of the environment is natural to healthy functional
limbs, and it is a very important element for movement calibration during motor
control. Sensory feedback is called so since it feeds information back to the nervous
system during movement in order to assist motor function. This feedback comes
in the form of perception of the objects that are in contact with the body and
the posture of one’s own body. Without it, calibration of movements relies only
on visual and auditory stimuli, which are generally not enough on their own to
assist it. A rich and in-depth discussion about the importance of sensory feedback
restoration can be found in [33]. Sensory feedback has long remained the last feature
to be effectively addressed and implemented in limb prostheses. It can be achieved
through indirect or direct methods, the former including, for instance, somatically
or motionally stimulating a different part of the body when a prosthesis is used [34],
and the latter, providing it directly through electrical artificial stimulation from a
prosthesis.

This latter goal of providing sensory feedback through electrical artificial stimu-
lation has only been accomplished in very recent years [35–39]. In all these works,
a prosthesis or sensory substitution system (an assistive device) is connected to the
PNS of a patient using electrodes that are aimed to stimulate sensory nerve fibers.
The complexity of the behaviour of the PNS makes the prediction of its response
to electrical artificial stimulation a real challenge, but this can be guided by the
use of machine-nerve interface models. Predictions help the design of optimal inter-
faces between assistive devices and PNS, and modelling has thus become a valuable
tool for the design of systems for providing sensory feedback. As an example, the
achievements in [38] are supported by numerical simulations in [40].
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1.2 Problem Statement and Rationale

1.2.1 Social Relevance of Sensory Feedback Restoration

The use of limb prostheses that lack sensory feedback, which is the case for most
of the available prostheses today, provides users with new motor abilities that help
them interact with the world and perform daily tasks. However, they are perceived
by users as an external tool or an accessory rather than a substitute for their missing
limb [33]. The feeling of embodiment of the prosthesis, which means that the pros-
thesis is perceived as part of one’s body, hence letting users recover a sense of having
a new limb, is nowadays a pursued goal in limb prosthetics design. This feeling of
embodiment acts at a psychological level and entails a considerable enhancement of
life quality for users. Today, embodiment is only possible through an appropriate
provision of sensory feedback from the prosthesis [37, 41]. Sensory feedback lets
users gain awareness of the surrounding world through somatosensory perception
and through the perception of their own body—also known as proprioception—,
without the need to rely on visual and auditory inputs; this allows users to release
themselves from a high conscious attention to the prosthesis. Perception of one’s
own body entails awareness of its existence, and recovering this awareness is greatly
beneficial for the psychological trauma subsequent to an amputation. Somatosen-
sory perception and proprioception greatly improve movement calibration and fine
motor tasks. The successful provision of natural-like sensations through an artificial
prosthesis, even in laboratory experiments, has led users to ’feel’ their lost hands
[37]. This is why great efforts are being made in order to design prostheses with a
natural-like sensory feedback.

Compared to exclusively motor prostheses, using a prosthesis with sensory feed-
back allows users to perform daily tasks with an improved level of proficiency. Users
likely see an improvement in their self-esteem thanks to the new level of autonomy.
However, this benefit is not exclusive to users: as they gain autonomy, they also gain
independence from other people that assist them. Both the physical and psycholog-
ical improvements in the life of users also have a beneficial impact on the quality of
life of the people surrounding them.

For amputees, limb amputations imply limitations for undertaking a normal
job, and in many cases, impairments prevent them from having any job. Not only
does this deprive them from a normal life, but also drives a certain pressure on
governments and societies to take care of the injured and to palliate the economical
impact that this causes. This is why it is of special interest for the society to
work on the recovery of motor abilities of injured people, since that would empower
individuals with better competence and allow them to be reinserted as active agents
in the economy.
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1.2.2 The SenseBack Project

“Enabling Technologies for Sensory Feedback in Next-Generation Assistive Devices”
(shortcut as “SenseBack”) is a UK-national project funded by the EPSRC with the
participation of Newcastle University, Imperial College London, the University of
Southampton, Keele University, the University of Leeds and the University of Essex.
The aim of the SenseBack project is to provide sensory feedback to assistive devices
such as arm prostheses that recreates the natural feedback associated with a real
arm [1].

Sensory feedback is provided through prosthesis-nerve interfaces that connect the
machine with the PNS. The interfaces under design in this project rely on predictions
made with numerical simulations. This thesis undertakes the task of modelling
these interfaces in order to simulate their effects on the peripheral nerves. The
simulation involves modelling the electrical connections of the prostheses electrodes
to the nerve’s tissues and fibers, the consequent stimulation on the fibers exerted
by these and the propagation of elicited signals towards the CNS.

1.2.3 Peripheral Nerves Modelling

Peripheral nerves need to be modelled down to axonal level, with models including
valid representations of axonal anatomy and physiology, including axoplasm, myelin
sheaths and membranes with voltage-gated channels. Models of individual axons
and other types of neurites have been developed during the last half of the past
century until now, first for unmyelinated [42], and later for myelinated fibers [43–47],
aided by numerous experimental [48–52] and analytical [53,54] works. These models
have been invaluable for revealing axon properties and accumulating knowledge
about the geometrical structure of nerve fibers, their physiology, biochemistry and
the interplay of all these elements in fiber behaviour. Vast knowledge has also
been gained regarding stimulation and propagation of signals. However, models of
entire nerve trunks have been developed only in very recent decades [8,55–57], when
technology in computation has allowed for it.

Stimulation in peripheral nerve trunks has been simulated in previous studies
[40, 55, 58], but these focus on predicting how many and which axons in a bundle
are activated by the stimulating field generated by the electrodes, a measure known
as selectivity. They use the occurrence of propagation of elicited APs along axons
as the criterion for axon activation, but in general, they do not focus in detail on
the processes following activation and their potential consequences on selectivity.
Other works make use of more simplified models for predicting axon activation
[59,60], which are useful thanks to their low computational requirements, but at the
expense of their ability to model complex axon behavioural phenomena.
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1.2.4 Ephaptic Coupling

Neurons interact with each other through gap junctions and through endogenously
generated electrical fields. This latter form of interaction is known as EC [9,61,62],
which consists on the interaction or cross-talk between cells due to the mutual stim-
ulation that they exert on each other via their endogenous electrical fields. For
fibers in most mammalian nerves, it is commonly assumed that EC is negligible
[11, 63]. This, of course, means that it is assumed that EC has no effects on the
behaviour of axons during stimulation and propagation and therefore, on axon acti-
vation (selectivity). Findings from more recent numerical simulation studies [64–66]
and experimental evidence [67] question this assumption, since they provide evi-
dence for the possibility of important consequences of the ephaptic interactions in
myelinated axons.

Despite the works from [65, 66] and the more recent [68] are a good start on
the study of these interactions in axon bundles, as they provide valuable insights,
they study very ideal cases of regular bundles of homogeneous axons, stimulated by
internal current injections. Furthermore, they all use the mean-field approximation,
which assumes that, at every position along the length of a bundle, the extracellular
medium is isopotential. The magnitudes of endogenous fields from neural activity
have a dependence on the distance from the neural sources, and they can be ob-
tained using volume conductor theory [69]. Works on pyramidal cells in the cortex
model endogenous extracellular fields using this theory [70]. The anatomical shape
of a bundle, different in nature to cell networks in the cortex, reasonably supports
the choice of a Mean-Field (MF) approach. However, in a bundle with a complex
geometry, containing a large number of fibers and perineurial tissue separating dif-
ferent fascicles, it is worth assessing the correctness of this choice and determining
whether it is accurate enough or, on the contrary, whether a geometry-dependent
model such as [69] is needed. Another disadvantage of using a MF model is its
incompatibility with the simulation of extracellular fields generated from electrodes.
In such case, it becomes an insurmountable obstacle if both electrode stimulation
and EC are intended to be included in a simulation. After carrying out a litera-
ture review, no study has been found that aims to quantify the effects of EC inside
more realistic models of peripheral nerves, including fibers of varying diameters and
geometry-dependent simulation of extracellular fields.

Assessment of the effects of EC in a realistic nerve trunk model under artificial
stimulation from electrodes may help quantifying any possible effects it may have
on fiber recruitment, CV and information encoding through synchronisation of APs,
thus helping to clear out the doubts about its role and relevance. For this reason,
we believe that the field of sensory feedback restoration would benefit from a study
that addresses the problem of determining the importance that this usually under-
estimated factor may have on the results of artificial stimulation, by using modern
computational techniques and geometrical approximations to a real nerve.
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1.3 Objectives

This work has two main objectives: 1) to quantitatively assess the effects of ephaptic
interactions between axons in a mammalian peripheral nerve model on the neural
responses generated by stimulating electrodes; and 2) to develop an open-source,
highly customisable framework to build entire nerve trunk models and simulate
their activity with various types of stimulating and recording electrodes.

1.3.1 Scientific Questions: Assessing the Effects of Ephaptic
Coupling in Mammalian Peripheral Nerves

Our first objective is to better understand the nature and role of EC in mammalian
peripheral nerves. Three scientific questions were addressed in this study in order
to gain understanding on the nature of three aspects of EC between nerve fibers.
These questions are listed below.

I. Distance Dependence of Electrical Interactions.

The MF model may be unsuitable for large nerves and is incompatible with the
presence of fields resulting from external stimulating electrodes. A model of ephaptic
interactions with a dependence on the separation distance between nodes of different
fibers is necessary to obtain a better quantification of their effects. Hence, the spatial
dependence of EC was studied in this work using a distance-dependent model and the
validity of a MF approximation under different scenarios was assessed and discussed.

II. Quantification of the Effects of Ephaptic Coupling on Propagation.

Firstly, we wanted to assess whether EC has any chance to be effective on a nerve. In
order to do so, the effects of EC were studied between groups of two and three fibers
using two different models for computing the ephaptic fields, one taken from the lit-
erature and another developed in this work. Effects on the propagation velocity and,
consequently, on AP locking and synchronisation, were studied for these numbers of
fibers. Secondly, we aimed to simulate the effects that EC can have on propagation
of APs in a realistic nerve trunk model, and determine whether these can effectively
alter relative timings between APs and even elicit recruitment of inactive fibers. For
this, a study was made using a full nerve trunk model with different fascicles filled
with fibers of different diameters. The model also includes an explicit representation
of stimulating and recording cuff electrodes and various neural tissues. Simulations
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with and without EC were compared in order to assess the extent of the influence of
EC during propagation in the nerve model. The existing knowledge for the simple
cases of a low number of parallel identical fibers was compared to the results for
the nerve model and its validity was discussed. Knowledge gained on this can aid
understanding how motor and sensory information is processed during propagation
in peripheral nerves.

III. Quantification of the Effects of Ephaptic Coupling on Stimulation.

Another objective of this study is to quantify to what extent EC can modify the
known results of artificial stimulation from electrodes on axons in a nerve. This is,
whether EC can drive additional axons to fire when results are compared to non-
EC simulations, how many can these axons be, and the effects on AP elicitation
delay that EC can have on the recruited axons. In particular, we aim to understand
whether EC can shorten the response times of axons to artificial stimulation, making
them fire APs in a more synchronous way, or if instead EC can have inhibitory effects
on axons during stimulation. Understanding the potential role of EC during artificial
electrical stimulation is key to decide whether it can be dispensed with or, on the
contrary, whether it should be taken into account in stimulation studies.

1.3.2 Technological Contribution: Open-Source Framework
to Model Nerves and Electrode-Nerve Interfaces

Our second objective is to develop an open source software consisting of a framework
for building and simulating nerve models (Fig. 1.2). Such framework was created
in this work, and it allowed us to run the simulations presented in this study. We
aim to provide this software as a publicly available tool in order to facilitate other
researchers running simulations with their own nerve models. The framework is
aimed to come with mainly three features which are described below.

I. Anatomically Detailed Model.

In order to carry out the necessary simulations described above and to facilitate
researchers and modellers simulating the behaviour of a nerve trunk under many
stimulation scenarios, a model builder of a nerve trunk was created. This model
builder includes fascicles, axons, and anatomical and electrical distinctions between
the different constitutive tissues: endoneurium, perineurium and epineurium.
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II. Flexibility at Modelling Anatomy, Biophysics and Electrodes.

The model builder allows users to create a nerve with the cross-sectional shape,
size and components of their choice; this enables the building of models with cross-
sectional shapes obtained from histological data. The framework allows users to
define axon anatomy, physiological and biophyisical properties, as well as using
pre-existing axon models. A method to declare and describe the stimulation and
recording electrodes was designed so that these can be defined in a flexible way.
This allows users to choose which types of electrodes to use (Utah, cuff electrodes
and TIME), where to place them, what shape and properties to assign to them and
what stimulation protocols to use.

III. Compatibility with Finite Element Methods and Other Solvers.

The framework’s default method to model the extracellular space uses a Resistor
Network (RN), which is coupled to the neural models. This permits the simulation
of stimulation and recording from electrodes as well as EC. However, computation of
fields using an external tool, such as an external Poisson solver or a Finite Element
Methods (FEM) tool, is permitted. The framework allows using the results of
the electric potential coming from any method capable of solving the fields over
a volume. These results can be used to exert stimulation on the neural models in
the framework or, inversely, the currents from the neural models can be saved and
used as boundary conditions for the external solver in order to compute extracellular
recordings.

1.4 Contributions of this Research

The work presented here is situated within the context of simulating neural activity
under and after stimulation with electrodes, while taking into account the ephap-
tic interactions between fibers. Although several approaches have been proposed
that allow the simulation of these scenarios in self-consistent Extracellular domain,
Membrane and Intracellular domain (EMI) models [71–73], none of them addresses
the particular problem we have for peripheral nerves. On the other hand, existing
studies that address this or very similar problems, while being able to provide valu-
able clues and insights at a low computational cost, use oversimplifying assumptions
based on the MF model that are not compatible with the complexity and depth of
the approach that has been adopted in this work. Under these circumstances, the
work carried out here brings a number of contributions that are listed below:

• This work provides a variant of a self-consistent EMI model fully implemented
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Figure 1.2: Overview of the SenseBack modelling software workflow. The soft-
ware can simulate the activity of a nerve model either by using an EMI approach
with the RN or by using a hybrid field-neuron approach, for which the RN,
FEM or pre-computed fields can be used. Specification of the nerve model in-
cludes custom choices of cross-sectional anatomy, tissue electrical properties, elec-
trode configurations with stimulation and recording protocols, and extra-neural
space (container embedding nerve and electrodes). Stars (*) indicate existing
third-party open source software tools that are used in the modelling framework
(NEURON [2], GMSH [3] and the FEniCS FEM solver [4]). The implementation
of the FEM (box with grey dashed contour line) has not been used in this thesis,
but it is related work. An example of its use at an early implementation stage
can be found in [5].

in NEURON [2] that permits the simulation of stimulation from electrodes,
neural activity and recordings in a single run and under a realistic geometry
and set-up defined by the users. The EMI approach implemented in NEURON
guarantees numerical stability throughout simulations. The model can also
use a hybrid field-neuron approach, where fields are computed in a static
simulation and used afterwards for axon stimulation.

• The present work is, to our knowledge, the first to address the study of tissue-
and geometry-dependent EC during stimulation and propagation in arbitrary
and more realistic models of nerve trunks that include several bundles of fibers
of varying diameters. Ephaptic stimulation between fibers was quantified
against the inter-fiber distances, and the effect of the presence of perineurial
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membrane separating fascicles was also studied.

• The effects of EC on fiber recruitment after electrode stimulation for a nerve
trunk model including a large enough number of fibers were studied, and they
were found to increase recruitment by a non-negligible amount. This is a useful
finding to be taken into account for further stimulation studies. Additionally,
EC was found to decrease the response times of axons to stimulating fields.

• A new method is provided here in order to define nearest-neighbour electrical
interactions among fibers based on weighted Voronoi tessellations in the La-
guerre geometry. This method has never been applied before in this field, and
it has demonstrated to be a valid and convenient method that can systemati-
cally define electrical contacts between nearest-neighbours given any possible
configuration of fiber positions and diameters. It can also be used for any
other neuron populations in either two or three dimensions, not only in axon
bundles.

1.5 Assumptions, Constraints and Shortcomings

The results and reach of this work are constrained by a series of factors that need
to be mentioned. Although these will be discussed in detail in later chapters, they
are introduced here so the reader can keep them in mind from the onset.

Assumptions The model uses a series of assumptions regarding the nerve’s na-
ture, such as the assumption of cylindrical and parallel fibers, the use of the one-
dimensional cable equation and compartmental modelling, and also the neglect of
the capacitive properties of connective tissues. Although the capacitive nature of
extracellular tissues is known (see, e.g., [74] for the perineurium in frogs), it is
generally assumed that the quasi-static (QS) approximation, which removes time-
dependent components of the potential from the equations, can be used in most
neural applications, since the frequencies of neural oscillations normally lie below 1
kHz [75, 76]. Also, the error of applying the QS approximation when stimulating
with the square pulses from electrodes generally used in this work (near 200 µs long)
is small [75]. Further work regarding the topics covered in this research, but includ-
ing axon tortuosity—which has been investigated in previous studies with different
conditions—and capacitive properties of tissues, could provide yet more accurate
results and richer insights. In addition, the model disregards the accumulation of
potassium ions in the interstitial space between fibers and ionic diffusion through
the extracellular space, which are known to be sources of inter-fiber interactions.
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Shortcomings While the framework uses a RN which was theoretically validated
under simplified conditions, it does not make use of FEM simulations. A FEM solver
was under development during this project, which was meant to be coupled to the
neural models. However, due to time and human constraints and considering that
our intended FEM solver, as well as all the software we have developed, was meant
to be open-source —which implies giving up on the swiftness of using available com-
mercial solvers—, this task could not be finished. Therefore, this framework lacks a
FEM solver which would allow the calculation of fields from stimulating electrodes
using the most commonly used and thoroughly validated method. Nevertheless, we
consider that the RN acceptably serves the purpose.

Constraints Using a RN requires a high amount of computational power and
time. Even when saving computational costs is not one of the main purposes of
this thesis, this should be accounted for at the time of using this model, especially
if users need fast results for quick analysis. It is left as suggested work to further
investigate on how to optimise simulations using RNs.

1.6 Overview and Structure of this Thesis

This thesis contains seven chapters and it is structured as follows:

Chapter 1 presents an introduction of the study.

Chapter 2 describes the state of the art in the growing technologies for sensory
feedback restoration and PNS modelling. It focuses on the currently existing models,
together with their properties and advantages. Afterwards, a literature review of
the currently available knowledge about EC in myelinated nerves and the PNS is
provided, making a special remark on the relevance that this has for modelling for
practical applications.

Chapter 3 presents a preliminary study where EC is studied for the case of very
few fibers (2 and 3). The one-to-one ephaptic interactions and effects on propagation
are quantified, and the results are used to create a simplistic particle model that
serves to infer the possible consequences of these interactions in larger bundles.

Chapter 4 presents a RN that creates an EMI model of a bundle of fibers and
its extracellular space, meant to overcome the numerical stability issues found in
Chapter 3. The RN and its new nearest-neighbour electrical connection model are
explained here. The RN is validated against expected solutions from FEM and
analytical equivalents. Following this, the RN is used in bundles of fibers in two
scenarios in order to test its usability: First, it is used to study the effects of several
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anatomical variables of the fibers in a bundle and of RN implementation choices
on the responses of the fibers to electrode stimulation. Next, it is used to study
the behaviour of a low number of identical fibers ephaptically coupled in order to
contrast the results against preceding knowledge.

Chapter 5 presents the first study of the effects of EC on stimulation with cuff
electrodes and propagation of APs along several bundles and a model of a peripheral
nerve trunk that includes fascicular perineurial membranes, anisotropic extracellular
conductivity and myelinated fibers of different diameters based on mammal diameter
distributions. EC is also assessed under the dependence on inter-fiber distances and
presence of perineurial membranes. This chapter uses an extension of the RN in
order to run these studies.

Chapter 6 provides an in-depth discussion on the findings of this work, remarking
both the novelty and relevance of its contributions, and also providing a critical
review of this work and its limitations.

Chapter 7 provides the main conclusions of this work.



Chapter 2

Background

2.1 Existing Methods for Sensory Feedback Restora-

tion

A variety of methods have been used to provide sensory feedback. In general, meth-
ods for sensory substitution consist in using either: neural interfaces, which ulti-
mately aim to stimulate the peripheral sensory nerve fibers in order to send to the
CNS the exact sensory information that is aimed to be evoked; or by providing stim-
ulation to functional sensory organs, in order to make a substitute for the intended
information.

2.1.1 Variety of Sensory Substitution Techniques

A number of approaches for sensory substitution includes cutaneous electrical stim-
ulation [77–79], mechanical stimuli on the skin (which includes vibrotactile [78] and
mechanotactile [80] stimulation of the skin), auditive systems to encode positional
information [81,82] and a technique known as skin reinnervation [83], which consists
of surgically redirecting the remainders of the sensory afferents of the missing limb
to the skin of a different part of the body. See [84] and [33] for broader reviews on
sensory substitution techniques; note however that these reviews are bound to 2013
and 2015, respectively.

Most of these techniques and approaches have, to some extent, been success-
ful at providing certain improvements in movement control, but few have ever had
a practical applicability outside laboratories [33]. Vibrotactile feedback has been
successfully implemented in myoelectric prostheses [84]. Body-powered prostheses,
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which were some of the formerly developed around the beginning of the 20th century,
offer one type of mechanotactile or haptic (force) but effective feedback provided by
the pressure that the movement of the prosthesis exerts on the body (elbows, shoul-
ders, etc) [85]. This type of early and purely mechanically originated feedback has,
ironically, a higher rate of acceptance amongst users than all others (not including
direct neural stimulation), and these prostheses have therefore been accepted even
more than the more modern myoelectric ones, which usually lack a proper sensory
feedback system [84,85]. Other more indirect forms of sensory feedback include, for
example, mechanically stimulating another, or a reciprocal, part of the body (e.g.
if a hand prosthesis is in use, the other hand is stimulated for feedback) [86].

2.1.2 Neural Interfaces

All the techniques listed above, except body-powered prostheses, commonly share
their difficulty of being applied outside laboratory settings, and that the quality
of their feedback is not modality-matched. I.e., the actual sensations generated by
these methods do not match the intended natural sensation. In order to provide
this natural feedback, only neural prostheses have so far been successful [37–39].
Furthermore, they have managed to provide a certain stability and durability [87].

Although reconfiguration of neural pathways occurs in the CNS after an am-
putation, the mapping of the missing parts of the body remains. Therefore, the
brain virtually retains the ability to identify sensations associated with the missing
parts [35]. Hence, the remaining nerves of the missing limbs can be physiologically
stimulated, and the brain will still map sensations to missing tissues.

Neural interfaces for sensory feedback are relatively new. The first work we
have found where electrical stimulation was directly exerted on a peripheral nerve
was [88], where the median nerve was stimulated and subjects could feel sensations
correlated to the inputs.

A variety of peripheral neural interfaces have been developed during the past
decades. They can be classified according to their level of invasiveness and selectiv-
ity, which unfortunately are somewhat positively correlated (see [89], [90] and [91]
for thorough reviews on existing neural interfaces up to 2005, 2010 and 2018, respec-
tively). The least invasive of direct neural interfaces for peripheral nerves, (and some
of the first developed), are cuff electrodes [90]]. These are the least invasive since
they wrap the nerve without damaging it, but are also the least selective, meaning
they are the least capable of targeting specific axons separately from others. There
is, however, one interesting type of cuff electrodes, the Flat Interface Nerve Elec-
trodes (FINE) [92], which increase their selectivity by compressing the nerve flat
and thus gaining proximity from the active sites to the targeted fascicles [8]. They
were used in [37] to deliver sensory feedback in a prosthesis. Cuff electrodes are not
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invasive to the nerves, but they are invasive to the body (i.e. they need to be surgi-
cally inserted in the body in order to connect them to a nerve). A prosthesis that
uses cuff electrodes to deliver sensory feedback was developed by [39]. Other neural
interfaces are all invasive. Probably one of the least invasive are the the Longitudi-
nal Intrafascicular Electrodes (LIFE), which are introduced longitudinally inside the
fascicles. This offers a good degree of selectivity, since they can be introduced in the
fascicles of choice. The works [35] and [93] were the first in using LIFE, connected
to the PNS of amputees, to deliver sensory feedback. Transverse Intrafascicular
Multichannel Electrodes (TIME) [94] consists of one needle with multiple active
sites that is inserted transversally in the nerve. They have been successfully used
in prostheses to provide sensory feedback for closed-loop control [38]. Their level of
invasiveness and selectivity present an interesting trade-off when compared to other
electrodes [90]. UTAH electrodes [95] and their slanted design [96] consist of an
array of electrodes that are also inserted transversally in the nerve. Being an array
of needles, they are both highly selective and invasive. Finally, sieve electrodes can
be highly selective, but are the most invasive design [97].

2.2 Computational Modelling of Peripheral Nerves

2.2.1 Necessity of Models for Understanding Neural Phys-
iology

Our understanding of the physiology and behaviour of the nervous system is strictly
dependent on developing conceptual and mathematical models of neurons in order
to imprint and test on them and their simulated behaviours our knowledge about the
neurons. Models comprise all the knowledge we have about the neurons, including
their properties and both their individual and collective behaviours, as well as our
knowledge about complex phenomena that arise as a result of their collective be-
haviours. Modern technologies in computation allow us to numerically simulate the
behaviour of our models under conditions of our choice, and therefore quantitatively
assess potential or hypothesised neuronal behaviour and its consequences.

2.2.2 Evolution of Nerve Fiber Models

The PNS has been (and is still being) studied extensively using computational mod-
els. It started with individual modelling of its basic units, the axons, and the com-
plexity and richness of models has been increasing over the years. When a spatial
representation of neurons is needed in order to account for the dependence of the
currents and potentials on the geometry of the neuron, the cable equation is the
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staple model in use. It was first used in the study of neurons by [98] and [99], and
has since been extensively used by many others (see [100] for a review; see also
[69]). This equation, with all its elaborated versions, has allowed researchers to
study many aspects of neuronal behaviours through neuron membranes, especially
regarding electrotonous potentials and propagation. The study of the membranes
with the cable equation has facilitated the study of the membrane ion channels,
responsible for the active propagation of APs, about which knowledge has increased
every year. Around the mid-20th century the works of [101] and [51] set a corner-
stone for the modern study of ion channels, and their models have been thoroughly
used to the present day.

Models of membranes with voltage-gated ion channels have been thoroughly
used, studied, and improved during the past century. They started with simple
RC circuits, acquired the level of [101] and [51] for squid and frogs, and eventually
started including properties of mammalian nerves. This step involved the study of
myelinated axons and the role of myelin in conduction in myelinated nerve fibers.

Departing from knowledge on other animals, experimental studies have provided
insights about properties of mammalian nerve fibers (as representative examples for
rat nerve fiber ion channels, see [102–105], among many others), and the knowledge
about them has accumulated over the years. The properties of myelin sheaths need
to be thoroughly understood in order to attain a complete picture of their role in
the physiology and behaviour of mammalian nerve fibers. A myelin sheath acts
in close interaction with the voltage-gated ion-channelled membrane that it sur-
rounds. Compartmental models (compartmental modelling consists of lumping the
membrane properties of the axons in order to discretise its length to aid numerical
simulations [100]) of myelinated fibers were first run in numerical simulations by
[46] using a lumped form of a myelinated axon, which consists of lumping the nodes
of Ranvier and adjacent internodal compartments in order to save computational
power. Later works used this and improved models in order to study different as-
pects of myelinated fibers. For example, [45] studied the relationship between CV
and diameter with numerical simulations, [10] studied this relationship with intern-
odal length, and [106] and [59] used their newer models to study the response of
myelinated axons to a field generated by an extracellular electrode. Computational
and experimental studies have aided accumulating knowledge about myelinated ax-
ons. Knowledge was acquired regarding new ion channels, paranodal regions, and
myelin longitudinal currents on rat myelinated axons [103,104,107]. This eventually
led to more complex models, such as the McIntyre-Richardson-Grill (MRG) [108],
where paranodal regions and periaxonal space are accounted for in a double cable
model that simulates the longitudinal currents. The model from [108] has been com-
monly used since [109,110], even when models for human myelinated fibers had been
proposed in the past [111, 112] —although the latter have also been used relatively
recently [40,56]. The MRG model has also recently been the basis for a new model
describing sensory fibers [113].
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Newer models are questioning the implications of the cable equation, studying
the often neglected effects that its assumptions have when modelling situations of
interest. The acknowledgement of ephaptic currents is probably one of the most
remarkable examples [69, 114] —although these works do not necessarily deal with
myelinated axons. Also, the effects of the assumption of angular isopotentiality or
rotational invariance of the membrane have been assessed through modified models
of the cable equation which incorporate transverse components for polarisation [115–
117]. However, it has generally been found that this assumption is valid for the
majority of practical applications [117].

