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ABSTRACT
Epigenomic regulation plays a vital role in cell differentiation. The
leukemic HL-60/S4 [human myeloid leukemic cell line HL-60/S4
(ATCCCRL-3306)] promyelocytic cell can be easily differentiated from
its undifferentiated promyelocyte state into neutrophil- and
macrophage-like cell states. In this study, we present the underlying
genome and epigenome architecture of HL-60/S4 through its
differentiation. We performed whole-genome bisulphite sequencing
ofHL-60/S4 cells and their differentiated counterparts.With the support
of karyotyping, we show that HL-60/S4 maintains a stable genome
throughout differentiation. Analysis of differential Cytosine-phosphate-
Guanine dinucleotide methylation reveals that most methylation
changes occur in the macrophage-like state. Differential methylation
of promoters was associated with immune-related terms. Key immune
genes, CEBPA, GFI1, MAFB and GATA1 showed differential
expression and methylation. However, we observed the strongest
enrichment of methylation changes in enhancers and CTCF binding
sites, implying that methylation plays a major role in large-scale
transcriptional reprogramming and chromatin reorganisation during
differentiation. Correlation of differential expression and distal
methylation with support from chromatin capture experiments
allowed us to identify putative proximal and long-range enhancers for
a number of immune cell differentiation genes, including CEBPA and
CCNF. Integrating expression data, we present a model of HL-60/S4
differentiation in relation to the wider scope of myeloid differentiation.
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INTRODUCTION
Gene expression profiles differ among different cell types and
change as stem cells differentiate (Cheng et al., 1996; Le Naour
et al., 2001; Natarajan et al., 2012). Genome-wide Cytosine-
phosphate-Guanine dinucleotide (CpG) methylation, an
epigenetic regulation and modification process, has been shown
to exhibit similar dynamic behaviour during differentiation
(Brunner et al., 2009; Bock et al., 2012). Usually, these two
changes (i.e. gene expression and CpG methylation) have been
shown to correlate negatively with each other, depending upon the
location of the methylated CpG relative to the gene body (Payer
and Lee, 2008; Chuang et al., 2012; Jones, 2012; Yang et al.,
2014). Overall, changes in methylation patterns between cell types
and tissues throughout life work to either activate or shut down
specific cellular processes (Smith and Meissner, 2013), making
cells exhibit different phenotypic characteristics. Acting as a
shutdown mechanism, DNA methylation reinforces gene
silencing, when expression is not required in a particular cell
type (Lock et al., 1987).

Normal myeloid cell differentiation occurs within the bone
marrow, where stroma cells secrete cytokines to help activate
myeloid-specific gene transcription (De Kleer et al., 2014). Further
differentiation can occur in the peripheral tissues or blood,
dependent upon exposure of the myeloid precursors to cytokines
and other factors, such as antigens (Álvarez-Errico et al., 2015;
Geissmann et al., 2010). The first direct committed step toward
myeloid cell development is the differentiation of multipotent
progenitors (MPP) cells into common myeloid progenitor cells
(CMP) (Kondo et al., 1997; Álvarez-Errico et al., 2015). CMP cells
can then differentiate further into the granulocyte-macrophage
lineage progenitor (GMP) and megakaryocyte-erythroid progenitor
(MEP) (Iwasaki and Akashi, 2007). While CMP cells can
differentiate into all myeloid cell types, GMP cells give rise mainly
to monocytes/macrophages and neutrophils, together with a minor
population of eosinophils, basophils and mast cells (Álvarez-
Errico et al., 2015; Iwasaki and Akashi, 2007; Laiosa et al., 2006).

The human myeloid leukemic cell line HL-60/S4 [human myeloid
leukemic cell line HL-60/S4 (ATCC CRL-3306)] is an excellent
system to study epigenetic changes during chemically induced
in vitro cell differentiation. HL-60/S4 cells are supposedly blocked at
the GMP cell state and unable to differentiate any further. TheHL-60/
S4 cell line is a subline of HL-60 and demonstrates ‘faster’ cell
differentiation than the parent HL-60 cells. Undifferentiated HL-60/
S4 cells exhibit a myeloblastic or promyelocytic morphology with
a rounded nucleus containing two to four nucleoli, basophilic
cytoplasm and azurophilic granules (Birnie, 1988). Retinoic
acid (RA) can induce HL-60/S4 differentiation to a granulocyte-like
state. 12-O-tetradecanoylphorbol-13-acetate (TPA) can induce
differentiation to monocyte/macrophage-like states (Birnie, 1988;
Fontana et al., 1981).Received 21 April 2019; Accepted 13 January 2020
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The extent to which DNA methylation regulates these
chemically induced differentiation processes is not known.
Likewise, the global genome-wide methylation changes associated
with these differentiation processes have not been described. This
study details the methylation changes (and lack of changes), when
HL-60/S4 is differentiated to granulocytes employing RA, and to
macrophages employing TPA. The information contained within
this study is intended as a sequel to previous studies that describe
the transcriptomes (Mark Welch et al., 2017), nucleosome
positioning (Teif et al., 2017) and epichromatin properties (Olins
et al., 2014) of HL-60/S4 cells differentiated under identical
conditions. The goal is to integrate these different lines of
information into a comprehensive description and mechanistic
analysis of the cell differentiation pathways in the human myeloid
leukemic HL-60/S4 cell lineage. A graphical overview of our study
is shown in Fig. 1A.

