Perception of carbohydrate availability augments high-intensity intermittent exercise capacity under sleep-low train low conditions

<table>
<thead>
<tr>
<th>Journal:</th>
<th>International Journal of Sport Nutrition & Exercise Metabolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>IJSNEM.2019-0275.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Research</td>
</tr>
<tr>
<td>Keywords:</td>
<td>placebo, CHO, train low</td>
</tr>
</tbody>
</table>
Perception of carbohydrate availability augments high-intensity intermittent exercise capacity under sleep-low train low conditions

Sally P. Waterworth¹, Connor C. Spencer², Aaron L. Porter² and James P. Morton²

¹School of Sport, Rehabilitation and Exercise Sciences
University of Essex
Wivenhoe Park
Colchester
CO4 3SQ
UK

²Research Institute for Sport and Exercise Sciences
Liverpool John Moores University
Tom Reilly Building
Byrom St. Campus
Liverpool
L3 3AF
UK

Running title: Perception of CHO and train-low

Address for correspondence:
Professor James Morton
Research Institute for Sport and Exercise Sciences
Liverpool John Moores University
Tom Reilly Building
Byrom St. Campus
Liverpool
L3 3AF
UK
Email: J.P.Morton@ljmu.ac.uk
Abstract
We tested the hypothesis that perception of carbohydrate (CHO) availability augments exercise capacity in conditions of reduced CHO availability. Nine males completed a sleep-low train-model comprising evening glycogen depleting cycling followed by an exhaustive cycling protocol the next morning in the fasted state (30 minutes steady-state, SS, at 95% lactate threshold followed by 1-min intervals at 80% peak power output until exhaustion). After the evening depletion protocol and prior to sleeping, subjects consumed 1) a known CHO intake of 6 g.kg\(^{-1}\) body mass (TRAIN HIGH), 2) a perceived comparable CHO intake but 0 g.kg\(^{-1}\) body mass (PERCEPTION) or a known train-low condition of 0 g.kg\(^{-1}\) body mass (TRAIN LOW). The TRAIN HIGH and PERCEPTION trials were conducted double blind. During SS, average blood glucose and CHO oxidation were significantly higher in TRAIN HIGH (4.01 ± 0.56 mmol.L\(^{-1}\); 2.17 ± 0.70 g.min\(^{-1}\)) versus both PERCEPTION (3.30 ± 0.57 mmol.L\(^{-1}\); 1.69 ± 0.64 g.min\(^{-1}\), P<0.05) and TRAIN LOW (3.41 ± 0.74 mmol.L\(^{-1}\); 1.61 ± 0.59 g.min\(^{-1}\), P<0.05). Exercise capacity was significantly different between all pairwise comparisons (P<0.05) where TRAIN LOW (8 ± 8 min) < PERCEPTION (12 ± 6 min) < TRAIN HIGH (22 ± 9 min). Data demonstrate that perception of CHO availability augments high-intensity intermittent exercise capacity under sleep-low, train-low conditions though perception does not restore exercise capacity to that of CHO consumption. Such data have methodological implications for future research designs and may also have practical applications for athletes who deliberately practice elements of training in CHO restricted states.

Keywords: placebo, carbohydrate, train-low, capacity
Introduction

In addition to its well-documented role as an energy source, it is now recognised that the glycogen granule exerts regulatory roles in modulating skeletal muscle cell signalling and transcriptional responses to acute exercise sessions (Bartlett et al., 2015; Hearris et al., 2018). Accordingly, deliberately commencing and/or recovering from training sessions with reduced CHO availability (the so-called train-low paradigm) increases markers of mitochondrial biogenesis (Hansen et al., 2005; Yeo et al., 2008; Morton et al., 2009) and both whole body and intramuscular lipid oxidation (Yeo et al., 2008; Hulston et al., 2010). In some instances, both exercise capacity (Hansen et al., 2005) and exercise performance (Cochran et al., 2015; Marquet et al., 2016a,b) have also been augmented with short-term (i.e. 3-10 weeks) train-low approaches though it is acknowledged that this is not a consistent finding amongst chronic training studies. On this basis, it has therefore been suggested that CHO should be adjusted day-by-day and meal-by-meal in accordance with the goals of both maximising training quality (i.e. ability to sustain the desired workload) and skeletal muscle adaptations (Impey et al., 2018).

