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Coral microbiome composition along the
northern Red Sea suggests high plasticity
of bacterial and specificity of
endosymbiotic dinoflagellate communities
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Abstract

Background: The capacity of reef-building corals to tolerate (or adapt to) heat stress is a key factor determining
their resilience to future climate change. Changes in coral microbiome composition (particularly for
microalgal endosymbionts and bacteria) is a potential mechanism that may assist corals to thrive in warm waters.
The northern Red Sea experiences extreme temperatures anomalies, yet corals in this area rarely bleach suggesting
possible refugia to climate change. However, the coral microbiome composition, and how it relates to the capacity
to thrive in warm waters in this region, is entirely unknown.

Results: We investigated microbiomes for six coral species (Porites nodifera, Favia favus, Pocillopora damicornis,
Seriatopora hystrix, Xenia umbellata, and Sarcophyton trocheliophorum) from five sites in the northern Red Sea
spanning 4° of latitude and summer mean temperature ranges from 26.6 °C to 29.3 °C. A total of 19 distinct
dinoflagellate endosymbionts were identified as belonging to three genera in the family Symbiodiniaceae
(Symbiodinium, Cladocopium, and Durusdinium). Of these, 86% belonged to the genus Cladocopium, with notably
five novel types (19%). The endosymbiont community showed a high degree of host-specificity despite the
latitudinal gradient. In contrast, the diversity and composition of bacterial communities of the surface mucus layer
(SML)—a compartment particularly sensitive to environmental change—varied significantly between sites, however
for any given coral was species-specific.

Conclusion: The conserved endosymbiotic community suggests high physiological plasticity to support holobiont
productivity across the different latitudinal regimes. Further, the presence of five novel algal endosymbionts
suggests selection of certain genotypes (or genetic adaptation) within the semi-isolated Red Sea. In contrast, the
dynamic composition of bacteria associated with the SML across sites may contribute to holobiont function and
broaden the ecological niche. In doing so, SML bacterial communities may aid holobiont local acclimatization (or
adaptation) by readily responding to changes in the host environment. Our study provides novel insight about the
selective and endemic nature of coral microbiomes along the northern Red Sea refugia.

Keywords: Microbial community, 16S rRNA gene profiling, Symbiodiniaceae, Coral acclimatization, Holobiont,
Climate change, Future Oceans
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Introduction
Coral reefs have dramatically declined during the last
two decades through the mortality of reef-building spe-
cies driven by frequent and intense heatwaves [1, 2].
Efforts to predict if and how corals will survive into the
future has resulted in intensive research to understand
coral thermal tolerance across environments [3] and
through time [4]. Corals can persist in relatively extreme
habitats such as shallow pools [5], reef flats [6], and
mangroves [7, 8], or marginally “hot” reef systems such
as those within parts of the Persian-Arabian Gulf [9] and
the Red Sea [4]. Therefore, coral populations that
already exist at high ambient water temperatures have
become important model systems to evaluate the differ-
ent mechanisms with which thermal tolerance may be
acquired [10–12].
Coral thermal tolerance is ultimately determined by the

genetic composition of the holobiont (i.e., the coral host
and its associated microbiome: endosymbiotic dinoflagel-
lates, bacteria, virus, fungi, archaea, and endolithic algae—
sensu Rohwer et al. [13]). Some corals exhibit a broad cap-
acity to adapt to different thermal histories by frontloading
genes that promote heat stress tolerance [3, 14], and/or
potentially through shifting their microbial community
[15–17]. Endosymbiont genotypes or species (family Sym-
biodiniaceae [18]) associated with corals play an important
role in the adaptation of corals living under extreme envi-
ronments [19, 20]. Endosymbiont response to environmen-
tal fluctuations varies greatly between (and within) species/
genotypes [21], and the persistence of certain genotypes
can influence coral stress tolerance [22]. A new species,
Cladocopium thermophilum, resides in extreme warm wa-
ters (> 35 °C) of the Persian-Arabian Gulf [19, 20]. Thus,
knowledge of the dinoflagellate endosymbiont genetic
“identity” is often critical for reconciling ecological patterns
of coral species tolerance to environmental stressors.
Bacterial communities associated with the coral host

also promote coral acclimatization/adaptation to changing
environmental conditions, including transient stress ex-
posure [16, 23, 24]. Bacteria likely play key functional roles
in sustaining nutrient cycling [25] or supporting immunity
[23], for example, especially in corals that might otherwise
be health compromised. Several studies have reported
distinct bacterial taxa associated with corals in extreme
habitats such as deepwater [26], volcanic vents [27], and
warmer back reef pools [16], suggesting the potential for
bacteria to play role in enhancing holobiont environmen-
tal plasticity. Transplantation experiments have further
demonstrated that bacterial communities shift when
corals are introduced to new and non-native habitats, sug-
gesting microbiome alteration as an acclimatization strat-
egy to improve holobiont physiology in response to
changing environmental conditions such as salinity, nutri-
ents, and water temperature [16, 17, 28].

Indeed, bacterial communities associated with the
coral surface mucus layer (SML) are particularly distinct
compared to those associated with the tissue and skel-
eton [29]. The importance of the SML stems from its
protective, nutritional, cleansing roles [30, 31], but not-
ably, it acts as a physical barrier against invasion of po-
tential pathogens [32], therefore forming the first line of
defense [30]. Removal of the SML (using antibiotics)
caused dramatic necrosis and bleaching with symptoms
reflecting the invasion by opportunistic and pathogenic
bacteria [33]. Further, the microbiome of coral tissue
and skeleton are more influenced by intrinsic factors,
unlike the SML bacteria that may be more influenced by
environmental variables [34]. As such, changes to the
SML bacterial community are more closely tied to envir-
onmental variance compared to other coral compart-
ments [17, 23, 32. 35].
The Red Sea represents a unique natural laboratory as