2.2.3 Models of Peripheral Nerve Trunks

Figure 2.1: Examples of existing nerve models implemented to solve their fields
in FEM. Models and figures taken from (a) [6], (b) [7] and (c) [8], respectively.

Models of fiber bundles and nerve trunks are relatively recent. They were first
designed as part of theoretical studies, or as computational volume conductor models
which included numerous simplifications [55, 118, 119], then later as more detailed
models including separate fascicles in complex geometries [120–122]. FEM are very
convenient for computing fields resulting from electrodes over the geometry of a nerve
trunk. They were proposed early for this purpose [123], although they started being
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used later with greater frequency in models with somewhat complex geometries and
distinction of tissues [7, 120, 124]. Since then, they have been used as the most
powerful tool for modelling the electrode fields [8, 40, 110, 125]. The complexity of
peripheral nerve models has been increasing in recent years. After previous models
in which fibers in bundles were all identical, fibers of differing diameters (although
with only a few values) were taken into account [120]. Eventually, fascicles with fiber
diameters randomly allocated, following experimentally measured distributions [8],
were used. Other anatomical aspects, such as tortuosity, were also included [110],
and more complex axon models such as the MRG were embedded in these larger
nerve models [109,110,126].

2.2.4 Existing Tools for Neural Modelling

Computational modelling of neurons and neural systems has underseen the cre-
ation, development, and use of numerous models that aim to simulate most parts of
the nervous system and many of its relevant aspects —physiology, anatomy, com-
putational function of individual cells and networks, etc. Most models have been
developed in close relationship with experimental studies that provide necessary
data, knowledge, and parameters model designs. They are mostly based on the ca-
ble equation, established as the most utilisable theory for modelling the shape and
physiology of individual neurons due to its ease of understanding and implemen-
tation. Early computational studies of neurons which focused on their anatomical
(including the main parts of neural morphologies —somas, dendrites [127–129], ax-
ons [10, 45, 46, 100, 106], branching points [130], etc.) and physiological properties
(such as membrane ion channels [128, 130] and synapses [127, 131]) were based on
this theory, and it has been thoroughly used until the present day. During this
time, both simple [59, 60] and sophisticated [108] cable models have been included
in larger nerve models [8,40,68,108,110,132,133], and basic models for cortical cells
based on the cable equation like [129] are still used today—in fact, this model is
arguably one of the most popular—to expand the knowledge about them, is such
areas as those regarding their artificial stimulation [76], EC [70] or recordings of
their activity [134] (note that these references are only examples of works on these
respective fields; a more thoroughly intended review should include all the deserved
references).

Following the proliferating use of the cable equation and, more generally, neural
models, programmatic tools have been developed in the last few decades to facilitate
the modelling of neurons. These tools were developed with the idea of reducing
redundant design efforts [135], allowing modellers to define detailed anatomical and
physiological properties of individual neurons and neural systems with relative ease,
and saving them the burden of implementing the cable and membrane equations
from scratch. There are therefore common aspects to these tools: their open source
philosophy and the availability of their code. Most of the tools discussed here are
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open source.

Two tools developed between the late 1990s and early 2000s are NEURON [130]
and GENESIS [135]. These tools were centred on modelling the detailed morphology
of neurons, something barely achieved at that time (except for the dendritic trees
models of [129], for instance) and which was definitely not available in the form of
a programmatic tool; in order to run their simulations, every research group had
to implement their models in computer programs from the start. These tools also
permit configuring neural networks and parallel computing of their simulations (see
[136] for NEURON and [135] for GENESIS). More recently, NEURON has been
updated with a Python interface [137], which makes the definition of models and
simulations easier for users.

NEURON and GENESIS use compartmental modelling of the cable equation in
order to build neural models. These two tools have been by far the most relevant
and widely used in the field of neural modelling in recent decades. They have
facilitated the modelling of many cells and systems closely based on experimental
observations, which has greatly widened the knowledge about the nervous system.
For lists of works using NEURON and GENESIS see [130] and [135], respectively.
Note that these are only until 2001 and 2003, respectively. This present study makes
exclusive use of NEURON for the peripheral nerve models and also individual fiber
models, and we have taken advantage of its Python interface.

Other tools have been developed recently which also use the cable equation. Ex-
amples of these are shortly summarised in the following. Neurite [138] was recently
developed as a tool to simulate signal propagation in neurites under mechanical
loading, which can be used to simulate the behaviour of damaged neurites. Neurite
also allows the definition of complex neural morphologies and parallel computing of
the simulations. Also worth mentioning are NEST [139], similarly developed in the
early 2000s, and the more recent Brian [140], implemented as a Python package.
These two tools allow the simulation of networks of spiking neurons, although they
have less focus on detailed neuron morphologies.

The existence of these tools has facilitated researchers building complex neural
models, and the development of more sophisticated tools based on the original. A
clear example involved in modelling PNS is PyPNS [110]. This software uses NEU-
RON to simulate bundles of both unmyelinated and myelinated fibers in peripheral
nerves, allows the use of pre-computed fields to stimulate the fibers (either coming
from FEM simulations or by other means), and uses FEM and analytical solutions
to simulate electrode recordings of neural activity. Regarding the morphological
properties of axons, it allows for the inclusion of detailed models of the double cable
circuit from MRG and, on a larger scale, it furthermore simulates axon tortuosity in
the bundle, which permits studying into the effects of tortuosity on stimulation and
recordings. It lacks, however, a model of EC among fibers and, therefore, it does
not use a EMI approach. It uses NEURON for the neural models and Python as a
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wrapping language. Another application of NEURON is not involved directly with
the generation of more complex models than the existing, but is aimed at computing
the Local Field Potential (LFP) from any desired model. LFPy [134] uses NEURON
in order to simulate the activity of any number of neuron models provided by users,
and uses the simulated membrane currents to compute the extracellular field over
space. The aim of this tool is limited in scope, in the sense that it is not intended
to explicitly study aspects of neural activity other than the extracellular potential.
But it does serve a very useful purpose, since the LFP generated by neural activity
at a point (such as the location of a recording electrode) is of great interest.

2.2.5 Use of Computational Modelling for Sensory Feed-
back Restoration

Designing neural interfaces for sensory feedback restoration requires knowing how
the PNS responds to such interfaces, so that the sensory information that can be
elicited with them can be predicted. The PNS is an intricate system, and predicting
its response to artificial stimuli is arguably difficult, yet it is necessary in order to
avoid excessive trial and error experiments on patients. Trial and error approaches
when using certain neural interfaces directly on human subjects exist in order to
calibrate the stimulation parameters necessary for evoking different sensations. See
[38], who mapped injected electric charge through TIME electrodes to reported sen-
sation intensity by the user, and [37], where the stimulation parameters were found
by matching induced sensation of pressure with a pressure reported by the user.
However, none of these works do so without previous prediction studies; see [40]
as a previous study to [38] and [58] to [37]. These latter are guided by machine-
nerve interface models, where the behaviours of axons in nerves are simulated under
conditions that imitate those that, ideally, take place in real scenarios, mainly in-
volving the implantation of an electrode in a peripheral nerve. Simulations using
these models allow in-detail observations of both individual and collective axon be-
haviours in response to the simulated stimulation from electrodes. They allow us to
observe which fascicles in the nerves get the highest number of fired axons. This,
together with a theoretical map between fascicles and somatosensory regions, pro-
vides an indication of where artificial stimulation can elicit sensations in the human
body. Also, observation of axon firing rates can help elucidate the quality of the
evoked sensations [141]. These variables depend on the stimulation parameters in
play. There are geometrical parameters (type of electrodes, nerve anatomy and ac-
tive site locations) and electrical (the time series used by the active sites to inject
charge into the nerve, which can include any waveform, although the most common
are square monophasic or biphasic pulses [142]). In these, relevant parameters are
pulse amplitude, width and frequency. As nerve response can be predicted based
on the values for these parameters, numerical simulations can assist optimal choices
for them, ultimately helping the design of interfaces between assistive devices and
PNS.
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Simulations of Collective Axon Response to Extracellular Stimulation

Predictions of collective axon response to artificial stimulation use nerve trunk or
bundle models like those described in Section 2.2, including models of the electrode
designs under study. They include varying levels of detail with regards to vari-
ety of fiber types and sizes, inclusion of different tissues (some of which may have
anisotropic conductivity), and fascicle shapes, amongst other aspects. But they
share a common intention: to model nerve segments with several separate fascicles,
and simulate which axons are activated by the different stimulation protocols under
study. The selectivity is the level of accuracy with which an electrode can stimu-
late the targeted groups of fibers of a nerve, in order to generate certain sensory
information or to elicit the movement of certain muscles of a patient. Stimulation
performed with insufficiently selective electrodes could induce unwanted muscular
movements or sensations in the patient. Selective stimulation of axons has often
been an intensely pursued goal, and it has been studied within the last decades,
either for targeted muscle innervation [8] or for sensory feedback [56]. The endeav-
ours towards this goal, aided by simulation studies, has led to various designs for
neural interfaces as discussed in Section 2.1. During the process, a variety of nu-
merical approaches have been adopted to study axon response and, subsequently,
selectivity.

The process of simulating artificial electrical stimulation mainly consists of two
parts. First, the potential fields generated by the electrodes need to be solved over
the neurons, at their locations and along their geometries. And second, the neurons’
electrical and physiological responses to these fields need to be simulated.

Simulating fields generated by electrodes The electric and magnetic fields
generated by stimulating electrodes on any physiological tissue are naturally given
by Maxwell’s equations. Neurons respond both to electric and magnetic fields. How-
ever, most practical applications in artificial electrical stimulation use fields with
frequencies low enough to rely on the QS approximation. Under the QS approxi-
mation, the time-dependent components of Maxwell’s equations are neglected, and
therefore magnetic and inductive effects can be ignored. The QS approximation is
valid for frequencies under 1 kHz [76,143]. Most aspects of known neural behaviour,
including time constants and most common voltage oscillations in neuronal mem-
branes, lie in this range or under. However, not all do, and furthermore, electrical
stimulation patterns include components above 1 kHz. Therefore, the validity of
the QS approximation has been assessed [75,143], although it has been determined
that for most practical applications in electrical stimulation, the QS approximation
accurately describes the fields generated by electrodes [75, 76].

Under the QS approximation, the variable of interest from these equations is the
electric field or the electric potential, and it is generally found by solving the Poisson
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equation over a domain. Even in this case, solving this variable on neural tissue is
generally not an easy task, due to the morphological and electrical complexities of
the tissues. Analytical solutions exist for approximated cases. The simplest of them
is the point-source (PS) approximation, used by [144] to compute the potential field
over a volume from a current injected by a monopolar point electrode. The potential
field over a volume is obtained as follows:

φ(r) =
1

4πσ

IS
|r− rS|

, (2.1)

where IS is the current at the source, r is any point in space, rS is the position
of the source (the electrode), and σ is the conductivity of the space.

There are also analytical solutions which are approximated to the scenarios of
interest. For stimulation in fiber bundles, there are solutions for PS electrodes in
cylindrical conductors [145] (see [76]).

These approaches, although they are computationally very efficient and in many
cases convenient, entail restrictive assumptions and simplifications and hence do
not account for the complexities of nerve anatomy and electrical properties. Thus,
they are practically unsuited to model complex anatomical and biophysical struc-
tures. Numerical solutions are needed in cases with more complex problems. Finite
Difference Methods (FDM) and FEM have been widely used to model the electric
fields over tissues with complex geometries, heterogeneous distributions of tissues
and anisotropic conductivities. FDM were initially used (see [112,146] for modelling
the dorsal root). However, complex geometries are better represented by the meshes
used in FEM than the regular meshes used in FDM. FEM have been used since early
works [120, 123] and have recently acquired great importance, being currently the
main, if not practically the only, tool for solving the Poisson equation over nerve
models. They have been widely used in nerve electrical stimulation studies in or-
der to simulate the performance, especially focusing on selectivity, of cuff electrodes
[7,124], FINE [8] and TIME [40] (amongst many other works). They have also been
used to model electrode recordings from neural activity in peripheral nerves [110].
FEM are also used to simulate stimulation in the CNS [147], where the performance
of Micro Electrode Arrays (MEAs) is studied.

Simulating neuronal responses to fields The collective neuronal response to
applied stimulating fields is, of course, computed from the individual responses of
each of the neurons or axons in the model, which are simulated using the meth-
ods described in Section 2.2.2. The general practice to combine those individual
models with a larger framework that includes bundle models and electrode config-
urations is to use the so-called hybrid field-neuron models [40], which first simulate
the fields using a Poisson solver for the electrical fields over the nerve’s volume



Chapter 2. Background 43

as described above (structural modelling, generally using FEM in the last years),
and later use the resulting fields as a stimulation forcing on compartmental mod-
els of neurons (normally using the NEURON simulation environment [2], although
other methods exist) to study their response, according to the locations and orien-
tations of the compartments. The framework for hybrid field-neuron models was
started with the FEM simulations of [123], and it was followed by other works
[8, 120, 148]. The exceptions to this generalised practice are EMI models (EMI
standing for extracellular-membrane-intracellular domains; see [114]), where both
fields and neuronal responses are computed self-consistently at every time step of
the simulations, and the recent bi-directional models [149], which couple 3D models
of unmyelinated [150] and myelinated double-cable models [151] with an extracellu-
lar space, also self-consistently, and solve their interactions using FEM.

Within hybrid field-neuron models, the methods and models for simulating neu-
ronal response differ according to the type of neurons accounted for and the level of
detail given to the models. The most common model for the spatial representation
of neurons is the cable equation, and this is solved numerically using compartmen-
tal models. In the most explicit neuron models that use the cable equation, this
is combined with models for non-linear dynamics of the ion-gated channels of the
neuron membranes, represented with circuit models. They also include explicit cir-
cuital representations of the myelin sheaths of the axons and the close surrounding
extracellular space. NEURON allows the implementation of these models, and has
been frequently used for this purpose. This is the case, for instance, of the selec-
tivity studies carried out on PNS models by [8], who performed simulations of the
stimulation of a model of the human femoral nerve using FINEs, in order to study
their selectivity at stimulating motor fibers for muscular movement, or [40], who ran
a similar study for a rat sciatic nerve model using TIMEs.

There are other ways to predict excitation in axons without the need of com-
puting membrane processes and solving the full cable equation. These are approx-
imations known as linearised models [152] or estimators [76]. They eliminate the
non-linear terms of the ion-gated channels from the cable equation, which can be
computationally expensive, and make the prediction of the membrane polarisation
under an extracellular stimulating field much easier. These methods are very useful
when ion-gated properties of the membranes are unknown, or are not aimed at being
computed, in order to make quick estimations of recruitment in bundles containing
large numbers of axons. The most basic method within this set of approaches is
to use purely linear, or passive, cable models. Using these, the activation of an
axon is predicted when the induced membrane depolarisation reaches the assumed
threshold. This approach has the disadvantage that it assumes the threshold to
be fixed and ignores the relationship between it and the stimulation pulse width
[121, 153]. An early estimator of this kind, aside from the mentioned passive cable
models, is the Activating Function (AF), developed by [59]. It predicts the mem-
brane sub-threshold polarisation of an axon to be proportional to the second spatial
derivative of the extracellular field, and because it needs only knowledge on the
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extracellular potential, the location, and orientation of the axon, it can make such
prediction avoiding the computation of passive cable models. Examples of the use of
this method can be seen in [43,154,155]. The assumptions inherent in this method,
however, make it prone to errors, and other works have developed other linearised
models which address these weaknesses. The model from [153] uses the AF in combi-
nation with cable models, and accounts for intracellular longitudinal currents, which
are known to affect the transmembrane potential after a few µs from stimulation
onset [153] (see more on [76]). Other so-called linearised prediction models were
developed by [60], who introduced the excitation function, different to the AF, and
[152], who added more detail on the activation thresholds, including dependence on
the extracellular potential, fiber diameter and stimulating pulse width. Also, [147]
developed the mirror estimate, which takes into account the boundary conditions
in finite axons, while the AF assumes infinity of axon length, and can compute
activation from fields whose second order derivative along the axon is null.

Although their validity is constrained by their algebraic and linear nature, these
latter methods are so computationally inexpensive that they allow their usage in
evolutionary or genetic optimisation algorithms for electrode design, which involve
a large number of simulations. For examples on these studies, see: [154], where the
AF was used to optimise a cochlear implant electrode array; [133], who used [60]
to optimise the parameters for stimulation with FINEs to maximise selectivity; or
[156], who used [153] for a similar study on the same type of electrode.

2.3 Ephaptic Coupling

Ephaptic coupling consists of electrical interactions between nearby cells through
endogenously generated fields (see Fig. 2.2), i.e., fields generated by the activity
of these cells, in such a way that the activities of these cells are intercorrelated
—coupled, even in the absence of other types of connections, either synaptic or
gap junctions. This type of coupling is different to synaptic connections and gap
junctions, and is probably the least studied of the three, since there its relevance is
under a heated debate [157]. Ephaptic coupling in the nervous system may happen
between neurons in networks in the CNS or between fiber tracts, both in the CNS
and PNS. Many more studies have been undertaken for neurons in the CNS than for
fiber tracts [157,158], since its relevance is well acknowledged in some regions of the
CNS; it is known to be significant in the hippocampus [157] and in the cortex [159],
where the high density of neurons and their laminar structure favour large LFPs
[70]. In these regions, ephaptic coupling is known to play a role in synchronisation
of neurons and also in the emergence of pathological neural behaviours, such as
epilepsy [160]. Ephaptic coupling is also present and strong in AP propagation in
cardiac cells [161–163].
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Figure 2.2: Conceptual illustration of ephaptic interactions. In this scenario, an
axon carrying an AP (active axon) creates an extracellular field (color map) which
stimulates the neighbouring (resting) axon. Black closed curves conceptually
illustrate how currents driven by the activity of the active axon flow along the
interstitial space between axons and enter inside the resting axon. Inspired on
[9].

2.3.1 Existing Knowledge about Ephaptic Coupling in Fibers

The electric interactions between two unmyelinated fibers were first experimentally
observed in in vitro preparations and studied by [9] in 1940 and [61]. Since then, elec-
trical interactions in the absence of synapses or gap junctions (that is, due entirely
to the endogenously generated extracellular potential) have already been studied,
and considerable understanding has been gained for the case of two unmyelinated
fibers [11, 62, 65, 164, 165]. Studies on the interaction of myelinated fibers are more
recent, and interest in this phenomenon only arose within the last two decades. A
possible reason for this is the work of [63], which assumed that ephaptic interac-
tions between myelinated fibers are negligible. This assumption became accepted
until subsequent studies about ephaptic coupling in myelinated axons questioned
this idea. Previous to [63], first indicators about ephaptic coupling in myelinated
axons came from observations on a frog’s sciatic nerve by [166]. Later, a ground-
setting study on the ephaptic interactions of myelinated axons was provided by [64].
By interpreting an analytical treatment of ephaptic coupling in unmyelinated nerve
fibers provided by [165] into the myelinated case, they provided a theoretically jus-
tified reason for expecting coupled impulses in saltatory conduction and developed
a simple circuit model which was used to study different cases of coupled propaga-
tion of pulses, as well as the effects of myelination on propagation of a single nerve
fiber. In the same year, two other models for simulating ephaptic interactions in
parallel unmyelinated fiber bundles were developed by [65], which are also appli-
cable to the case of myelinated fibers: the MF model and the geometric model.
The first simulation of propagation with ephaptic coupling that included more than
two myelinated axons in a bundle was made by [66]. In this sense, although [65]
simulates the activity of a bundle, the equations presented for the MF model are
reduced to two axons, accounting only for the distinction between stimulated and
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unstimulated axons. Using the MF model taken from [65], [66] studied the effect
of myelin damage and level of ephaptic interaction in signal propagation, as well as
other aspects as temperature. The results of these works showed synchronisation
between fibers in the propagation of pulses. That is, pulses in different fibers tend to
adjust their speeds and synchronise and travel together, although this occurs at the
expense of a decrease in the velocity of propagation. Also, [66] found that damaged
fibers with conduction block could be brought into conduction by the activity of
other nearby fibers. The works of [64] and [66] found that ephaptic coupling may
be especially strong for damaged fibers, especially after demyelination, since loss
of myelin removes insulation layers between fibers. These results are in agreement
with the observations from [166].

Later works, which usually use the work of [66] and almost invariably that of [64]
as references until 2013, focus on mathematical treatments of systems of coupled net-
work differential equations and use ephaptic coupling as an application or example
for their studies [167–170]. Others use ephaptic coupling for studying health issues,
such as conduction difficulties by loss of myelin or axon damage [171]. Some of the
mentioned works with mathematical treatments address ephaptic coupling in a more
direct way, thus providing useful insights in some of the many relevant aspects of
the problem. For instance, [168] used the models of [165] and [64] to study the effect
of the alignment of the nodes of Ranvier on the range of propagation failure due to
ephaptic coupling. They found that the alignment of the nodes increases the range
of the parameters in the models between which failure could occur, whereas stagger-
ing diminishes it. Also, [169] studied the coupling effects of two non-identical fibers
and found phenomena such as soliton-like collisions between pulses, recombination
of solitary and synchronised pulses and overtaking. These more mathematics-aimed
works provide scope for the study of ephaptic coupling of myelinated axons.

2.3.2 Existing Modelling Techniques for Ephaptic Coupling
between Fibers

All the approaches developed to date for modelling the ephaptic interactions between
fibers intend, with varying levels of explicitness, to model the extracellular space
where the fibers are embedded as a volume conductor. Some models have more of
a strictly mathematical approach, like [167–170], while others focus on a somewhat
detailed modelling of geometries and tissues. Below, the most relevant of the latter
approaches for this work are described. It is worth noting that, in general, each one of
these main approaches is preferred for a particular application (e.g., although there
are exceptions, the MF model is preferred for bundles of parallel axons, classical
electrostatics models are preferred for cortical neural networks, and resistor networks
are preferred for cardiac cells).
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The Mean-Field Model

The model from [64] consists of a cable that is shared between two axons as their
extracellular domain, and both membranes are connected to it. This is probably the
most basic model of extracellular connection between the two axons (at least for the
myelinated case) that has been presented to date, which allows longitudinal currents
to flow along the extracellular space (cable) and thus the flow of current from one
axon to another. [64] used only two axons. Essentially the same idea was used in
the same year by [65], who modelled a bundle of unmyelinated axons in the olfactory
nerve as a set of parallel and identical axons whose extracellular domains were all
directly connected to the same cable. This case, however, necessitates of the explicit
assumption that the extracellular space is isopotential at any cross-sectional layer,
so that all axons share a mean field at every layer. This eliminates any transverse
currents between axons from the equations and leaves only the longitudinal currents
along the shared extracellular cable.

When considering N identical axons in the bundle and NS of them are stimulated
simultaneously, the cable equations of all of them are coupled in such a way that the
whole bundle can be reduced to the equations for two axons A (stimulated group)
and B (unstimulated) [65]:

cm
∂V A

∂t
=

a11
D

∂2V A

∂x2
−

a12
D

∂2V B

∂x2
− IAion + Istim

cm
∂V B

∂t
= −

a21
D

∂2V B

∂x2
+

a22
D

∂2V A

∂x2
− IBion

a11 = ri + re(N −NS)

a12 = re(N −NS)

a21 = re

a22 = ri + re

D = r2i + Nrire

(2.2)

where cm is the membrane capacitance, VA,B and IA,B
ion are the transmembrane

potentials and membrane ionic currents of axons (or groups of axons) A and B,
respectively, ri,e are the intracellular and extracellular resistances, respectively, and
Istim is the injected current in axon A.

The extracellular potential Ve does not actually need to be computed, since it
leads to the equations above for the coupling of the transmembrane potentials of the
axons. The only parameter that controls the properties of the extracellular space is
re, which depends on the extracellular longitudinal conductivity of the medium and
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the cross-sectional area of the extracellular space. As it can be seen in the equations,
this parameter, along with its ratio with ri, controls the strength of the ephaptic
coupling between the axons. Note that the limit re = 0 implies a12

D
= a12 = 0,

so the system in Eq. 2.2 becomes two uncoupled cable equations for axons A and
B. This is the case where the assumption of the standard cable equation that the
extracellular resistance is very low is met, so ephaptic interactions can be neglected
[11].

The only dependence of this system on the extracellular space is on its longi-
tudinal component. Its transverse component is ignored. This implies that Ve is
common to all axons, regardless of the separation distance between them, and so is
the strength of the ephaptic coupling between any two axons.

This model was used shortly after by [66] using a bundle of parallel and identical
myelinated axons having all their nodes of Ranvier aligned. Their treatment and
simulations depart from such a restricted and simple case of having only two groups
of axons separated by their stimulation, and in some of their simulations, axons
are stimulated individually at different times. Hence, this can—not with unjustified
discussion—be considered as the first work in actually simulating a bundle of many
ephaptically coupled axons. Also, the ephaptic current is explicitly included in their
equations. More recently, this model was also used by [68].

The works of [65,66] are concerned with synchronisation of APs, AP phase lock-
ing and effects on CV. The work of [68] is more concerned with polarisation effects
due to ephaptic coupling, as well as synchronisation of neurons. In any case, but
especially when studying synchronisation, applying this model to identical axons
greatly simplifies the problem because it eliminates accounting for transverse cur-
rents, along with the intricate complexity of currents in the extracellular space that
would arise from them. Axons of equal diameters have equal CVs, and therefore,
observations in the deflections in CV and AP synchronisation are easy to observe.
This model, despite its simplicity, clearly manages to simulate CV deflections that
occur in order to reach AP synchronisation and the eventual AP synchronisation
itself. It can also make predictions on recruitment of damaged fibers by the ac-
tivity of healthy neighbouring ones. However, its core assumption presents a most
important drawback: any variations of the extracellular potential over the bundle’s
cross-section cannot be modelled. These are actually very relevant in certain situ-
ations of interest, such as situations where extracellular stimulating electrodes are
present, for which spatial dependence of the fields has been so much studied, and
thick nerves where many fibers are present (and where this assumption may lose its
validity).
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Distance-Based Models

As known from basic electrostatics, the potential generated by a finite-sized current
source varies across space, decaying with the distance from the source. The MF
model only takes this into account in one direction. This is convenient for a bundle of
parallel fibers which favour such configuration. But when potential variations along
other directions needs to be accounted for, this is not a good approach. This is the
case, for instance, of neural networks that do not have this geometrical characteristic
length. Unless it is assumed that neural activity can generate an extracellular field
that is isopotential across the entire volume of the network, a MF model is not
suitable for this scenario, and distance dependence of the electric potential has to
be taken into account. Also, simulations of electrical stimulation from extracellular
electrodes become practically pointless if a MF model is used, since the spatial
details of the electrode fields cannot be captured by such model.

Modelling the spatial change of the electric fields can be done in various ways,
the most relevant of which are described below.

Classical Electrostatics Models

Compartmental modelling of neurons generally regards each neuron as a sequence
of compartments, which can also be referred to as nodes, over each of which all
the relevant variables in a neuron are constant, from geometrical properties and
channel densities to electrical properties. Each compartment is therefore regarded
as a current node in a circuit, and can be regarded as a current point source when
seen from the outside.

The electric potential generated by a current point source S in an isotropic
medium where the ground is assumed to be infinitely far away is given by Eq. 2.1.
This and more complicated versions of it have been used by many who have studied
the electric fields over tissues generated by electrodes, first by [144] and subsequently
by others who also computed electrode fields [59] and fields generated by neuronal
activity [134,172] in order to simulate electrode recordings. But it was [69] who first
applied this as a model of the extracellular potential generated by the activity of
neurons. Each neuron, consisting of N compartments, would generate a potential
at a point r given by:

φ(r, t) =
1

4πσ

N
∑

n=1

In(t)

|r− rn|
(2.3)

Also, a line-source approximation is given in [69] which is suitable for long
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straight axons.

This simple model can be used for any neuron model of any shape and complexity,
and it is widely used because it is especially convenient for cells where axons and
dendritic trees are modelled as departing from a soma, such as pyramidal cells. It
has been used to study ephaptic coupling and AP synchronisation between these
cortical neurons [70].

This is a non-costly model that can easily be implemented in numerical simu-
lations. However, it is based on the assumption of an infinitely large extracellular
domain, and has a singularity at the centre, which means that values of the po-
tential computed very close to the source can be unrealistically high. This latter
problem presents a difficulty when working with cells which are very close to each
other, since it can compute unrealistic values of the extracellular field. Eq. 2.3 can
be modified to account for anisotropies in the extracellular conductivity, although
the complexity of any model cannot easily get much further than that. Accurate
computing of the fields over complex geometries may be difficult to achieve.