RESULTS
Little or no DNA methylation changes are observed upon
HL-60/S4 cell differentiation at the megabase scale
We performed whole-genome bisulphite sequencing (WGBS)
of HL-60/S4 in three different cell differentiation states: the
undifferentiated state (UN), the RA-treated granulocyte state, and
the TPA-treated macrophage state. Comparison of the whole-
genome coverage profiles for each of the three differentiation states
of HL-60/S4 revealed that the cell line is hypo-diploid (MarkWelch
et al., 2017) and is chromosomally stable throughout differentiation
(Fig. S1A–C). A comparison of HL-60/S4 cells (from 2008 and
2012) by fluorescent in situ hybridization (FISH) karyotyping
showed that this cell line is also stable over long time periods (Fig.
S1D,E). From all the CpGs identified by WGBS on all three cell
states, a total of 21,974,649 (82.38%) CpGs had ≥10× coverage
(Table 1 and Table S1), which spanned the full range of methylation

Fig. 1. Analysis of DNA methylome upon chemical induction of differentiation of HL-60/S4 cells. (A) Schematic diagram of the experimental design of
the study. (B) Whole-genome CpG methylation rate density plot. The upper left density plot shows that all three cell states (UN, RA and TPA) have very
similar genome-wide CpG methylation rates. The subsequent density plots show the CpG methylation rates for each cell state separately. (C) Box plots
summarising the distribution of CpG methylation rates per sample replicates for the ∼22 million CpGs with coverage ≥10× in all samples. The upper and
lower limits of the boxes represent the first and third quartiles, respectively, and the black horizontal line is the median. The whiskers indicate the variability
outside the upper and lower quartiles. (D) Principal component analysis of the WGBS data for the three cell states. Principal component 1 and 2 separate
TPA from UN and RA cells. (E) Circular representation of DNA methylation rates for the different treatments. CpG methylation rates (colour scale beige–blue)
were averaged over 10-Mb windows and are presented as heatmap tracks. The heatmaps show the DNA methylation change (heatmap black–white-red) with
respect to the samples in the adjacent tracks.
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rates, from 0 (completed unmethylated) to 1 (fully methylated).
Most of these CpGs are highly and fully methylated (>0.75
methylation rate), with only small sets of lowly and unmethylated
CpGs (<0.25 methylation rate) and partially methylated CpGs
(methylation rate from 0.25 to 0.75) (Fig. 1B,C). Principal
component analysis of all CpGs with coverage greater than 10
revealed that the RA-treated samples differed only slightly from the
untreated sample, while the TPA samples had a much higher
methylation variance compared to the other two samples (Fig. 1D).
However, little or no methylation differences were observed among
the three samples, when methylation rates were averaged over 10
megabase (Mb) windows (Fig. 1E).

The single CpG methylation landscape of TPA cells differ
most, when compared to UN and RA cells
Due to the small changes observed on the megabase scale, we
focused on significantly differentially methylated single CpGs
positions (DMPs) for further analysis. A total of 41,306 unique
CpGs were identified to be significantly differentially methylated
(Fisher analysis, see Materials and Methods). These DMPs comprise
of 12,713, 17,392 and 17,100 CpGs from the comparisons of RA to
UN cells, TPA to UN cells and RA to TPA cells, respectively
(Fig. 2A). A higher proportion of the DMPs identified in the
comparison of TPA to UN cells were hypermethylated; but a similar
number of hyper- and hypomethylated DMPs were observed in the
RA to UN cells comparison. Most of the hypermethylated DMPs
(in RA to UN and TPA to UN comparisons) had a methylation rate
increase from 0 to 0.2; hypomethylated DMPs showed a decrease of
methylation rate (0.2–0) (Fig. 2C,D).

Enhancers are most enriched within DMPs
We performed enrichment analysis of various genomic features
representing active regulatory elements (enhancers, CpG Islands,
chromatin interacting regions), gene-related features (genes, exons,
transcription start sites), chromatin organisation [CTCF binding
sites, laminal associated domains (LADs), epichromatin], and a
number of DNA repeat elements [DNA, long interspersed nuclear
element (LINE), long terminal repeats (LTR), short interspersed
nuclear element (SINE), satellite and simple repeats (tandem
duplications of short simple sets of DNA bases)]. The most enriched
genomic features in the hypermethylated DMPs were enhancers,
transcription start sites (TSSs) of protein coding genes (pTSS) and
CpG islands (CpGIs) for both RA and TPA cells compared to UN
cells (Fig. 2B). CTCF, a chromatin-binding protein known for its
role as an insulator, regulating transcription and chromatin
architecture, was enriched in TPA hypermethylated DMPs, but
not in RA. On the other hand, CpGIs were also the most enriched
feature in the hypomethylated DMPs, when RA was compared to
UN cells. Enhancers, regulatory regions bound by transcription
factors that play a cis-activating role of transcription, showed a high

enrichment in both hypermethylated and hypomethylated DMPs
identified when TPA is compared to UN cells (Fig. 2B). In contrast
to enhancers, epichromatin (regions of chromatin that are present at
the surface of chromatin in close proximity to the nuclear envelope),
and both simple repeats (tandem duplications of short simple sets of
DNA bases) and LINE repeats (constituting 21% of the human
genome and are normally silenced) were depleted within hyper and
hypomethylated regions in both RA and TPA.

We identified clusters of DMP methylation pattern changes
between the three-cell states of HL-60/S4. We called these clusters
‘modules’. Module analysis reveals that enhancers are significantly
enriched in DMPs that are hypomethylated in the TPA state relative
to UN and RA (modules M6 and M12). Module M6 was not
enriched in gene transcription start sites. The hypomethylated
DMPs of TPA cells in modules M6 and M12 corresponded with
lower nucleosome occupancy (Fig. S2). M7 DMPs were similarly
hypomethylated in the TPA, compared to RA and UN cells, but with
lower methylation differences (Fig. 2E,F). Enrichment of exons,
epichromatin and chromatin-interacting domains (Teng et al., 2015)
were also observed in module M6. The modules exhibited varying
enriched GO functional terms (Tables S2-14).

CpGIs have a very dynamic differential methylation
CpGIs are differentially methylated, but mainly in relation to RA-
treated cells (Fig. 2B). CpGIs were most enriched in module M1,
which has DMPs that are hemimethylated (∼0.5 methylation rate) in
RA; but these DMPs showed lower methylation in TPA and UN
cells. Similar results were seen in module M9, where DMPs were
hypomethylated in RA, compared to TPA and UN cells (Fig. 2F).
Likewise, CpGI enrichment was observed for module M11, where
DMPs are hypermethylated in TPA, compared to RA and UN cells.