it covers 15° latitude and coral conspecifics throughout
the Red Sea experience a large environmental gradient,
particularly temperature ranging from 23.6 ± 0.6 °C in
the north to 29 ± 0.4 °C in the south (mean annual ± SD,
see [4]). The susceptibility of these conspecifics to ther-
mal anomalies (i.e., temperatures above the long-term
summer mean) is highly variable across latitudinal gradi-
ents. For instance, corals in the northern Red Sea experi-
ence high thermal anomalies of up to 15 Degree Heating
Weeks (DHW) without visible bleaching, in comparison
to their central and southern counterparts [4]. This is
particularly striking when compared to global patterns
of coral temperature vulnerability with mass bleaching
most often occurring already after 4 DHW and wide-
spread mortality after 8 DHW [36]. Consequently, the
northern Red Sea may represent a refuge where corals
exist well below their thermal maxima and are thus likely
to be among the last to bleach [4, 37]. Notably, investiga-
tion of genetic variability of coral hosts (Stylophora pistil-
lata and Pocillopora verrucosa) highlighted low genetic
difference and weak isolation between populations across
the Red Sea, but strong gene flow [38, 39]. Therefore, the
association of corals with different microbiome compos-
ition may, at least in part, explain holobiont
acclimatization to thermal tolerance within the northern
Red Sea.
Here, we examined endosymbiont and SML bacterial

communities associated with six coral species collected
from two environmental settings: (i) across depths to
represent different light regimes and (ii) across 4° of lati-
tude (~ 500 km) detailing sites that varied in mean sum-
mer temperatures within the northern Red Sea. We
characterized the endosymbiont and bacterial compos-
ition using high-throughput metabarcoding to determine
how, and therefore if, microbial communities are associ-
ated with coral acclimatization under different

Osman et al. Microbiome             (2020) 8:8 Page 2 of 16



environmental regimes [4]. We show that while the
endosymbiotic dinoflagellate communities for a given
host are maintained throughout the investigated re-
gion, bacterial diversity and composition were site-
specific and varied significantly along the latitudinal
gradient. These findings suggest that bacterial com-
munities could aid in holobiont acclimatization or
adaptation, while the conserved dinoflagellate com-
munity may be able to support productivity through-
out the northern Red Sea.

Results
Symbiodiniaceae community structure
Samples were collected from six coral species (two spe-
cies each of branching and massive scleractinian coral
and two species of soft coral) to represent taxonomic
and functional diversity, at two depths along five sites
(n = 163) with different thermal regimes in the northern
Red Sea (Fig. 1, see [4]). DGGE fingerprinting identified
a total of 19 endosymbiotic ITS2 types belonging to
three genera: Symbiodinium, Cladocopium, and Durusdi-
nium (from previously described clades A, C, and D, re-
spectively [18]). Endosymbionts from Cladocopium were
most prevalent (85% of all samples, n = 139) and

comprised 14 ITS2 types: C1, C1 variant, C15, C15r,
C15q, C170, C170a, C171, C1h, C1h*, C3z*, C41, C65
variant1, and C65 variant2 (Fig. 1). The remaining sym-
bionts were from the genus Symbiodinium (14%, n = 22)
and comprised three ITS2 types (A1, A1c, and an A1
variant), and finally Durusdinium trenchii D1a (1%, n =
2, Fig. 1). Of the 19 symbionts, at least five novel types
(i.e., not described previously) were recorded (19%, n =
31), namely C15r, C15q in Porites nodifera, C3z* in
Favia favus, and C1h* and C171in Xenia umbellata
(Additional file 1). Further, four endosymbiont types
remained unidentified due to sequencing difficulties (A1
variant, C1 variant, C65 variant1, and C65 variant2).
Overall, the endosymbiont community structure did not

vary significantly between the depths (PERMANOVA, F =
1.9, R2 = 0.011, p = 0.059). Nevertheless, few endosymbiont
types were observed only in either samples from the shal-
low (C15r, C15q, C65 variant2, A1c, and D1a) or deep
(C170a, C1, C1h*, and A1variant) (Additional file 2: Figure
S1). Despite the latitudinal differences and increase of am-
bient water temperature toward the south by almost 3 °C,
the endosymbiont community structure within each coral
host generally did not change between sites (PERMA-
NOVA, F = 0.6, R2 = 0.016, p = 0.92). Endosymbiont type

Fig. 1 Endosymbiont distribution for six coral species collected from two depths (2–5 m and 15–18 m) along five different sites at the northern
Red Sea (total n = 163). The map shows the long-term mean of sea surface temperature along the Red Sea and the thermal gradient in the
northern Red Sea, including sampling sites. Data obtained from Giovanni Ocean color (https://giovanni.gsfc.nasa.gov/giovanni/, MODIS Aqua 4 km
satellite, 4 μm night only) for the period between July 2002 and August 2018. The tile plot represents endosymbiont ITS2 types associated with
each coral host, depth, and site separately where site represents a latitudinal gradient (sites on y-axis are arranged from the North (top) to South
(bottom)). Three distinct patterns are apparent: (i) high degree of host-symbiont specificity, (ii) absence of depth-specific patterns, except for P.
damicornis and F. favus, which changed the ratio of dominant clades with depth, and (iii) symbiont community within each host did not change
across the latitudinal gradient, except in S.hystrix. White tiles represent missing samples; representative image of coral hosts above tile plot
column for each respective species
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shifted only in Seriatopora hystrix from the dominance of
C170 (70%) in the northern sites to A1 (20%) and C170a
(10%) types in the southernmost (warmer) sites (i.e., Mer-
itte and Wadi El Gemal—Fig. 1).
The endosymbiont types were strongly linked to coral

species identity, indicating a high level of host-specificity
(PERMANOVA, F = 48.4, R2 = 0.60, p < 0.001). Each
coral species associated predominantly with either single
or multiple distinct endosymbiont type(s) that were
rarely shared with other coral species (Fig. 1). The only
endosymbiont present across multiple host species was
A1, which was recorded in Pocillopora damicornis and S.
hystrix (Fig. 1). Notably, there was no more than one
endosymbiont type detected in any of the sampled col-
onies along the gradient.
Porites nodifera associated predominantly with C15,

but few colonies contained the novel types C15r (n = 1)
and C15q (n = 2). F. favus harbored four types, predom-
inantly an unidentified C1 variant (n = 12), the novel
C3z* (n = 7), C41 (n = 2), and C1 (n = 1). P. damicornis
harbored four types, A1 (n = 11) and A1c (n = 2) in the
shallows and mainly C1h (n = 12) in the deep—this C1h
type is found commonly in pocilloporids across the In-
dian Ocean [36, 37]—and a single colony with an un-
identified variant of Symbiodinium A1 (Fig. 1). S. hystrix
associated with symbionts A1 (n = 6), C170 (n = 21) and
C170a (n = 3). The soft coral X. umbellata harbored the
novel C171 (n = 20), two colonies with D1a and a single
colony had the novel C1h* type. Finally, Sarcophyton tro-
cheliophorum contained two unidentified types closely
related to C65 (C65-variant1, n = 24 and C65-variant2,
n = 1), which is a common symbiont found in soft corals
on the Great Barrier Reef and Indian Ocean [38, 39].
Thus, coral host identity was the main factor determin-
ing endosymbiont variability throughout the latitudinal
gradient in the northern Red Sea.