Despite these inconveniences, this approach is still the basis of the calculations
of LFPs from neurons [134], and it is also still highly relied upon for computing
ephaptic fields [173].

Finite Element Methods

Modelling the endogenous extracellular fields with FEM is likely to be the most
accurate method to date for this purpose, just as FEM are used to model the elec-
trode fields in so many works. FEM are not only a reliable mathematical and
computational tool; they also allow, in principle, for modelling the fields in any ge-
ometrical configuration and with the presence of any tissues of interest. Although
FEM simulations are not exceedingly computationally expensive for electrical stim-
ulation studies, where one simulation is enough to compute the electrode fields, it
is so for simulations including EC. Either implementing neural models and extra-
cellular space as EMI-type models [114], or using hybrid field-neuron [40] models
(i.e., coupling other non-FEM neural models to FEM meshes for the extracellular
space), needs at least one FEM computation of the fields to take place at every time
step or between every two time steps of a simulation of the desired system. This
has been done by [72,114,174], generally for neurons with complex shapes and with
a remarkable success in obtaining a fine level of detail in the spatial distribution
of the fields, membrane potentials and ephaptic interactions, but they used models
which include a very small number of neurons in order to save computational costs.
Nevertheless, these methods need to be kept in mind if high detail simulations are
needed in the future, and might become especially interesting if the computational
costs of FEM simulations are reduced in the future.
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Resistor Network Models

Resistor network models for volume conductors discretise the space in nodes which
are interconnected between resistors. The resistors are given values in accordance
with the geometry and electrical properties of the volume conductor.

One of the simplest examples of this in axons is [11], where the extracellular lon-
gitudinal cables of two core-conductor axons are connected by transverse resistors.
Several models of cardiac tissue that involve ephaptic coupling between cells use this
approach [161, 163, 175, 176]. Also, note that the MF model for parallel axons can
be viewed as a very simple case of this approach where the extracellular common
cable comprises the whole network.

Just like FEM meshes, this approach permits modelling any complex geometry
and tissue configuration at will if proper characterisation of the space is done, i.e., if a
general model for the values of the resistances is used for any random geometry, as is
done in this dissertation. Again, its main drawback is the high computational cost it
entails. However, its circuital configuration permits an easy coupling with currently
used neural simulation environments like NEURON [2], which are also circuit-based,
and an EMI-type model can be built. This is done in this dissertation, and was also
done recently by [73].

2.3.3 Relevance for Sensory Feedback Restoration

The studies that have used computational models of nerve trunks or fiber bundles
in order to assess the selectivity of different electrode configurations [8, 40, 120],
especially those ultimately concerned with sensory feedback restoration [40], are
not concerned with the potential effects that ephaptic coupling may have on ac-
tual results of neural activity in their situations of interest. Experimental evidence
of ephaptic interactions between peripheral nerves in rats has very recently been
found [67]. In the works [64, 66, 166], ephaptic coupling seems to be most impor-
tant between damaged fibers, yet not so much for undamaged ones. However, the
findings of [67] evidence that these are also present between undamaged fibers. In
[67], ephaptic coupling appears not to be very strong between and within peripheral
nerves outside the dorsal root, and it is suggested that the epineurium may be pre-
venting such interactions between fascicles (note however, that ephaptic interactions
between fibers inside fascicles may still be strong). Within the dorsal root, however,
the ephaptic coupling was found to be stronger. This alone, whilst accounting for
the still open possibility that it is strong between fibers inside fascicles, is enough to
consider modelling ephaptic coupling in computational models, otherwise important
effects on the interaction between fibers during stimulation and propagation may be
overseen.
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These effects can be taking place during stimulation or propagation, or during
both. The work of [67] finds an increase in excitability of the fibers in a nerve when a
compound signal from a neighbouring nerve travels near it. This, in fact, is in agree-
ment with findings using numerical simulation in this dissertation (see Chapter 5).
Hence, repeating the conditions of previous studies [7, 8, 40] including ephaptic in-
teractions in the models may yield higher recruitment values than the original works
and thus, selectivity performance of the studied electrode configurations would need
to be at least slightly revisited. The effects of ephaptic coupling on propagation are
known from numerical studies [64, 66, 68]. These mainly consist of synchronisation,
AP phase locking, and reduction of the conduction velocities. Also, to a different
extent, they may include recruitment of inactive or damaged fibers [66]. This could
further affect selectivity. But more importantly, synchronisation is postulated to be
a mechanism for information processing. Little is known yet about how the PNS
encodes sensory information [141], and given the currently existing clues about the
synchronisation mechanism in the PNS, it could be worth modelling them in order
to study their role in sensory information encoding before entrance into the CNS.



Chapter 3

Conduction Velocity Adjustments
During Propagation in Fibers

The contents of this chapter are adapted from [13] and [177], publications leaded by
the author of this thesis as detailed in the List of Publications.

3.1 Introduction

The work of [64] found that two neighbouring myelinated axons tend to match
their Action Potential (AP) Conduction Velocities (CV) in such a way that their
APs travel together synchronously. Hence, Ephaptic Coupling (EC) is expected
to modulate AP CVs and adjust the frequency of the Compound Action Potential
(CAP) via synchronisation or locking of APs. Hence, the work of [64] provided a
justification for expecting coupled impulses in saltatory conduction. Qualitatively
similar results were found by [66] for a bundle of parallel myelinated axons. The
works [64,66] use a Mean-Field (MF) assumption to compute the extracellular field
for ephaptic interactions. However, the amplitude of this field is, naturally, thought
to depend inversely on the distance from the source axon [69]. Although the MF
assumption is useful for bundles of axons in simple conditions, it is not suitable for
other scenarios, such as those including extracellular electrodes or those where large
axon bundles are considered, such that inter-axonal distance may be too large for
the assumption to hold.

In this chapter, we aim to test the effects of EC under a distance-dependent
model of the extracellular potential, and we thus used a distance-based model based
on [69]. We found that in simulations of two and three neighbouring axons, these
tend to match their AP CVs and propagate their APs synchronously.
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This chapter is divided in two main sections. In the first section, we demonstrate
the influence of axonal activity on neighbouring axons by simulating the activity of
two parallel, neighbouring and identical axons, in which the activity of one of them
(axon 2) is influenced by the activity of the other (axon 1) through the electrical
currents generated by the latter in the extracellular medium that both axons share.
This interaction takes place only in one direction, so axon 2 has no influence back
on axon 1. This allows us to isolate the effects of individual axons and avoid the
effects of mutual interaction. Our simulations show that the activity of axon 1
influences the CV of axon 2 (v2) so that, under certain conditions, the AP of axon 2
approaches the AP of axon 1. In the second section, we address the effects of EC in
the synchronisation of the APs of three identical, parallel myelinated fibers. Results
show how the CVs of the three fibers change in order to couple the APs of the three
axons. The findings in this chapter are in general agreement with the findings on
AP synchronisation in [64,66,68].

The novelties and contributions of this chapter are the following:

• Using numerical simulations, we provide a quantitative measure of the effects
of the ephaptic influence from one myelinated axon on the CV of a neighbour.
This quantity is measured against i) the relative timing between the APs of
the two axons, ii) the inter-axonal distance between the axons, and iii) the
conductivity of the surrounding medium.

• We show that the known synchronisation mechanisms between myelinated
axons apply also for a distance-based model.

3.2 Unidirectional Ephaptic Stimulation between

Two Myelinated Axons

3.2.1 Materials and Methods

Myelinated Axon Models

We use axon models described by the one-dimensional cable partial differential equa-
tion along the x-axis, given by

c(x)
∂

∂t
V (x, t) =

1

ra

∂2

∂x2
V (x, t) − im(x, t) (3.1)
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where V is the transmembrane potential, ra is the axial resistance of the axoplasm
per unit length, c(x) is the membrane capacitance per unit length at the position1

x, so that it is equal to:

• the membrane specific capacitance at the nodes of Ranvier (NR), or

• the membrane and the myelin sheath specific capacitances in series in the
internodes (IN),

and im is the ionic total current per unit length crossing the membrane. In the
IN, this current is computed using a passive model:

im(x, t) = gM (V (x, t) − E) (3.2)

with gM being the myelin conductance per unit length, and E the resting potential.
At the NR, this current is driven by the Hodgkin-Huxley (HH) equations [101]:

im(x, t) =
∑

k

gk (V (x, t)) · (V (x, t) − Ek) (3.3)

where for a voltage-gated channel k, gk is the channel’s non-linear function describing
the conductance per unit length, and Ek is the corresponding reversal potential.

Values for the capacitance and conductance of the myelin sheath were obtained
from [10].

Computation of Ephaptic Stimulation

Influence of axon 1 on axon 2 was obtained by calculating the extracellular potential
resulting from the activity of axon 1 along the length of axon 2. This was done in
a three step process:

1. A simulation of the activity of axon 1 for a time span of 27 ms is performed
and the results of its net membrane currents In(t) for every compartment n
and every time step are stored.

2. Next, the stored values of In(t) are used as current point sources to calculate
the extracellular potential over the positions of the compartments of axon 2
for every time step, φ(r, t), using Eq. 3.4.

1It should be noted that in this chapter, the axons are aligned with the x-axis. This will change
in subsequent chapters, where axons will be aligned with the z-axis.
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(a) (b)

Figure 3.1: (a) Schematic of the arrangement of the axons. Axons are placed in
parallel, separated by a distance dsep and with their NR aligned. Red dots indicate
points of current injection, which is the trigger for the APs. This point is at x ≈ 1
cm for both axons, which corresponds to the 6th NR (INs are 2mm long and NRs
are 3.183 µm long; this value has been obtained from [10]). The APs propagate
in the direction of the arrow. The figure is not to scale. (b) Workflow diagram of
the simulation framework. The membrane currents of axon 1 are used to compute
φ(r, t). To avoid divergent values near axon 1, the field is not computed inside the
grey area in (a), which has the same width as the diameter of the axons. Although
this choice is arbitrary, it serves as a reference of what would be the values of φ(r, t)
expected to be on the surface of axon 1.

3. Finally, the activity of axon 2 is simulated using both the computed φ(r, t)
and the current injection for stimulation.

Fig. 3.1 shows the geometrical arrangement of the axons and summarises the
process.

Calculation of the extracellular potential After simulating axon 1, extracel-
lular potential was calculated in an offline process onto every one of the positions r
of the compartments of axon 2 using Eq. 2.3, which is repeated and explained in
more detail below:

φ(r, t) =
1

4πσ

N
∑

n=1

In(t)

|r− rn|
(3.4)

where rn is the position of the nth compartment of axon 1, In(t) is the net mem-
brane current of the nth compartment of axon 1, the sum is for all N compartments
in axon 1, and σ is the conductivity of the medium.
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Conductivity of the extracellular medium We have used two values for the
conductivity. First, the known transverse conductivity of a nerve, σT = 0.085 S/m
[178], and second, a smaller conductivity σ = 10−3 S/m, to simulate a more resistive
medium. As follows from Eq. 3.4, a more resistive medium increases the values of
φ(r, t), so it is expected to enhance the ephaptic effects.

Numerical Simulations

Numerical simulations of axons were performed using the NEURON simulation en-
vironment [2]. We used the Crank-Nicolson method for integration over time of
equation 3.1. The time step used in the simulations is 0.025 ms, and each simula-
tion spans a time lapse of 27 ms. This time lapse allows to minimise the margins of
error in the calculation of the CVs.

3.2.2 Results

Simulations consist of the propagation of an AP on axon 1 and axon 2 during a time
span of 27 ms.

In all simulations, both axons are stimulated with a square-shaped internal cur-
rent injection with an amplitude of 1nA and a duration of 2 ms situated at the 6th
NR, at x ≈ 1 cm. This current can be injected in axon 2 at a different time (t = t2)
than in axon 1 (in which the current is injected at t = t1). This time difference is
expressed as ∆t = t2 − t1. Thus, ∆t < 0 means that current in axon 2 has been
injected before in axon 1, and vice versa. Although it needs not be necessarily the
case due to ephaptic stimulation in early stages of the simulations, we can regard
∆t < 0 as the case when the AP of axon 2 is ahead of that of axon 1.

The CV of axon 1 is v1 = 13.82± 0.03 m/s. Both axons are identical in all their
morphological and physiological properties (with the exception that axon 2 can be
stimulated by an extracellular potential, unlike axon 1) and are stimulated with an
equivalent current injection pattern. Therefore, simulations of axon 1 can serve as
control simulations for axon 2, and in the absence of the ephaptic effect, v1 = v2 .
Thus, the difference in the CV between both axons ∆v = v2−v1 is indeed a measure
of the strength of the ephaptic stimulation.

The CV of axon 2 can change with time as the APs of the axons change their
relative positions, so the trajectory of the AP of axon 2 in the x − t space is not
necessarily a straight line. However, despite the deflection of this trajectory from a
straight line is negligible, v2 must be understood as the average of the CV over the
length of axon 2 excluding its boundaries (to avoid the influence in the results of
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the boundary conditions), which is 6.93 cm.

Dependence of the Strength of the Ephaptic Stimulation with the Delay
between Axons
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Figure 3.2: (a) Difference in the average CV between axons 2 and 1 depending on
∆t and for a separation dsep = 10 µm. The dotted lines separate the regions I, II
and III mentioned in the text. (b) Difference in the average CV between axons 2
and 1 depending on dsep. For both figures, σ = 10−3 S/m.

We have run simulations with a variable ∆t and a fixed separation distance
between the two axons (dsep) of 10 µm. Results for ∆v (Fig. 3.2(a)) show a small
slowing down effect for ∆t < 0.2 ms (region I), a high peak corresponding to a
speeding up effect for 0.2ms < ∆t < 1.7 ms (region II) and a subsequent slowing
down effect for ∆t > 1.7 ms (region III). Ephaptic stimulation beyond the limits
∆t < −2 ms and ∆t > 6 ms is very small and can be neglected. These ranges are
approximate.

The comparison of ∆v between regions I and II suggests that an AP in axon 1 is
much more effective at speeding up a delayed AP in axon 2 than at slowing it down
when the latter is ahead. In the mutual ephaptic interaction case, this can have the
consequence of increasing the synchronised group velocity of both APs compared to
a situation in which both slowing down and speeding up had the same effect. In
other words, in order to make the AP in axon 2 reach the AP in axon 1 and achieve
synchronised propagation, speeding it up is prioritary over slowing down the AP in
axon 1.

Region III is wider and stronger than region I. Although a more thorough study
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needs to be done to fully understand what the physical meaning of this region is, it
suggests that axon 1 may be preventing APs in axon 2 that are delayed beyond a
certain ∆t (around 1.7 ms) from reaching it, thus keeping an increased separation
between them and allowing only synchronisation with those APs of axon 2 that lie
within ∆t < 1.7 ms. This way, trains of well defined synchronised groups of APs
could be travelling along a bundle of axons without mixing up.

In all cases that lie in region I, the AP of axon 1 eventually overtakes that
of axon 2 at a distance that depends on the strength of the ephaptic interaction.
However, overtaking has not been observed yet in the case when axon 2 is sped up.
In fact, results in Fig. 3.2(a) suggest that axon 2 cannot overtake axon 1 under
these conditions. Despite these observations, we can hypothesise that for ∆t < 0,
in the case of a mutual ephaptic interaction, axon 1 would not be able to overtake
axon 2, as can be followed after [64].

Simulations with σ = 0.085 S/m (not shown) report a qualitatively similar pat-
tern to that in Fig. 3.2(a), but in this case, ∆v has a maximum of 3 cm/s and a
minimum of −1.2 cm/s. However, in this case results do not present the smoothness
of the curve in Fig. 3.2(a) and region I is not observed, probably because the values
become of the same order of magnitude as the margins of error.

Dependence of the Strength of the Ephaptic Stimulation with the Dis-
tance between the Axons

Eq. 3.4 indicates an inverse dependence of φ(r, t) on |r − rn|. Therefore, it is
reasonable to expect an inverse dependence of the ephaptic stimulation with dsep.
To check this, we have run simulations with varying values of dsep.

We show the results of our simulations for two different cases: ∆t = −0.1 ms
and ∆t = 1 ms, which are meant to study the effects of axon 1 on axon 2 when the
latter is propagating an AP ahead and behind the former, respectively. In both cases,
|∆v| decreases with dsep (Fig. 3.2(b)). This decreasing trend is consistent across
simulations, so we can confirm that, as expected, the ephaptic effect is present and
that its amplifying decays with the separation distance.
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3.3 Conduction Velocity Effects Due to Ephaptic

Interactions between Myelinated Axons

3.3.1 Materials and Methods

Myelinated Axon Models

We used the model for myelinated axons described in the previous section, which is
based on the model by [10] and uses the Hodgkin-Huxley (HH) model [101] for the
membrane of the nodes of Ranvier. We used axons with a diameter of 10 µm and
an internodal distance of 2 mm. Internodes (IN) were partitioned into 10 segments
each.

Computation of Ephaptic Coupling

EC was simulated by computing the extracellular potential field, φ, generated by
the membrane currents of all the axons, and using this field as a stimulation input
for the axons. The extracellular potential was calculated at every time step and on
every position, r, of all axons’ compartments by using Eq. 3.4.

Details of the Numerical Simulation

The simulation was performed in NEURON and the integration method and time
step size were the same as in the previous section (Crank-Nicolson; time step 0.025
ms). The simulation spans a time lapse of 45 ms.

The simulation comprised three parallel myelinated fibers with their central axes
placed on the vertices of an equilateral triangle of side a = 15 µm as shown in Fig.
3.3(b)). The number of neurons was chosen to provide insights into multi-axon
interaction without loss of generality while keeping the model simple and computa-
tionally fast. All the axons were identical in their physiological and morphological
properties, and their nodes of Ranvier were perfectly aligned as shown in Fig. 3.3(a).
The conductivity of the extracellular medium was set to σ = 10−3 S/m.

Each simulated axon was independently stimulated with an intracellular square-
shaped current injection with 1nA amplitude and 1.5 ms duration applied at the
31th node of Ranvier (position xinj ≈ 6 cm) and at times t1, t2 and t3, respectively,
being t1 < t2 < t3. In order to avoid ephaptic effects during internal current
stimulation and hence, avoid firing times different to those induced solely by the
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(a) (b)

Figure 3.3: Geometrical arrangement of the axons in the simulation. (a) Longitu-
dinal view. Fibers are parallel and the nodes of Ranvier are aligned. (b) Cross-
sectional view. Axons are placed on the vertices of an equilateral triangle of side
a = 15 µm. The figures are not to scale. The axons are immersed in an extracellular
medium of conductivity σ = 10−3 S/m. Red dots indicate that the sites of current
injection are at the same value of x (and in the same node of Ranvier) for all axons.
The grey area indicates the region where φ is set to zero and ephaptic effects are
suppressed. The horizontal arrow indicates the direction of propagation of the APs.

current injection at t1, t2 and t3, φ was set to zero for all axons from x = 0 to
an arbitrary safe distance x = 2xinj, which also allows to calculate the velocity of
propagation without EC. The stimulation times for axons 1, 2 and 3 were t1 = 0.1
ms, t2 = 1.1 ms and t3 = 2.1 ms, respectively.

3.3.2 Results

Calculation of the Conduction Velocity

Conduction velocity was variable along distance and time in simulations with EC.
The values of v(t) for every time step in the simulation were obtained from the
position x of the AP peaks (captured at the nodes of Ranvier) and the time instant
when they occur. These data are shown in Fig. 3.4(a), after the v(t) curves were
smoothed as follows:

• Firstly, a 21-point moving average was applied to the position and time values
of the AP peaks, and

• Secondly, a value of v for every point was obtained from the slope of a linear
regression using the 40 surrounding points.
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This smoothing process was necessary since computing v(t) merely from the x
and t values of each NR and its adjacent nodes generated a high number of artefacts.
However, it limits the range in which v(t) can be plotted to t ∈ [3.82, 36.28] ms.
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Figure 3.4: (a) Trajectories of the AP peaks in the x-t plane for the different axons.
(b) CV as a function of time for each of the axons after the smoothing process was
applied.

Although it is not visible in Fig. 3.4(b) due to the smoothing effect, at the
beginning of the simulation all axons start with the same CV: v0 = 13.82 m/s. As the
ephaptic interactions start having an effect over the axons, CV is influenced. Curves
in Fig. 3.4(b) suggest that the attraction effect of the action potential wave (APW)
of the axon that has been fired first (axon 1, hence APW1) is dominant compared to
those of APW2 and APW3. The first axon has no physiological difference compared
to the others that could cause this advantage. The cause for this is rather related
to the timing difference between APWs.

The velocities in axons 2 and 3 rise rapidly once the ephaptic interactions start,
whereas v1 decreased, and at a smaller rate. This suggests that axon APWs exert a
stronger attraction over those which are delayed by about 1 ms behind them than
over those which are ahead by a similar amount. As such, APW2 approaches the
velocity of APW1 within approximately 2.6 ms. Once their velocities get closer,
APW2 starts to slow down and eventually reaches synchronisation with APW1.
Synchronisation for these two waves appears to occur after approximately 18 ms of
the start of their ephaptic effects begin to play a significant role.
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When APW3 enters the region of ephaptic interaction effects (x > 2xinj), APW2
has already started its trend towards synchronisation with APW1, so the delay be-
tween APW2 and APW3 increases to more than 1 ms. It appears that the conse-
quence of this is a slight decrease in the acceleration of APW3.

APW3 keeps increasing its velocity whilst attracted by APW1 and APW2, until
it finally approaches the entangled positions of the two latter waves, and then it
starts to slow down. Up to this point, APW3 has increased its velocity by more
than a 13% of its original value due to the summed attraction exerted by APW1
and APW2.

After t ≈ 35 ms, all APW maximums follow a closer trajectory and their veloc-
ities tend to equalise towards a certain value highly biased towards APW1. At this
stage, synchronisation of the three axons is reached, and the final group velocity of
the axons is 13.4±0.2 m/s, about 0.4 m/s lower than v0. This decrease in the group
velocity is consistent with the findings of [64] and [66].

Apart from the above observations, the curves in Fig. 3.4(b) show other fluctu-
ations. These are specially obvious in the curves for the velocities of axons 1 and 2
all through their descending trend, preventing them from monotonicity. Also, a mo-
mentaneous inflection point is observed in v3 at t ≈ 10 ms, i.e., once APW2 has just
started to slow down. Further investigation needs to be undertaken to determine
the origin and nature of these fluctuations.

Numerical Stability Issues

This simulation was carried out using three models of axons separated by 15 µm each
and using a time step of 25 µs. We also performed simulations with different numbers
of axons, separation distances and time step sizes. We found that simulations with a
number of axons higher than three, with three or more axons separated by 20 µm or
more, or with a smaller time step generated numerical instabilities in the values of
φ. Thus, a careful choice of these three parameters must be made in order to avoid
instabilities (e.g., unexpected asymptotic behaviour). Such errors are likely to be
related to numerical truncation effects, but further investigation will be necessary
to reveal the sources of the instabilities. This will then determine the limits of
applicability of the model.

3.4 Discussion

In this chapter, we studied the EC between myelinated axons through the use of
a model. First, in Section 3.2, the ephaptic stimulation of one axon over another
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was simulated. Subsequently, we simulated in Section 3.3 the ephaptically coupled
propagation of APs in three axons. The model presented here uses a different
approach to [65] and [66] with regard to the electrical coupling between the axons.
While [65, 66] used a longitudinal resistance parallel to the fibers and shared by
all of them, leading to a MF model, we used an inverse distance dependence of
the extracellular potential, thus taking into account transverse variations of this
potential.

3.4.1 Unidirectional Ephaptic Stimulation between Two Myeli-
nated Axons

It has been shown in Section 3.2 that the ephaptic stimulation performed by the AP
wave of axon 1 on axon 2 slows down or speeds up the AP wave of axon 2 depending
on the separation on the x-axis with which these two waves travel. The net effect
is that axon 1 attracts the AP wave of axon 2 towards its own AP wave. These
observations support the hypothesis of [64] for myelinated axons.

The strength of ephaptic stimulation for σ = 10−3 S/m affects the CV of myeli-
nated axons by up to 11.75%. However, in less resistive media with conductivities
which are more similar to those of the endoneurium (σ = 0.085 S/m), the strength
of this effect reaches a maximum of 0.2%.

Ephaptic stimulation depends inversely on the conductivity of the extracellular
medium and the separation distance between the axons. Results from this chapter
show that ephaptic effects are present, and strongly suggest the different features
of its role in the regulation of CVs and, potentially, in the occurrence of synchrony
between APs of different axons. This may regulate the firing frequencies and so be
a mechanism for coding sensory information [65].

Despite the evidence of ephaptic stimulation in the simulations, the small magni-
tude that it shows for σ = 0.085 S/m opens the question of what the total net effect
of the ephaptic interactions in an entire nerve trunk may be. The large number of
fibers in a peripheral nerve trunk may have the effect of amplifying these ephaptic
interactions but, on the other hand, the large separation between distant axons can
limit these amplifications. The net effect of the interplay of these two factors needs
to be studied in a medium with a more realistic conductivity value.
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3.4.2 Conduction Velocity Effects Due to Ephaptic Interac-
tions between Myelinated Axons

Despite the definitory difference between the MF model and the distance-based
model used here, results with the distance-based model, presented in this chapter,
are consistent with those of the cited contributions which use the MF model [65,66].
Simulations showed synchronisation of the APs of all of the axons involved in the
mutual ephaptic coupling simulations. Locking of APs and synchronisation during
propagation was observed as well as the decrease in the final group velocity. The
general behaviour of the EC obtained from our results is qualitatively similar to
that in [66], albeit with differences in time and space scales due, most likely, to
the differences in the axon models. The reason for this apparent similarity between
the two models is that in the geometry of our simulation, axons are all separated
by the same distance. I.e., in this chapter, we have not yet tested for differences
in the strength of the EC between axons due to different inter-cell distances. It is
expected, however, that simulations of fascicles in nerve trunks with hundreds of
axons will provide a noticeable difference with respect to simulations that use the
MF model.

In order to obtain more realistic simulations of propagation in peripheral nerve
trunks in mammals, our models of myelinated axons need to be improved with more
species-specific neural models and validated with experimental data.

3.5 Conclusion

A distance dependent model for the extracellular potential generated by the activity
of axons has been used to model the ephaptic interactions of groups of two and three
parallel myelinated fibers via extracellular potential. In the case of two fibers, the
effects on CV of the unidirectional stimulation that the ephaptic field generated
by one fiber exerted onto the second fiber was studied and quantified against the
relative timings between the APs in both fibers, the transverse distance separating
the fibers and the conductivity of the extracellular medium. Results show that
an AP in the first fiber attracts or repels an AP on another fiber depending on
the relative timings on the two. Also, the strength of this effect decreases with
inter-axonal distance and with the conductivity of the extracellular medium.

In the case of three fibers, a further simulation was run of AP propagation under
mutual EC using the same extracellular potential model. Results show synchroni-
sation between APs and the adjustments of CVs that lead to this synchronisation,
in accordance with existing literature. Due to the numerical instabilities that grew
rapidly with the number of axons in the simulations, we were not able to extend
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our simulations to bundles of more axons. For this reason, in the next chapters we
implement a different model of ephaptic interactions which allows us to study EC
in bundles of any number of axons and even in realistic nerve models.



Chapter 4

The Extracellular Space as a
Resistor Network

4.1 Introduction

Existing approaches for modelling ephaptic interactions between populations of neu-
rons not only include the point or line-source approximations. As seen in Chapter
3, this approach, while still usable, may present numerical stability issues due to
close distances between fibers [177], which results in unrealistically high extracellu-
lar potentials. Either a computational method to avoid numerical instabilities or an
alternative model are needed.

In order to study EC for fiber bundles, a Mean-Field (MF) approach was de-
veloped by [65], where every layer along the z-axis of the extracellular medium is
assumed to be isopotential. This has been useful to provide insights about the
nature and consequences of EC in bundles [65, 66, 68]. However, this approach is
incompatible with simulating fields coming from extracellular electrodes, which vary
across the cross-section. A more sophisticated approach which allows modelling all
the systems involved (electrode and endogenous fields) and permits modelling the
complex geometrical structures of the tissues (which is difficult by using the point
or line source approximations only) is discretising the system in meshes and using
approximate numerical methods to simulate the fields. FEM are widely used for
computing the electrode fields [179] over complex geometries thanks to their reli-
ability. However, they have rarely been used for modelling EC due to the high
computational cost it would take to run time-dependent FEM simulations that took
into account all the aspects of the system. So far, [71] and [72] have adopted such
approach, but limited their studies to systems of just a few neurons, normally less
than five.
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Although FEM are enough, in principle, to simulate both electrode and endoge-
nous fields in an EMI-type model —EMI meaning that it simulates the Extracellular,
Membranes and Intracellular domains in a single run [114], it is also possible to ex-
clusively use NEURON [2] for this purpose. Given that experimentally validated
and up-to-date models are already available for this framework, we wanted to take
advantage of its modelling capabilities and created a Resistor Network (RN) which
allows embedding any fiber models in an EMI model.