Methylation of transcriptional activator and suppressor
binding sites correlate with gene expression
DNAmethylation plays a general role in inhibiting the binding of a
number of transcription factors (TF) in regulatory regions of their
target gene(s). In these regions one would expect a negative
correlation between DNA methylation and expression, e.g.
increased promoter methylation associated with decreased gene
expression. To investigate the effect of DNA methylation in
regulatory regions upstream of genes during HL-60/S4
differentiation, we identified all DMPs with a change in
methylation rate of at least 0.2 lying in upstream regulatory
regions of genes with a log2 fold change in gene expression of at
least 1.5. A total of 214 and 472 DMPs were identified in RA and
TPA cells compared to UN cells, respectively (Fig. 3A,B). In RA
cells, genes showed no clear association of changes in gene
expression and DMP methylation rate (Fig. 3A). To investigate
this further, for each of these genes we performed correlation
analysis of the average TSS methylation in UN, RA and TPAs with
the gene expression of the gene in UN, RA and TPA cells. This
showed a comparable number of positive correlating genes (+1)
and negatively correlating genes (−1) (Fig. 3C). This may explain
the unclear association observed in Fig. 3A. However, TPA
cells showed a higher number of positive associations for
hypomethylated DMPs (Fig. 3B). Correlating the average TSS
methylation and gene expression for these genes showed a higher
number of positively correlating genes (in the range of 0.5–0.8),
compared to negatively correlating ones (Fig. 3B,D). This positive
correlation may be explained by DNA methylation preventing the
binding of transcriptional suppressors, therefore increasing the
expression of target genes. We found that genes associated with

Table 1. CpG coverage statistics

UN RA TPA

State Undifferentiated Granulocyte Macrophage
Measured CpGs 26,681,926 26,681,926 26,647,233
Genome coverage (x) 28.87 29.43 27.56
CpG coverage (x) 21.90 22.60 20.20
ChrM conversion rate 0.999 0.999 0.998

A summary of the whole-genome bisulphite sequencing (WGBS) data for the
undifferentiated HL-60/S4 (UN), retinoic acid (RA)- and tetradecanoyl phorbol
acetate (TPA)-treated cells.
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regulatory regions which displayed positive correlation (1.0–0.7)
between DNA methylation and expression were significantly
enriched in EZH2 binding (q-value of 0.087 and 0.030 in RA and

TPA, respectively) but not those with negative correlation (q-value
of 0.197 and 1 in RA and TPA, respectively). EZH2 is a well-
known transcriptional repressor that forms part of the polycomb

Fig. 2. DMP analysis. (A) Number of DMPs identified with Fisher exact test for each comparison. In the bar plot, the x-axis labels indicate the comparisons,
and the y-axis indicates the number of identified DMPs. The number of hypermethylated DMPs are shown by the red bars, and the hypomethylated by blue
bars. (B) Enrichment of genomic features in the hypermethylated (left) and hypomethylated (right) DMPs in RA and TPA compared UN cells. Genes, exon
and TSS features are of all genes in the gencode v19 gene models. PTSS denotes the TSS of protein coding genes. CpGI denotes CpG islands. Enhancers
were identified from ENCODE chromHMM chromatin segmentation. CTCF binding sites were from ENCODE ChIP-seq experiments. Epichromatin and LADs
have been identified to associate with the nuclear envelope. Integrations denote chromatin interacting regions as defined to chromatin conformation capture
experiments in ENCODE. DNA, LINE, LTR, SINE, satellite and simple repeats are all classes of repeats. (C) Density plot of the methylation rates of RA
DMPs in UN and RA. Hypermethylated DMPs increased from methylation rates of 0 to 0.2, and hypomethylated posited decreased from 0.2 to 0. Hyper and
hypomethylated DMPs found in RA compared to UN are denoted by (RA hyper) in pink and (RA hypo) in grey respectively; the methylation rate of the DMPs
in UN and RA are denoted as solid and dashed lines, respectively. (D) As panel C, but for TPA. TPA hypermethylated DMPs (TPA hyper, in red) and
hypomethylated DMPs (TPA hypo, in blue). (E) Unsupervised cluster analysis reveals 12 DMP ‘modules’. 12 modules were identified, and a heatmap
representation showed distinct methylation rates in each of the three cell states. Modules are demarcated by alternating grey and beige bars on the right.
(F) Genomic feature enrichment in the 12 modules. Module M6 shows a strong enrichment for enhancers, but not TSS regions. Simple repeat elements are
enriched in states M7, M9 and M12. The genomic features are explained in B.
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repressor complex 2. DNA methylation of EZH2 binding sites
would therefore have a positive effect on transcription, explaining
the observed positive correlation of gene expression and DNA
methylation.

Methylation of long distance regulatory regions shows
negative correlation with target gene expression
DMP methylation and expression of CEBPE (a major
transcription factor involved in myeloid cell differentiation)
shows a negative correlation at the 3′ end of the gene; a region
identified to be an enhancer in the ROADMAP epigenome project
(Fig. 4A) (Kundaje et al., 2015). The downstream region of the
CEBPE gene, containing the DMPs, the methylation of which has
strong negative correlation with expression, has been shown
through IM-PET (integrated method for predicted enhancer
targets) and CHIA-PET (chromatin interaction analysis by
paired-end tag sequencing) to interact with the upstream regions
that span part of the gene body and the TSS region (Teng et al.,

2015). No DMPs were observed overlapping the TSS of the
CEBPE gene; hence, no correlation between TSS methylation and
expression is available. The RNA expression tracks of CEBPE (as
well as CCNF and PGP) in UN, RA and TPA is shown in Fig. 4A
(and 4B).

Furthermore, the RNA expression of the gene encoding for cyclin
F, CCNF, has weak positive correlation with the methylation of
DMPs that overlap with its gene and TSS (Fig. 4B, right track
‘CCNF DNAme∼CCNF Exp’). However, CCNF RNA expression
has a strong negative correlationwith DMPs overlapping the upstream
region of the PGP gene (Fig. 4B, left track ‘PGP DNAme∼CCNF
Exp’), which encodes phosphoglycolate phosphatase. PGP RNA
expression does not show a similar correlation to its upstream DMPs
(Fig. 4B, right track ‘PGP DNAme∼PGP Exp’). This region has
also been identified by ROADMAP as an enhancer and to interact
with the promoter of CCNF in other myeloid cells (K562
and monocytes).

Functional annotation ofDMPsaremostly immune-response-
related
Using DMPs with a methylation rate change ≥0.2 we observed that
immune-response-related cellular functions were the most enriched
biological function for all the genes whose TSS overlapped with
DMPs when RA cells were compared to UN cells (Table 2).
Similarly, genes with their TSS overlapping DMPs in TPA
compared to UN cells, were also mostly related to (or involved
with) phosphoproteins, signalling and defence responses,
including chemotaxis (Table 3). Similar observations were
made when DMPs were merged into differentially methylated
CpG regions (DMRs) and their functional associations tested in
TPA compared to UN cells (Table 4). For RA compared to UN
cells, the functional annotation was general-cell-function-related
(Table 5).