Bacterial community structure
Bacterial 16S rRNA gene amplicon sequencing from the
SML of six coral species and surrounding seawater sam-
ples at two depths (n = 164) yielded 21.3 million se-
quences, ranging from 38,048 to 1.3 million sequences
per sample (median = 117,188 reads; see Additional file 3).
Sequence length ranged from 350 bp to 548 bp (me-
dian = 427 bp). A total of 6970 OTUs were recorded
across all samples, ranging from 159 to 2556 OTUs per
sample (median = 656 OTUs—see Additional file 2:
Figure S2). OTUs belonged to 40 bacterial phyla,
whereby Proteobacteria was the predominant phylum
representing 53% of total abundance across all samples
(i.e., corals and seawater), followed by Bacteroidetes
(16%) and unclassified bacteria (10%). Out of 6970
OTUs, only 14 most dominant OTUs comprised 60.9%

of the total bacterial community abundance.
The remaining OTUs (n = 6956) were rare (i.e., each
contributed < 1% of total abundance), but shaped the
remaining microbial community structure (39.1%) with-
out defined dominant taxa (Fig. 2). The most abundant
bacterial phylotypes were a single Alteromonas sp.
(27.4%) and three Pseudoalteromonas OTUs (16.2%),
which together comprised 43.6% of the total bacterial
abundance of coral SML and seawater (Fig. 2). Three
different Vibrio OTUs cumulatively comprised 6.6% of
all sequences, while Endozoicomonas and the photosyn-
thetic Erythrobacter were in low abundance (1.2% each).
Soft corals appeared to have similar bacterial compos-
ition compared to reef-building corals, with Alteromonas
and Pseudoalteromonas comprising the main OTUs;
however, X. umbellata had relatively high proportions of
Vibrio and Endozoicomonas sp. OTUs (Fig. 2). Similarly,
water samples were also dominated by Alteromonas sp.
(22.1%), but were markedly comprised of different bac-
terial phylotypes, such as Roseovarius sp. (4.6%), Rhodo-
bacteraceae (3.8%), and Pelagibacter sp. (2.6%) (Table 1).
Seawater samples had a distinct bacterial diversity that

was significantly richer (i.e., Chao1–F1,162 = 41.4, p <
0.001) and more diverse (i.e., inverse Simpson–F1,162 =
10.7, p < 0.01 and Shannon index–F1,162 = 18.7, p < 0.001)
compared to that of coral SML. Seawater bacterial diver-
sity did not significantly vary with either depth or site
(all subsequent ANOVA p > 0.05—see Additional file 2:
Table S1, Additional file 2: Figure S3). Similarly, the
coral SML bacterial richness and diversity did not vary
with depth, but in contrast to seawater, differed signifi-
cantly between sites and coral species (Additional file 2:
Table S1). Analysis of bacterial community composition
further confirmed this pattern that seawater bacterial
communities were significantly different from the coral
SML (pairwise PERMANOVA, F = 7.2, R2 = 0.04, p <
0.001—see Fig. 3). Therefore, seawater samples were re-
moved from subsequent analysis. Similar to bacterial di-
versity, coral SML-associated bacterial community
composition did not vary between depths (PERMA-
NOVA, F = 1.4, R2 = 0.01, p = 0.14), but by coral host
species (PERMANOVA, F = 5.3, R2 = 0.168, p < 0.01) and
site (PERMANOVA, F = 8.4, R2 = 0.174, p < 0.01). PER-
MANOVA was also performed on each coral species
across all sites separately as well as all coral species
within each site, confirming that sites and coral host
species contribute to the variation in the bacterial com-
munity, but not depth (see Additional file 2: Table S2).
Principle coordinate analysis (PCoA) confirmed this pat-
tern (after removal of the two most abundant OTUs,
only for this visualization but not excluded from statis-
tical analysis, as they obscured the geographic patterns—
see also Additional file 2: Figure S4 for PCoA without
removal of those OTUs) and bacterial communities were
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Fig. 2 Taxonomic profile (genus level) of the abundant bacterial community associated with the surface mucus layer of six coral species and
surrounding seawater samples (left) collected from five surveyed sites (right) in the northern Red Sea. Alteromonas and Pseudoalteromonas were
the most dominant OTUs and composed combined 43.6% of the total community in both sites and coral species, bacterial community was
significantly different between sites and coral hosts. Water samples had markedly distinct bacterial assemblage: over 60% of the bacteria had less
than 1% of relative abundance. Unclassified taxa to genus level were denoted by (UC)

Table 1 Summary of abundant (> 1% of total abundance) and core (present in at least 95% of the samples regardless of
abundance) microbial OTUs in the surface mucus layer of six coral species (including water) collected from two depths across the
latitudinal gradient in the northern Red Sea

OTUs Phylum Class Genus Total no. of sequences Relative abundance % Core Abundant

OTU1 Proteobacteria γ-proteobacteria Alteromonas 5,851,880 27.4 + +

OTU2 Proteobacteria γ-proteobacteria Pseudoalteromonas 2,208,755 10.4 + +

OTU94 Proteobacteria γ-proteobacteria Pseudoalteromonas 997,177 4.7 + +

OTU4 Proteobacteria α-proteobacteria Ruegeria 722,904 3.4 – +

OTU15 Proteobacteria γ-proteobacteria Vibrio 470,821 2.2 + +

OTU29 Proteobacteria γ-proteobacteria Vibrio 467,620 2.2 – +

OTU6 Bacteroidetes Flavobacteriia Flavobacteriaceae 400,646 1.9 – +

OTU14 Proteobacteria γ-proteobacteria Vibrio 378,498 1.8 + +

OTU7 Proteobacteria α-proteobacteria Rhodobacteraceae 298,855 1.4 – +

OTU8586 Proteobacteria γ-proteobacteria Endozoicomonas 252,966 1.2 – +

OTU10 Proteobacteria α-proteobacteria Erythrobacter 252,405 1.2 + +

OTU32 Proteobacteria γ-proteobacteria Pseudoalteromonas 236,331 1.1 + +

OTU11 Proteobacteria γ-proteobacteria Unclassified γ-proteobacteria 226,023 1.1 – +

OTU80 Proteobacteria α-proteobacteria Candidatus Pelagibacter 221,409 1.0 – +

OTU12 Cyanobacteria Cyanobacteria Gplla 190,784 0.9 + –
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clustered geographically based on site, regardless of
depth and coral species (Fig. 3). However, within each
site, bacterial communities were distinct between coral
species (Additional file 2: Figure S5 and Add-
itional file 2: Table S2). Thus, bacterial community struc-
ture varied with host taxa, similar to dinoflagellate
endosymbionts association, but it also differed across the
latitudinal gradient.