The RN developed in this chapter is entirely implemented in NEURON. It uses
the Delaunay triangulation of any given discretisation of a cross-sectional geometry
and its dual Voronoi tessellation [180] in order to build the properties of the RN,
including its longitudinal resistances, perpendicular to the cross-section. The use of
these methods for the RN allows us to realistically simulate the fields from electrodes
over extruded geometries, which are suitable for bundles of parallel fibers. Although
the idea of using these tessellation techniques to study electrical phenomena in RNs
has already been studied [181], and RNs have been used in studies of neurophysiology
[73, 182], we have found no work that combines both approaches in order to tackle
the non-uniform positions of fibers over a bundle’s cross-section. Only [73] built a
RN (also implemented in NEURON) to study EC in muscular cells, but no such
tessellation techniques were used; instead, a very regular lattice of cells was used.

Using Voronoi tessellations for building a RN in order to model an ohmic medium—
specifically, the extracellular space of a fiber bundle—has two main novel advantages:

• They are capable of meshing geometries that uniform Finite Difference (FD)
meshes cannot represent reliably.

• The use of Voronoi tessellations to build the properties of the RN results in
a nearest-neighbour electrical interaction model that quantifies ephaptic links
based on geometrical and physical quantities concerned with each pair of fibers,
and consequently constructs a distance-based EC model for the whole bundle
which does not follow the restrictive assumptions of a MF model.

Another advantage of the RN which is not necessarily related to the Voronoi
tessellations is its full implementation in NEURON, which avoids coupled simula-
tions between NEURON and any other FEM or Poisson solver and thus ensures
numerical stability when computing the extracellular fields.

It must be noted that this RN uses only resistive connections among nodes, since
it is developed to solve fields in neural applications under the QS approximation.
Hence, no capacitive components of the media are accounted for. Although this
is outside the scope of the present work, capacitive properties of the extracellular
media can still be modelled in NEURON and included in the connections of the RN.
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The RN developed in this chapter needs to be validated. For this, results from
numerical simulations using the RN were compared to their equivalents in FEM and
analytical solutions. We show that this RN method is a valid technique to study
ohmic media and therefore use it in relevant applications.

We used the RN to study how fibers react to extracellular stimulating fields
and how they interact ephaptically between them during propagation. For this, the
effects of a number of variables—distance from the fibers to the source, node-to-pad
misalignments and RN model choices—on the response of the fibers to stimulation
from an external electrode are studied. Next, the RN was used in a simple study of
the effects of EC on AP conduction for bundles of few identical and parallel fibers.
Finally, it was used to record the activity of one axon from a cuff electrode.

We found that the RN can be used to model stimulation and recordings from
electrodes on a bundle. When studying the response of the fibers (measured in this
work with the delays with which APs fire after a stimulating pulse is applied) to
the stimulating fields from extracellular electrodes, we found that, as we increased
the anatomical complexity of the bundle, such as misalignments between fibers,
the dependence of these responses with the distances between the fibers and the
electrode was generally not smooth, whereas this is the case when all fibers in a
bundle are identical. We were interested in elucidating the causes of the complex
relationship between responses and distances, and thus we carried out a study to
isolate certain anatomical variables and study how they can deflect this smoothness.
The study concludes that the node-to-pad misalignments, which are defined as the
distances along the z-axis between the Ranvier nodes and the stimulating electrode,
and model choices for locating the transverse resistors in the RN, have major effects
on the fiber responses. Because it is known that fiber diameters do have an effect
on this through axonal excitabilities, we were not concerned with this variable in
the study, although if considered, it would modifiy the node-to-pad misalignments.

We also found that the RN can simulate EC between parallel fibers. We used it
to test how the RN simulates EC in bundles of 1-4 identical fibers in order to con-
trast the results with previous studies [66, 68], since these cases are approximately
equivalent to using a MF model. Although we use different fiber models and ex-
tracellular medium choices, results do show a qualitative agreement with previous
findings, and the basic observed phenomena can be easily explained.

The main contributions of this chapter are aligned with the four sets of results
that it presents:

• The creation of a Resistor Network (RN) to model a bundle of fibers embedded
in an extracellular medium, and in which stimulation and recordings from
electrodes can be modelled.

• A method to quantify nearest-neighbour electrical connections for any distri-
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bution of fibers.

• The validation of the RN against theoretical solutions.

• The assessment of the effects of anatomical variables on the response of fibers
to fields, which finds a strong effect due to node-to-pad misalignments.

• The assessment of the effects of EC on AP propagation for bundles of few
identical fibers with the use of the RN.

This chapter is divided as follows: The next section presents a formal description
of the RN, how it is used to model bundles of fibers and volume conductors and
the demonstration of its equivalence to a Finite Difference Methods (FDM) for the
case of a uniform rectangular mesh. The Results section is divided in four: the first
subsection describes the results of the validation process for the RN; the second
subsection studies the effects of anatomical and model variables on fibers responses
to stimulating fields; the third subsection provides the study of the effects of EC on
AP conduction in small bundles, and the fourth subsection shows the recordings of
the activity of an axon from a cuff electrode.

4.2 Materials and Methods

4.2.1 Resistor Network Formulation

The contents in this section are adapted from the Materials and Methods sections
of two manuscripts: [14] (published in CEEC 2019) and [15], submitted to PLOS
Computational Biology (not published yet; as at this writing, revisions from the
reviewers are being addressed and the final paper may differ in content from this
chapter).

The extracellular volume of a nerve, or a bundle of fibers, is modelled with a RN
which uses the extracellular connective RN between two axons from [11] as the basic
model for connecting two cables. Our RN is an adaptation from such model that
suits any number of myelinated axons and also volumes in the nerve that contain
no axons.

The model from [11] consists of two parallel core-conductor (unmyelinated) ax-
ons linked by a grid of resistors (Fig. 4.1). Each axon is coupled to its parallel
(longitudinal) extracellular cable through its membrane compartments, and the two
longitudinal extracellular cables are linked to each other by transverse resistors RT

—perpendicular to the axons, at each compartment’s position. Each longitudinal
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extracellular cable is a series of resistors with value RL located one at each com-
partment.

Figure 4.1: Circuit representing the connective RN model of [11] for two parallel axons.
The intracellular resistances of the axons are represented as series of light grey resistors
(long horizontal rectangular boxes labeled as Rin). Each of these cables is connected
to its corresponding extracellular cable (parallel dark grey resistors, RL) through the
membrane compartments (boxes labeled as HH). The extracellular cables of the two
axons are connected with transverse resistors, RT . Schematically, in this figure the
circuits of the two axons are separated by the dashed line. This figure is not to scale.
The y-axis can be substituted by any direction co-planar with the x-y plane.

The RN developed here is conceived to extracellularly couple parallel fibers that
are randomly scattered in a bundle using this approach. For this, this axon-to-axon
interaction model is replicated for every pair of neighbouring axons. This way, the
RN suits any cross-sectional geometry for a bundle —as long as this is made of
parallel fibers, and hence the bundle’s shape is an extrusion of its cross-sectional
surface. This is facilitated by the implementation of the extracellular properties of
the cells in NEURON.

The aim is to model the extracellular electrical properties of a bundle of fibers.
However, this method can also be used to model volume conductors where fibers
are not present. This is the case of the validation tests we ran in this section. For
this reason, we will refer as ”bundle” to any such geometry for the remaining of this
and the validation sections, regardless of whether it contains fibers or not.

The following is an explanation of how the geometry of a bundle is discretised in a
mesh and how the resistances of the network are calculated from this discretisation.
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Figure 4.2: (a) Representation of mesh RN-Delaunay-1, used in the Results section to
run a simulation. The mesh is built from the set of contour points and the central point
for current injection. From this, a new set of points is added by building a Delaunay
triangulation. The contour of the domain is shown with a thick black line. Dots represent
all the points in the mesh. The connections between them, denoting the positions of the
resistors, are shown in thin grey lines. The dual Voronoi diagram, which assigns a polygon
to each point and defines the contact width between each, is shown in thin black lines.
The two cells highlighted with thicker black lines correspond to the cells shown in (c). (b)
Example of a Voronoi diagram of a set of circles or cylindrical fibers of equal diameter.
(c) Detail of the physical connection model between two polygonal prisms corresponding
to cables A and B. The two points are separated by a distance d, and their cells have a
contact surface with width w, depth t and area S. In this case, t is the length in which
the z-axis is discretised (the length of one segment).
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Discretisation of the Bundle’s Cross-Section (x-y Plane)

The meshing method divides the cross-sectional surface of the bundle in individual
regions, one for each fiber. Given a random distribution of fibers across the cross-
section, a natural way to do this division is to compute the Voronoi diagram of the
fiber positions set, assuming all fibers have equal diameter. This divides the cross-
section in a set of convex polygons with the fibers located at their orthocenters (see
Fig. 4.2(b)).

In case of a volume without fibers, we need to fill the cross-section of the bundle
with a non-uniform cloud of points. The points may be assigned random positions
or be given by a tessellation technique. Since a Delaunay triangulation can provide
triangles that generally avoid sharp angles, we used a Delaunay triangulation over
this surface in order to generate the point set. Then, its dual Voronoi tessellation
is built (Fig. 4.2(a)). Note that the Voronoi diagram of a set of fibers also defines
the connections between fibers from its dual Delaunay triangulation.

Using this method, each point or fiber —depending on the case, has a corre-
sponding polygon assigned to it, and the cross-sectional surface of the bundle is
discretised in a set of interconnected polygons (Figs. 4.2(b) and 4.2(a) for fibers
and points, respectively).

When extruding this concept to the bundle’s length, the polygons become polyg-
onal prisms that extend the whole length, and the points or fibers become cables
in the interior of these prisms (Fig. 4.2(c)). In order to implement the cables
that model prisms not containing fibers, we designed the Non-Axonal Extracellular
Longitudinal Cables (NAELCs) in a NEURON cell template. They are defined as
passive cables with a dummy value for the diameter (1 µm), a very large intracellular
resistivity (ideally infinite; for this, we used 109 Ω · cm, which we assumed to be a
sufficiently large value), null membrane capacitance and a passive mechanism (pas)
with null reversal potential and a very large conductivity (ideally infinite again), in
order to allow injected currents to flow directly to its extracellular cable. Its actual
extracellular properties are implemented on its extracellular cable (xraxial). This
model forms a linear resistive cable that can be used to model any prism of the
discretised extracellular space.

The prisms are all connected to their neighbours by contact surfaces, one per-
pendicular to each of the Delaunay triangulation’s segments. Naturally, each pair
made by a Delaunay segment and its corresponding contact surface represents an
electrical contact between two neighbouring points (Fig. 4.2(c)). We then need to
define and implement a resistor in order to quantify such a contact. For this, we
assumed, as done before by [181], that its resistance is directly proportional to the
length of the Delaunay segment, d, and inversely proportional to the area of the
contact surface, S:
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RT = ρ
d

S
= ρ

d

w · t
, (4.1)

where the subscript T stands for transverse —transverse to the bundle, refer-
ring to the resistors which are co-planar to the bundle’s cross-section, and ρ is the
resistivity of the medium.

The values of the resistances in this transverse network are implemented in ex-
actly the same way as [73], using NEURON’s tool LinearMechanism.

Discretisation of the Bundle’s Length (z-axis)

Unmyelinated fibers can be discretised along the z-axis in compartments of equal
length. Therefore, when the bundle is made by NAELC or by unmyelinated fibers,
the length of the bundle is simply divided in nseg segments of equal length t (see
Eq. 4.1 and Fig. 4.2(c)), on each of which a copy of the cross-sectional network is
connected, thus having nseg layers of cross-sectional networks.

NEURON allows the assignment of an extracellular resistive cable along every
cell, whose resistance per unit length is implemented through the variable xraxial.
This is used by NEURON to compute the total resistance of each segment. We made
the assumption that this resistance is inversely proportional to the corresponding
Voronoi or cross-sectional polygon’s extracellular area, AE:

rL =
ρ

AE

, (4.2)

where the subscript L stands for longitudinal.

The polygon’s extracellular area is the difference between the polygon’s total
area (AP ) and the fiber’s area if a fiber is present:

AE = AP − AC (4.3)

The subscript C in AC stands for ”cable”, denoting that the value of AC is zero
when a fiber is not present and equal to the fiber’s cross-sectional area if it is present.

In case a 2D problem needs to be solved, the RN must still include the z-axis,
since NEURON needs to provide a length for the cables. However, it is enough with
assigning nseg = 1, thus having only one layer for the cross-sectional RN.
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Resistor Network for Bundles of Misaligned Myelinated Axons

Symbol Units Description

Nk None Number of nodes of Ranvier in fiber k.
Mk,l None Total number of transverse resistors between

fibers k and l.
zn
T,(k,l) cm Location of the transverse resistor number n

between cables k and l.
ZT,(k,l) None (members:

cm)
Set of locations along the z-axis of the trans-
verse resistors between cables k and l.

Zk None (members:
cm)

Set of locations along the z-axis of the nodes
of Ranvier of fiber k.

cnk,l cm Length (along the z-axis) of the transverse re-
sistor number n between cables k and l.

rL,k Ω/cm Resistance per unit length of the extracellular
cable k.

Rn
T,(k,l) Ω Value of the transverse resistor n between ca-

bles k and l

Table 4.1: Variables used for the resistor network.

Two important adaptations from this approach are needed in case the model
includes myelinated axons with misaligned nodes of Ranvier (Fig 4.3): First, trans-
verse resistors can be connected at any location along the axons’ extracellular cables.
Second, there are two options for how to connect the transverse resistors: The first
one is to locate them at regular intervals along the z-axis, as done for unmyelinated
axons and empty volumes. The second one consists of connecting them at the loca-
tions of the nodes of Ranvier of both axons. This is the case shown in Fig 4.31. In
this case, the set of transverse resistor locations along the z-axis between any two
fibers k and l is ZT,(k,l), which is the union of the sets of positions of the nodes of
the two axons:

ZT,(k,l) = Zk ∪ Zl, (4.4)

and therefore, it contains Mk,l elements (which means there are Mk,l transverse
resistors between the two axons; see table 4.1 for a list of all the variables used here),
i.e., the sum of the number of nodes of Ranvier of the two axons minus the number
of pairs of nodes which share the same location on the z-axis (because such case,
obviously, means there is only one resistor for two nodes):

Mk,l = Nk + Nl −

Nk
∑

i=1

Nl
∑

j=i

δ (zNR,i − zNR,j) , (4.5)

1For generality purposes, Fig. 4.3 depicts this method for two axons with different internodal
lengths, which naturally have their nodes of Ranvier in misalignment.
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Figure 4.3: Example of resistor network connecting two myelinated fibers ephaptically.
Conceptual (not to scale) representations of two myelinated fibers are shown as axons
(green) wrapped by the myelin sheaths (dark yellow). Thick black line segments represent
purely resistive connections. Grey boxes represent membrane compartments, either nodal
or internodal (in which case, they also include the myelin sheath in series). As in Fig.
4.1, the y-axis has been used on the ordinate axis in this figure for simplicity, but given
our model, this can be any direction co-planar with the x-y plane. The resistance per
unit length of each longitudinal extracellular cable rL,k is the rL given by Eq. 4.2. The
k subscript simply helps distinguishing the different fibers in the figure.

where zNR,i (zNR,j) is the position of the i-th (j-th) node of Ranvier of fiber k
(l).

The length along the z-axis of one transverse resistor n is given by:

cnk,l =
zn+1
T,(k,l) − zn−1

T,(k,l)

2
, (4.6)

being znT,(k,l) a member of ZT,(k,l):

znT,(k,l) ∈ ZT,(k,l)∀n | n ∈ [1,Mk,l] (4.7)

The transverse resistors connecting myelinated axons need to be reformulated to
account for the misalignments. The variable t in Eq. 4.1 needs to be substituted by
the length of the resistor, cnk,l. Hence the value of the n-th extracellular transverse
resistor between two fibers k and l is:
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Rn
T,(k,l) = ρ

d

w · cnk,l
(4.8)

4.2.2 Equivalence between the Resistor Network and the
Finite Differences Method for a Rectangular Mesh

In the case of a rectangular uniform mesh, this RN method is equivalent to the FDM
for such mesh. In order to show this, we demonstrate how using this approach is
equivalent to the FDM when solving the Laplace Equation on any point (indexed
with i and j) inside the domain (not on the boundaries).

Consider a point (i, j) and its four points in contact (i− 1, j), (i+ 1, j), (i, j− 1)
and (i, j + 1) on a rectangular network where points are separated by a distance ∆x
on the horizontal direction and by ∆y on the vertical direction.

The Laplace Equation in FDs on point (i, j) on a mesh with such specifications
is:

φi−1,j − 2φi,j + φi+1,j

∆x2
+

φi,j−1 − 2φi,j + φi,j+1

∆y2
= 0 (4.9)

On a 2D RN under the same discretisation, the resistance per unit length (in
Ω ·m) between any two neighbouring points in a horizontal direction is, by applying
Eq. 4.1 and neglecting the z-axis (hence, the units are Ω · cm instead of Ω):

Rx = ρ
∆x

∆y
, (4.10)

where ρ is the medium’s resistivity. Equivalently, the resistance between any two
neighbouring points in the vertical is:

Ry = ρ
∆y

∆x
, (4.11)

Kirchhoff’s current balance equation on point (i, j) is:

φi−1,j − φi,j

Rx

+
φi+1,j − φi,j

Rx

+
φi,j−1 − φi,j

Ry

+
φi,j+1 − φi,j

Ry

= 0 (4.12)
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Grouping terms, we have:

φi−1,j − 2φi,j + φi+1,j

Rx

+
φi,j−1 − 2φi,j + φi,j+1

Ry

= 0 (4.13)

Using (4.10) and (4.11), we get:

φi−1,j − 2φi,j + φi+1,j

∆x/∆y
+

φi,j−1 − 2φi,j + φi,j+1

∆y/∆x
= 0 (4.14)

Dividing by ∆x∆y, we finally obtain:

φi−1,j − 2φi,j + φi+1,j

∆x2
+

φi,j−1 − 2φi,j + φi,j+1

∆y2
= 0, (4.15)

which is exactly the Laplace Equation in FDs for point (i, j) (Eq. 4.9).

4.2.3 Stimulation and Recording from Electrodes

The RN allows the definition of cuff electrodes for stimulation and recording within
its domain.

When modelling fiber bundles or nerves, these are embedded in a cylindrical
container containing a saline bath, which provides a current path to the electrical
ground. The electrical ground is located across the cylinder’s surface and its bases.
The insulating sheath of cuff electrodes is modelled by adding its resistance to the
paths to the electrical ground from the NAELC on the bundle’s contours. The active
pads of the electrodes, whether for stimulation or recording purposes, are modelled
by setting up their positions according to the cuff’s rings. Stimulation from the pads
is simulated using current point sources on the bundle or nerve membrane’s NAELC
in contact with the desired pads. Recordings are simulated by reading the value of
the potential on the locations of the desired pads. Electrodes are not regarded as
surface, but as point, current sources, and their contact surface impedance, including
capacitance, is not modelled since we work under the QS approximation.

The current path between the points on the bundle’s membrane and the con-
tainer’s walls is assumed to be purely radial (hence no longitudinal currents are
allowed across the bath or the cuff insulators). For this, all points in the discre-
tised bundle lying on its membrane (which are given by the triangulation hull in the
cross-section) are connected to the container’s cylindrical wall using radially aligned
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resistors. The resistance per unit length for each of these resistors is estimated from
the geometry of the bath (see tables 5.2 and 5.3 for variables and parameters):

RG =
ρI∆I + ρS∆S

(πDN/nH)
, (4.16)

where:

∆I + ∆S = ∆C (4.17)

In the regions of the bundle (along its length) not covered by the cuffs, the
membrane was directly in touch with the saline bath and Eq 4.16 then becomes:

RG =
ρS∆C

(πDN/nH)
(4.18)

All NAELC and extracellular cables of fibers are connected to ground on both
ends since they are assumed to be in contact with the container’s bases. The ends
of the intracellular domains of the fibers, however, are treated as sealed ends and
do not have such connections.

4.3 Results

4.3.1 Validation

The contents in this section are based on a manuscript published in CEEC 2019
[14].

Poisson Equation

We have validated the RN by running simulations with different configurations of
the RN and comparing their results with a FEM simulation, used as a reference
for being a well known method for providing an accurate approximation to the
actual result. The simulation is run on a 2D square domain of side 1 m where
a current source of 1 A is located at the centre ((0.5, 0.5) m). The four sides of
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the square—all the points on the contours—are connected to ground. The domain
contains a medium with a sheet resistance of 1 Ω/sq. As the z-axis is necessary
in our NEURON implementation of the problem, we implemented the domain as a
cube of side 1 m with a resistivity of 1 Ω · m.

In these simulations no fiber or biological cell models are used. Hence, for the re-
maining of this validation section, the word cell will be used to refer to the individual
regions in which the domain is discretised by using meshes.

The FEM simulation was implemented and run using the FEniCS Project soft-
ware [4]. The domain uses a uniform square mesh with ∆x = ∆y = 0.025 m. Apart
from the FEM simulation, three simulations using the RN were run (Fig. 4.4):
one using the same uniform discretisation (RN-Uniform) and two using discreti-
sations given by Delaunay triangulations (RN-Delaunay-1 and RN-Delaunay-2 ).
Differences in the results between the simulation with RN-Uniform and the FEM
simulation are negligible. The peak difference is of the order of 10−7 V. This shows
that the RN is indeed valid for this type of mesh, in line with the demonstration pro-
vided above, assuming that the results with a FDM would be very similar. The mesh
RN-Delaunay-1 contains 94 points, excluding the points on the contours, where the
solution is trivial, while the mesh RN-Delaunay-2 has 1310 points. For compari-
son, FEM and RN-Uniform have 1521 points. The only point that is necessarily in
common in the two meshes, apart from the contours, is the current source point.

The first thing that can be noticed from Fig. 4.4 is that all simulations are capa-
ble of modelling the basic shape and magnitude of the field over most of the domain.
However, it is visible how modifying the mesh resolution affects the accuracy in the
results. Simulation with RN-Delaunay-1 shows visible deflections on the potential
curves near the injection site. On the other hand, results from simulation with
RN-Delaunay-2 are difficult to distinguish from results with FEM. Simulation with
RN-Delaunay-1 has a difference with FEM at the central cell of −0.14 V, which
makes a relative difference of −19.07%. However, the Relative Difference Measure
(RDM) for the whole domain, computed using the expression from [182], is 0.041.
This shows that the location of the highest discrepancies is near, and especially
at, the central cell. Simulation with RN-Delaunay-2 has a much lower difference
with FEM at the central cell, of −2.64 · 10−2 V, which makes a relative difference
of −0.89%. The RDM in this case is 0.011, comparatively not so much lower than
RN-Delaunay-1.

Given the domain was extended infinitely, this problem would have the analytical
solution of a current point source [183], with an inverse dependence on the square
of the distance from the current source. In a simulation on a discretised domain,
however, the current is applied on one cell of the mesh, over the surface of which the
potential is assumed to be constant. The analytical solution for the ideal case can
be obtained from the divergence theorem, based on which, by using the mentioned
assumption of isopotentiality over the whole cell in the case of a mesh, we can predict
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Figure 4.4: Results of the potential distribution across the domain for four different
simulations: Top Left: FEM; Top Right: RN-Uniform; Bottom Left: RN-Delaunay-

1 ; Bottom Right: RN-Delaunay-2. The contours indicate the potential distribution at
intervals of 0.05 V, and the units in their labels are Volts.

that the value of the potential at the cell where the current is applied has an inverse
relationship with the area of this cell. Indeed, in our simulations this peak potential
value follows a linear relationship with the logarithm of the central cell’s area (Fig.
4.5), which is expressed as:

a = log10
AP

AD

(4.19)

where AP is the area of the cell’s polygonal face and AD is the area of the whole
domain.

For the FEM simulations, the fitted line is φpeak = −0.188a + 0.146, with a
standard error of 10−3 V and r2 = 0.9995. For the simulations with the RN, the
fitted line is φpeak = −0.177a + 0.184, with a standard error of 3 · 10−3 V and
r2 = 0.997. Despite solutions with the RN generally yield slightly higher peak
values, the fittings of the two methods are very similar. Thus, the RN can solve the
Poisson equation over this domain with nearly the same accuracy as FEM.
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Figure 4.5: Peak Voltage from each simulation, which is located at the central cell of the
mesh were the current source is applied, against a.

Cubic Linear Resistor

We tested the accuracy of the implementation of the longitudinal resistances, given
by Eq. 4.2, at modelling the electrical properties of a volume along the z-axis. For
this, we designed a very simple cubic domain with side 1 m. Its faces on the x-y
plane were discretised with a uniform mesh of 6 × 6 points. For each point on this
plane mesh, a NAELC was set up with nseg = 5 along the z-axis.

A distributed current of 1 A/m2 was applied uniformly across the face with z = 0
(left face; the distributed current summing 1 A over the whole surface), and all the
points on the face z = 1 m (right face) were connected to ground. The distributed
current was applied in the following way: each point on the left face was applied a
current source that was weighted by the ratio between its polygonal area AP and
the total face area (1 m2):

IP = IT
AP

AS

, (4.20)

where IT is the total current (1 A) and AS is the total face area (1 m2).

The analytical solution for this problem is:

φ(x, y, z) = 1 · (1 − z), (4.21)

for all x and y inside the domain, and where the units of φ are Volts and the
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units of z are m.

It must be noted that NEURON applies all point processes like current sources
on the centres of the sections’ segments where they are assigned. Therefore, the
current source on the first segment of each NAELC would be found at z = 0.1 m.
In order to fix this issue, two additional sections were attached at both ends of each
NAELC. The current sources were then applied on each of the additional sections on
the left, while the ground connections were made on each of the additional sections
on the right. These additional sections were 1 µm long, so the total length of the
domain was 2 µm longer than it should be, and the distance along the z-axis between
the current sources and the ground was 1 µm longer. Although this was a necessary
addition, it could be a source of error in the model. Nevertheless, given the size of
our domain, this error should be negligible.

Results from the simulation yield a RDM of 1.43·10−6 compared to the analytical
solution, and a Magnification Factor (MAG) [182] of 1 + 2 · 10−6. Therefore, the
solution to this simple problem when using the RN is sufficiently accurate, suggesting
that our implementation of the values for xraxial (Eq. 4.2) is justifiably correct.
Note that the order of magnitude of the RDM is the same as the error in length
that the two additional sections add (1 µm over 1 m).

4.3.2 Variables Influencing Axon Activation

We were interested in studying the relationship between axon activation, using AP
firing delay as its measure, and the relevant variables that may influence it under
electrode stimulation, as well as the interplay between them. Two well known of
such variables are the axon to electrode distances and the axons’ excitabilities, which
are directly dependent on the diameters. Another variable, which may be not as
obvious as the former, is the level of misalignment between the nodes of Ranvier
of an axon and an electrode’s active pad. We have studied this third variable and
found a close relationship between it and the AP delays.

Apart from these three physical variables, model design choices for numerical
simulations also affect the results of AP delays. In particular, as will be shown
here, results vary depending on the choice between the two different options we
have for locating transverse resistors in the RN to model the ephaptic connections
between axons —i.e., placing them directly on the nodes of Ranvier or placing them
at regularly spaced locations.

Here we show the results of two simulations that were run in order to assess
these relationships. Unless otherwise specified, the simulations are run on a circular
bundle of 51 axons of equal diameter, 7 µm, scattered at random locations over the
bundle’s cross-section. Using axons all of equal diameter makes all them identical
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and removes any differences between their excitabilities from the study. The bundle
is 2 cm long and it is wrapped by a 4.25 mm long cuff near its left end, centered at
z = 3.875 mm, which has one active pad at the middle of the cuff, that is, at the
position (x = 0.075 mm, y = 0, z = 3.875 mm). The active pad exerts a square
stimulating current pulse with an amplitude ranging roughly from −0.42 µA to −0.5
µA, depending on the simulation, and a duration of 0.2 ms. Both simulations run 1
ms of neural activity. We made the assumption that the stimulation effects beyond
the cuff’s ends are negligible. Therefore, the RN is connected only in the region
within the cuff’s ends (or under the cuff). The reason why the bundle is extended
longer than that is to avoid the effects of the boundaries.