Key myeloid differentiation transcription factors are
differentially expressed
Next, we analysed the expression and methylation profiles of
important myeloid differentiation regulatory transcriptions factors
SPI1, CEBPB, CEBPE, CREBBP, CEBPA, GATA1, MAFB,
DNMTs and HDACs. It was observed that CEBPA (Fig. S3A,B;
Table 6) and GFI1 (Fig. S3C,D) may be required to maintain HL-
60/S4 in the undifferentiated state. CEBPA expression could be
linked to DNAmethylation with the expected negative correlation at
two DMP positions, and GFI1 expression could be linked to DNA
methylation with negative correlation at multiple DMPs. As such,
downregulation of CEBPA may play a role during further
differentiation of HL-60/S4 to either the neutrophil-like or
macrophage-like state. Meanwhile, SPI1 and CEBPB are
upregulated in both differentiated states (Fig. S3E,F,K,L). CEBPB
increased expression did not correlate with DNA methylation,
suggesting that it is regulated via other epigenetic mechanisms, and
the increased expression of SPI1 negatively correlates with DNA
methylation at a single DMP position.

Upregulation of CEBPE (Fig. 4B) is seen in RA, albeit without
reduced DNA methylation, whereas it is downregulated in TPA,
which can be seen with increases in DNAmethylation in TPA cells.
The expression of CEBPE negatively correlated with the DNA
methylation of a number of downstream DMPs. In TPA-treated
cells,MAFB is upregulated, without correlating to changes in DNA
methylation, although still at low levels (Fig. S3G,H).GATA1 is also
downregulated in RA and upregulated in TPA-treated cells without
correlation to changes in DNA methylation (Fig. S3I,J).

Fig. 3. Association between promoter methylation and gene
expression. (A) Scatter plot of genes with more than 1.5× log2 fold change
in expression against the DNA methylation different (minimum of 0.2) of
upstream transcription factor binding region between RA and UN cells. The
number of genes is identified in the title of the plot. In each quadrant the
number of genes in reported, with the upper right quadrant and lower left
indicating genes with possible positive correlation with DNA methylation, and
the upper left and lower right quadrants indicating genes that have negative
correlation with DNA methylation. (B) As panel A, but for TPA. The scatter
plots shows a comparable number of genes with increased TSS methylation
with up and downregulation, however genes with reduced TSS methylation
also exhibit reduced expression. (C) The distribution of Pearson correlation
coefficient values for each gene between the gene expression value and the
average methylation of DMPs overlapping with TSS in UN, RA and TPA
cells. Increase in DNA methylation is associated with nearly as many up and
downregulated genes as with decrease in methylation. While we expect to
see primarily negative correlation, the histogram shows comparable
numbers of highly positive and highly negative correlations. (D) As panel C,
but for TPA. This histogram shows an elevated number of genes with
positive correlation between 0.5 and 0.8.
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DISCUSSION
Understanding the molecular mechanisms that govern transcriptional
reprogramming in cellular differentiation is of paramount importance
to elucidate the regulatory dynamics behind this process. The
realization of low-cost high-throughput sequencing methodologies
have facilitated a plethora of studies outlining the landscape of
transcriptional activity, regulation, chromatin organization and the
complexity of which these ‘omics’ layers interact. Here we report
our findings on the dynamics of DNA methylation in HL-60/S4
cells through three cell states, and perform multi-omics integrations,
contextualizing our results with changes in transcription, chromatin
organization, DNA features and nucleosome positioning.

We observed that the majority of the CpGs in all three cell states
of HL-60/S4 were fully methylated, but did not observe large-scale
DNA methylation changes during the differentiation, consistent
with previous reports (Farlik et al., 2016; Kulis et al., 2015).
Nevertheless, principal component analysis revealed the DNA
methylation profiles of RA cells to be more similar to
undifferentiated HL-60/S4 cells compared to TPA cells (Fig. 1C),
supporting previous studies where neutrophil methylation was
shown to be only slightly, but significantly, different from the
promyelocyte precursor cell methylation (Álvarez-Errico et al.,
2015). We were unable to identify any enriched GO terms from the
top 1000 or 5000 CpGs contributing to principal component 1

Fig. 4. Chromatin interacting regions explain gene expression correlation with distal DMPs. (A) CEBPE shows a strong inverse correlation between its
expression and methylation of DMPs in its downstream region. Tracks (from top to bottom): genomic coordinates; gene model of CEBPE; simplified
chromatin segmentation based on E029 (primary monocyte cells from peripheral blood) from the ROADMAP epigenome project; chromatin interacting
regions (K562 cells from the ENCODE project using IM-PET); bar plot depicts correlations of DMPs with CEBPE differential gene expression, indicating a
number of downstream DMPS negatively correlating with CEBPE expression (where a bar below 0 indicates negative correlation and a bar above 0 indicates
positive correlation between DNA methylation and gene expression); line plot of DNA methylation rate of CpGs in UN, RA and TPA cells; coverage plot of
RNAseq expression in UN, RA and TPA cells. (B) The cyclin-F-box protein coding gene CCNF interacts with a distant upstream region, which regulated its
expression through methylation. Panel description is similar to A, except that the regions between PGP and CCNF are cut, the CHIA-PET (from K562 cells
from the ENCODE project) interaction between the upstream of PGP and CCNF are connected, the top DMP-gene expression correlation panel is of
proximal CpGs with the distal gene (‘PGP DNAme∼CCNF Exp’ and ‘CCNF DNAme∼PGP Exp’) and the lower correlation panel is of proximal CpGs with the
proximal gene (‘PGP DNAme∼PGP Exp’ and ‘CCNF DNAme∼CCNF Exp’). For CCNF, no proximal DMP correlated highly with CCNF expression (right track
‘CCNF DNAme∼CCNF Exp’), however a number of DMPs upstream of PGP (in a region interacting with the CCNF promoter in K562 cells) exhibited
negative correlation with CCNF differential expression (right track ‘CCNF DNAme∼PGP Exp’). Together, this could imply that these DMPs upstream of PGP
play a role in CCNF expression. Please note that the chromatin interaction data are derived from different cells than the chromatin state data (K562 and
primary monocytes respectively). While both are derived from myeloid cells, they are different from our myeloid HL-60/S4 cells.
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(explaining over 97% of variation), which leads us to believe that
that the changes in DNA methylation in TPA cells results in the
alteration of not one specific biological process, but rather in the
overall increased levels of hypermethyation in differentially
methylated CpGs (Fig. 2B).
A total of 41,306 CpGs were identified to be differentially