Whilst there are multiple research designs used to practically achieve train-low conditions (i.e. twice per day training protocols, fasted training and or withholding CHO in the recovery period from acute exercise), the ‘sleep-low, train-low’ model has emerged as a particularly potent strategy for which to prolong the period of CHO restriction (Bartlett et al., 2013; Lane et al., 2015). In this approach, participants perform an evening training session, restrict CHO during overnight recovery, and then complete a fasted training session on the following morning. The accumulative time with reduced muscle glycogen could therefore extend to 12–14 h depending on the timing and duration of the training sessions and sleep period. When performed chronically, Marquet et al. (2016a,b) observed that 1–3 weeks of sleep-low training in elite triathletes and cyclists improves cycling efficiency (3.1%), 20 km
cycling time-trial performance (3.2%) and 10 km running performance (2.9%) compared with traditional train-high approaches.

Despite the aforementioned findings, an obvious limitation of the sleep-low, train-low model is that exercise capacity is likely to be significantly impaired during the morning training session. Indeed, we recently observed that stepwise reductions in pre-exercise muscle glycogen concentration ~100 mmol.kg⁻¹ dry wt (as achieved by the sleep low model) impaired morning exercise capacity at 80% peak power output (PPO) by ~20 to 50% (Hearris et al., 2019). Nonetheless, we acknowledged that lack of blinding between conditions (subjects were aware of CHO availability given that whole foods were consumed) may have influenced subjects’ perception of their ability of complete high-intensity workloads. Indeed, placebo effects of CHO availability have been reported in conditions of CHO feeding before (Mears et al., 2018) and during exercise (Clark et al., 2000). To the authors’ knowledge, however, the potential placebo effect of CHO availability has not yet been examined under conditions where exercise is commenced with sub-optimal muscle glycogen concentration.

With this in mind, the aim of the present study was to test the hypothesis that perception of CHO availability augments exercise capacity. To this end, we adopted a sleep-low, train-low model of CHO restriction where recreationally active males commenced an exhaustive morning training session under conditions corresponding to a known prior CHO intake of 6 g.kg⁻¹ body mass (TRAIN-HIGH), a perceived comparable CHO intake (PERCEPTION) or a known train-low condition during which no CHO was consumed prior to sleeping (TRAIN-LOW). We specifically hypothesised that perception of CHO availability would improve morning exercise capacity compared to known train-low conditions but that perception would not restore exercise capacity to that of true train-high conditions.
Methods

Subjects. Nine recreationally active males who regularly engaged in exercise training (running, cycling, and intermittent sport) between 3-6 times per week volunteered to participate in the study (mean ± SD: age, 25 ± 8 years; body mass, 71.6 ± 8.5 kg; height, 1.78 ± 0.06 m; VO\textsubscript{2peak}, 55.3 ± 8.3 ml.kg-1.min-1; peak power output (PPO) 331 ± 41 watts). All subjects gave written and informed consent after details of the study procedures were explained. No subject had a history of smoking, cardiovascular, or metabolically related disease and none were under pharmacological treatment during the study. All subjects refrained from strenuous exercise and alcohol for at least 24 h before each trial. The study was approved by the Ethics Committee of Liverpool John Moores University.

Experimental Design. In a randomized, repeated measures design (and after appropriate baseline testing and familiarization), subjects performed three experimental trials consisting of a glycogen depleting protocol in the afternoon prior to the main experimental trial the subsequent morning. At the cessation of the glycogen depleting protocol, subjects consumed 1) a known CHO intake of 6 g.kg-1 body mass (TRAIN-HIGH), 2) a perceived comparable CHO intake but 0 g.kg-1 body mass (PERCEPTION) or a known train-low condition of 0 g.kg-1 body mass (TRAIN-LOW). The TRAIN HIGH and PERCEPTION trials were double blind where blinding of these two solutions were performed by the corresponding author who was not present for any of the exhaustive exercise sessions on Day 2 (with the exception of the familiarisation trials). The following morning subjects arrived at the laboratory in a fasted state where they then performed a steady-state (SS) (30 min at 95% of lactate threshold) cycling exercise protocol followed by a high-intensity intermittent (HIT) cycling protocol to exhaustion (1-min bouts at 80% PPO interspersed with 1-min bouts at 40% PPO). The primary outcome was exercise capacity during the HIT protocol. Respiratory gas
exchange, heart rate (HR), rate of perceived exertion (RPE), and fingertip capillary blood samples were also obtained at regular intervals during the SS exercise protocol and immediately following HIT protocol to assess for physiological, metabolic, and perceptual responses to exercise. An overview of the experimental design is shown in Figure 1. The participants were informed that the aim of the study was to compare the effects of two CHO drinks (that differed in composition but not quantity of CHO) on overnight recovery and subsequent morning exercise capacity versus a known non-caloric sugar free drink. Upon completion of the study, all subjects performed an exit interview where they were informed they had been deceived in the PERCEPTION trial. Whilst no formal questionnaires were administered, no subject reported that the drinks tasted differently though 3 subjects did report they felt hungrier in the both the TRAIN LOW and PERCEPTION trials.