All axons have a certain degree of nodal misalignment between each other (Ran-
vier node misalignment between axons)2. This is modelled by giving each axon a
random position along the z-axis for its first node of Ranvier, that can go from 0
to a · ∆x, where ∆x is equal to the sum of the internodal and nodal lengths and a
is a factor ranging from 0 to 0.5 at our choice. For axons of equal diameter, their
mutual misalignments are very easy to control with the value of a: a = 0 means
their nodes are perfectly aligned, while a = 0.5 means they can have their maximum
degree of misalignment. For axons of different diameters, their internodal lengths
are different and therefore a complete alignment of all the nodes is impossible. Even
choosing a certain degree of alignment is not possible unless their internodal lengths
are very similar and the bundle’s length is short enough.

In the first simulation (simulation 1), the transverse resistors are connected at
the locations of the nodes of Ranvier and we use a = 0.5. Figs. 4.6 and 4.7
show the relevant results for this simulation. The maximum absolute values of
the extracellular field over the axons—or absolute field maxima—are used in the
horizontal axis of the top right panels and in the vertical axes of all bottom panels
in both figures. However, the values for this variable are sampled differently for
each figure: Fig. 4.7 samples this variable along the entire length of the axons to its
maximum resolution (i.e. over all the axon compartments; this will be symbolised
with φ from now on), whereas in Fig. 4.7, the field was sampled only over the nodes
of Ranvier, so the absolute field maxima correspond only to the nodes of Ranvier
(hence, φN). This makes a difference in the dependence of the absolute field maxima
on distances and node-to-pad misalignments and on the dependence of AP delays
on absolute field maxima.

It can be seen in Fig. 4.6 (top left) that the AP delays, while showing an overall
positive dependence on the distances between the axons and the source, do not
follow a very smooth relationship with this variable. They follow a much smoother
relationship with φN (Fig. 4.6, top right). From the activating function theory [59],
we can infer that the AP delays do not strictly depend on φN , hence the irregularities

2Do not confuse this type of nodal misalignment with the node-to-pad misalignment that is
discussed later on.
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Figure 4.6: Results for simulation 1. Top left: AP delays vs. distances from the axons
to the source. Top right: AP delays vs. φN . Colormap: sharpness of the field where
the field of each axon is maximum. This variable may have some influence in the AP
delays. However, this is not clear because it is very correlated to φN . Bottom left: φN vs.
distance. Colormap of this and top left panel: nodes misalignment with respect to the
source (node-to-pad misalignments). Bottom right: φN vs. node-to-pad misalignments.
Colormap: distances from the axons to the source. Top panels show data for fired axons
only, whereas the bottom panels show data for all axons. In these two latter, circles
correspond to fired axons and diamonds correspond to axons that did not fire APs.

that break the smoothness of the graph. Nevertheless, the absolute field maxima
are a suitable variable to be taken into account as an intermediate variable when
studying the relationship between AP delays and distances, since we may assume
there is a close relationship between AP delays and absolute field maxima and in
turn, between absolute field maxima and distances. Despite this, we can observe in
Fig. 4.6 (bottom left) that the relationship between φN and distances is not smooth.
The distinction between φN and φ is made because while the AP delays follow a
close relationship with φN , it is φ, more than φN , which follow a closer relationship
with the axon-source distances (compare the bottom left panels of Figs. 4.6 and
4.7).

As was mentioned above, the third variable influencing the AP delays is the
node-to-pad misalignments. For each axon, this is defined as the component along
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Figure 4.7: Results for simulation 1. Same as Fig. 4.6, with the difference that the
fields include data from all the sections on the axons (including paranodal regions and
internodes) as opposed to data from the nodes of Ranvier only. Note how the φ lose
their dependence on the node-to-pad misalignment. Also, the AP delays have a weaker
dependence on the φ than on φN , since φ is not necessarily located on the nodes of
Ranvier.

the z-axis of the distance between the source (active pad) and the axon’s closest
node of Ranvier. Every axon has, then, a particular value of node-to-pad misalign-
ment, whose maximum possible value is ∆x/2. The φ do of course not follow any
relationship with the node-to-pad misalignments but only on the axon-to-pad dis-
tances (Fig. 4.7, bottom right), but the φN do follow a decreasing trend on these
(Fig. 4.6, bottom right). The points with lower misalignments in the bottom left
panel of Fig. 4.6 show an interesting behaviour, where they form a smoother front,
indicating that groups of nodes with similar misalignments may follow smoother
curves. The AP delays show in turn a positive trend, where delays are longer for
greater misalignments (both figures, top left panels).

Despite the above, the relationship between φ and the axon-source distances
shows irregularities, while in theory it should be completely smooth. This is a direct
consequence of the choice of placing transverse resistors on the nodes of Ranvier only.
For axons having a completely random misalignment between their nodes (a = 0.5),
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the three-dimensional RN formed by the transverse and longitudinal resistors is
considerably irregular. This can quickly induce a loss of field resolution along the
z-axis with the distance from the source, which leads to very visible inaccuracies in
stimulation far from the source. One way to solve this problem is to place transverse
resistors at regular intervals along the z-axis, which creates a much more regular
network. Simulation 2 was run using all the same parameters as simulation 1, except
for the transverse resistor locations, which were placed at regular intervals of 200
µm. After this change, the relationship between φ and the distances is substantially
improved (Fig. 4.8).

Figure 4.8: Results of φ vs. distance for simulation 2.

4.3.3 Effects of Ephaptic Coupling on Action Potential Prop-
agation along Parallel Fibers

We used the RN to run simulations of bundles that range from one to four parallel
fibers in order to study the effects that EC between them has on the propagation of
their APs. All fibers were identical MRG motor fibers with a fiber diameter of 10
µm and their nodes of Ranvier were completely aligned. Transverse resistors were
connected on the nodes of Ranvier. In this case, as all the nodes were aligned, this is
equivalent to connecting them at regular intervals equal to ∆x of the fibers. Fibers
were intracellularly stimulated at their left-most Ranvier nodes using a square pulse
with an amplitude of 10 nA, a duration of 10 µs and with a start time difference
of 0.1 ms between each fiber. The walls of the bundle are isolated so current is not
allowed to flow radially to a distant ground. However, the ground is connected to
the extracellular space at the ends of the bundle, so the path to ground for any
current is longitudinal.

In all simulations, the ratio between the total cross-sectional axoplasmic and
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Symbol Value Description

ρA 70 Ω · cm Axoplasmic resistivity (MRG [108]).
rF 5 µm Fiber radius.
g 0.679 Axon to fiber diameter ratio. This is the ap-

proximate value for a MRG 10 µm diameter
fiber. Obtained by interpolation.

α 2.865 Ratio between total cross-sectional areas of
the bundle and the fibers.

Table 4.2: Parameters used for the simulations.

extracellular areas was preserved, so we controlled the ratio (β) between total ex-
tracellular (RE) to axoplasmic (RA) longitudinal resistances simply by changing the
value of the extracellular longitudinal resistivity (ρLE). This ratio was controlled in
the following way:

β =
RE

RA

=
ρLE
ρA

g2

α− 1
, (4.22)

where ρA is the axoplasmic resistivity, g is the axon to fiber diameter ratio, and

α =
AT

AF

, (4.23)

where AT is the total cross-sectional area of the bundle and AF is the sum of
the cross-sectional areas of the fibers. Being rF the fiber radius and n the number
of fibers,

AF = nπr2F , (4.24)

Table 4.2 shows the values of these variables.

The parameter β determines the proportion of current that flows to ground
through the extracellular space compared to the current that flows through the axo-
plasmic resistances. Therefore, low values of β denote a low extracellular resistance
and therefore, a small strength of EC, and vice versa.

The trajectories of the APs of all the axons in the simulations were graphed for
visualisation. These were found by identifying the time for each node of Ranvier
where the transmembrane potential reached 15 mV.

For the bundle with two axons, in the simulation with β = 1 the two axons
manage to lock their APs and reduce their CVs (Fig. 4.9(b)). The simulation with
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β = 0.1 is shown as a reference when the EC is very small and there is nearly no
interaction between the axons (Fig. 4.9(a)).

(a) (b)

Figure 4.9: Trajectories of the APs of the two axons in this bundle. (a) is for β = 0.1,
and (b) is for β = 1.

For the simulations with three and four axons, only the case β = 1 is displayed
(Fig. 4.10). If these results are compared to the simulation with two axons (Fig.
4.9(b)), it can be noticed that increasing the number of axons diminishes the strength
that their trajectories exert on each other. For three axons, the two last axons
manage to form an AP locking, but this happens later than for two axons alone
and the trajectory of the first axon is never fully incorporated to the lock. For four
axons, there is a clear attraction between all the trajectories, but the lock does not
happen after the trajectories have finished the length of the bundle. Furthermore,
and probably due to the lack of AP lockings, the CVs of the axons do not decrease
as much as with two axons. A possible cause for this observed effect is that the
currents exerted by one axon alone into the extracellular space enter all the other
axons and spread mostly between the axoplasmic resistances of all of them, so the
higher the number of axons in the bundle, the lower the current flowing through
the axoplasmic resistance of each of them, and therefore, the lower the ephaptic
influence of the source axon on other axons. Additionally, it can be argued that as
we are keeping a constant value of α, increasing the number of fibers also increases
the cross-sectional extracellular area, which reduces the strength of EC.

This approach of sequential stimulation of the axons is in general not presented
for higher values of β (we tested with β = 10 and above) because for these, stimu-
lation of the first axons always induced a premature AP in the remainder and this
generated complex behaviours. However, we considered interesting to show the case
β = 10 for four axons (Fig. 4.11). The first stimulated axon fires an AP on its
own, but the other three fire simultaneously, shortly after the first. They travel



Chapter 4. The Extracellular Space as a Resistor Network 90

(a) (b)

Figure 4.10: Trajectories of the APs for the bundles with three (a) and four (b) axons.
β = 1.

synchronously for a distance and they start separating from the group one by one,
just as will be observed in the much more complex case of Chapter 5. The shapes
of these trajectories display a clear relationship between number of trajectories in a
AP lock and its group CV, where more trajectories in the lock always drive a lower
CV.

(a) (b)

Figure 4.11: Trajectories of the APs of the four axons in this bundle. Both cases are for
β = 10. In (a), the axons are stimulated with a start time difference of 0.1 ms, and in
(b) this time difference is 0.2 ms.
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Consequences of Transverse Resistor Location Choices

In the simulations that led to these results, the transverse resistors were located
at the nodes of Ranvier of the fibers, which were perfectly aligned in all cases. If
instead of choosing the locations of the nodes of Ranvier to place the resistors, we
opt to connect them at regularly spaced intervals, the strength of the EC between
the axons is affected if this spacing is not equal to the nodal separation of the axons.
We ran a simulation in which we connected transverse resistors at every 1000 µm,
where the nodal separation of the axons was 1036.6 µm. The resulting trajectories
of the APs of the axons show how their CVs oscillate along the z-axis with an
amplitude near 5 m/s, where the minimum value of the CV is almost 20.5 m/s (Fig.
4.12). This is an oscillation that can be higher than a 24% of the average CV. In
this simulation, β = 1.

(a) (b)

Figure 4.12: (a) Trajectories of the APs of the axons. (b) CVs of the axons during the
propagation of their APs along the z-axis. The CVs in this figure were applied a moving
average using a window of 10 nodes of Ranvier. Note the oscillations in the trajectories
and also in the CVs.

This large amplitude oscillation in the CVs is an artefact arising from the rel-
ative positioning of the transverse resistors with respect to the nodes of Ranvier.
Considering that the difference between nodal and resistor separations is 36.6 µm,
the points where the best alignment between nodes of Ranvier and transverse resis-
tor occur are separated by 1036.6/36.6 ≈ 28.3 nodes of Ranvier, which is equivalent
to a distance of approximately 2.94 cm. This distance is approximately the same as
the observed wavelength of the oscillation in CV in Fig. 4.12.

The presence of these artefacts are clearly a limitation to the proper simulation
of EC, so while we saw that this modelling choice is more suitable for computing
the fields from stimulation, it is not suitable for EC during propagation.
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4.3.4 Electrode Recordings from one Axon

We used the RN to simulate the recordings of the activity of one axon on a pad of
a cuff electrode. A MRG fiber with a diameter of 10 µm was located at the center
of an ideal cylindrical nerve model with a diameter of 300 µm and a length of 2 cm.
The nerve did not contain any other axons. The endoneurium was modelled with an
isotropic resistivity of 1211 Ω · cm [178]. The nerve was considered mono-fascicular
(i.e., having only one fascicle), and the fascicle was surrounded with a perineurium
of 9 µm thickness (3% of the fascicle’s diameter [132]), and a resistivity of 1.136 ·105

Ω · cm [56]. The cylindrical container was given a diameter of 2.2 cm, and the saline
bath had a resistivity of 50 Ω · cm [7]. We placed a cuff electrode for recording
centered at z = 1.5 cm. The cuff had only one ring in the center and only one
recording pad at an angular position of 0° —that is, at x = 300 µm and y = 0.
The axon was given an intracellular current injection to its first node of Ranvier (on
its left end) of 1 µA, and it was left to propagate an AP toward the right end of
the model. The recording of the extracellular potential at the position of the cuff
electrode’s pad is shown in Fig. 4.13.
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Figure 4.13: Electrode recording of the activity of a MRG fiber inside an ideal nerve
model.

4.4 Discussion

In this chapter we have developed a Resistor Network (RN) to model the extracel-
lular space of a bundle of fibers. The RN creates an EMI model of the bundle and
allows the simultaneous simulation of the extracellular fields, neural activity, and
electrode recordings. The RN uses a nearest-neighbour electrical connection model
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for a random distribution of fiber positions based on the Voronoi tessellation of the
positions. We have studied the validity of the RN by comparing its results on two
simple problems to the corresponding FEM and analytical results for validation. We
have tested the usability of the RN to model situations of interest, such as stim-
ulation, propagation, and electrode recordings. For this, we studied the effects of
anatomical properties of a bundle on the responses of the fibers to stimulation from
extracellular electrodes using the RN. Finally, we used the RN to run simulations
of EC between a small number of fibers, which is nearly equivalent to using a MF
model. The results of these simulations were contrasted with previous knowledge
on the effects of EC on propagation.

The RN is mathematically equivalent to a FDM in the limit of a uniform rectan-
gular mesh. It is capable of modelling the potential distribution over a 2D domain
for a simple problem where a current point source and connections to ground are
present, and it yields results which are very close to results from FEM simulations.
Modelling the potential along a third dimension for the simple problem of a cubic
resistor where a distributed current is applied on one face and ground is connected
over the opposing face is also achieved with notable accuracy when compared to the
analytical result (RDM of the order of 10−6). These findings support the use of the
Voronoi-based RN presented here, along with its implementation in NEURON, for
solving electrical problems on ohmic media and therefore, for their use in numerical
simulations of neural systems involving the extracellular medium.

The RN was used to simulate bundles of fibers under stimulation and propagation
scenarios. It has been shown that this method does satisfactorily simulate these
scenarios.

Inside a bundle, the potential distribution that is generated from a stimulating
external electrode clearly decreases with the distance from it with a monotonic
trend. However, the maximum value of this field along a fiber is not the only
determinant variable for its response, which can be measured with the delay between
when stimulation is set off and the firs AP fires on the fiber. The relative positions
along the z-axis of the nodes of Ranvier of the fibers with respect to the current
source (or active pad) of the electrode has been found to strongly alter this response
delay. This variable, referred to as node-to-pad misalignment, naturally affects the
maximum value of the extracellular potential on a node of Ranvier, and thus affects
the effective strength of the stimulation. Another factor affecting fiber response is
taken into account when using the RN to model this system. The choice of placing
the transverse resistors at the locations of the nodes of Ranvier instead of inserting
resistor layers at regularly spaced intervals along the z-axis creates an irregular mesh
which has the effect of obscuring the resolution of the potential as distance from the
current source increases in the model. This, in turn, has a detrimental effect on the
accuracy of the fibers’ responses, especially for fibers being distant from the source.

Using the RN to model propagation in a bundle containing a small number of
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fibers and choosing a large longitudinal component of the extracellular resistivity
renders a very similar scenario to using a Mean-Field (MF) model for the extracellu-
lar field. EC on these scenarios makes APs of different axons attract each other and
they tend to lock their trajectories. When this is achieved, their CVs are reduced.
The ratio between extracellular and axoplasmic resistances controls the strength of
this effect. These results hold a reasonable level of accordance with previous known
results for MF EC in myelinated axons [66] if we consider that we used different
axon models and parameters. This provides a degree of reliability on the RN as it
behaves accordingly with known results in special case.

After these studies, the RN is presented here as a valid and potentially helpful
tool for computational neuroscientists. However, three limitations, one technical
and two of them regarding its applicability, need to be mentioned:

• Electrical currents through space are only modelled along the z-axis and on
the x-y plane. A FEM scheme could simulate these currents more accurately.

• It has been shown how the two proposed options for locating the transverse
resistors present benefits and drawbacks depending on what it is intended to
model. Placing resistors on the locations of the nodes of Ranvier is based on
the assumption that EC is relevant only or mostly among nodes of Ranvier.
This permits simulating and quantitatively studying the effects of EC, but it is
a source of inaccuracies for simulating the fields coming from electrodes since
it creates an irregular RN. On the other hand, placing them at regular inter-
vals along the z-axis permits a much more accurate simulation of the fields,
while it inaccurately models EC by making it highly dependent on the relative
positions between nodes of Ranvier and transverse resistors. This acciden-
tally modifies the strength of EC along the z-axis in an oscillatory fashion,
and this effect is accentuated by the increase of the longitudinal extracellu-
lar resistivity, since longitudinal currents find a great resistance outside the
axons. Most likely, increasing the RN resolution along the z-axis would atten-
uate this unwanted oscillation. This, however, leads to a considerably higher
computational workload.

• The RN presented here is conceived for cylindrical bundles of parallel axons,
but it is not suitable for modelling other types of cellular arrangements. For
this, however, we hope researchers will feel encouraged to extend this concept
to other configurations by using tessellations in three dimensions.

Despite of these limitations, the RN method here is presented as an alternative to
hybrid FEM-neural simulations that not only permits to compute fields from stim-
ulating electrodes and on recording electrodes in a self-contained and self-consistent
simulation, but also, and most importantly, permits the simultaneous simulation of
ephaptic interactions between all fibers in a bundle.
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4.5 Conclusion

A RN was presented in this chapter to model bundles of fibers including their ex-
tracellular medium. The RN was validated against FEM simulations for a simple
problem and against analytical results. Validation results show that the RN can
solve the potential field in three-dimensional ohmic media with an acceptable accu-
racy. Then, the RN was used in three simple scenarios: the stimulation of a bundle
of parallel myelinated fibers using a cuff electrode, the propagation of APs in bun-
dles of small number of identical and parallel myelinated fibers, and the activity
recordings of an axon by a cuff electrode. For the stimulation scenario, anatomical
variables (i.e., distance from axons to stimulating electrode and alignment of their
nodes of Ranvier to the electrode) were related to the delay of AP elicitation from
stimulation. Also, the effects of choices in the configuration of the locations of the
transverse resistors in the RN on the AP delays was studied. When studying prop-
agation in small bundles, simulations were run where the expected synchronisation
effects of EC were observed, plus an observation was made that increasing the num-
ber of axons in a bundle reduces the strength of the ephaptic influence from an axon
on others. We hope that this tool will be useful in further research as an available
resource when considerable levels of complexity are needed in simulations of neural
activity. This RN is used in the following chapter in a more detailed nerve model.



Chapter 5

Effects of Ephaptic Coupling
During Artificial Stimulation of
Peripheral Nerves

5.1 Introduction

The contents in this chapter are adapted from the manuscript submitted to PLOS
Computational Biology [15] (not published yet; as at this writing, revisions from
the reviewers are being addressed and the final paper may differ in content from
this chapter). The relevant parts of the Materials and Methods section of [15] were
presented in Chapter 4.

In simulation studies on electrical stimulation of peripheral nerves by electrode-
nerve interfaces, the focus is generally aimed at predicting the selectivity of the
electrodes (see [7, 8, 58] or [179]). Although these works use detailed geometrical
representations of the nerves in their models, they rely purely on axon activation
prediction to study selectivity and do not regard the effects that EC may have on
the axon thresholds during propagation, nor the effects that AP propagation may
have not only on the selectivity of the electrodes, but also on the frequency encoding
of the signals that later reach the central nervous system. A more specific study is
needed to assess the extent to which propagation can affect these variables.

In order to carry out a detailed study of propagation, ephaptic interactions should
be taken into account. These are normally disregarded in peripheral nerves, but as
it was explained in Chapter 2, they exist and are likely to play a role in information
processing through alteration of the relative timings between APs from different
axons, and possibly, in the selectivity of the electrodes. Hence, including this type
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of coupling in the models might provide an improvement onto existing achievements
in the predictions of electrodes’ fascicle selectivity and information encoding, which
would in turn lead to more accurate and more naturalistic artificial sensory feedback
in neural interfaces.

We have developed three-dimensional EMI-type [114] models of both realistic
and ideal peripheral nerve trunks, which use a RN in order to simulate stimulation
and propagation with ephaptic interactions in a unique simulation, with the ultimate
goal of using it towards making predictions of fascicle targeting selectivity, frequency
encoding, and overall electrode performance, in order to optimise the designs of these
electrodes.

The significance of this work lies in being the first work, to the best of our
knowledge, that studies EC for a bundle of this complexity and which deviates
from restrictive assumptions such as the Mean-Field (MF) model or more regular
geometries [64–66, 68], and therefore intends to elucidate the relevance of EC in
more realistic conditions. In comparison to Chapter 4, in this chapter we have
chosen a more complete geometrical tessellation technique to model the nearest-
neighbour electrical connections between fibers of varying diameters and different
tissues. Also, we have added details of electrode configurations and extraneural
environment to the model.

In summary, the main novelty of this work is the study of EC:

• for a nerve model containing randomly-located myelinated mammal periph-
eral axons with varying diameters, following both uniform and natural-like
distributions,

• that departs from MF assumptions and takes the inter-axonal distances into
account through a RN,

• in scenarios where the nerve models are stimulated by cuff electrodes.

5.2 Methods

The fundamental assumptions on which the model is based, the axon models in use
and a detailed description of the procedures used to model the nerve’s tissues are
provided here.
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5.2.1 Main Assumptions and Limitations

The model relies on several assumptions to simplify the implementation and com-
putational cost while still keeping an acceptable level of accuracy:

1. Only two types of axon models are used: the double-cable models of McIntyre,
Richardson and Grill (MRG) [108] for motor fibers, and Gaines & al. [113]
for sensory fibers. No unmyelinated or other types of myelinated axons are
considered.

2. Axons are straight, with no tortuosity (i.e., with no bends, undulations, or
tapering) along their length.

3. All axons are parallel to each other.

4. Following the two above assumptions, the cross-section of the nerve’s anatomy
is constant along its length.

5. All extracellular tissues are purely ohmic. We work under the QS approxima-
tion, and hence we do not consider capacitive properties of the tissues.

6. The volumes of the epineurium and endoneurium are regarded as part of a
three-dimensional resistor network.

7. The endoneurium was modelled as an isotropic tissue, since using its anisotropic
tensor from [178] would imply an over-representation of the axons.

8. The perineurium is regarded as a surface with a nominal thickness influencing
the values of the resistances that cross it.

9. Electrode impedance was not accounted for in the models.

10. The nearest-neighbour electrical connections model defines inter-axonal con-
nections only across the x-y plane, and inter-compartmental connections along
the z-axis. This is a limitation with respect to FEM schemes, which can model
currents flowing in any direction.

11. The RN is computationally expensive. A very large number of axons in the
model can greatly increase the simulation time to days. Therefore, although
the typical diameters of human limb peripheral nerves where stimulation is
studied is typically in the order of several mm [184, 185], we used smaller
nerve models and axon bundles (see Fig 5.1 for more details). Also, fiber
packing ratios and axon numbers were kept low.
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5.2.2 Axon and Nerve Models

A number of different models were used in this chapter in order to run the different
studies (see table 5.1 for a detailed list of these models). Model named Nerve 1 in
this chapter uses both motor and sensory fiber models, with a proportion of 15%
motor and 85% sensory fibers [113]. All other models use, exclusively, motor fibers.
In all cases, we used a temperature of 37 °C. Although EC in unmyelinated axons
can be relatively strong, their use in our model implied a high computational cost
due to the higher spatial resolution that they require. Also, they are outside the
scope of this study as our focus is on the often neglected EC between myelinated
fibers. Therefore, unmyelinated fibers were not included in the models presented
here.
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Figure 5.1: Histograms for fiber diameters of the nerve (and bundle) models used in this
study, except for models without diameter variability (Bundle 3 and Nerve 2). Horizontal
axes indicate diameter values in µm and vertical axes indicate the number of axons for
each bin of the histograms. Note that although all histograms have the same number of
bins (39), they do not necessarily share any horizontal or vertical axes. The corresponding
model names are indicated on the top of each histogram.

In Nerve 1 and Bundle 2, the fiber diameters were randomly assigned, ranging
from 3 µm to 20 µm, following a distribution according to the results in [186] in
Nerve 1 and Bundle 2 (smaller diameter fibers were excluded due to their fine spatial
discretisation requirements, which led to higher computational costs). Therefore, the
nodes of Ranvier of the different axons were not necessarily aligned. The different
properties of the fiber morphology that depend on the diameter —internodal length,
morphology of the myelin attachment (MYSA) and paranodal (FLUT) regions and
number of myelin layers, were fitted to a linear regression each, using the values
from [108]. Variables whose linear regressions yielded negative values were fitted to
a quadratic curve, as done in [110].

The implementation of the axon membrane models was made in the NEURON
simulation environment [2].

For Nerve 1 and Nerve 2, we used a nerve model as a cylindrical body with
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Model Diameter
(µm)

Number of
axons

Fiber pack-
ing ratio

Intracellular
to extracel-
lular areas
ratio

Length
(cm)

Nerve 1 500 658 1
Fascicle 1
(Nerve 1)

156.67 82 0.282 0.205 1

Fascicle 2
(Nerve 1)

156.67 118 0.350 0.267 1

Fascicle 3
(Nerve 1)

156.67 99 0.344 0.269 1

Fascicle 4
(Nerve 1)

156.67 87 0.290 0.212 1

Fascicle 5
(Nerve 1)

156.67 98 0.330 0.251 1

Fascicle 6
(Nerve 1)

156.67 83 0.293 0.225 1

Fascicle 7
(Nerve 1)

156.67 91 0.283 0.193 1

Bundle 1 100 39 0.398 0.304 6
Bundle 2 150 110 0.347 0.267 6
Bundle 3 250 69 0.450 0.606 3
Nerve 2 500 192 3
Fascicle 1
(Nerve 2)

156.67 26 0.429 0.555 3

Fascicle 2
(Nerve 2)

156.67 28 0.462 0.634 3

Fascicle 3
(Nerve 2)

156.67 28 0.462 0.634 3

Fascicle 4
(Nerve 2)

156.67 27 0.445 0.593 3

Fascicle 5
(Nerve 2)

156.67 29 0.478 0.677 3

Fascicle 6
(Nerve 2)

156.67 27 0.445 0.593 3

Fascicle 7
(Nerve 2)

156.67 27 0.445 0.593 3

Table 5.1: Geometrical and electrical properties of the models.

seven cylindrical fascicles of equal diameter, inspired in the five-fascicle model from
[7]. In all models, the fascicles were filled with axons using a simple circle packing
algorithm designed for this purpose.

The algorithm consisted of one iterative process for each fascicle where, in each
iteration, a random diameter value Dk was chosen from the aforementioned distri-
bution for a circle (a fiber, indexed with k). For each circle, a loop for positioning
trials was then run. On each trial, a random position for the center of the circle
was chosen inside the fascicle (more specifically, inside a circle having a diameter
DF −Dk, being DF the diameter of the fascicle, in order to avoid intersection of the
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circle with the fascicle’s membrane). If the circle at the position had no intersections
or contacts with any other circle that had been placed previously in the fascicle, the
position was assigned to it and a new random circle was chosen. The algorithm
stopped when a circle could not be placed at a suitable position after 10, 000 trials.
For this process, a minimum allowed distance between axons was chosen to be 1
µm (which was taken into account at each contact check), so no two axons could
be closer to each other than that. The fiber packing results for the different models
used in this work are summarised in Table 5.1. The algorithm used here yields fiber
packing ratios which are generally lower than the typical values in nerves (see, for
instance, [187] for measured values in human spinal cord). However, these lower
ratios prevented us from having a very high number of axons, which would increase
the computational cost of the simulations. This algorithm can fill fibers given any
contour, and results are not dependent on the fascicles’ shapes.