methylated (DMPs). Despite the small shifts in methylation rate
(Fig. 2C,D), we observed that hypermethylated regions in RA and
TPA cells were enriched for regulatory regions and CTCF binding
sites, implicating a role of DNA methylation in transcriptional
reprogramming and chromatin organization during differentiation.
This is consistent with previous reports of a gain of methylation at
CTCF binding sites in differentiated hematopoietic states compared
to HSCs (Farlik et al., 2016). CTCF plays a well-known role in
chromatin organization by forming loop domains involved in
bringing together enhancers and promoters and topological
associated domain formation (Rowley and Corces, 2018).
Interestingly, the enrichment of CTCF was observed only in
hypermethylated positions in TPA cells. This increased methylation
of CTCF binding sites in TPA cells could be consequent of the
downregulation of CTCF transcript NM_001191022, which
showed a log2 fold reduction of 6.1 in TPA compared to UN cells
(Mark Welch et al., 2017). This was also observed in a number of
other human leukemic cell lines that were differentiated into
monocyte like cells using TPA (Delgado et al., 1999).
The DMPs exhibited 12 distinct patterns, which we grouped into

modules. While the majority of modules exhibited similar
enrichment patterns to when they were simply groups of hyper
and hypomethylated CpGs, module M6 stood out as being even
more enriched for enhancers; simple DNA repeat elements also
became enriched in a number of modules.
Module M6 has full methylation of CpGs in UN and RA but

hypomethylation in TPA, suggesting a role of enhancer
hypomethylation in macrophage-like differentiation, as observed

in TPA-treated cells. Module M6 also showed hypomethylation of
epichromatin and chromatin interaction domains in TPA cells,
suggesting a remodelling of the transcriptional regulatory circuits in
this state, compared to the RA and UN cell states. The
hypomethylation of TPA cells in module M6 was associated with
lower nucleosome occupancy (Fig. 2E; Fig. S2). Lower levels of
differential methylation, differential nucleosome occupancy and
enrichment for enhancers were observed for modules M7 and M12.
This suggests that differential nucleosome occupancy that is
associated with differential DNA methylation in our differentiation
system occurs in the genomic context of enhancers. This is consistent
with previous findings of changes of nucleosome occupancy and
DNA methylation in regulatory genomics contexts of CTCF binding
and promoters (Kelly et al., 2012) during cellular differentiation.

Modules showing the highest enrichment of simple repeats (M7,
M8 and M9) exhibited hypomethylation in RA and TPA cells, but
not UN cells. Hypomethylation of simple repeats has been
associated with a number of diseases, including Wilms tumour
and breast cancer, possibly due to the hypomethylation of these
repeats predispose them to illegitimate recombination (Wilson et al.,
2007). However, the biological impact of this observation is still not
entirely clear.

Earlier reports suggested that methylation in the promoter and the
first exon negatively correlated with gene expression (Jones, 2012;
Brenet et al., 2011). However, we did not observe any general

Table 2. Immune response related functions are predominant in cellular
functions of genes with the most differentially methylated TSS in RA
compared to UN cells

Term % Enrichment P-value

Glycoprotein binding 3.85 19.86 0.01
Translation 7.69 4.46 0.01
Defence response 10.26 3.2 0.01
Immunoglobulin-like V-type domain 5.13 8.01 0.01
Signal peptide 26.92 1.6 0.03
Steroid binding 3.85 11.48 0.03
Protein biosynthesis 5.13 5.32 0.04
Lipoprotein 8.97 2.72 0.04
Positive regulation of cell migration 3.85 8.29 0.05
Peroxisome 3.85 8.33 0.05
Enzyme binding 7.69 2.81 0.06
Positive regulation of locomotion 3.85 7.53 0.06
Endocytosis signal motif 2.56 27.58 0.07
Defence response to Gram-positive
bacterium

2.56 24.6 0.08

Ankyrin 5.13 3.94 0.08
Phospholipid catabolic process 2.56 22.36 0.08
Cell membrane 17.95 1.59 0.09
SH2 domain binding 2.56 20.41 0.09
Locomotory behaviour 5.13 3.59 0.1
Structure of Caps and SMACs 2.56 14.92 0.1

The functional annotation of genes with their TSS overlapping with DMPs, with
a methylation rate difference ≥0.2 in RA compared to UN cells, for which gene
expression data were available. The P-value is the calculated hypergeometric
binomial calculated in DAVID.

Table 3. Immune response-related functions are predominant in cellular
functions of genes with the most differentially methylated TSS in TPA
compared to UN cells

Term % Enrichment P-value

Defence response 11.43 3.47 0
Phosphatase activity 5.71 4.29 0.01
Positive regulation of locomotion 3.81 7.27 0.02
Chemotaxis 5.71 3.9 0.02
Peroxisome 3.81 7.09 0.02
Leukocyte transendothelial migration 3.81 5.75 0.03
Opsonization 1.9 59.33 0.03
Immunoglobulin-like fold 7.62 2.59 0.03
Translation 5.71 3.23 0.04
Immune response 8.57 2.32 0.04
RNA binding 8.57 2.23 0.04
Steroid binding 2.86 8.34 0.05
Phosphoprotein 44.76 1.23 0.06
Intracellular protein transport 5.71 2.86 0.06
p53 signalling pathway 2.86 7.48 0.06
MAPK signalling pathway 4.76 3.17 0.06
Positive regulation of phagocytosis 1.9 29.67 0.06
Regulation of leukocyte activation 3.81 4.29 0.06
Zinc finger region:C3H1 1.9 29.11 0.07
Protein biosynthesis 3.81 4.05 0.07
Signal peptide 22.86 1.4 0.08
Regulation of apoptosis 8.57 1.99 0.08
Macrophage activation 1.9 23.73 0.08
Small GTPase-mediated signal
transduction