Assessment of lactate threshold, lactate turn point, VO$_{2peak}$ and peak power output. At least 5-7 days prior to the familiarization (FAM) trial, subjects performed a submaximal incremental cycling protocol to determine lactate threshold (LT), lactate turn point (LTP), peak oxygen uptake (VO$_{2peak}$) and peak power output (PPO) on an electronically braked cycling ergometer (Excalibur Sport; Lode, Groningen, The Netherlands). Following a 5 min warm up at 75 watts (W) at a self-selected cadence, the submaximal test commenced at 125 W with 25 W increase every 4 min. Twenty μl of fingertip capillary blood samples were collected in a Biosen capillary tube (EKF Diagnostics, Barleben, Germany) at the end of each 4 min stage. LT (defined as 1 mmol.L$^{-1}$ above resting levels) and LTP (defined as the second inflection point on the lactate curve) were plotted live during the test using Biosen C-Line lactate analyzer (EKF Diagnostics, Barleben, Germany). Heart Rate (HR) (Polar, F10, Finland) was monitored continuously and recorded during the final 10 seconds of each stage, along with RPE (Borg, 1973). Respiratory gas exchange was recorded during the final two minutes of each stage using an online gas analysis system (CPX Ultima, Medgraphics,
Minnesota, USA). The submaximal test ended once LTP had been confirmed. Following a 5 min recovery period, VO$_{2\text{peak}}$ and PPO were assessed. The test to assess VO$_{2\text{peak}}$ and PPO commenced at 25 W below each subject’s individual LT and consisted of 1-min stages with 25 W increments until volitional exhaustion. HR was monitored throughout the test. VO$_{2\text{peak}}$ referred to the peak value attained in any 10-second period during the last 60 seconds of data collection and was supported by verification by two or all the following end point criteria (1) heart rate with 10 b.min$^{-1}$ of age predicted maximum, (2) RER > 1.1 and (3) plateau of oxygen consumption despite increasing workload.

Day 1: Glycogen depletion protocol. On the afternoon of Day 1, subjects arrived at the laboratory (~1500 h) to perform an intermittent bout of cycling to volitional fatigue. Subjects were asked to record and replicate their energy intake in the 24 h period prior to commencing the glycogen depletion protocol. Following a 5 min warm up at self-selected intensity, subjects cycled for 2 min at 90% PPO, immediately followed by 2 min at 50% PPO. Once subjects could no longer maintain > 60 rpm, the interval was decreased to 90 seconds, then to 1 min at 90% PPO. Subjects repeated this work to rest ratio at 80% PPO, 70% PPO, and 60% PPO and the exercise protocol was terminated once subjects could no longer maintain > 60 rpm at 60% PPO for 1 min. This protocol has been used previously in our laboratory (Bartlett et al., 2013; Taylor et al., 2013; Impey et al., 2016) and is a modification of that of Kuipers et al. (1987) that induces glycogen depletion in both type I and type II fibers. Immediately following the cessation of glycogen depleting exercise (~1700 h), subjects consumed 30 g of whey protein isolate (Advanced Whey Isolate, Science in Sport, Nelson, UK) mixed with 250 ml water (in accordance with practical recommendations to promote recovery from endurance exercise) before adhering to one of three dietary protocols. In the TRAIN HIGH trial, subjects consumed 1.2 g.kg$^{-1}$ maltodextrin (Cargill Dry Maltodextrin, UK) mixed with 500 ml water sugar free squash (Tesco, Hertfordshire, UK) per hour for 5 hours. In the
PERCEPTION trial, subjects adhered to an identical feeding frequency and volume protocol but consumed a tasted match placebo solution where they were told contained an identical amount of CHO as that consumed (or to be consumed) in the TRAIN HIGH trial (sugar free squash, Tesco, Hertfordshire, UK). In the TRAIN LOW trial, subjects consumed the same placebo solution as the PERCEPTION trial but were told the solution contained no CHO. All drinks were administered in visually opaque bottles and 2.75 L of fluid was consumed over the 5-hour recovery period in each trial. Subjects remained in the laboratory to complete the first 3 h of the recovery protocol before returning to their homes to complete the last 2 h of recovery (subjects were provided with the additional 2 x 500 ml solutions to take home). Subjects also slept at their own home.