Three different extracellular tissues were considered in the model (Table 5.2):
The epineurium was used for the whole extrafascicular space inside the nerve, the
endoneurium was used to account for all the intrafascicular spaces where axons were
embedded, or interstitial spaces, and the perineurium was regarded as a surface
layer that electrically separated the fascicles from the epineurium. Nevertheless, the
epineurium and the endoneurium were given the same electrical properties for the
following reasons, respectively: The epineurium was considered to be isotropic as in
[7, 179]. The endoneurium’s resistivity taken from the literature [178] is considered
to be anisotropic because it accounts for the longitudinal disposition of the axons. In
this RN, however, axons are explicitly represented by implementing their membranes
and intracellular resistances as part of the RN. Using the known value from [178]
for the longitudinal component of the endoneurium’s resistivity, ρLEn = 175 Ω ·cm, is
then not suitable for this model, since that would imply an over-representation of the
intracellular resistances. Hence, given the lack of knowledge about the value of ρLEn.
we made the conservative assumption of considering the endoneurium as an isotropic
tissue, and used its transverse component of the resistivity, ρTEn, as the value for its
longitudinal component. This value was obtained from a configuration where the
transverse disposition of the axons contributed to the resistance of the nerve where
it was measured [178]. Therefore, although a safe assumption of isotropy has been
made here, it should be taken into account that its actual physiological value may
be lower.

5.2.3 Resistor Network Model

This chapter uses the RN developed in Chapter 4. However, additional equations are
provided in this chapter and incorporated to the RN in order to model anatomical
properties and tissues that were not considered in Chapter 4. These model the
diameter variability of fibers and the presence of different tissues. Specifically, we
modelled the presence of the endoneurium, epineurium and perineurium.
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Symbol Value Source Description

ρax 70 Ω · cm [108] Axoplasmic resistivity.
ρLEn 1211 Ω · cm [178] Longitudinal (z-axis) component of the re-

sistivity of the endoneurium. See main
text to understand the discrepancy with the
anisotropic tensor from [178].

ρTEn 1211 Ω · cm [178] Transverse (x-y plane) component of the re-
sistivity of the endoneurium.

ρLEp 1211 Ω · cm [7,
179]

Longitudinal component of the resistivity of
the epineurium.

ρTEp 1211 Ω · cm [7,
179]

Transverse component of the resistivity of the
epineurium.

ρTP 1.136 ·105 Ω ·
cm

[56] Transverse (and only) component of the resis-
tivity of the perineurium (value for 37°; see
reference).

ρI 109 Ω · cm [7] Resistivity of the insulator.
ρS 50 Ω · cm [7] Resistivity of the saline bath.
∆P 4.7 · 10−4 cm [132] Thickness of the perineurium (3% of the fas-

cicle diameter in Nerve 1; see Table 5.1).
∆I 2.4 · 10−2 cm [7] Thickness of the insulating cuff.
∆S 0.85 cm Thickness of the saline bath in the cylindrical

container (in the absence of cuffs).
∆C 2.2 cm [7] Cylindrical container’s diameter.
DN 0.5 cm Diameter of the nerve.
nH 36 Number of points in the triangulation hull (or

number of NAELC on the nerve’s membrane).

Table 5.2: Parameters used for the RN.

Modelling the Nerve Containing Axons and Extrafascicular Regions

In this chapter, we are using the RN to model a nerve containing fibers of varying
diameters packed inside fascicles which are surrounded by perineurial membranes.
The epineurium, which is the space surrounding the fascicles, is free of axons and
therefore, our nerve model includes both fibers of different diameters and NAELC.
This is a novelty following Chapter 4, where bundles were either empty or containing
equal diameter fibers exclusively.

All NAELC and fibers inside the nerve form a packing of non-intersecting cir-
cles over the cross-section (Fig. 5.2; the points corresponding to NAELC may be
regarded as zero-diameter circles for this purpose).

The Voronoi diagram for sets of equal diameter circles needs now to be adapted to
account for the different diameters in the new circle packing. Computing the known
Voronoi diagram over the centers of the circles only may easily contain segments that
intersect with circles. This would compromise the characterisation of the electrical
parameters of the model, since a prism could contain fragments of different circles.
To solve this problem, we need to compute the power diagram, described as the
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Symbol Units Description

ak,i None Fraction of cross-sectional area of tissue of
type i present in polygon k.

bik,l None Distance crossed through a tissue of type i
by the transverse resistor between k and l as
a fraction of the total distance between the
membranes of k and l.

AP,k cm2 Cross-sectional area of polygon k.
AE,k cm2 Extracellular cross-sectional area inside poly-

gon k.
Dk cm Diameter of fiber k (zero for NAELC).
cnk,l cm Length (along the z-axis) of the transverse re-

sistor number n between cables k and l.
dC,(k,l) cm Distance between the centers of fibers k and l.
sk,l cm Length of the segment in common between

polygons k and l.

ρLu,L
k Ω · cm Longitudinal component of the lumped resis-

tivity for polygon k.

ρLu,T
k,l Ω · cm Transverse component of the lumped resistiv-

ity between cables k and l
rL,k Ω/cm Resistance per unit length of the extracellular

cable k.
Rn

T,(k,l) Ω Value of the transverse resistor n between ca-
bles k and l

RG Ω · cm Resistance to ground from a point on the
nerve’s membrane per unit length.

Table 5.3: Variables used for the resistor network.

Voronoi tessellation in the Laguerre geometry [180]. This assigns a convex polygon
to each circle, be this corresponding to a fiber or a NAELC, and therefore assigns
an extracellular cross-sectional area AE,k to each fiber and NAELC.

Polygons containing the points on the nerve’s membrane are cropped so that
they do not intersect the nerve’s outer space.

Longitudinal resistances of the RN The polygons of the tessellation can inter-
sect more than two regions corresponding to different tissues. I.e., one polygon can
intersect endoneurial and epineurial regions of the nerve. To account for this, the
longitudinal resistivity of the polygonal prism is determined using a lumped value
of the resistivities of the tissues intersecting its polygon.

ρLu,Lk =
∑

i

ak,i · ρ
L
i , (5.1)

where k indicates the cable or polygon, i indicates the type of tissue and then,
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Figure 5.2: Discretisation of a nerve model’s cross-section blue(Nerve 1blue) in poly-
gons using a power diagram (green). Grey circles indicate the locations and diameters
of the axons, which are embedded in seven fascicles (the blue labels number the fasci-
cles). Black dots indicate points resulting from a Delaunay triangulation to discretise
the epineurium, indicating the locations of NAELC. The dual Delaunay triangulation to
the power diagram representing the connections with transverse resistors is represented
with solid red thin segments. Note that while the nerve’s contour contains NAELC, the
fascicles contours do not. This model is used in simulations in this work (see Nerve 1 in
Fig 5.1 and Table 5.1).

ak,i is the cross-sectional area of tissue type i present in polygon k as a fraction of
the total extracellular area enclosed by the polygon (this is, scaled over AE,k). In
theory, in this study, this sum is made over two types of tissue: endoneurium and
epineurium (i ∈ {En,Ep}). However, as mentioned above, we used the same value
of ρLi for both. Nevertheless, this equation serves for any number of tissue types the
modeller wishes to include.

The resistance per unit length of each extracellular cable is then:

rL,k =
ρLu,Lk

AE,k

, (5.2)
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where AE,k is the aforementioned extracellular cross-sectional area of the poly-
gon. If AP,k is the total area of the polygon and Dk is the diameter of fiber k, AE,k

is given by:

AE,k = AP,k − πD2
k (5.3)

If the polygon does not contain a fiber but a NAELC,

AE,k = AP,k (5.4)

Figure 5.3: Cross-sectional view of a random fascicle including the tessellation (green
lines) and the triangulation (red). Additional information is used to display the details
of the connection between two randomly chosen nearest-neighbouring fibers k and l.
The coloured areas represent the extracellular area assigned to the calculation of the
longitudinal extracellular resistance of each fiber (green for fiber k and blue for fiber l).

Transverse resistances of the RN Sides shared by adjacent polygons in the
power diagram represent electrical contacts between the polygons (which is equiva-
lent to surface contacts between polygonal prisms because the polygons are extruded
along the z-axis) and determine which cables or fibers are coupled by transverse re-
sistors. The weighted Delaunay triangulation dual to the power diagram [180] (red
lines in Figs 5.2 and 5.3) indicates these connections. The resistance of such a con-
tact depends directly on the distance dC,(k,l) between the centers of the two circles
and inversely on the product of its segment’s length sk,l (green segment joining the
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two coloured polygons in Fig. 5.3) times its length along the z-axis cnk,l. The value
of the n-th extracellular transverse resistor between two fibers follows Eq. 4.8, with
the addition that the transverse resistivity is in this case also a lumped value:

Rn
T,(k,l) = ρLu,Tk,l

dC,(k,l)

cnk,l · sk,l
(5.5)

The transverse component of the lumped resistivity ρLu,Tk,l is computed in the
following way:

ρLu,Tk,l =
∑

i

bik,l · ρ
T
i , (5.6)

where bik,l is the distance crossed by the resistor within the tissue of type i, scaled
over dC,(k,l).

For merely geometrical arrangements, the perineurium is modelled as an in-
finitely thin layer, so it does not affect the calculations of rL. Yet its nominal
thickness was not ignored for the calculations of the resistances of transverse re-
sistors crossing it, since its thickness is known to affect the results of stimulation
[132]. Its thickness was added in the calculation of the corresponding Rn

T,(k,l) in the
following way:

Rn
T,(k,l) =

1

cnk,l · sk,l

(

ρLu,Tk,l

(

dC,(k,l) − nP∆P

)

+ ρTPnP∆P

)

, (5.7)

where nP is the number of perineurial membranes crossed by a resistor (1 between
an axon and a NAELC, 2 between two axons in different fascicles, 0 otherwise).

NAELC are always discretised in regular intervals, using the shortest internodal
length in the nerve for cnk,l. Transverse resistors connecting a NAELC and a fiber
are located on the nodes of Ranvier of the fiber.

5.2.4 Nerve’s External Environment and Electrodes

The nerve was centered along the axis of a larger cylindrical container (z-axis) filled
with a saline bath. The surface of this larger cylinder was connected to ground
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(zero potential), as done before by [7]. For modelling purposes, this can be used as
a sufficient representation of the animal’s body surrounding the nerve, assuming that
in a real experiment, the ground would presumably be found on a distant location,
right outside the animal’s body or in the Central Nervous System.

This model framework allows the user to define cuff electrodes for stimulation
and recording. We used cuff electrode models based on [188]. These electrodes are
4.25 mm long and contain four rings separated by 750 µm each. Each ring contains
four pads, placed at 0°, 90°, 180° and 270° with respect to the x-axis. More details
about the geometry and materials of these electrodes can be found in [188]. In this
work, the cuff model was simplified by leaving only one ring in the center, and by
adapting the inner diameter to the nerve model diameter.

The methods used to simulate stimulation are explained in more detail in Chap-
ter 4.

5.3 Results

5.3.1 Field generated by the electrode

In this subsection, we represent the extracellular potential field, vE, generated by
the pulses exerted by one active pad on a cuff electrode on a nerve model. For this
and the following subsection, we used a 1 cm long nerve (model named Nerve 1
in Methods) surrounded on part of its length by a stimulating cuff electrode that
provided one square stimulating pulse. The cuff model was centered at the middle
of the nerve’s length. The 0° pad (blue diamond on Fig 5.4) injected a square pulse
with a duration of 200 µs and an intensity of −3 µA. The fiber diameters were
randomly chosen following a distribution based on [186], although the diameters
were bounded between 3 and 20 µm. No fibers thinner than 3 µm were taken into
account, since low diameter fibers have short internodal lengths and would increase
the RN resolution, along with the simulation’s computational cost. Considering that
the fields obtained here are used in the stimulation studies in the next subsection,
it is important to remark that, in order to save computational resources, the RN
was connected only in the region under the cuffs. This was considered as a safe
assumption since the fields far from the stimulation point were too small to play a
relevant role during stimulation. The rest of the nerve’s length was left in order to
avoid the effects of sealed-end boundary conditions of the axons.

A cross-sectional view of the absolute value of the field vE over the nerve can be
seen in Fig 5.4, and three samples of its longitudinal profile (z-axis) can be seen in
Fig 5.5. The field, which is negative across the entire domain, has a minimum value
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of −2413.62 mV at the location of the active pad, but its absolute value is lower than
1000 mV over the rest of the domain. The field can be seen to decrease with the
distance from the active pad both in Fig 5.4 and in Fig 5.5. At the ends of the cuff,
the field is effectively zero (Fig 5.5). The field shown in Fig 5.4 presents deviations
from a smooth relationship with distance on the x-y plane, at points where |vE| is
lower than it should be expected for such a smooth relationship. This is due to
the conductive axoplasm of the axons, which lowers the impedance to ground on
their locations. This effect of the presence of the axons is not visible in simulations
where the presence of these is merely accounted for by an anisotropic endoneurium’s
resistivity tensor.

5.3.2 Effects of ephaptic coupling on axon recruitment and
selectivity

In order to study the effects of EC on axon recruitment and selectivity during
stimulation, we tested the differences in stimulation results from simulations with
and without EC. For this, we used the model Nerve 1 under the same conditions
as the previous subsection. Two sets of simulations were run for this study: one
including EC (labeled as SEC; results in Fig 5.6 for a pulse of −2 µA) and one
not including it (SNOEC). SEC simulations were run by modelling the nerve as
a RN. SNOEC simulations were prepared in the following way: The axon models
are the same as in SEC. However, there is no RN interconnecting the axons, and
therefore, no explicit modelling of any extracellular tissue or device. In order to
model stimulation, the extracellular fields along all the axons in SEC were captured
at the time step following the start of the stimulating pulse, and then used in SNOEC
as the extracellular stimulating field on the axons.

In order to quantify the effects of stimulation, we measured the axon recruitment
in response to the stimulating pulses. The presence of APs on each fiber was detected
when the transmembrane potential of the fiber (vm) reached 15 mV. This AP
detection method was used throughout this study. We ran pairs of simulations
{SEC, SNOEC} for current pulse amplitudes ranging from −0.2 to −4 µA, with
steps of −0.2 µA.

The method used for the stimulating fields in SNOEC ensures the axons are
stimulated with the same field coming from the electrodes in SNOEC and SEC.
However, results vary substantially between both cases . The response of the axons
to the stimulating fields in sEC is faster than in SNOEC (Fig. 5.7, left panel, which
shows the results for a pulse of −2 µA). Also, the recruitment in SEC is, for all
fascicles and pulse amplitudes, higher than in SNOEC (Fig. 5.8). Recruitment
ratios are only equal between SEC and SNOEC in trivial cases: when recruitment
is zero and when it is saturated (i.e., the maximum number of axons in a fascicle
has been recruited) in both simulations. This is due to the endogenously generated
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Figure 5.4: Cross-sectional slice of the extracellular field generated by the electrodes
over the model Nerve 1 at the middle of its length (z = 5000 µm), where the
stimulation pad (blue diamond) is situated, and at the time step following the onset
of the stimulating pulse. The RN assumes the field is constant over the surface of
each tessellation polygon. The contours of the nerve and the fascicles are indicated
with a black solid line for better identification. Axons are not shown in this figure.
Although the maximum value of |vE|, situated at the active site, is 2413.62 mV, the
colorbar was cut at 1000 mV in order to facilitate the visualisation of the spatial
details of the field.

field (or ephaptic field), which adds up to the artificial field from the electrodes
and generates an increased depth of the total stimulating field over all axons (see
Fig 5.7, middle and bottom right panels, where the ephaptic field and membrane
voltage are represented for a random axon under a stimulating pulse with amplitude
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Figure 5.5: Longitudinal profile (z-axis) of the extracellular field (absolute value,
log scale) generated by the electrodes over the model Nerve 1, along the length of
the cuff electrode, at three different points on the x-y plane: the position of the
active pad (x = 250 µm, blue), the position of the central-most axon in the nerve
(x = −3 µm, green), and the farthest point from the active pad (x = −250 µm,
red). All three points are located at y = 0 µm.

−2 µA). The ephaptic field activates axons by pushing them over their thresholds,
where the electrode fields are not enough. In the simulation with a stimulating pulse
amplitude of −2 µA, this ephaptic field is deeper than −50 mV on average (right
bottom panel), although it reaches depths in the range between −60 and −80 mV
for some axons. There are no axons for which this field is positive throughout the
duration of the stimulating pulse. It does, however, become positive after the pulse,
likely due to the refractory periods of the axons.

This model contains 658 axons, most of which are firing APs at similar times
in SEC for strong enough stimulating pulses. From a MF model perspective, this
means that the individual contribution to the ephaptic field from each axon might be
in the order of, at least, 10 µV. In cases where an electrode is set to selectively target
a group of axons, the collective influence of these on the ephaptic field may be lower,
and therefore, the effects on axon recruitment may be lower as well. Nevertheless,
we can tell that the magnitude of the effect of EC on the axons response is big
enough to be taken into account unless working with much smaller groups.

The position of the active pad with respect to Fascicle 1 was assumed to be the
optimal for maximising the selectivity for this fascicle. We studied the variation of
the selectivity for Fascicle 1 with the presence of EC. We used the inter-fascicular
selectivity provided by [179], and calculated its value for the whole range of stimu-
lating pulse amplitudes. Results (Fig 5.9) indicate that EC, in the case of Fascicle
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Figure 5.6: Activation map of the Nerve 1 model which contains 7 fascicles. The stimu-
lation pad position is marked with a blue diamond. Colours represent the time (delay)
between the start of the stimulating pulse and when the transmembrane potential of each
fiber (vm) reaches 15 mV (value chosen for the detection of an AP).

1, has the effect of both narrowing the range of pulse amplitudes for which the se-
lectivity is optimal and shifting the peak of the selectivity by approximately 1 µA.
Also, the maximum selectivity that can be reached is lower than in SNOEC. This
can be understood thanks to the increase in axon recruitment in all other fascicles
for pulse amplitudes from −0.6 µA and stronger. Recruitment in Fascicle 1 is always
higher than in the other fascicles thanks to its proximity to the active pad, and it
reaches its maximum recruitment sooner. Therefore, selectivity for Fascicle 1, while
using only the current active pad, cannot be negative. The possible effects of EC
on the selectivity of other fascicles, however, may be different, since their optimal
selectivity configurations vary.

One last observation that can be made on the activation map (Fig. 5.6) is
that the AP delays display a degree of independence from fiber diameter. This is
especially obvious for Fascicle 1, and slightly visible for its surrounding fascicles; on
fascicles distant from the active pad, AP delays seem to depend more closely on fiber
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Figure 5.7: Left: Histogram representing the delays of the APs in the simulations (first
AP on each axon for all the axons) with EC (sEC, blue) and without EC (snoEC, light
red). Right: For one particular axon, randomly chosen as an example, middle panel
shows the time evolution of the extracellular potential (vE) on the node of Ranvier
lying closer to the electrode’s active pad for both simulations (blue for SNOEC, black
for SEC), and top panel shows the time evolution of the transmembrane potential (vm,
same location and legend). Note in this panel how the EC produces an AP earlier than
in SNOEC. Bottom panel: Time evolution of the endogenous fields (vSEC

E − vSNOEC
E )

for all the axons (thin black lines) on the nodes lying closer to the active pad. Red lines
indicate the mean of these fields (averaged for each time step, middle thick line) with
their standard deviation (thin lines). The two black vertical lines indicate the start and
finish of the pulse.

diameter, with smaller fibers firing later. This apparent dissociation between fiber
diameter and AP delay is due to i) the misalignment between the nodes of Ranvier
of the fibers and the active pad, as seen in Chapter 4, and ii) the effects of EC: all
fibers are under a slightly different ephaptic field, and also respond differently to it
due to their diameters.

5.3.3 Effects of Ephaptic Coupling on Propagation

We intended to study the effects that EC may have on propagation of APs. For this,
we used the same approach: we ran a pair of simulations, SEC and SNOEC, on the
same model, using the same stimulation protocol, and their results were compared.
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Figure 5.8: Scaled recruitment curves for all the fascicles and the whole nerve.
Black lines correspond to SEC and blue lines correspond to SNOEC simulations.
Red lines show the difference between the two. The horizontal axis indicates the
pulse amplitudes exerted on the electrode’s active pad. Pulses are always negative
in the simulations, but they have been represented as absolute values in this figure
for clarity.

Propagation with EC needs to be studied along a longer model than Nerve 1,
and for a longer period of time. Increasing the length of Nerve 1 highly increases the
computational demands of simulations, so we instead used a thinner mono-fascicular
nerve model: Bundle 1 (see Methods), which is 6 cm long and has a diameter of
100 µm. No perineurial tissue was taken into account. In order to increase the
effects of EC, the epineurial walls of the bundle were given the same resistivity as
the cuffs, thus providing a virtual quasi-isolation from the surrounding saline bath.
The bundle’s ends were not covered by this isolating surface, so the tissues were in
contact with the paths to ground on those two surfaces.

Bundle 1 contains 39 axons whose fiber diameters follow a continuous and uni-
form distribution, in the range from 9 µm to 10.9 µm, and in steps of 0.05 µm.
This range was chosen so that the conduction velocities (CVs) did not vary drasti-
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Figure 5.9: Selectivity for Fascicle 1 for the various pulse amplitudes in use.

cally and thus to facilitate the possibility of signal locking between fibers of similar
diameters.

An intracellular current injection was given to all axons on their first node of
Ranvier, consisting of one square pulse of −10 nA at t = 0.01 ms with a duration
of 10 µs.
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Figure 5.10: Trajectories of the axons on the z-t space for SNOEC and SEC. Each
trajectory is coloured according to its corresponding fiber’s diameter. These results
correspond to Bundle 1.

Results (Fig 5.10) show the presence of an effective lock of the APs. However,
it is also apparent that this lock is unstable. A certain grouping of trajectories is
visible during the first 0.5 to 1 ms of the simulation. This grouping turns into an
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effective lock during the first 1 ms in SEC. From around this point onward, APs
tend to detach from the main group along time and increase their CVs. The first
APs in detaching do not belong to the higher diameter fibers, but rather, to mid-
to-high diameter fibers. These are then followed by higher diameter fibers. As a
first hypothesis to explain this observation, this could be due to the loss of a bond
between the higher and lower diameter fibers when the mid-to-high diameter fibers
depart. However, the causes of this generalised detachment of trajectories from the
main AP lock can be numerous and complex. The weakness—or instability—of the
EC between fibers of different diameters could be explained by the differences in the
CVs they tend to have in the absence of EC, which would act against locking their
APs. The observation that these detachments occur after a certain distance along
the z-axins suggests the presence of factors that trigger the separation of APs when
certain conditions are met. One of this is, potentially, the variation along the z-axis
of the alignment between nodes of Ranvier of different axons, which would modify
the strength of their EC.
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Figure 5.11: CVs of the fibers in the simulation SEC, scaled over their respective values
in SNOEC, which are stationary. CVs are obtained from a linear regression on the (t,
z) points of the trajectories, using a window of 11 nodes or Ranvier, so the curves do
not span the whole simulation. Error margins are not shown in order to aid a clearer
visualisation. These data correspond to Bundle 1.

The CVs of the fibers can be directly related with the presence of their APs in
or outside the AP lock. APs that separate from the group quickly reach the CVs
they have in the absence of EC (Fig 5.11, left). At the beginning of the simulation,
when all the APs form a locked group, they all have CVs of less than half of the
values they have in SNOEC. These CVs in the lock, however, gradually increase
along time as APs separate from the lock.

The same simulation sets were run for Bundle 2. Bundle 2 follows a natural
diameter distribution (starting from 3 µm), and the bundle diameter is larger than
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in Bundle 1 in order to facilitate the presence of more axons, and hence, a smoother
diameter variability within the model. Results (not shown) indicate much weaker
or nearly nonexistent AP lockings. This is in contrast with the apparent, although
unstable and temporary, locking seen for Bundle 1. This is probably due to the wide
range of different diameters in Bundle 2. However, the general slowdown of the CVs
for higher levels of EC is present, especially for higher diameter fibers. From these
results, it is apparent that the strength of the effects of EC on the propagation of APs
is highly dependent on the diameter variability between the fibers in a bundle. This
implies that the effects of EC on propagation might be weak, and even irrelevant, in
proximal sections of nerves, where fiber diameters are homogeneously distributed,
but they could be stronger, and forming effective lockings, in more distal regions,
where fibers may be clustered by size.

5.3.4 Dependence of the Ephaptic Interactions with Dis-
tance

We ran two simulations in which we stimulated one random axon in each with
an internal current injection and observed the response of the other (unstimulated,
meaning they were not artificially stimulated) axons transmembrane potentials. We
compared these responses with the distance from the artificially unstimulated axons
to the artificially stimulated axon.

In this study, we used two models in order to study different scenarios, which
differ in the presence of fascicles separated by perineurium:

• Bundle 3 is a 3 cm long, 250 µm diameter, mono-fascicular nerve filled with
20 µm diameter fibers. This model has a larger diameter than Bundle 1
because we wanted to obtain a characterisation of the strength of EC across
a wider cross-sectional distance. As in the case of Bundle 1 and Bundle 2, no
perineurium is considered. Also, in this and the model below, the epineurial
walls of the models were strongly isolated from the saline bath.
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• Nerve 2 uses the same epineurial and perineurial profile as Nerve 1—it has
the same contours for the nerve and the fascicles cross-section—but it is filled
exclusively with 20 µm diameter fibers, as Bundle 3, and is also 3 cm long.

Results for Bundle 3 are shown in Fig 5.12(a), and results for Nerve 2 are shown
in Fig 5.12(b). The responses of the unstimulated axons in Bundle 3 follow a clear
decreasing trend with the distance from the stimulated axon. The irregularities can
be attributed to the limitations of the RN at modelling three-dimensional space and,
to a lesser extent, to inter-axonal ephaptic interactions between unstimulated axons.
Nevertheless, the total change of the responses along 150 µm of distance does not
vary much above 8 µV. This suggests the acceptability of the application of a MF
assumption in cases like this model, since variations on vm of this order of magnitude
would not imply big differences in the results from MF and distance-based EC
simulations. It is important to bear in mind, however, that this order of magnitude
in the unstimulated axons responses is due to the activity of one stimulated axon
only. The combined effect of more axons carrying APs would increase it.

The responses in Nerve 2 are larger, of the order of 0.2 mV inside the fascicle
where the stimulated axon is, and approximately between 0.08 and 0.12 µV for the
other fascicles. This is in rough agreement with the order of magnitude estimated
in the second subsection of the Results if we have in mind that the nerve’s length
affects this magnitude (a longer length increases the resistance to the saline bath or
ground). Axons belonging to different fascicles are easy to identify in Fig 5.12(b),
since the isolation provided by the perineurium makes the response of all axons inside
each fascicle similar between them but notably different to the responses in other
fascicles. The order of magnitude of these results could mean that the responses
would be in the order of several mV should there be more stimulated axons, as
seen in Fig 5.7. However, the intrafascicular variations are, at least, one order of
magnitude lower. This would support a local MF choice for each fascicle. However,
this choice would be incompatible with modelling inter-fascicle ephaptic interactions
or fields from extracellular electrodes.

These observations, especially when considering the activity of many axons tak-
ing place in simulations, support the importance of choosing a distance-based model.

5.4 Discussion

The model framework developed in this study permits simulating the stimulation
and propagation from a peripheral nerve trunk in a single run. The model introduces
a new method to build nearest-neighbour electrical interactions between fibers which
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Figure 5.12: Maximum variation of vm above vr (resting potential, −80 mV) at the third
node of Ranvier for all the unstimulated axons, represented against the distance to the
stimulated axon. (a) Bundle 3; (b) Nerve 2, which contains seven fascicles separated by
a perineurium, same as Nerve 1.

builds up a whole electrical network for the nerve. This network simulates the fields
coming from electrodes and from the fibers, thus enabling the integrated simulation
of EC.

This model has the advantage of being able to simulate the interactions between
fibers and electrodes as well as with all other fibers in a nerve, where the nerve may
have any reasonable shape, contain any number of fascicles separated by perineurial
membranes and randomly located fibers of various diameters. However, running
this with a reasonable level of computational efficiency has only been possible, so
far, by accepting a series of assumptions and limitations:

• Axons are cylindrical and use a 1D cable equation. The effects of the trans-
verse components of polarisation around the membranes are not regarded.
Although these effects have been found to play no major role in myelinated
axons when studying stimulation [117], no study has been done on their in-
fluence on ephaptic interactions of two very nearby cells. Only [72] provide
simulation results which could provide clues on this, yet it is not their main
focus.

• Axons are straight. However, tortuosity is known to affect recordings [110].
Also, it could affect EC in a way that might be highly dependent on whether
a MF or a distance-based approach is used.

• Electrical currents through space are only modelled along the z-axis and on
the x-y plane. A FEM scheme could simulate these currents more accurately.
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• No capacitive properties have been regarded for any extracellular tissues since
we used the QS approximation.

• The contact surface impedance of the electrodes was not modelled. Although
this parameter represents an influencing factor on the resulting fields from
stimulation, and, eventually, on the axons response to stimulation, the elec-
trodes in this work are regarded as current point sources, and the stimulation is
current-controlled, which reduces the need for modelling this parameter [147].