Bacterial indicator species
We further performed an indicator species analysis to
identify bacterial taxa (OTUs) that are representative of
specific sites and coral hosts (cutoff level p < 0.05). Due
to the similarity between bacterial assemblages at the
two depths (PERMANOVA, F = 1.4, R2 = 0.01, p = 0.14),
data were pooled across depths. We found a number of
OTUs, ranging from 36 OTUs at Abo Galawa to 1111
OTUs at Ras Mohamed (total 2247 out of 6970 OTUs—
32%) that were significantly associated with the site
(Additional file 2: Figure S6). The abundance of these
OTUs relative to the total microbial community varied
from 10.7% at Wadi El Gemal to 58.8% at Ras Mohamed
(Additional file 2: Figure S6). The main indicator taxa
differed between sites, highlighting the heterogeneity of
associated taxa, however, Pseudoalteromonas and Altero-
monas were reported at all sites as indicator OTUs as
well (Additional file 2: Figure S7). For example, Pseudoal-
teromonas spp. (69.3%) and Endozoicomonas sp. (10%) were
the prevalent indicator bacterial OTUs at the northernmost
site Abo Ghalloum, but Psychrosphaera sp. (23.6%) and
Roseovarius sp. (15.8%) dominated Meritte, and an

unclassified Gammaproteobacteria (9.6%), Endozoicomonas
sp. (8.3%), and Gplla sp. (i.e., Cyanobacteria—6.3%) domi-
nated Ras Mohamed (Additional file 2: Figure S7). Interest-
ingly, Wadi El Gemal (i.e., the warmest site at the south)
was dominated by the photosynthetic Erythrobacter sp.
(29%). Notably, its abundance increase southward aligned
with the latitudinal gradient (from 0.3 to 3.1%—Add-
itional file 2: Figure S8).
A total of 977 OTUs (14% of total OTUs) were signifi-

cantly associated with the SML of different coral hosts,
ranging from 26 OTUs in P. damicornis to 456 OTUs in
P. nodifera (Additional file 2: Figure S6). Abundances
varied notably between reef-building corals (i.e., P. nodi-
fera, F. favus, P. damicornis, and S. hystrix; 5.8% to
18.8%), and soft corals (i.e., X. umbellata and S. troche-
liophorum; 36.6% and 49%, respectively) relative to the
total OTUs (Additional file 2: Figure S6). The main bac-
terial indicator taxa differed between soft coral hosts, re-
vealing species-specific bacteria, with
Pseudoalteromonas, Alteromonas, and Endozoicomonas
represented in the SML of all investigated host species
(Additional file 2: Figure S7).
Linear discriminant analysis (LDA) effect size (LEfSe)

analysis supported indicator species analysis and showed
that Ras Mohamed was highly enriched by many unclas-
sified bacterial OTUs that drive variation between sites.
Overall, 406 OTUs (69 family and 126 genus) were dif-
ferentially abundant between sites. Ruegeria, Pseudo-
monas, unclassified Flavobacteriacae, and Oleibacter
(LDA > 5, p < 0.001) were the most significant OTUs that
were differentially expressed between sites

Fig. 3 Principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity matrix of bacterial communities associated with six coral species and five
sites along the latitudinal gradient in the northern Red Sea. PCoA shows clustering pattern between coral species versus seawater (a) and between
different sites (b). Two most abundant OTUs (Alteromonas sp. and Pseudoalteromonas sp.) mask geographic patterns and were therefore excluded for
this visualization. Compositional differences in bacterial communities were best explained by site
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(Additional file 2: Figure S9a). On the other hand, 380
OTUs (53 family and 97 genus) drove most of the vari-
ation between the SML of coral species as well as sea-
water samples, particularly three Endozoicomonas and
unclassified Alteromonadaceae OTUs that had the high-
est LDA score (LDA > 5, p < 0.001). Interestingly, sea-
water was enrichened by bacteria that drove most
variation between coral species compared to seawater,
highlighting the distinct bacterial community of seawater
(Additional file 2: Figure S9b).

Core microbiome of coral SML
The number of core OTUs (i.e., present in 95% of the
samples regardless of their abundance) varied between
sites and coral species. The total number of core bacteria
associated with seawater was 129 OTUs, while it ranged
from 13 in F. favus to 50 OTUs in P. damicornis. Inter-
estingly, only 5 OTUs were common among corals and
seawater (Alteromonas, 3 OTUs of Pseudoalteromonas,
and Vibrio), but 72 OTUs were exclusively found in the
seawater samples highlighting the distinct bacterial com-
munity of seawater. Similarly, core bacteria ranged from
56 OTUs at Ras Mohamed to 25 OTUs at Meritte, con-
tributing from 47.3% at Ras Mohamed to 84% at Abo
Ghalloum of bacterial abundance (Additional file 2:
Table S3). Notably, eight OTUs were shared among all
sites (Fig. 4), five of them were the same OTUs shared
among all coral species in addition to another 3
OTUs: Vibrio sp., Gplla sp. (i.e., cyanobacteria), and
the photosynthetic Erythrobacter sp. There were ex-
clusive OTUs in each site that were consistently

observed within SML samples across all coral species
and ranged from 23 at Ras Mohamed to 2 OTUs at
Wadi El Gemal (Fig. 4 and Additional file 4). Interest-
ingly, two exclusive OTUs at Wadi El Gemal (the
warmest site) belong to the chemo/phototroph family
Rhodobacteraceae (Additional file 4), but occurred in
low abundance and comprised only 0.3% of total bac-
terial abundance at this site.