Day 2: Steady state (SS) and HIT exercise capacity test. Subjects arrived at the laboratory between 0800 and 0830h the following morning after an overnight fast. Body mass (Seca, Hamburg, Germany), motivation to train (using a visual analogue scale, VAS, McCormack et al., 1988), resting blood lactate and blood glucose were initially measured. Subjects then then completed 30 min SS cycling at 95% of LT. Breath by breath gas analysis (CPX Ultima, Medgraphics, Minnesota, USA) was measured for 2 min during 8-10 min, 18-20 min, and 28-30 min and substrate utilization was assessed according to Jeukendrup and Wallis (2005). Blood glucose and blood lactates samples were obtained at 15 min and 30 min. Measurements of HR (Polar, F10, Finland) and RPE (Borg, 1973) were recorded at 10 min intervals during the SS exercise. Following completion of SS exercise, subjects were provided with 3 min active recovery at 50 W and subsequently commenced the HIT exercise capacity test consisting of 1 min bouts at 80% PPO interspersed with 1 min bouts at 40% PPO until volitional exhaustion. A final capillary blood sample was collected at the termination of the HIT protocol.
Familiarization. Eight subjects completed the full experimental protocol described above while adhering to a water only (i.e. no flavoring) familiarization (FAM) condition at least 7 days prior to their first experimental trial (one of the nine subjects withdrew from familiarization after several minutes of the SS exercise protocol having reported feelings of muscle soreness). Upon completion of all three experimental trials, we compared each subject’s exercise capacity during the FAM trial and the TRAIN LOW trial and observed no significant difference, as evidenced by a t-test for paired samples (FAM = 5 ± 5 min, PLA = 7 ± 6 min, P=0.25).

Blood analyses. Blood samples were obtained via finger prick capillary sampling using a 1.8 mm sterile safety-lancet (Sarstedt AG & Co, Nümbrecht, Germany) after sterilization using a pre-injection medical swab (Medlock Medical Ltd., Oldham). A 20μl blood sample was collected in a Biosen capillary tube (EKF Diagnostics, Barleben, Germany) and analyzed using Biosen C-Line for blood glucose and lactate concentrations (EKF Diagnostics, Barleben, Germany).

Statistical Analysis. Data were analysed using one or two-way repeated measures general linear model (GLM) where the within factors were time and condition (TRAIN LOW, PERCEPTION and TRAIN HIGH). Where significant main effects were found, paired samples t-tests with Bonferroni adjustment for multiple comparisons were performed to identify differences. In relation to our primary outcome variable of exercise capacity, we also report uncertainty of outcomes as 95% confidence intervals (95% CI) and make probabilistic magnitude based-inferences about the true (large sample) values of outcomes by qualifying the likelihood that the true effect represents a substantial change, according to (Batterham & Hopkins, 2006). All data in text, tables and figures are expressed as means ± SD with P<0.05.
indicating statistical significance. Statistical analyses were performed using Statistics Package for the Social Sciences (SPSS) for Windows (version 24, SPSS Inc, Chicago, IL).

Results

Glycogen depletion protocol

There was no difference ($P=0.71$) in time to exhaustion during the glycogen depletion protocol between the TRAIN HIGH (79 ± 20 min), PERCEPTION (75 ± 16 min) or TRAIN LOW (79 ± 22 min) trials.

Physiological and perceptual responses during SS exercise

There was no difference ($P=0.258$) in subjects’ motivation to exercise prior to commencing the SS protocol (TRAIN HIGH 6.7 ± 2.7 cm; PERCEPTION 6.4 ± 1.7 cm; TRAIN LOW 5.1 ± 2.1 cm). Subjects’ HR ($P=0.006$) and RPE ($P<0.001$) increased during SS though no difference was apparent between conditions ($P=0.299$ and 0.273 respectively, see Table 1).