4.76 2.92 0.09

Calcium binding 1.9 21.03 0.09
Antimicrobial 3.81 3.69 0.09
Cell cycle 5.71 2.48 0.09
Cytoskeleton organization 5.71 2.45 0.09
Structure of Caps and SMACs 1.9 14.92 0.1
Palmitate moiety binding 3.81 3.58 0.1

The functional annotation of genes with their TSS overlapping with DMPs with
a methylation rate difference ≥0.2 in TPA compared to UN, for which gene
expression dataweres available. TheP-value is the calculated hypergeometric
binomial calculated in DAVID.
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association of methylation and gene expression when comparing
RA to UN cells, and only a slight but positive association
for hypomethylated DMPs when comparing TPA to UN cells
(Fig. 3A,B). This observation suggests that there are additional
epigenetic modifications required at gene promoters regulating
transcriptional activity (Ford et al., 2017 preprint) or that gene
expression is determined by the epigenetic state of multiple
regulatory elements and not just the promoter (Ong and Corces,
2011). When correlating the average promoter methylation of
differentially expressed genes with a DMP in their promoter, we see
a tendency of both highly positive (+1) and highly negative
(correlation), suggesting that promoter regions comprise of both
transcriptional activators as well as repressors. Indeed, we found that
the gene targets of positive correlating regions were significantly
enriched for binding of the transcriptional repressor EZH2, but not
for the negative correlating gene targets. This highlights the
importance of considering the context of regulatory regions when
investigating the effects of DNA methylation on transcription.
CCNF expression was significantly reduced in TPA cells,

compared to both UN (log2 fold reduction of 2.2) and RA cells
(log2 fold reduction of 1.9) (Mark Welch et al., 2017). CCNF plays
an important role during the cell cycle (Bai et al., 1994), and its
downregulation in TPA cells may explain their reduced proliferation

rate (Trayner and Clemens, 1992). However, we did not observe
any differential methylation in its promoter that could explain this
differential expression of CCNF. Interestingly, a region within the
promoter of PGP contained DMPs correlating negatively with
CCNF expression (Fig. 4B). The promoter of CCNF and the DMP
region of PGP have previously been shown to physically interact,
employing CHIA-PET in the K562 leukaemia cell line (The
ENCODE Project Consortium et al., 2012). This finding illustrates
one of the biological consequences linked to our observation of
enrichment of chromatin interacting regions in DMPs.

Investigating TSS methylation and RNA expression of key
myeloid differentiation transcription factors revealed that CEBPA
exhibited both TSS hypermethylation and downregulation in RA
and TPA compared to UN cells (Fig. S3). CEBPA and SPI1 are
known to be required for the maintenance of CMP and GMP
developmental stages of myeloid cells (Álvarez-Errico et al., 2015).

Table 4. Cellular functions of TPA versus UN DMRs which were
generated by merging DMPs

Term n Enrichment P-value

Regulation of defence response 53 1.76 1.1E-10
Endocytosis 50 2.14 3.8E-10
Negative regulation of interleukin-8
production

5 12.93 6.5E-08

Regulation of inflammatory response 27 1.98 1.3E-07
Negative regulation of protein modification
process

44 1.88 1.1E-06

Negative regulation of transferase activity 27 2.15 1.1E-06
Immune response-activating signal
transduction

36 1.95 1.2E-06

Activation of immune response 38 1.75 2.4E-06
Positive regulation of defence response 31 2.05 3.1E-06
Negative regulation of protein kinase activity 25 2.23 3.6E-06
Negative regulation of kinase activity 26 2.19 5.7E-06
Negative regulation of phosphorylation 35 2.23 8.1E-06
Negative regulation of protein
phosphorylation

34 2.30 9.0E-06

Platelet activation 29 2.10 1.6E-05
Regulation of peptidase activity 38 1.71 1.9E-05
Toll-like receptor 5 signalling pathway 12 2.86 2.5E-05
Toll-like receptor 10 signalling pathway 12 2.86 2.5E-05
Response to lipoprotein particle stimulus 5 7.76 6.5E-05
Positive regulation of histone H4 acetylation 3 15.51 8.0E-05
Positive regulation of myeloid leukocyte
differentiation

9 3.58 1.1E-04

Response to low-density lipoprotein particle
stimulus

4 10.34 1.3E-04

Regulation of cysteine-type endopeptidase
activity

25 2.03 2.3E-04

Regulation of meiosis 8 4.77 2.5E-04
Positive regulation of behaviour 16 2.73 3.2E-04
Regulation of meiotic cell cycle 8 4.00 5.2E-04
Response to oestrogen stimulus 20 2.30 7.7E-04
Positive regulation of histone acetylation 6 5.82 1.1E-03
Negative regulation of glycolysis 4 12.41 1.4E-03

The biological process enrichment was performed with DMRs generated from
TPA-UN comparison DMPs. The P-value is the calculated binomial calculated
by GREAT (McLean et al., 2010).

Table 6. Gene expression levels formyeloid differentiation transcription
factors

Gene UN RA RA(log2FC) TPA TPA(log2FC)

CEBPA 36,100 10,135 −1.80 13,105 −1.48
CEBPE 14,382 20,982 0.57 2569 −2.50
GFI1 9076 10,429 0.23 3389 −1.44
MAFB 0 0 – 4.35 3.79
GATA1 12.61 1.76 −2.60 89.47 2.78
SPI1 9092 17,518 0.98 20,040 1.12

Expression levels of mRNA were calculated using RSEM v1.2.15 and taken
from Mark Welch et al. (2017).