Discussion
Flexibility of coral microbiomes may help enable coral
species to tolerate, and adapt to, environmental conditions
known to induce stress and mortality [16, 17, 24, 28, 35.
44]. Here, we assessed the composition of coral dinoflagel-
late endosymbionts and the SML bacterial community for
six abundant coral species inhabiting the northern Red
Sea, an area recently proposed as a refuge for corals
against thermal stress events [4, 45]. Our data provides
new insight into whether and how microbiome compos-
ition aligns with the tolerance of corals within a region
that is characterized by a natural latitudinal gradient of
temperature from north to south and also subjected to ex-
treme thermal anomalies [4].

Coral host and dinoflagellates endosymbiont associations
Host species identity contributes to endosymbiotic dino-
flagellate distribution and diversity [46, 47]. Similarly, we
observed a high level of host specificity for each of the
coral species and their endosymbiotic dinoflagellates
despite the latitudinal gradient, a trend that is consistent
with previous studies in different bioregions [40, 42, 48,
49]. Such specificity may be attributed to one or more

Fig. 4 Venn diagram illustrating the number of bacterial OTUs that are present in at least 95% of the samples at each site and coral species. The
graph shows the number of core OTUs shared among coral species (a). Only five OTUs were common between six corals species and seawater,
but seawater samples had 72 exclusive OTUs that were not found in the SML. Similarly, eight OTUs (49.7% of total bacterial abundance) were
common between sites (b), five of them were shared between all species in addition to a Vibrio sp., a Gplla sp., and the photosynthetic
Erythrobacter sp. Importantly, each site and coral species had a small number of exclusive OTUs (outer region in diagram)
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factors including (i) compatibility of cellular signals be-
tween algal symbiont and coral host during symbiosis es-
tablishment [50], (ii) metabolic characteristics of the
host [22, 51], (iii) availability of host pigments to facili-
tate photosynthesis [52], (iv) host-driven factors that in-
fluence micro-habitat conditions for the symbiont (e.g.,
colony morphology and tissue thickness which influence
light absorption [53], and (v) host acquisition symbiont
strategy (vertical versus horizontal transmission—not-
ably, all coral species investigated here were brooders
that use vertical transmission) [54]. Environmental con-
ditions are known to shape distribution patterns of the
family Symbiodiniaceae at larger spatial scales [46, 55,
56]. For example, the main reef builder in the Caribbean
(Orbicella annularis) exhibits partitioning of the endo-
symbiont community between the north and south (i.e.,
1800 km from the Bahamas to Colombia), which is
driven by thermal history rather than host genotype
[57]. Thus, flexibility of host-endosymbiont associations
(via switching or shuffling) is one strategy for corals to
survive across biogeographical regions and under various
local environmental stressors [58, 59]. The strong host-
endosymbiont associations we observed here likely indi-
cate strong local selection pressure to specific environ-
ments of the northern Red Sea [4].
Corals were dominated by Cladocopium spp. (formerly

clade C, 86%). Presumably, Cladocopium spp. domin-
ance in the Red Sea reflects the evolutionary origin (and
connectivity) of coral taxa from the Indian Ocean where
Cladocopium spp. also dominate (see [21, 40, 41, 60–
62]). This is consistent with Ziegler et al. [55] who noted
Cladocopium spp. dominance within the Red Sea (see
also Baker et al., [63]) and suggested a strong selection
for this genus throughout the entire Arabian region. We
found five novel Cladocopium types exclusively within
the northern Red Sea highlighting endemism within the
region. As such, this “thermal refugia area” may select
certain symbiont types that broaden the environmental
niche for corals to survive under different (and extreme)
conditions [4, 11, 12]. Although the phylogenetic ana-
lyses of endosymbionts relative to those in the Indian
Ocean are yet to be explored, this may highlight the geo-
graphically (semi) isolated nature of the Red Sea that
would promote local ecological (and/or genetic) speci-
ation of endosymbionts.
The presence of the genus Symbiodinium with the

genus Cladocopium within two branching coral hosts
(P. damicornis and S. hystrix) corroborates that many
types of Symbiodinium spp. are generalist symbionts
within the Red Sea and occupy multiple hosts [64].
This pattern is likely unique for the Red Sea as Sym-
biodinium is rarely recorded in corals elsewhere and
usually found in clams and fire corals in the Indo-
Pacific Ocean [40].

Spatial differences of dinoflagellate endosymbiont
community
Interestingly, the genetic identity of the algal endosymbi-
onts within a host species did not change from north to
south despite the latitudinal gradient. There are two po-
tential explanations for this observation. Firstly, pheno-
typic plasticity of endosymbionts may enable them to
populate different environmental/thermal regimes (e.g.,
[65]) and therefore influence coral thermal tolerance
along the northern Red Sea, possibly via long-term ac-
quisition of endosymbionts locally adapted to high
temperature [66]. Howells et al. [67] noted higher photo-
chemical performance and survivorship of Cladocopium
spp. C1 isolated from warmer areas than those sampled
from cooler regimes. Levin et al. [68], subsequently con-
firmed that this “warmer-regime” Cladocopium C1 iso-
late is characterized by enhanced gene expression for
heat tolerance. Thus, the history of environmental re-
gimes are likely critical in expanding niche breadth
through functional diversity for certain symbiont taxa
[22].
Secondly, the resolution of ITS2 as a genetic marker

may underestimate the taxonomic diversity of the family
Symbiodiniaceae, and as such higher genetic marker
resolution is needed to resolve taxonomic diversity [19,
69, 70]. For example, using the bspA gene resolved iden-
tical C3 ITS2 fingerprints and demonstrated a distinct
monophyletic lineage with a large genetic distance of
new species (Cladocopium thermophilum) compared to
other C3 types from the Arabian Gulf ([19], see also
[71]). Notably, this novel species C. thermophilum likely
consists of different (sub)species [72] that could be re-
solved using the ITS2 marker alone and the novel ana-
lytical framework SymPoral [73]. In our study, we report
five novel symbiont types in addition to four unidentified
endosymbiont types. This highlights the need to further
explore the taxonomy of Symbiodiniaceae within the re-
gion using different genetic markers that may provide
higher taxonomy resolution. Notably, the recent Sym-
Portal framework that resolve symbiont types from ITS2
next-generation sequencing data overcomes many of the
recent limitations.