• Unmyelinated axons are not regarded in this model. Although of low relevance
for our purposes, a more complete model should take them into account.

• Fibers thinner than 3 µm in diameter were not included in this work. This has
been done in order to save computational time, since low diameter fibers have
short internodal lengths, and therefore, increase the RN’s resolution. However,
this could affect results since fibers below this size are present in nerves, and
could still affect EC.

• The largest nerve model we have used in this work has a diameter of 500
µm, and contains fascicles with a diameter of 156.67 µm. These numbers are
smaller than the known physiological ranges for human limb peripheral nerves
where stimulation is typically studied [184, 185]. Also, the number of axons
is lower, not only as a result of this, but also because fiber packing ratios are
generally lower than physiological values. The computation time of the RN is
highly sensitive to increasing the number of axons in the model. Hence, using
physiologically more plausible numbers of axons would have been unattainable.

Further improvements on some of the limitations of this model can be carried
out in further work. These range from increasing the variety of axon models in use,
to including capacitive properties of tissues and electrode impedance, and adding
tortuosity. The latter could be achieved by dividing the nerve’s length in layers,
each layer having its particular arrangement of fiber positions according to their
tortuosity and hence, having its particular power diagram.

Computational cost is generally a drawback for simulations with this model. Cal-
culations over a RN are expensive and this limits the size and resolution that the
model can have in order to get reasonable simulation time investments. Parallelisa-
tion of the RN could not be done, to the best of our efforts, without compromising
numerical stability. This also compromises the results of simulations with EC, since
small changes in the RN resolution or arrangement have large effects on EC.

Laguerre tessellations are used for building nearest-neighbour connections be-
tween fibers. This method is used for the study of granular structures, like poly-
crystals and foams [189–191], whose field of application is strikingly different from
the applications of this work. Yet, it proves to be a convenient method for modelling
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these connections, since it provides a general tool which serves any possible packing
of cylindrical fibers. Prior to this work, no similar approach has been found for this
purpose. Point or line-source approximations [183] can be used for this. However,
even their adaptations to anisotropic media neglect the complexities the nerve may
have outside each individual fiber, which can turn into an inaccurate modelling when
these complexities are important. Also, using the equations from [183] in our case of
mutual EC between many fibers may lead to numerical instability, as seen in [177].
Furthermore, no study has been found so far using any distance-based approach for
a similar type of nerve model.

This has allowed us to simulate stimulation and propagation in a somewhat
realistic nerve model. From the numerical simulations presented here, we have found
that EC drives an increased axon recruitment (compared to simulations that neglect
EC) during stimulation with a cuff electrode. This increase in recruitment has a
maximum of 64.9% for the whole nerve, and it is above 60% for all fascicles, except
for Fascicle 1 (Fascicle 2: 72.9%; Fascicle 3: 84.8%; Fascicle 4: 79.3%; Fascicle
5: 78.6%; Fascicle 6: 66.3%; and Fascicle 7: 80.2%). Fascicle 1 has a maximum
recruitment increase of 45.1%. For all the former fascicles, this maximum seems to
be centered around a stimulating pulse of −1 µA, and around −0.6 µA for Fascicle
1. These high peak levels in recruitment increase are mostly resolved from the fact
that, for pulses near the peak, EC fires APs in a large number of axons that lie
under their thresholds in simulations without EC. Recruitment difference decreases
for stronger (i.e., more negative) pulses, even when stimulation has not reached its
maximum in SEC, because axons start activating in SNOEC. We have observed how
axons interact between them during stimulation, and although the strength of the
individual influence from one axon is generally weak, their collective interactions
are determinant to whether axons lying close to their thresholds fire an AP or not.
We used a configuration where axons of different diameters are uniformly spread
across the nerve’s cross-section. This is representative of proximal sections of nerves.
However, more distal sections present clustering of fiber types and diameters. This
is known to affect the spread of activation thresholds within a fascicle [192], so
further studies would be necessary to assess the validity of these findings in such
configurations. The possibility of AP firing due to EC during propagation has not
been studied in this work. In the study of the dependence of EC with distance,
the observed rise in vm of axons was due to the activity of only one neighbouring
axon. It is inferred, from the orders of magnitude under consideration, and from the
observed ephaptic fields in the stimulation study, that the simultaneous activity of
many more axons could drive unstimulated axons to fire APs. Although studying
this possibility is outside the scope of this present work, it is proposed as further
work.

By following these considerations, EC should be taken into account in simula-
tions of axon recruitment with electrodes, but if it is to be neglected in favour of
lower computational costs, it should at least be held in mind that neglecting it may
lead to certain inaccuracies in the results. Ideally, such a study lacking EC could
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consider these effects by applying a modifying function to recruitment numbers after
a simulation.

We have observed how, in this work, certain already existing findings [64–66]
about the effects of EC on few fibers during propagation—CV reduction and AP
locking—also apply for bundles with more numerous and heterogeneous fibers. How-
ever, these effects are strongly conditioned by similarity between fibers and com-
promised by heterogeneity to the point of losing their validity when assumptions of
homogeneous fibers are not used. The results of this work also have assessed the
validity of choosing a MF model: although physically not accurate and unsuitable
for studies involving extracellular electrodes, it can be justified for others, especially
for small mono-fascicular nerves or locally within fascicles.

5.5 Conclusion

A detailed computer model of a peripheral nerve trunk has been developed, which
involves the implicit coupling of intra- and extracellular electrical activity in a single
simulation. It conveniently uses NEURON with a Python framework that handles
all the geometrical methods and wraps the whole model. Specific experimental
data for validation would be desirable. However, the model succeeds in behaving
within physiologically expected ranges. We hope that this new method provided here
brings researchers to use it further in order to study more complex cases of ephaptic
interactions, and that the results from this study serve to add more knowledge on
the effects of EC in bundles of fibers with different sizes, eventually to determine
the extent to which modelling EC for studying sensory feedback is necessary.



Chapter 6

Overall Discussion

This work provides a modelling approach for peripheral nerves and their interfaces
with electrodes for artificial stimulation and recording. The aim is to facilitate the
creation of realistic and functional models of the PNS for optimising designs of
stimulating neural interfaces for sensory feedback restoration. In this work, there
is a particular interest in modelling ephaptic coupling (EC), one aspect of the elec-
trical activity of neurons, but specifically of myelinated axons, which is generally
disregarded but has potential to play a functional role, and for which experimental
evidence of its presence in the PNS exists [67]. Therefore, its inclusion in models
should be reconsidered.

EC has been studied in various ways in previous literature. Typically, EC is
modelled using a low number of cells [11, 65, 72] or is normally studied for cells of
other parts of the nervous system [70]. For bundles of fibers, restrictive assumptions
such as the MF model or very organised axon packings are used [65,66,68]. In this
work, we have focused our efforts in defining the electrical interactions between any
two neighbouring and parallel myelinated axons, regardless of their size and position,
and have extended this interaction model to any possible packing of parallel axons.

A model has been developed that allows the definition of the anatomy of a nerve
trunk or fiber bundle and its accompanying elements—electrodes and container—in
order to run simulations of its activity. The model includes a Resistor Network (RN)
which is built based on a weighted Voronoi tessellation of the elements in the bundle,
including both nerve fibers and tissue elements (referred to as NAELC when they
are regarded as longitudinal resistive elements along the z-axis; see Chapters 4 and
5). This RN defines the electrical connections through extracellular tissue between
fibers and tissue elements (NAELC), creating a volume-conductor representation of
the whole bundle over which all relevant electrical fields (generated by electrodes
and by endogenous neural activity) are computed. The RN creates an EMI-type
model of the whole nerve trunk or bundle model, in which all the extracellular and
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intracellular fields, as well as the neuronal transmembrane currents, are solved at
every time step of a simulation. The RN has been validated on theoretical grounds,
comparing its results in simple simulations to analytical results and outputs from
FEM simulations (see Chapter 4).

The flexibility of the model parameter inputs and the RN configuration allows
defining nerve trunks with virtually any physiologically plausible anatomical shape,
tissue presence, and cylindrical fiber packings, including any location and diameter
configurations, as long as no fibers overlap in space with other fibers or tissues.
Also, the framework facilitates choice of ohmic electrical properties of the tissues
and physiological properties of the fibers. All these features permit the simulation
of many different scenarios of interest.

The framework has been used in this work to elucidate answers to the main
scientific questions of this thesis through numerical simulations. First, the effects of
EC on myelinated axon bundles was studied. Prior to the use of the provided frame-
work, a simpler model of EC using a distance-dependent model of the extracellular
fields was used in order to quantify the effects of unidirectional ephaptic stimulation
from the activity of one axon on the CV of a second axon, and to study how such
distance-based model affects the CVs of three axons that mutually interact with
each other. Findings from these simple cases were compared to existing knowledge
on the effects of EC on AP propagation. Second, these mutual effects were studied
using the RN for both a low number of axons, whose results are discussed for coin-
cidences, discrepancies and novelties compared to the results using a simpler model,
and for bundles containing a large number of axons, both mono- and multi-fascicular
and including different known tissues in the nerve. Third, the effects of EC were
assessed during an artificial stimulation scenario of a nerve trunk model under a cuff
electrode. Finally, the RN is used to study the spatial variations of the strength of
ephaptic interactions, and results are discussed against the possibility of using a MF
model. This chapter provides a discussion on the main findings, their relationship
with the thesis expected contributions and scientific questions, and the limitations
of this work.

6.1 Findings and Implications of this Research

This research has elucidated the relevance of EC in the cases of artificial stimulation
and AP propagation in fiber bundles and nerve trunk models. It has been revealed
that EC is not only distance-dependent across a bundle’s cross-section, but also that
it can affect the recruitment numbers from artificial stimulation with cuff electrodes.
Below is a discussion of the most important results.
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6.1.1 Effects of Ephaptic Coupling on Propagation

Preliminary Quantification of the Ephaptic Influence of One Fiber over
the Conduction Velocity of a Neighbour and Mutual Ephaptic Interac-
tions

Chapter 3 presents a preliminary study, using an EC model based on [69] and not
yet using the RN, which aims to quantify the unidirectional effects on CV that one
myelinated axon can have on an identical and parallel neighbour, and to observe the
effects of mutual EC between three parallel and identical myelinated axons on their
CVs and, therefore, on the tendency towards AP synchronisation.

Results for the unidirectional ephaptic stimulation of one myelinated axon (source)
onto another (target) quantify how the relative timing (which could be linearly re-
lated to separation along the z-axis) and transverse (perpendicular to the z-axis)
distance between the axons affect the amount to which the presence of an AP on
the source axon deflects the CV of an AP on the target. Results indicate that:

1. The relative timing between the two APs modifies the CV in the target axon
when these are near, generally increasing it when the AP on the source is
slightly ahead and decreasing it when this is behind. This represents a de
facto attraction mechanism on the target AP towards the source that drives
synchronised propagation. An additional CV decreasing region was detected
when the source AP was about 2 to 6 ms ahead from the target, indicating
that in such a case, there is a repulsive influence, so that the target AP is
prevented from approaching the source. This is likely due to the refractory
period of the source AP and its role might be, in bundles of many axons, to
allocate APs with similar timings into different groups, all separated among
each other by timings of the order of at least 1 ms.

2. The ephaptic influence decays with distance, as it is expected from the equa-
tion that governs the extracellular field (Eq. 2.1).

Results for the mutual EC between three axons show how, at least for the cho-
sen parameters, the APs of the three axons modify their CVs through ephaptic
interactions in such a way that their AP trajectories, represented on the z-t plane
(where the z-axis is parallel to the axons; note that this is the x-axis in Chapter
3, although this choice is arbitrary), show a clear attraction among them. Conse-
quently, the APs of the three axons tend to lock in order to travel synchronously.
Also, the final compound CV of the three axons when synchronisation is close to
occuring is lower than the CV that the axons have before synchronisation. These
two observations are both in close agreement with the findings from previous studies
on EC on parallel fibers, whether myelinated [64,66] or unmyelinated [65].
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These results are informative about the effects of EC on a few fibers and indicate
that using Eq. 2.1 to model distance-dependent EC is possible. However, consid-
eration of these results needs to be done whilst bearing in mind certain constraints
and limitations that are intrinsic to the model in use. Eq. 2.1 for the calculation of
the extracellular potential is obtained and used in fiber bundles under a number of
assumptions which do not strictly hold for real nerves:

• The extracellular medium is homogeneous. The extracellular medium is
not homogeneous due to the presence of other fibers and different tissues. This
means that the same value for the electrical conductivity does not hold over
the whole space, and discontinuities exist. This has no major implication for
the simple case shown here, but it can make this model unsuitable when many
axons are present between any other two, or for inter-fascicular EC. A more
representative model of the extracellular medium would be needed, especially
for the latter case.

• The extracellular medium has isotropic conductivity. The extracellu-
lar medium’s electrical conductivity is not necessarily, and generally is not,
isotropic. Anisotropies exist in extracellular media surrounding nerve fibers
due to the non-homogeneous configuration of tissues around space and the
presence and orientation of the axons in a bundle [132,178]. There exist, how-
ever, other versions of Eq. 2.1 that account for the anisotropy of the medium
[193], which are used for studying stimulation with electrodes. Taking this
anisotropy into account for studies of EC could provide more accurate results
as to the modelling of the endogenous extracellular field along axons.

• The electrical ground is infinitely far away. The allocation of a ground
reference in a biological system is more complex than assuming it is at an
infinitely far location and independent of the angle. Grounds or current return
paths exist along the nerves toward the CNS, also across other surrounding
non-neural tissues or bath preparations (saline, oil, etc.), and when specific
electrode configurations for this purpose exist. The specific paths to ground
in each case of study greatly influence how endogenous extracellular currents
flow through them, and in turn, the nature of ephaptic interactions between
axons. The current flow solely along the nerve is indeed arguably the most
relevant current flow direction for EC studies in fiber bundles, so a radial
current flow to a distant ground partially ignores the role of these longitudinal
currents.

• Axon compartments are represented as current point sources. Neu-
ron compartments are actually membrane patches which are surface sources of
distributed current. The assumption of current point source has an implication
on the values of the endogenous extracellular potential near a compartment,
where Eq. 2.1 may yield unrealistically high values at close locations. Models
of tightly packed axons, especially when these are not considered cylindrical
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but with shapes more adapted to the packings, could use a study assessing of
the consequences of this assumption, since it is known that transverse modes
of stimulation exist [116,117].

• The presence of other axons does not modify the endogenous extra-
cellular field generated by one axon. The extracellular field generated by
one axon is computed using its membrane currents and applied as accumula-
tive stimulation forcing along other axons. Axons are bulky and anisotropic
physical elements that effectively modify the electrical impedance between two
points in the medium, especially when these axons are located somewhere be-
tween these two points. However, Eq. 2.1 does not regard the details of the
presence of other axons and provides only one isotropic value for the whole ex-
tracellular space. While this value may of course be informed by measurements
made in nerves where all these complexities are present [178], the specific ar-
rangement of the axons in the medium can modify this value between two
axons. It is indeed one finding of Chapter 4 that the presence of more axons
in a bundle reduces the strength of ephaptic effects by increasing the effective
conductivity of the bundle.

There are also a number of approximations and simplifications that have been
chosen in our study:

• There is a very low number of axons. A low number of axons greatly
simplifies the study, allowing ephaptic effects to be visualised in a simple way.
However, studies with a larger number of axons are needed in order to assess
these effects on more physiological numbers. This study is carried out in
Chapter 5.

• Axons are all identical, parallel, and their nodes of Ranvier are
aligned. Homogeneity in the properties of the axons also simplifies the degrees
of freedom that can influence ephaptic effects. As it is seen in Chapter 5, axons
with different properties, especially different diameters, interact differently to
identical axons.

• The chosen conductivity that yields visible ephaptic effects is small
and not physiological. The chosen value in Chapter 3 for which we have
obtained our most relevant results is σ = 10−3S/m, which is unrealistically low
(so the medium is unrealistically resistive). A more physiologically plausible
value, σT = 0.085S/m, which represents a more conductive medium, still
shows ephaptic effects, but these are much smaller and difficult to study since
they are similar in size to the error margins. Studies with more informed
values are needed. Chapter 5 partially addresses this issue, where anisotropic
conductivity values obtained from the literature are used.
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These assumptions and simplifications imply a calculation of an extracellular field
that may very likely be different to the real one in realistic bundles. In fact, the use
of this approach for a higher number of fibers lead us to numerical instabilities in
the simulations. Despite all these considerations, these results are representative of
the basic consequences of EC on AP propagation on fibers, and offer a basis which
can be relied upon for a preliminary understanding of EC.

A qualitative study of the effects of EC in a low number of fibers has been carried
out here, which has facilitated relevant observations involving the effects of EC on
CV and synchronisation. However, models with a more complex representation
of the system and the extracellular space are needed in order to study ephaptic
interactions between a higher number of heterogeneous fibers in a realistic bundle.
Chapters 4 and 5 provides a new approach that addresses most of these points.

Interaction among Few Axons Using the Resistor Network

The RN was used in Chapter 4 to run simulations of bundles of low numbers of paral-
lel and identical myelinated axons. The strength of EC was controlled with the ratio
between extracellular and axoplasmic resistances in the bundles. Results show that
APs from the axons do tend to form AP lockings, where APs travel synchronously
with a reduced CV. This is in agreement with Chapter 3 and previous knowledge
[65, 66]. As expected, the strength of EC, or the strength of this synchronisation
process, increases with an increasing value of the resistances ratio. When this ratio
is near 0.1, meaning that the longitudinal extracellular resistance is low compared
to the axoplasmic total resistance, the bundle’s longitudinal currents flow mostly
along the extracellular space and the ephaptic interactions are weak. Instead, when
these resistances are equal (ratio equal to 1) or the extracellular resistance is higher
than the axoplasmic (ratio equal to 10 or above), the ephaptic interactions are clear
and stronger as the ratio increases.

Despite this, while using the RN in these simulations we made the observation
that the strength of the ephaptic influence that one axon can exert upon others is
reduced with the number of axons in a bundle. This is due to the higher presence of
low-resistance axoplasmic paths to ground (if the grounds are assumed to be near
the ends of the bundle). Therefore, for bundles with a relatively large number of
axons, the strength of ephaptic interactions is dependent on the number of axons
that are simultaneously active, which would increase the ephaptic current. Although
this observation has been made in this work, it is actually in agreement with the
discussions on the ratio of stimulated vs. unstimulated axons in [65, 66].

EC is thought to be negligible in fiber bundles due to the assumption of a large
extracellular space, which reduces extracellular resistance [63]. However, this as-
sumption is not realistic in mammalian peripheral nerves, where fiber packings can



Chapter 6. Overall Discussion 128

be tight, as also happens in other parts of the nervous system [65]. Therefore, when
accounting for the effects of extracellular space, EC should be considered. On the
other hand, it is the presence of many axons in a bundle what reduces the strength
of the ephaptic influence of one axon on others. This is a factor worth account for
when considering the inclusion of EC in nerve models. When a low number of axons
are meant to be active and propagating APs, compared to the total number of axons
in the nerve, ephaptic interactions may be small enough to be ignored. This is not
so, however, when almost half of them are to be active.

Interaction between Axons of Different Diameters

Simulations were run in Chapter 5 for two small bundles containing fibers of different
diameters. In all simulations, all the fibers were stimulated nearly simultaneously
using intracellular current injections on their first node of Ranvier, at the left end
of the bundle, and propagation of the APs from all the fibers was observed.

One bundle contained fibers with diameters ranging from 9 µm to 10.9 µm fol-
lowing a continuous distribution. Results from this bundle show a certain interaction
between fibers of similar diameters, where groups of fibers of the smaller diameters
(from approximately 9 µm to 10 µm) tend to travel in AP lockings. Higher diameter
fibers, however, do not strongly interact with lower diameter fibers, and furthermore
interactions amongst them are weaker. In general, AP lockings have been found to
be unstable, especially as diameter differences among fibers increase. This apparent
grouping of AP lockings according to diameter could have a computational expla-
nation for information treatment within nerves, since fibers of different diameters
are meant to carry different types of information.

The second bundle contained fibers randomly chosen following a natural distri-
bution based on [186]. For computational efficiency purposes, fiber diameters were
bound between 3 µm to 20 µm. This is a wider range than the one used in the
previous bundle. Propagation results in this bundle, as opposed to the former, do
not present any AP locking between fibers under the influence of EC.

The latter is an impactful result that is in clear contrast with the behaviour
expected according to previous knowledge on EC between identical fibers ([65, 66];
see also Chapter 3). These references all use fibers of equal diameters in their studies,
which greatly simplifies the interpretation of the results. We have found no numerical
simulation studies on the effects of EC on propagation on bundles containing fibers of
different diameters, with the exception of [169]. In [169], however, only two coupled
FitzHugh-Nagumo fibers were used. The work of [194], although it was not meant
to study EC, used a somewhat complex bi-directional model of 50 unmyelinated
fibers, divided in two types: HH and C fibers, with a set diameter for each —they
did, however, account for the variability of CVs by randomising the intracellular
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resistivities. To our knowledge, this is the first study of EC using bundles of more
than two physiologically realistic myelinated fibers of different diameters, and it has
been found that previous knowledge on identical fibers is not applicable in this case.
For fibers of different diameters, synchronisation of pulses was found to be unstable
in Chapter 5. Instability of synchronised pulses was also found in [169], where
they suggested its relationship to the differences in fiber diameter. In the case of a
bundle with a natural fiber diameter distribution, results in Chapter 5 suggest that
EC appears to have no effect on CV or AP position modulation. The implications
of this finding on how nerves process information during propagation are unknown,
although it suggests that it is limited, at most, to synchronising the APs of fibers of
very similar diameters. While the results for studies with equal diameter fibers may
induce to conclude that EC does effectively syncrhonise APs, and therefore reduce
the dispersion in nerves1, scenarios with a broad range of fiber diameter variability
are more common in natural nerves, and the results in the present work do not
suggest that EC can effectively reduce dispersion.

These results suggest that the necessity of including EC on simulations of prop-
agation along bundles with natural fiber diameter distributions is not confirmed.
However, further assessment of this using alternative models and parameters is de-
sirable in order to provide a more solid statement on this aspect.

6.1.2 Effects of Ephaptic Coupling on Axon Activation from
Artificial Electrode Stimulation

In Chapter 5, simulations using the RN have been used to study how EC affects
the recruitment of axons during stimulation. For this, using a self-consistent model
such as the RN allows for computing fields from all sources (electrodes and axons)
at every time step in a scheme that facilitates numerical stability. These simulations
are run over a model of a nerve trunk with 7 circular fascicles that contain fibers of
different diameters. The nerve trunk is embedded in a cylindrical container with a
saline bath, and it is stimulated by a cuff electrode.

The first important difference between a self-consistent simulation with EC and
a hybrid field-neuron simulation without EC is that the EC simulation presents a
higher recruitment. A further exploration of the extracellular fields on the fibers
during the evolution of the EC simulation shows that, during the stimulating pulse,
the extracellular potential progressively gains strength and therefore drives the acti-
vation of more fibers. After the stimulation pulse finishes, this field does not drop to
zero, but generally shows a decay along time. This means that it keeps stimulating
fibers after the stimulating pulse has finished. These variations in the extracellular

1dispersion in a Compound Action Potential (CAP) is defined as the reduction in the CAP’s
amplitude due to the variability in CVs; see [194,195]
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field cannot be explained only by the stimulating pulse of the electrode, which con-
sists of a square pulse. It can only be explained by the activity of the axons in the
bundle, which generate an endogenous extracellular field. This field adds linearly
to the field generated by the electrodes and increases the effective strength of the
stimulation.

The maximum difference in fiber recruitment between the EC and non-EC sim-
ulations in Chapter 5 was found to be a 64.9% of the total number of fibers in the
nerve trunk model, where, as opposed to Chapter 3, physiologically plausible values
for tissue electrical parameters were used [132,178]. This finding shows that EC can
have a measurable effect on recruitment numbers during artificial stimulation with
electrodes. Also, EC was found to shift and narrow the range of optimal stimulat-
ing pulse amplitudes for maximising selectivity on a given fascicle, thus limiting the
precision of the electrode under study. Nevertheless, it needs to be studied whether
ephaptic effects on selectivity would be so strong when a small number of axons is
targeted with a high-precision electrode, such as a TIME or Utah array. In view
of this finding, non-EC hybrid field-neuron models could be revisited for a poten-
tial inclusion of EC, and assessments of the effects of EC on selectivity could be
undertaken.

6.1.3 Dependence of Ephaptic Coupling on Inter-Axonal
Distance

The dependence of the effect of EC on CV on the separation distance between axons
was already quantified in Chapter 3 for the distance-dependent EC model given by
[69] (Fig. 3.2(b)). This effect is decreasing with distance, as it is expected from
Eq. 2.1. In Chapter 5, this dependence was studied for a bundle using the RN.
The dependence of the strength of EC—measured there as the maximum absolute
change of vm in axons that are not artificially stimulated due to the ephaptic in-
fluence of one axon that is and which propagates an AP—is quantified against the
separation distance between axons. Results are conclusive in showing that EC does
have a dependence on distance, both in a single bundle and in a nerve with several
fascicles, and shows that a MF assumption is always a simplification which comes
with inaccuracies. The small ranges of change of vm, however, indicate that for cases
where a small number of axons are activated, or where the transverse component of
the extracellular conductivity is very high compared to the longitudinal component,
a MF approximation can be enough to represent the extracellular space in a bundle.
Simultaneous activity of many axons, however, may lead to stronger ephaptic inter-
actions and a larger range of change of vm. If for only one activated axon inside a
fascicle (Fig. 5.12(a)), this range is of the order of 1 to 10 µV, simultaneous activity
of 100 axons in a specific region could widen this range up to the order of 1 mV if
endogenous extracellular potentials from the axons have the right phase difference
to constructively sum up, range for which the choice of a MF model could be ques-
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tioned. Also, the chosen bundle is 250 µm thick and the distances to the stimulated
axon are not much greater than 150 µm. This corresponds to a relatively small
bundle. For larger bundles with longer inter-axonal distances, the range of change
in vm could be increased.

The perineurium provides a degree of electrical isolation between the different
fascicles (Fig. 5.12(b)). We can observe that, although for fibers in the same
fascicle, the variations of the maximum absolute change of vm with the distance
are very small, the mean value of the maximum absolute change in vm differs for
different fascicles. Hence, a local MF approximation for each individual fascicle may
be justified, but of course, only when fields from stimulating external electrodes are
not present.

The MF model is a convenient simplification that greatly reduces the compu-
tational costs of simulations of AP conduction in bundles of ephaptically coupled
fibers, and results of such simulations can be very informative about the effects of
EC on propagation [65, 66, 68]. Despite the choice of a MF model being justified in
certain scenarios, it is not suitable for two particular situations of interest:

1. The MF model is not compatible with simulations involving stimulating ex-
tracellular electrodes due to the nature of its core assumption. The potential
field resulting from stimulation exerted by extracellular electrodes does have
variations across the cross-section of the nerve which are well above the or-
der of 1 mV and can be of the order of 100 mV [109, 152]. These variations
are key to determining regions of axonal activation and excitability changes
across the cross-section of the nerve, information which is very relevant for
selectivity studies. Hence, reducing these fields to a mean field, constant over
the nerve’s cross-section, eliminates all their relevant spatial details —except
those dependent on the axis parallel to the fibers.

2. As seen in the results in Chapter 5 for the 500 µm diameter multifascicular
nerve model (Fig. 5.12(b)), the range of change of vm due to the activity of
a single axon is around 120 µV, which means that simultaneous activity from
100 axons could potentially increase this value to near 12 mV. Furthermore,
it is visible that the strength of EC is somewhat discretised between fascicles.
Hence, although a local MF model for each fascicle could work, a MF model
applied over the whole nerve’s cross-section cannot accurately represent the
extracellular field. The inaccuracies could be even greater for larger diameter
nerve models with more fascicles.

Dependence of EC in inter-axonal distance is therefore not strictly necessary to
be accounted for in all scenarios, but it provides a more accurate representation
of EC for multifascicular nerve models, and is necessary for simulations involving
extracellular stimulating electrodes.
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Spatial Range of Ephaptic Coupling

We have found in our simulations that the activity from one fiber always influences
the membrane potential of all other fibers if EC is included in the simulations. In
no case has the activity from one fiber been observed having a zero or nearly null
effect on the vm of another fiber within a nerve or fascicle model. When estimating
which is the spatial range of EC, choosing a threshold value of vm is needed. The
criterion for such choice could possibly be where the deflection of vm on distant fibers
became statistically insignificant compared to other fibers, or it could be the choice
of a threshold value of the order of 1 µV. In the simulation in Fig. 5.12(b), which
is the simulation presenting the lowest ephaptic influence of the two in subsection
5.3.4, the minimum found deflection of vm was near 80 µV and the total variation
of this variable was similar. Therefore, we cannot state that the range or spatial
range of EC is smaller than 400 µm for this model.