Table 5. Cellular functions of RA versus UN DMRs which were
generated by merging DMPs

Term n Enrichment BinomP

Peroxisome proliferator activated receptor
pathway

2 30.84 4.76E-05

Catabolic process 40 1.59 3.70E-04
Phagocytosis 7 3.88 5.84E-04
Organic substance catabolic process 34 1.51 1.65E-03
Cellular catabolic process 31 1.50 2.02E-03
Organelle organization 40 1.38 2.99E-03
Protein folding 6 2.28 3.97E-03
Organophosphate catabolic process 13 2.08 4.29E-03
Regulation of cholesterol transport 3 7.23 4.47E-03
Cell division 12 2.09 4.61E-03
Leukocyte migration involved in immune
response

1 38.55 5.22E-03

Quinolinate metabolic process 2 25.70 5.27E-03
Positive regulation of calcium-mediated
signalling

3 9.64 5.32E-03

Mitochondrion degradation 2 22.03 5.67E-03
Histone H4-K acetylation 2 11.86 5.88E-03
Nucleotide catabolic process 12 2.10 6.05E-03
Retinoic acid receptor signalling pathway 2 8.57 6.27E-03
Nucleoside phosphate catabolic process 12 2.07 6.37E-03
Purinergic nucleotide receptor signalling
pathway

2 8.12 7.28E-03

Neurotransmitter metabolic process 3 8.90 7.58E-03
Heterocycle catabolic process 16 1.60 8.25E-03
Regulation of ER to Golgi vesicle-mediated
transport

2 25.70 9.02E-03

Aromatic compound catabolic process 16 1.59 9.55E-03
Organonitrogen compound metabolic
process

31 1.55 9.79E-03

The biological process enrichment was performed with DMRs generated from
RA–UN comparison DMPs. The P-value is the calculated binomial calculated
by GREAT (McLean et al., 2010).
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However, it is the counter-interaction between SPI1 and CEBPA
that determines whether a GMP differentiates (Iwasaki and Akashi,
2007), sinceCEBPA is known to repress macrophage differentiation
induced by SPI1.
Employing this observation, together with the data of Fig. 4,

Table 6 and Fig. S3, we propose a model of the HL-60/S4
differentiation program based upon the transcription factors that
may be involved (Fig. 5). In this model, we propose that
downregulation of CEBPA by increased DNA methylation may
be required for differentiation of HL-60/S4 cells. While CEBPE is
highly expressed in the undifferentiated and neutrophil-like state, its
downregulation due to increased DNA methylation, along with
upregulation of MAFB and GATA1 may be required for
macrophage-like differentiation. This supports prior reports that
CEBPE is necessary for the commitment of HL-60/S4 cells to a
neutrophil-like state. It is interesting to note that all transcription
factors in this model apart fromMAFB and GATA1 exhibited DMPs
that correlated with their gene expression. This would suggest that
the differential expression ofMAFB andGATA1 in this cell system is
regulated via a different epigenetic mechanism.
Our study highlights that the major changes of DNA methylation

upon HL-60/S4 cell differentiation occur at enhancers, long-range
interacting regions and CTCF binding sites.

MATERIALS AND METHODS
Samples
We used the human AML (acute myeloid leukaemia) cell line HL-60/S4,
available from ATCC (CRL-3306). Differentiation of this cell line was
induced with RA and 12-O-tetradecanoylphorbol-13-acetate (TPA) to attain
the granulocyte-like and macrophage-like states as previously described
(Mark Welch et al., 2017). In previous publications (Teif et al., 2017; Mark
Welch et al., 2017), the undifferentiated HL-60/S4 cells were denoted ‘0’.
In the current study the same undifferentiated cells are denoted ‘UN’.

Phenotypic changes during HL-60/S4 differentiation are dramatic and
easily observed in the microscope (Olins et al., 1998, 2000; Mark Welch
et al., 2017). The rapidly dividing undifferentiated cell forms grow in
suspension and display a ‘spherical’ cell shape and a ‘round’ nucleus. After
RA treatment for 4 days, many of the cells weakly attach to the bottom of the

growth container. Some cells show an elongated shape and appear tomigrate
very slowly. The nuclei lobulate, resembling normal blood granulocytes.
Cell division of RA-treated cells gradually slows during the 4 day period.
After TPA treatment, by 1 day many of the cells firmly attach to the
substrate. Cell division has ceased. They form cell clumps that gradually
recruit more cells during the ensuing days. The nucleus of TPA-treated cells
remains generally ‘round’, with no indication of lobulation. RA-treated cells
begin to show signs of apoptosis by days 4–5; attached TPA cells show
essentially no indication of apoptosis by days 4–5. Comparison of the
transcriptome data (after 4 days) from undifferentiated, RA- and TPA-
treated cells show clear mRNA level changes that correlate and help to
interpret the cell phenotypes observed microscopically.

Sequencing and library preparation
WGBS libraries were prepared for UN, RA- and TPA-treated HL-60/S4
cells. Libraries were prepared using the Illumina TruSeq DNA Sample
Preparation Kit v2-set A (Illumina Inc., San Diego, CA, USA) according
to the manufacturer’s guidelines. After the adapters were ligated to the
library, they were treated with bisulphite followed by PCR amplification.
Sequencing was performed on the Illumina HiSeq 2000 using paired
end mode with 101 cycles using standard Illumina protocols and the
200 cycle TruSeq SBS Kit v3 (Illumina Inc., San Diego, CA, USA).
Sequencing was performed on one biological replicate, with three
technical replicates.

Read alignment and methylation calling with BSMAP
WGBS sequencing data were analysed using BsMAP (Xi and Li, 2009) and
BisSNP packages. In brief, technical replicates were combined, and
sequencing reads were adaptor-trimmed using CUTADAPT package
(Martin, 2011), while read alignments were performed against the human
reference genome (hg19 GRCh37 version hs37d5-lambda, 1000 Genomes)
using the BsMAP-2.89 package with non-default parameter–v 8 (Xi and Li,
2009). Putative PCR duplicates were filtered using Picard [version
1.61(1094) MarkDuplicates (http://picard.sourceforge.net)]. Only properly
paired or singleton reads with a minimum mapping quality score of ≥30 and
bases with a Phred-scaled quality score of≥10were considered in methylation
calling using the BisulfiteGenotyper command. BisulfiteTableRecalibration
was called with −maxQ 40. Methylation calling was done with BisSNP
package (Liu et al., 2012) and single-base-pair methylation rates (b-values)
were determined by quantifying evidence for methylated (unconverted) and
unmethylated (converted) cytosines at all CpG positions. Non-conversion
rates were estimated using data frommitochondrion DNA (chrM). Only CpGs
with coverage ≥10× in all sample replicates were considered in downstream
analysis.

Differentially methylated CpGs calling
Fisher exact test with α=0.05 was applied to all 17,233,911 CpGs
individually to extract DMPs.