Bacterial community plasticity across sites
In contrast to the endosymbiont communities, the
bacterial communities varied primarily between sites
highlighting strong geographical patterns, likely driven
by environmental differences, over host-bacterial specifi-
city (Fig. 1). Coral bacterial communities are altered by
changing environmental conditions such as pollution
[17, 74], nutrient availability [17, 75], environmental
anomalies such as temperature [16, 21, 76], salinity [28],
pH [77, 78], and eutrophication [79]. Such compositional
flexibility indicates a potential capacity for local
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acclimatization (or adaptation), and thus may be critical
for promoting holobiont fitness a. Indeed, our indicator
species analysis supports the notion of local
acclimatization where a high number of OTUs were sig-
nificantly associated with sites comprising high relative
abundance (Additional file 2: Figure S6). This suggests
selection of beneficial bacterial taxa that are presumably
important to sustain coral survival under different envir-
onmental/thermal regimes. Notably, the stark differences
that we observed in bacterial communities of the SML
along latitudinal gradients are unlikely to be simply ex-
plained by differences in the prevailing environment
since the bacterial community differences were also
host-specific.

Coral-specific bacteria
Composition of bacterial communities varied between
coral species, where 5.8% to 18.8% of the bacterial com-
munity associated significantly to specific coral hosts
regardless of latitudinal environmental/thermal regimes.
Such host-specificity of bacterial communities is consist-
ent with many other studies profiling coral microbiomes
[80–83]. The variation in bacterial community compos-
ition between coral taxa could be explained by different
factors including (i) species-specific composition of
exudates by different coral hosts to the SML (e.g., [84]),
(ii) species-specific biochemical composition of coral
SML itself [85–88]; (iii) vertical transmission of bacterial
community from parents to offspring [89–92]. However,
which of these factors likely drive differences among
bacterial communities of northern Red Sea corals is dif-
ficult to discern from the available data.

Putative roles of the dominant SML-associated bacteria
SML bacterial community functional characterization is
required to validate whether and how bacterial taxa con-
tribute to niche broadening throughout the northern
Red Sea and is beyond the scope of the curernt study
[93]. Even so, using the METAGENassist web portal
[94] (Additional file 2: Figure S10), functional profiling
showed that about half of the samples exhibited poten-
tial enrichment of high sulfate and nitrite reducers and
dehalogenating bacteria, while the remaining samples
had mixed metabolic sources. High enrichment of sul-
fate reducers may simply reflect the dominance of Alter-
omonas and Pseudoalteromonas, many of which are
known to play a major role in dimethyl-
sulfoniopropionate (DMSP) metabolism [95]. High
abundance of these genera may indicate elevated levels
of DMSP production in Red Sea corals and surrounding
waters [96]. DMSP is produced by the endosymbiotic di-
noflagellates as well as the coral [97] and metabolized by
associated bacteria to form dimethylsulfide (DMS), di-
methyl sulfoxide (DMSO), and acrylate. These molecules

have potential roles in osmoregulation [98] and antioxi-
dant capacity [99, 100]. High production of DMSP may
therefore convey the capacity to survive under high sal-
inity and thermal anomalies that characterize the north-
ern Red Sea [4, 11, 12]. Similarly, the SML of Porites
lobata from the central Red Sea was dominated by Pseu-
doalteromonas [101] and displayed increased levels of
sulfur cycling compared to the Arabian Gulf. Therefore,
it would be informative to link levels of DMSP (and as-
sociated by-products) with tolerance patterns of corals
in this region.
Interestingly, the presence of Alteromonas and Pseu-

doalteromonas within the region may be linked to coral
disease resistance. Pseudoalteromonas spp. associated
with the SML of several coral species exhibit extracellu-
lar antibacterial metabolites which may aid in the
defense against invasive pathogens [102, 103]. Wright
et al. [104] similarly reported an increased abundance of
Alteromonas and Pseudoalteromonas phylotypes in Acro-
pora millepora resisting infection by Vibrio sp. Further,
some strains of Alteromonas spp. are known dinitrogen
fixers, which may subsequently translocate fixed nitro-
gen to the algal endosymbionts associated with P. dami-
cornis larvae [92]. Together, these observations highlight
that while the detailed role of abundant bacterial phylo-
types is yet to be investigated for Red Sea corals, they
may provide several functions important to holobiont
fitness.
Furthermore, Erythrobacter sp. constituted the domin-

ant indicator taxon at the warmest site (i.e., Wadi El
Gemal) where it increased in abundance southwards
(Additional file 2: Figure S8). This bacterial group con-
tains bacterial chlorophyll-a (B-Chla) and large amounts
of carotenoids [105–108]. Carotenoids are well known
for their antioxidant activities [109], but the relationship
between bacterial assemblage associated with coral SML
and antioxidant activities is not well resolved. Diaz et al.
[110] experimentally measured extracellular superoxide
concentrations associated with corals and revealed that
the microbial community could produce and importantly
regulate ROS in their immediate surroundings, and hence
influence coral physiology and health. Hence, Erythrobac-
ter may play a functional role critical toward improving
holobiont resistance to heat stress: however, such func-
tional implications have yet to be fully assessed.

Conclusion
We provide the first details of the microbiome commu-
nities associated with coral conspecifics across 500 km in
the northern Red Sea that showed high thermal toler-
ance as evidenced by low bleaching susceptibility over
the past three decades. Our data highlight that the endo-
symbiotic communities were highly host-specific with
little variation throughout this region. At the same time,
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we identified five novel types highlighting endemism and
the selection of certain genotypes within the region. In
contrast, the SML bacterial communities varied signifi-
cantly between sites and coral hosts, therefore emphasiz-
ing how the holobiont composition changes across the
latitudinal gradient. Among the associated bacterial
OTUs, we identified taxa across the northern Red Sea
that may play a role in elevated thermal tolerance and
may fill a regional environmental niche that broadens
the capacity of corals to survive under extreme condi-
tions. We therefore conclude that the distinct micro-
biome associated with corals from the northern Red Sea
may contribute to the thermal tolerance of corals, previ-
ously denoted as a coral reef refuge. Notably, the highly
responsive nature of bacterial communities present in
the SML provides further justification to investigate their
functional role, which may contribute to the success of
corals experiencing an increased frequency of thermal
stress in the near future.