It is possible that the spatial range of EC would be smaller than the radius of
a much thicker nerve. In that case, we would be able to observe that the activity
of one fiber does not significantly affect the membrane potential of another distant
fiber. However, we have not tested this case in this work, and this is left as an open
question. The ratio between longitudinal and transverse components of the extra-
cellular conductivity also plays a role in this spatial range. If we think about how
these two components drive current flow over the extracellular space, the spatial
range of EC should follow a negative trend with respect to this ratio, i.e., a low lon-
gitudinal conductivity compared to the transverse conductivity would favour a large
spatial reach of EC—note that the MF model is the special case when the trans-
verse conductivity is infinite, which is the extreme of this case—and vice versa: a
high longitudinal conductivity compared to the transverse conductivity would allow
ephaptic currents to flow largely along the nerve, and the endogenous extracellular
field generated by an axon would decay quickly with the radial distance from it.

6.2 Scientific Contributions of this Research

6.2.1 Scientific Questions: Assessing the Effects of Ephaptic
Coupling in Mammalian Peripheral Nerves

I. Distance Dependence of Electrical Interactions.

This contribution can be found in Chapter 5 and publication [15].

The findings on the dependence on inter-axonal distance of EC indicate that a
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MF model is not suitable for all scenarios of interest, especially for scenarios involv-
ing artificial stimulation with extracellular electrodes, and that spatial variations of
ephaptic effects are present across the cross-section of bundles. We believe this is
the first study in providing a reference with which to assess the accuracy of MF
models and the exclusion of EC from peripheral nerve models altogether, since it
studies such interactions with a level of detail that, whilst it is possible to simulate
in theory by using existing methods that allow for it [71, 72], has not been found
during our literature review for our system of interest.

II. Quantification of the Effects of Ephaptic Coupling on Propagation

This contribution can be found in Chapters 3, 4 and 5 and in publications [13,15,177].

Propagation in groups of small numbers of fibers has, as expected, been found to
be affected by EC when the physical parameters of the system facilitate this. The
known effects of EC on propagation have been observed in our simulations. These
are AP attraction among fibers, synchronised propagation in AP lockings, and CV
reduction. However, most of these effects lose their presence in larger bundles with
fibers of different diameters, which is the case of natural bundles in nerves. Only CV
reduction has been observed in a bundle which had a natural distribution of fiber
diameters, but no AP lockings or even attraction of AP trajectories was observed.
Activation of inactive fibers due to the ephaptic stimulation from propagating APs
in neighbouring fibers was not observed either, although models of damaged fibers
were not used, nor a study with the purpose of observing this was run.

This study uses a higher level of detail in the models compared to previous
works [66,68], and this has allowed this study to be the first, to our knowledge, that
simulates EC in bundles of fibers with varying diameters. Therefore, these findings
are not yet enough to completely rule out the influence of EC in propagation in
realistic nerves, but it is a first indication that its relevance is still to be found.

III. Quantification of the Effects of Ephaptic Coupling on Stimulation

This contribution can be found in Chapter 5 and publication [15].

EC has been found to increase recruitment numbers in simulations of stimulation
of a nerve with a cuff electrode by as much as 64.9% of the total axonal population.
Also, we have observed that EC decreases axon response times to stimulating fields,
making axons fire more synchronously from the start. Furthermore, the optimal
pulse amplitude ranges for maximum inter-fascicular selectivity are shifted and nar-
rowed by EC. These are interesting results that contribute to our knowledge about
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the role of EC in the PNS. The first of these two findings is especially relevant for
functional electrical stimulation of the PNS, since it suggests that EC can influence
the selectivity of electrodes.

6.2.2 Technological Contribution: Open-Source Framework
to Model Nerves and Electrode-Nerve Interfaces

The framework developed here to define anatomical and physiological properties of
models has allowed us to run the simulations presented in this work in Chapters 4
and 5.

This software2, which has been developed in Python, is notably helpful for the
user at modelling realistic nerve trunks since it lets them define any cross-sectional
anatomical profile including fascicles, fiber locations and diameters, and extrude it
along the desired length. It also allows for easily defining the ohmic properties of
tissues, and for configuring the presence and properties of stimulating and recording
electrodes. Finally, the user can run simulations under the defined parameters using
this software.

This software is meant to be open-source and released to the public in the near
future. Available models of peripheral nerves are scarce. It is therefore a consider-
able contribution to the community to release a model framework like this. There
are rarely other available models of peripheral nerves, with the clear exception of
[110], and especially if anatomical richness and customisation options are needed.

Utility of the Framework for Stimulation Studies Using Other Electrode
Geometries

As mentioned above, the framework allows the users to define and configure the
presence and properties of stimulating and recording electrodes. In this work, we
have developed models of cuff electrodes both for stimulation and recording. These
are defined in templates which can be easily edited and permit specification of the
multiple parameters needed for the function of the simulated electrodes: size, shape,
location, electrical properties, rings, active pads, stimulation protocols, variables to
record, etc. Once the electrodes and their intended roles (i.e., recording or stim-
ulation, including all the necessary parameters for stimulation) are defined in the
templates, the framework automatically incorporates them to the model, adapting
them to the nerve’s geometrical properties and embedding them in the whole nerve-
electrodes-bath system. When the simulation is run, their programmed stimulation

2The software will be available on the following repository:
https://github.com/mcapllonch/SenseBackSim.git
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Figure 6.1: TIME electrode design for the SenseBack project [1]. This image
represents the contours of the design and includes some details regarding its
geometry and active sites. This design was implemented in a FE mesh in [5] for
use with the FEniCS FEM solver [4]. Taken with permission from [5].

or recordings are executed. Templates for intracellular and extracellular current
stimulation have also been created, as well as templates defining electrical ground
points or regions. Along with the release of the code to the public, we intend to
incorporate templates for TIME, LIFE, and Utah electrode arrays. Further work
should show the results of simulations using these templates.

Our intention is to allow this software to be easily used for the electrode designs
of choice of future users, since it is aimed to provide a versatile nerve modelling
framework to the community. This has the chance of contributing to the scientific
community with a tool that can be used for optimisation studies of electrode designs.
The electrode-nerve interface models that have so far been presented in the field,
whether they use cuff electrodes [7,124,132,196]—including FINE [8,58,133]—TIME
[40] Utah electrode arrays [197], or even micro-electrode arrays (MEA) [147, 198,
199], share the fact that they are closed source software, mostly because the FEM
solvers in use are commercial, such as ANSYS (Ansys Corporation, Canonsburg,
PA; used by [7, 124, 148, 196]), Maxwell 3D (property of ANSYS; used by [8, 58,
132, 133]) and COMSOL (COMSOL Multiphysics®; used by [40, 147, 197–199]).
Making tools of this kind available to the community as open source software will
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facilitate more studies in this field. We have not only worked with our RN, which
is developed in NEURON and Python, but also with the FEniCS Project software
[4], which is an open-source framework for FEM simulations. To date, preliminary
implementations of TIMEs have been made in this project using FEM [5] (Fig. 6.1),
although these studies have not been included as part of this thesis. A few tools
for simulating recordings from neural activity are luckily available [110, 134]. Of
these, only [110] uses FEM, while [134] is limited to using the known analytical
model for the extracellular potential of [69]. Still, the complexity of nerve bundles
for electrode recording simulations needs to be extended further, and our software
intends to fulfil that goal.

Implementation of geometries like TIMEs, LIFEs or Utah electrodes are cur-
rently undergoing. As opposed to cuff electrodes, intracellular and extracellular
current point injections, these electrode designs are invasive, so they contain mate-
rial components that penetrate the nerves. Modelling these electrodes can be done,
in the first instance, using the point or surface current sources that correspond to
the electrodes’ active pads inside the physiological extracellular medium. But of
course, accounting for the presence, shape, and electrical properties of their struc-
tural components, may provide higher accuracy. Although this is not implemented
yet, these components would be accounted for, in principle, by assuming they are
made of insulating materials, removing the connections in the RN which are sup-
posed to cross them. An explicit representation of their presence and shapes is
possible, although that would come along with a considerable rise in computational
cost for the simulations. Displacement and bending of axons in the nerve due to the
presence of these elements is not considered for the near future, but it is a desirable
task for further work to model and then implement these physical movements in the
models, so that their effects can be studied.

6.3 Limitations of this Research

6.3.1 Validation

The model framework developed in this work comes with a series of limitations
that need to be taken into account when using it. The main limitation is related
to the shortcomings in the validation that we could provide for the results of its
simulations. We briefly explain here the nature, reasons and importance of these
shortcomings, as well as the reasons why this model framework is still valid for use
in neurophysiology computational studies despite these limitations.
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Lack of Comparisons to FEM Results of Nerve Models

While the resistor network method in use has been validated to a certain point
using FEM simulations of a simple electrical problem in an ohmic medium, we do
not provide comparisons of solutions of the fields solved by the RN over detailed
nerve models to solutions using FEM simulations, which is the most commonly
accepted technique. The reason for this is that FEM are not used in our work due to
implementation time constraints. FEM are trusted for having a strong mathematical
background that makes them, thus far, the most reliable tool for solving the fields
over a nerve or a tissue after electrical stimulation from electrodes. Our model is of
course not intended to compete with FEM, but it is offered as an alternative tool
when modelling ephaptic interactions is required. As our model is EMI-type [114]
(meaning that it contains extracellular space, membranes, and intracellular spaces
to be solved together), it offers a self-contained and self-consistent scheme for the
simulations that includes EC, whilst trying to model EC with FEM would need a
two-step scheme that would need to couple the computation of the neural activity
(intracellular spaces and membranes) to FEM simulations to compute the fields over
the extracellular domain. When considering that reaching consistency between the
neural and the FEM simulations would require an iterative convergence algorithm,
that could be considerably expensive in terms of computational resources.

Despite the lack of comparisons to FEM simulations of nerve models, we did
provide comparisons to FEM simulations of a simple problem on an ohmic medium
and to an analytical solution to a cubic geometry. The results from these compar-
isons indicate that the RN is well suited for solving the electrical potential of ohmic
materials. This is of course expected from the fact that the RN is fully implemented
in NEURON (while using a Python wrapper) through the LinearMechanism tool,
which is known to work without errors or serious numerical inaccuracies [200].

Lack of Specifically Designed Experimental Validation

The models developed here have not undergone a validation process with exper-
imental studies specifically designed for the purpose. This is, the models do not
have the support of any study involving an in vivo experimental setup designed to
match a specific scenario as simulated by the models, including nerve anatomical
properties, and stimulation and recording materials and protocols.

While this type of validation would be highly desirable, it has not been possible to
undertake it during this project. Nevertheless, we are still able to provide grounded
reasons to consider the validity of our models and of the results presented in this
work:
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1. Axon models used in this work are exclusively taken, without modification
except for the anatomical regressions also made in [110], from existing models
that have been experimentally validated by their designers (see [101, 108] for
the MRG model, and [113] for the sensory fibers), and by many other works
after them (see [152] for references about validation of the MRG model after
its development in [108]).

2. The values of the electrical and geometrical properties of the tissues
used in the models presented here (endoneurium, epineurium and perineurium)
have been obtained from the literature, from sources with a strong experimen-
tal basis [132,178].

These two choices ensure that the fiber bundles of this work are simulated ac-
cording to experimental data from previous works. Thus, they help to prevent the
deviations of the nerve models from natural neural behaviours to grow more than
what can be a direct consequence of 1) the intrinsic inaccuracies of the models and
parameters taken from the literature, 2) our conservative choice of considering the
endoneurium as isotropic in Chapter 5, and 3) our choices at combining such pa-
rameters in a full nerve model. In this regard, it should be noted that the chosen
parameters come from experimental data obtained from different animals. For in-
stance, the resistivities used for endoneurium and epineurium are valid for cats [178],
and the membrane dynamics and geometrical properties of the MRG model are built
from experimental measurements on humans, cats and rats [108] —in consequence,
so is, to an extent, the sensory fiber model from [113]—. Therefore, although param-
eters for mammals may be similar, more species-specific parameter choices should be
pursued in order to properly and precisely model specific animal physiology. Also, to
this date this is not entirely possible since these combined animal models are among
the most up-to-date. This would be the case if using this model framework for
human sensory feedback restoration, where more human-specific parameters should
be searched as thoroughly as possible.

Our model framework is not at the level of a fully experimentally validated
model. However, what has been explained in this latter discussion, together with
the confidence we lay on the RN for the reasons expressed above, leaves us to propose
that our models and methods are computational tools with great potential for use
in further studies, and with a well grounded level of reliability.

One last observation that needs to be made is that this framework allows the
implementation of models that can be validated by any other users. With regards
to the models that have been used in this particular work, it is left as further work
to fill the gaps in their validation with FEM simulations and experimental data.
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6.3.2 Difficulty of Interpreting the Results for Peripheral
Nerve Models

Finally, the complexity of our model is larger than previous studies on EC for
axons, and its results yield a level of complexity that is usually difficult to interpret
correctly. This is especially the case for the results on propagation in bundles with
fibers of different diameters in Chapter 5. A relevant observation could be made
from those results. Namely, that the synchronisation mechanisms that were expected
from known results on bundles of identical fibers were not observed in bundles with
fibers of different diameters, and those mechanisms were weaker, virtually inexistent,
for the bundle in which fiber diameters follow a natural distribution. However, these
mechanisms were observed to occur to a certain extent in the bundle of fibers with
similar diameters, although they were also observed to be unstable. In these cases,
however, the behaviour of the fibers as a collective bundle was complex, as the
underlying reasons for the separation of AP trajectories along the simulation could
be guessed but not demonstrated.



Chapter 7

Conclusions and Future Directions

7.1 Conclusions

This project was undertaken in order to study the effects of ephaptic coupling on
stimulation of myelinated fibers in nerve trunks and action potential propagation,
with the ultimate aim in mind of assessing its role for sensory feedback restoration.
For this, a software tool was developed for building anatomically and electrically
detailed models of peripheral nerves. Simulations using this model have been used to
answer the scientific questions that were raised in this study. The main contributions
and findings of the results of this project can be summarised as follows:

• Effects of ephaptic coupling on propagation. Results from our simula-
tions show that the known effects of ephaptic coupling between parallel fibers
on the propagation of action potentials become difficult to identify and inter-
pret in large bundles of myelinated fibers of varying diameters. On the one
hand, fibers with very different diameters (more than 1 µm) have weaker inter-
actions than fibers of similar diameters. On the other hand, the presence of a
large number of fibers in a bundle generally diminishes the strength with which
these interact ephaptically, unless the activity of many fibers is synchronous.
In any case, for bundles with realistic extracellular electrical conductivity and
fibers of different diameters, the effects of ephaptic coupling are present but
are too weak to result in the known action potential lockings. One aspect
that remains visible in all simulations including ephaptic coupling, however,
is the reduction in conduction velocity resulting from close-phase propagation
of action potentials in parallel axons, independently of the cause of the phase
proximity.

• Effects of ephaptic coupling on artificial stimulation. Unlike the ef-
fects of that it has on action potential propagation in large bundles, ephaptic
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coupling shows a considerable influence on axon recruitment in nerve trunk
models stimulated by cuff electrodes. During pulses of depolarising stimula-
tion, an ephaptic field is created in the nerve due to the activity of all axons,
which adds to the field created by the electrodes and further depolarises all
the axons. This field can be of the order of 10 µV, and its direct effect is a
quicker depolarisation of all axon membranes, which 1) makes all axons reach
their thresholds and fire action potentials quicker, and 2) elicits action poten-
tials in axons for which the field from the electrodes alone would not reach
their thresholds. The net effect of this is not only more synchrony in action
potential elicitation, but also higher recruitment numbers. It was found in
our models that this increase can be higher than 64.9% of all the axons in
a bundle. This finding raises a call of attention to this phenomenon, always
neglected in artificial stimulation studies.

• Spatial dependence of ephaptic coupling. On the spatial variation of
ephaptic coupling with inter-axonal distances, it has been found that while
spatial variations always exist, these can be ignored in some ideal cases and a
mean-field model may be used. However, they cannot be ignored in cases where
artificial stimulation with extracellular electrodes is studied and in complex
bundles with perineurial membranes separating different fascicles.

• Open source software for nerve modelling. A software tool has been
developed that allows the design of a nerve trunk model with any arbitrary
cross-sectional anatomy, distribution of tissues and fiber packing. The soft-
ware is capable of simulating the activity of the nerve in a self-consistent
EMI model under the influence of stimulating electrodes and the presence of
recording electrodes. Given its self-consistent nature, the model simulates the
ephaptic interactions among all fibers within a nerve, which allows us to quan-
tify the effects of ephaptic coupling in various aspects of the fibers activity.
Not only can the software simulate the activity of the nerve in a self-consistent
model, but it also contains a hybrid field-neuron approach, where fields from
stimulating electrodes can be simulated in advance and later used in purely
neural simulations, where ephaptic interactions are disregarded. To date, we
have found no open source software similar to ours that allows users to design
anatomically detailed nerve models and include large-scale ephaptic coupling.
With this software, we aim to provide a useful modelling tool for the scientific
community.

Despite the advances that have been made in this research, these results and the
model itself leave room for further investigation. The model can still be substantially
improved in further work by properly including a FEM simulation system and other
electrode designs. Also, the results presented in this thesis can be further explored
and quantified against other relevant variables. Although some of these points for
further work were mentioned in Chapter 6, we summarise them below.
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7.2 Future Directions

7.2.1 Necessary Improvements on the Model

• Validation of the electrode fields with FEM simulations. Although
the resistor network has been validated against expected results for simple
problems with a FEM simulation and an analytical solution in Chapter 4, the
fields generated by the electrodes over realistic nerve bundles simulated with
the resistor network should be compared to results from FEM simulations on
equivalent nerve models. It must be noted that in the case of using the resis-
tor network with full axon models embedded in it instead of a homogeneous
isotropic tissue, which is the application this model is designed for, we expect
the results from the two techniques to differ because in the resistor network,
axons are modelled explicitly and the effects of their models contribute to the
field, whereas in a FEM simulation, their presence is accounted merely by
the anisotropy of the endoneurium’s conductivity tensor. Nevertheless, results
from both schemes should be compared for consistency, since that would pro-
vide a stronger source of validation than what has been provided in this study.
Simulations where the endoneurium is modelled as merely an anisotropic tis-
sue in the resistor network should yield results with a close match to FEM
simulations.

• Validation of the model using corresponding experimental designs.
We have used models of fibers that were thoroughly validated with experi-
mental data along the last years by their designers and other works. We have
also used parameters for the anatomical and electrical properties of the tis-
sues that were also obtained from experiments performed by their respective
studies. This, together with the preliminary validation we performed of the
resistor network in Chapter 4, lets us trust the validity of our model to an
acceptable degree. However, we have not been able to provide a validation
study involving a simulation and an experiment with equivalent scenarios and
parameters. For a complete validation of the model, it is necessary to run a
study in which, ideally, a nerve is stimulated in vivo with electrodes at one
end, and electrode recordings are performed at a distal end. Then, results need
to be compared to a simulation that imitates the experimental conditions.

7.2.2 Desirable Improvements on the Model

• Reduction of the computational costs. A resistor network is an expensive
method to simulate electrical activity in a nerve with hundreds of fibers. The
largest simulations run in Chapter 5 took more than 24h to compute, and
they were optimised in order to avoid larger computation times by limiting
the ephaptic coupling zones to the regions under the cuff electrodes, or by
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greatly limiting the cross-sectional sizes of the bundles in simulations where
ephaptic coupling was present all along the bundles. The costs in computation
time of the resistor network dramatically increase for a large and detailed
nerve trunk model as the network’s longitudinal resolution (i.e., the number
of transverse resistors per unit length) increases, thus limiting the practical
length that can be given to a nerve trunk model if ephaptic interactions along
its full length are intended. Therefore, a more efficient method needs to be
further investigated. Also, parallel computing of simulations using this resistor
network has not been achieved yet, and this is proposed for future work. A
thorough study of the computational costs, measured as total simulation time,
should be carried out in the future in order to study their dependence on
nerve length, resolution along the z-axis, and number of cables and transverse
resistors. For this, a sensitivity analysis should be carried out on all of these
parameters. Results are expected to shed light on the most compromising
model choices for computational efficiency.

• Simulations with other electrode geometries. Future work can imple-
ment designs of electrode geometries other than cuff electrodes in the model
framework and simulate stimulation with them. Specifically, we are aiming to
implement designs of TIMEs, LIFEs and Utah arrays. The presented software
is aimed to be used by researchers when studying stimulation with different
electrode designs, so more clarity on how to do this needs to be provided.

• Tortuosity. Tortuosity of axons within a nerve is known to affect the results
from stimulation and electrode recordings. Also, invasive electrode designs
such as TIMEs, LIFEs and Utah arrays provoke axon bending. It would be
desirable to extend the model to allow the inclusion of such axon bending and
study their effects. Furthermore, tortuosity likely has implications on ephaptic
interactions, since it means that the assumption of parallel axons no longer
holds.

7.2.3 Suggested Extensions on the Research Results

• Further quantifying the effects of ephaptic coupling on propagation
in realistic bundles. Results in this thesis regarding the effects of ephaptic
coupling on large bundles of fibers with varying diameters provide some initial
insights, but do not fully explain the observed behaviours of axons. It is
suggested as further work to perform more studies on this matter. Ideally, such
studies could involve more controlled parameter ranges in order to minimise
the degrees of freedom influencing the results. It is suggested to use more
constrained axon diameter ranges and lower numbers of axons in the bundles.

• Simulation of sensory information encoding. In order to close the gap
between the detailed modelling approach presented here and studies on sensory
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feedback restoration, we propose the use of this model to simulate, with and
without ephaptic coupling, the action potential patterns, both spatial and
in time, generated in the axons by artificial stimulation. Relating results of
these simulations to experiments reporting user-reported sensory percepts from
actual artificial stimulation would allow elucidating the neural codes associated
with such percepts, a knowledge that is nowadays not mature yet.
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Heinz-Billing-Preis, vol. 58, pp. 43–70, 2001.

[140] D. F. Goodman and R. Brette, “Brian simulator,” Scholarpedia, vol. 8, no. 1,
p. 10883, 2013.

[141] E. L. Graczyk, M. A. Schiefer, H. P. Saal, B. P. Delhaye, S. J. Bensmaia,
and D. J. Tyler, “The neural basis of perceived intensity in natural and ar-
tificial touch,” Science Translational Medicine, vol. 8, no. 362, pp. 362ra142–
362ra142, 2016.



Bibliography 157

[142] D. R. Merrill, M. Bikson, and J. G. Jefferys, “Electrical stimulation of excitable
tissue: design of efficacious and safe protocols,” Journal of neuroscience meth-
ods, vol. 141, no. 2, pp. 171–198, 2005.

[143] R. Plonsey and D. B. Heppner, “Considerations of quasi-stationarity in elec-
trophysiological systems,” The Bulletin of mathematical biophysics, vol. 29,
no. 4, pp. 657–664, 1967.

[144] R. Plonsey and D. Fleming, “Bioelectric phenomena. 1969.”

[145] K. Altman and R. Plonsey, “Development of a model for point source electrical
fibre bundle stimulation,” Medical and Biological Engineering and Computing,
vol. 26, no. 5, pp. 466–475, 1988.

[146] J. J. Struijk, J. Holsheimer, G. G. van der Heide, and H. B. Boom, “Recruit-
ment of dorsal column fibers in spinal cord stimulation: influence of collateral
branching,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 9, pp.
903–912, 1992.

[147] S. Joucla and B. Yvert, “Improved focalization of electrical microstimulation
using microelectrode arrays: a modeling study,” PloS one, vol. 4, no. 3, p.
e4828, 2009.

[148] C. C. McIntyre and W. M. Grill, “Extracellular stimulation of central neurons:
influence of stimulus waveform and frequency on neuronal output,” Journal
of neurophysiology, vol. 88, no. 4, pp. 1592–1604, 2002.

[149] I. V. Tarotin, “Model of impedance changes in nerve fibres,” Ph.D. disserta-
tion, UCL (University College London), 2019.

[150] I. Tarotin, K. Aristovich, and D. Holder, “Model of impedance changes in
unmyelinated nerve fibers,” IEEE Transactions on Biomedical Engineering,
vol. 66, no. 2, pp. 471–484, 2018.

[151] I. Tarotin, K. Aristovich, and D. Holder, “Simulation of impedance changes
with a FEM model of a myelinated nerve fibre,” Journal of neural engineering,
vol. 16, no. 5, p. 056026, 2019.

[152] E. Peterson, O. Izad, and D. J. Tyler, “Predicting myelinated axon activa-
tion using spatial characteristics of the extracellular field,” Journal of neural
engineering, vol. 8, no. 4, p. 046030, 2011.

[153] E. N. Warman, W. M. Grill, and D. Durand, “Modeling the effects of electric
fields on nerve fibers: determination of excitation thresholds,” IEEE Transac-
tions on Biomedical Engineering, vol. 39, no. 12, pp. 1244–1254, 1992.

[154] C. T. Choi, W.-D. Lai, and Y.-B. Chen, “Optimization of cochlear implant
electrode array using genetic algorithms and computational neuroscience mod-
els,” IEEE transactions on magnetics, vol. 40, no. 2, pp. 639–642, 2004.



Bibliography 158

[155] C. R. Butson and C. C. McIntyre, “Role of electrode design on the volume of
tissue activated during deep brain stimulation,” Journal of neural engineering,
vol. 3, no. 1, p. 1, 2005.

[156] C. T. Choi and S.-S. Lee, “A new flat interface nerve electrode design scheme
based on finite element method, genetic algorithm and computational neuro-
science method,” IEEE transactions on magnetics, vol. 42, no. 4, pp. 1119–
1122, 2006.

[157] C. A. Anastassiou and C. Koch, “Ephaptic coupling to endogenous electric
field activity: why bother?” Current opinion in neurobiology, vol. 31, pp.
95–103, 2015.

[158] K.-S. Han, C. Guo, C. H. Chen, L. Witter, T. Osorno, and W. G. Regehr,
“Ephaptic coupling promotes synchronous firing of cerebellar purkinje cells,”
Neuron, vol. 100, no. 3, pp. 564–578, 2018.

[159] L. Voronin, M. Volgushev, M. Sokolov, A. Kasyanov, M. Chistiakova, and
K. Reymann, “Evidence for an ephaptic feedback in cortical synapses: post-
synaptic hyperpolarization alters the number of response failures and quantal
content,” Neuroscience, vol. 92, no. 2, pp. 399–405, 1999.

[160] F. E. Dudek, T. Yasumura, and J. E. Rash, “‘non-synaptic’mechanisms in
seizures and epileptogenesis,” Cell biology international, vol. 22, no. 11-12,
pp. 793–805, 1998.

[161] S. Wang, L. J. Leon, and F. A. Roberge, “Interactions between adjacent fibers
in a cardiac muscle bundle,” Annals of biomedical engineering, vol. 24, no. 6,
pp. 662–674, 1996.

[162] Y. Mori, G. I. Fishman, and C. S. Peskin, “Ephaptic conduction in a cardiac
strand model with 3d electrodiffusion,” Proceedings of the National Academy
of Sciences, vol. 105, no. 17, pp. 6463–6468, 2008.

[163] S. F. Roberts, “Non-uniform interstitial loading in cardiac microstructure dur-
ing impulse propagation,” Ph.D. dissertation, Duke University, 2009.

[164] V. Markin, “Electrical interaction of parallel non-myelinated nerve fibres. 2.
collective conduction of impulses,” BIOPHYSICS-USSR, vol. 15, no. 4, p. 713,
1970.

[165] A. C. Scott, Nonlinear science. Oxford University Press, Oxford, 1999, vol. 4.

[166] J. Kocsis, J. Ruiz, and K. Cummins, “Modulation of axonal excitability medi-
ated by surround electric activity: an intra-axonal study,” Experimental brain
research, vol. 47, no. 1, pp. 151–153, 1982.

[167] S. Cardanobile, D. Mugnolo, and R. Nittka, “Well-posedness and symmetries
of strongly coupled network equations,” Journal of Physics A: Mathematical
and Theoretical, vol. 41, no. 5, p. 055102, 2008.



Bibliography 159

[168] M. D. Bateman and E. S. Van Vleck, “Traveling wave solutions to a coupled
system of spatially discrete nagumo equations,” SIAM Journal on Applied
Mathematics, vol. 66, no. 3, pp. 945–976, 2006.

[169] H. Suetani, T. Yanagita, and K. Aihara, “Pulse dynamics in coupled excitable
fibers: Soliton-like collision, recombination, and overtaking,” arXiv preprint
nlin/0610071, 2006.
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