Nucleosome occupancy analysis
We used publicly available nucleosome occupancy data (Teif et al., 2017),
where they investigated nucleosome repositioning during differentiation of
the HL-60/S4 cell line. They aligned the reads to the human genome using
Bowtie (Langmead et al., 2009) (allowing one mismatch, and only
considering unique alignments), after which nucTools (Vainshtein et al.,
2017) was used to generate the average nucleosome occupancy profiles of
±1 kb around the CpGs within each of the identified modules, separately for
each of the differentiated states of HL-60/S4.

Principal component analysis
Principal component analysis was done on all 17,233,911 CpGs using the
princomp command in R.

Genomic features analysis
We extracted genic features (intron, exons, intergenic regions, genes TSS)
together with 4D genomic interaction data from gencode v17 (Harrow et al.,
2012), CpG Island, Laminal Associated Domains (LADS) and

Fig. 5. Chemical differentiation model of HL-60/S4 showing the
transcription factors that may play an essential role in determining cell
fate. Downregulation or upregulation of gene expression are denoted by ‘−’
or ‘+’ respectively. Genes with no sign attached show that their levels are
maintained at similar levels as in UN (promyelocytic) state. Genes with
associated DMPs either being increased or decreased in DNA methylation
are coloured as red and blue, respectively.
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RepeatMasker definitions from UCSC (Rosenbloom et al., 2012). Using the
start and end coordinates of the genes from Genecode17, TSS was defined
as the region extending 2 kb upstream and 1 kb downstream the start of the
gene. RepeatMaskers considered in the enrichment analysis are: DNA repeat
elements (DNA), LINE, low complexity repeats, LTR, rolling circle repeats
(RC), RNA repeats (RNA, rRNA, scRNA, snRNA, srpRNA and tRNA),
satellite repeats, simple repeats (micro-satellites) and SINE. Enhancers were
extracted from ENCODE (The ENCODE Project Consortium et al., 2012),
FANTOM5 (Andersson et al., 2014) and Vista (Visel et al., 2006).
Coordinates of HL-60/S4 epichromatin are described (Olins et al., 2014).

DMP enrichment analysis
Genomic feature and chromosome enrichment in the DMPs were estimated
using the formula:

DMPenrichmentfeature ¼ðoverlap size=data sizeÞ=
ð feature size=genome sizeÞ,

where ‘data_size’ is the size of the data (for either RA or TPA DMPs) used
to calculate the enrichment. Note that the enrichment of the hyper and
hypomethylated DMPs were calculated relative to the ‘data_size’ or the total
DMPs or DMRs called for each comparison but not relative to the total of
only hyper or hypomethylated DMPs or DMRs.

Functional annotation
DMR functional annotations were performed with DAVID 6.8 (Huang et al.,
2009) using the full set of human genes as the background.

Differential methylation patterns of DMPs analysis
DMPs were clustered using the hclust (Murtagh, 1985) with the complete
linkage method after the Euclidean distances were calculated using the dist
function in R. The hierarchically clustered DMPs were divided into 12
clusters using cutree. The resulting clusters were named as modules, from
module M1 to module M12.

Feature enrichment within modules were estimated using the following
formula:

Module enrichmentfeature ¼ðmod feature=feature sizeÞ=
ðmodule size=total modulesÞ,

where ‘mod_feature’ is the size of a module overlapping with a specific
genomic feature and ‘feature_size’ is the total size of a genomic feature in all
modules. ‘module_size’ is the total size of a module and ‘total_modules’ is
the size of the all modules together.

Extraction of DMRs
DMR calling was done by first averaging coverage and number of
methylation calls in three CpGs sliding windows with maximum size of
2 kb. Fisher exact testing was done using an alpha value of 0.05 to extract
differentially methylated windows. Continuous differentially methylated
windows were merged into one and a Fisher test with the same conditions
was applied the second time to ensure the regions were significantly
differentially methylated. Differentially methylated regions that had three
CpGs /1 kb ratio were extracted before applying the final filter, which states
that a DMR should consist of at least three sliding windows. This step was to
eliminate regions that probably had only one truly differentially methylated
CpG. As such, DMRs that were made of less than three windows (five
CpGs) were dropped.

Differential gene expression
Differentially expressed genes data estimated using the RSEM software
package (Li and Dewey, 2011) were obtained from our collaborators in The
Josephine Bay Paul Center for ComparativeMolecular Biology and Evolution
(USA) (MarkWelch et al., 2017). Briefly, they followed the RSEMworkflow
outlined at http://deweylab.github.io/RSEM using gene models from the
UCSC human genome v19 available from Illumina iGenome. Bowtie2 was
used to align reads to transcript models, followed by quantification using
RSEM v1.2.5 using the ng-vector option for isoform analysis.

Correlation between gene expression and TSS methylation of
HL-60/S4 genes
Methylation and transcriptome data were integrated by first extracting genes
with log2 fold change in gene expression greater than 1.5 and TSS
overlapping with at least one DMP as extracted using the Fisher exact test.
Secondly, we extracted DMPs with methylation rate difference greater than
0.2 that overlapped known transcription factor binding sites determined by
ENCODE (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz). In
this extraction criterion 214 and 472 genes were identified for RA and
TPA cells respectively. The association between methylation change of
DMPs overlapping with an upstream transcription factor binding region of a
gene and the log2 fold change in gene expression were depicted for RA and
TPA genes as a scatter plot. For each of these 214 and 472 genes, subsequent
correlation analysis using the DMP methylation rate and gene expression
value for UN, RA and TPA. These correlation values were reported as a
histogram (Fig. 3B,D).

To investigate enrichment of transcription factor binding in positively and
negatively correlating genes, we extracted the gene lists of positively
(correlation of 1 to 0.7) and negatively correlating (correlation of −1.0
to−0.7) genes. Genes beginning with ‘trans_’were removed, and hyphenated
genes were separated into two. The gene lists were provided to the enrichr
webtool (https://amp.pharm.mssm.edu/Enrichr/) and transcription factor
enrichment was determined from the ‘ENCODE TF ChIP-seq 2015’ results.

Furthermore, the correlation between themethylation of individual CpGs in
the gene body and TSS region and gene expressionwas estimated for all genes
from both extraction criteria together with the gene expression of transcription
factors known to be involved in myeloid cell differentiation (Fig. 5).
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