Materials and methods
Survey sites and sample collection
Sampling sites
Sample collection was conducted at five sites along the
northern Gulf of Aqaba and southern Egyptian coast in
February 2013, representing a latitudinal gradient mainly
varied in temperature. The selected sites were Abo Ghal-
loum (28.6147°N, 34.5604°E; Gulf of Aqaba), Ras
Mohamed (27.7305°N, 34.2691°E; Sinai Peninsula), (3)
Abo Galawa (27.3157°N, 33.8097°E), (4) Meritte
(27.2485°N, 33.849°E) at Hurghada, and (5) Wadi El
Gemal (24.6988°N, 35.1327°E) at the southern Egyptian
coast (Fig. 1). All sampling sites were unurbanized and
not directly impacted by anthropogenic activities (except
Merritte) and characterized by fringing reefs adjacent to
the shoreline, except for Abu Galawa which was a patch
reef located about 1.5 km off the coast. Sites were located
within the thermal gradient where long-term mean (±SD)
of summer SST ranged from 26.6 ± 1 °C for the Gulf of
Aqaba to 29.3 ± 1.2 °C for the Wadi El Gemal [4]. To en-
sure that the influence of seawater parameter on coral
microbiome composition is minimum, remote sensing
data (2003–2012) of chlorophyll a and water attenuation
coefficient were used as proxy of water quality. This data
showed that there are no significant differences in envir-
onmental variables across sites, but the temperature is sys-
tematically changing across the region (Additional file 2:
Supplementary material). Further, we collected seawater
samples to measure ammonia concentration in each study
sites, that did not vary significantly between sites
(Additional file 2: Supplementary material). Taken to-
gether, this highlights that temperature is likely the main
driver of compositional change of microbiome along the
latitudinal gradient in the northern Red Sea.

Sample collection
Six coral species were sampled at each site across the
latitudinal gradient, with the selection of species repre-
senting different coral growth forms: massive (Porites
nodifera, Favia favus) and branching (Pocillopora dami-
cornis, Seriatopora hystrix) hard coral, as well as soft
corals (Xenia umbellata, Sarcophyton trocheliophorum).
Specimens were collected from shallow (2–5 m) and
deep (15-18 m) reef slopes representing different light
regimes as per Kuguru et al., [111]. At each site, three
types of samples were collected: coral fragment, coral
mucus and seawater. Overall, three replicates x five sites
x six species x two depths samples of coral tissue (total
n = 164) and coral SML (total n = 141) were collected for
endosymbiont ITS2 and bacterial 16S rRNA gene profil-
ing, respectively. Further, three replicates of water sam-
ples × 2 depth × 5 sites (total n = 23) were also collected
as reference bacterial samples. Specifically, (i) coral frag-
ments (< 1 cm) were collected from three different vis-
ibly healthy colonies (> 5 m apart) for each species and
depth (i.e., n = 3 per species and depth). Samples were
sealed in separate pre-labeled bags filled with in situ sea-
water [48]. (ii) At each sampled coral colony, associated
SML was sampled using sterile 50ml syringes (n = 3 per
species and depth). (iii) Seawater samples (500ml) were
collected in sterilized polyethylene bottles in each site at
each depth (n = 3 per site per depth) as environmental bac-
terial reference samples [102]. All samples were then kept
shaded in a cold box until preservation (within 2 h).
Upon return to the laboratory, all coral fragments were

preserved directly in pre-loaded 2 ml vials containing
DMSO-20% buffer for DNA preservation for subsequent
dinoflagellate endosymbionts identification [112]. Each
SML and water sample was filtered through sterilized
0.22 μm Cyclopore filter columns (Whatman, UK), and
preserved in 2 ml vials preloaded with DMSO-20% buf-
fer for 16S rRNA gene microbial analysis. Preserved
coral fragments and filtered bacterial samples were kept
at 4 °C until shipping to the UK for genomic analysis,
and then stored at − 20 °C.

Symbiodiniaceae identification
The overall purpose of our analysis was to retrieve the
dominant endosymbiont type(s). For this reason, we deter-
mined DGGE to be the most cost-effective approach that
can detect up to 90–95% of the total community present
within a single coral colony [113]. Notably, DGGE is not a
method to elucidate fine-scale genetic differentiation,
which is rather conducted via next-generation sequencing
of the ITS2 marker gene [114] and subsequent analysis in
SymPortal [73]. Endosymbiont DNA was extracted from
approximatly 100mg of coral tissue using the modified
Promega Wizard DNA prep protocol (Madison, WI, USA)
as per LaJeunesse et al. [48]. Amplification of the symbiont
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Internal Transcribed Spacer (ITS2) was performed against
a negative control, through two steps as described by Bon-
gaerts et al. [105]: (i) nested PCR was used (10 μl total re-
action) to amplify the region between 18S and 28S rDNA
(750 bp) using 1 μl of gDNA mixed with “ZITSUPM13”
and “ZITSDNM13” primers for 35 cycles as described in
Santos et al. [116] (Additional file 2: Table S1); and subse-
quently (ii) 1 μl of the nested PCR amplicon served as a
template to amplify ITS2 (330–360 bp) mixed with
‘ZITS2for’ and GC clamp ‘ZITS2 clamp’ primers as de-
signed by LaJeunesse and Trench [117], and touchdown
PCR protocol for 40 cycles were used as per LaJeunesse
et al. [43] (Additional file 2: Table S1). ITS2 amplicons
were then separated by denaturation gradient gel electro-
phoresis (DGGE) (45–80% polyacrylamide gel) and
aligned against a reference DNA ladder (containing ITS2
Breviolum B1, Cladocopium C1, and Durusdinium D1
samples) at 60 °C for ~ 15 h as per LaJeunesse [48] using a
CBS Scientific System (Del Mar, CA, USA). DGGE gels
were stained with SYBR green (Molecular Probes, Eugene,
OR, USA) and representative bands (n = 3–5 from differ-
ent samples from each fingerprint found) for each coral
species were excised and eluted in 500 μl RNase free water
at 4 °C overnight. Subsequently, bands are directly ampli-
fied (without gel extraction step) using ZITS2 forward and
reverse primers (without the GC clamp) for 30 cycles and
sent for sequencing. After that, the ITS2 amplicon was
cleaned using USB-EXO SAP-IT PCR cleanup kit (Affy-
metrix, USA) and sequenced using Applied Biosystems
310 genetic analyzer, USA.

Bacterial 16S rRNA gene profiling
Due to the rapidly adaptive nature of the surface mucus
layer (SML) to local environments and/or stress, bacterial
genomic DNA was extracted from coral SML and seawater
using the CTAB (Cetyl-trimethyl-ammonium-bromide)
method [119]. To amplify the bacterial 16S rRNA gene
from SML and water samples, hypervariable regions V3
and V4 of ribosomal DNA were targeted (~550pb) using
341F and 805R universal bacterial primers with an Illu-
mina overhang adaptor (Additional file 2: Table S1) ac-
cording to the manufacturer’s protocol (Illumina, San
Diego, CA, USA). The PCR amplicon was cleaned by an
AMPure XP magnetic bead system (Beckman Coulter,
Brea, CA, USA), and 5 μl of cleaned PCR amplicon used
for indexing PCR using Nextera XT V2 kit (A&B index
kit) (Illumina) according to the manufacturer’s protocol.
The indexed PCR amplicon was cleaned again by AMPure
XP magnetic beads and then quantified using a FLUOstar
Omega microplate reader (BMG Labtech, Germany) using
Quant-iT PicoGreen dsDNA assay kit (Invitrogen, USA).
All samples were then pooled in equimolar ratios. The
quality of the final pooled library was checked on a 1%
agarose gel as well as on a Bioanalyzer (Agilent 2100,

Santa Clara, CA, USA). Version 3 chemistry kit was used
in HiSeq and sequencing was conducted at the TGAC
genomic analysis center (Norwich, UK).

Data analysis
Symbiodiniaceae analysis
We followed the commonly accepted and widely published
protocols for this technique to interpret this type of data
(cf. original methodologies in LaJeunesse et al. 2002 [118]).
First, symbiont DGGE gels were assessed visually to identify
the fingerprint for each coral sample (Additional file 6), and
then DNA sequences for representative bands were ob-
tained, trimmed manually, aligned using Geneious (V10),
and then blasted against Genbank ‘nr’ database (http://
www.ncbi.nlm.nih. gov/BLAST/) for ITS2 type identifica-
tion. Each identified ITS2 type was tabulated and trans-
formed into presence/absence data matrix for statistical
analysis. To test the significance of similarity of symbiont
community between sites, coral species, and depth, we per-
formed Permutation Multifactorial Analysis of Variance
(PERMANOVA) [120] with 9999 permutations using Jac-
card dissimilarity matrix by “adonis” function in R [121]
using vegan package in R. Notably, the nature of symbiont
community dataset was “presence/absence” while bacterial
community was “abundance-based” dataset and therefore
they were analyzed separately.

Bacterial bioinformatic analyses
Raw 16S rRNA gene amplicon sequences were trimmed
using Sickle version 1.33 [122] at the default quality
threshold (Q20) using the paired-end mode. Sequence
trimming was performed at the 3’ end, and to ensure
high taxonomic resolution, all sequences shorter than
350 bp or having ambiguous bases (Ns) were discarded.
The forward and reverse sequences that passed quality
filter were then subjected to error correction using Bayes
Hammer implemented in SPAdes v3.7.1 with default
settings [123, 124]. Paired-end sequences were aligned
and primers removed using the PEAR algorithm imple-
mented in PANDAseq version 1.33 [125, 126]. Chimeric
check was performed using RDP 16S rRNA gene data-
base to ensure sequences quality [117], and paired reads
were then de-replicated, sorted by abundance, and clus-
tered into operational taxonomic units (OTUs) at 97%
similarity threshold using VSEARCH v1.11.1 (Rognes,
https://github.com/torognes/vsearch). Low abundance
sequences (< 5 occurrences over all samples) and non-
bacterial OTUs (i.e., mitochondria, chloroplast, archaea,
eukaryote, and unknown sequences) were then removed.
Taxonomic divisions were assigned as OTU centroids
using the RDP classifier [127] as implemented in QIIME
[128], with a minimum confidence level of 0.7, and rela-
tive abundances of taxa were computed using QIIME’s
“summarize_taxa.py” script.
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Bacterial community analysis
The OTU abundance matrix of the microbial community
(using non-normalized approach [129]—see Additional file 5)
was used to calculate microbial diversity indices (i.e., Chao1
richness estimator, inverse Simpson, and Shannon diversity
indices) for each coral sample (total n= 164). Normality of
diversity indices outcome was checked using the Shapiro
test [130], and log-transformed to assess the influence of
site, coral species, and depth on microbial diversity using
multifactorial ANOVA. The bacterial communities as-
sociated with soft coral species (X. umbellata and S.
trocheliophorum) appeared similar in diversity and
composition to those associated with reef-building
corals (see Additional file 2: Figure S3), and therefore
soft corals were included in the remaining analysis.
Multivariate analysis was further used to test the

statistical difference of microbial community structure.
Permutation Multifactorial Analysis of Variance (PER-
MANOVA) [120] with 9999 permutations using Bray-
Curtis dissimilarity matrix by “adonis” function in R was
performed on (i) all coral samples to assess the influence
of site, coral species, and depth and their interactions on
microbial community structure, (ii) on each coral species
across sites to investigate the effect of site on each coral
species separately, and (iii) on each site to include all
coral species (i.e., all corals within each site) to assess
the influence of coral species on microbial composition
at each site separately. Principal coordinate analysis
(PCoA) ordination based on Bray-Curtis dissimilarity
was used to visualize the dispersion of microbial com-
munity among sites, coral species, and depth.
Indicator species analysis was performed to test the as-

sociation between bacterial community and between both,
sites and coral host, using indicspecies package in R [131].
Linear discriminant analysis (LDA) effect size (LEfSe) ana-
lysis was also performed to obtain the most differentially
abundant bacteria between sites and coral species using
the Microbiome Analysis web portal (https://www.micro-
biomeanalyst.ca/) with default settings [132]. To investi-
gate OTUs that were consistently associated with coral
SML and whether/how they changed with the increase of
the ambient temperature across sites, data were trans-
formed into a presence/absence data matrix, and the core
mucus microbiome calculated as the occurrence of each
OTU in 95% of the samples (i.e., 95% occurrence thresh-
old) across sites. All plots and statistical analysis were per-
formed in R version 3.2.3 [133].
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