Metabolic responses during SS exercise and HIT capacity test

During SS, RER ($P<0.001$) and CHO oxidation rate ($P<0.001$) decreased while fat oxidation increased ($P<0.001$). Average CHO oxidation was higher throughout SS in TRAIN HIGH than both PERCEPTION ($P=0.019$) and TRAIN LOW ($P= 0.012$) while fat oxidation was lower ($P=0.016$ and 0.023 respectively). Blood glucose was higher throughout SS and HIT in TRAIN HIGH than in PERCEPTION ($P=0.002$) and TRAIN LOW ($P=0.021$) and also decreased during exercise ($P<0.001$). Blood lactate rose throughout SS and was significantly increased in TRAIN HIGH compared with both PERCEPTION ($P=0.016$) and TRAIN LOW ($P= 0.023$) after HIT (see Figure 2).
Exercise capacity during the HIT test

High-intensity intermittent exercise capacity was different between conditions ($P<0.001$), whereby TRAIN HIGH (22 ± 9 min; $P=0.005$: 95% CI for differences = 3 to 16 min, almost certainly beneficial) was greater than both PERCEPTION (12 ± 6 min) and TRAIN LOW (8 ± 8 min; $P=0.001$: 95% CI for differences = 7 to 20 min, almost certainly beneficial). Exercise capacity was also greater in PERCEPTION compared with TRAIN LOW ($P=0.025$: 95% CI for differences = 1 to 8 min, very likely beneficial: see Figure 3A). Seven subjects completed more intervals in PERCEPTION than TRAIN LOW, whilst all nine subjects completed more intervals in the TRAIN HIGH compared with both non-CHO trials (see Figure 3B). There was no trial order effect ($P=0.849$).

Discussion

Confirming our hypotheses, we provide novel data by demonstrating that perception of CHO availability augments high-intensity intermittent exercise capacity under sleep-low, train-low conditions though perception does not near restore exercise capacity to that of CHO consumption. We therefore consider our data to have methodological implications for future sleep-low train-low research designs by clearly highlighting the requirement for placebo-controlled trials. Furthermore, when considering that perception of CHO availability can improve exercise capacity, our data may also have practical applications for those athletes who deliberately practice CHO periodization strategies in an attempt to strategically enhance oxidative adaptations of skeletal muscle.

To achieve our sleep low, train low model of CHO restriction, we employed a similar glycogen depletion and re-synthesis protocol to that recently studied in our laboratory (Hearris et al., 2019). Whilst we acknowledge that we did not directly assess muscle glycogen, evaluations of substrate utilisation during the SS exercise protocol are consistent
with differences in CHO availability between the TRAIN HIGH trial and the non-CHO trials. On the basis of the fitness levels of the present subjects (i.e. VO$_{\text{peak}}$, 55.3 ± 8.3 ml.kg$^{-1}$.min$^{-1}$) and absolute CHO intake (i.e. 6 g.kg$^{-1}$), we estimate from our previous data (Hearris et al., 2019) and a recent meta-analysis (Areta & Hopkins, 2018) that muscle glycogen concentration in TRAIN HIGH was in the region of 300-350 mmol.kg$^{-1}$ dw, as opposed to 100-150 mmol.kg$^{-1}$ dw in the PERCEPTION and TRAIN LOW trials.

Consistent with the well-documented effect of muscle glycogen availability on exercise capacity (Bergstrom et al., 1967; Hawley et al., 1997; Impey et al., 2016; Hearris et al., 2019), it is unsurprising that all nine subjects were able to exercise for significantly longer during the TRAIN HIGH trial compared with the non-CHO trials. The magnitude of improvement observed here (i.e. ~15 minutes) agrees favorably with our recent data (Hearris et al., 2019) where we observed that small differences in pre-exercise muscle glycogen concentration (~100 mmol.kg$^{-1}$ dw) improves high-intensity intermittent exercise capacity at 80% PPO between ~20% and 50% (8–18 min). In our previous study, however, we acknowledged that lack of blinding between trials may have influenced subjects’ motivation and perceived ability to complete high-intensity workloads (Hearris et al., 2019). To overcome the issue of subjects being visually aware of the quantity of CHO rich foods consumed (Mears et al., 2018), we deliberately chose to blind CHO availability in the present study by using taste matched beverages delivered in opaque bottles.

When comparing subjects’ exercise capacity between the TRAIN LOW and water only FAM trial, it is noteworthy that no significant differences in exercise capacity were observed. Such data highlight that when subjects were aware that no prior CHO had been consumed (despite differences in taste between the TRAIN LOW and FAM trials), exercise capacity was not affected. However, when subjects perceived they had consumed CHO before sleeping in the PERCEPTION trial, 7 of the 9 subjects performed significantly more
work compared with the known TRAIN LOW trial, despite reporting no significant differences in their motivation to exercise. A placebo effect of CHO availability has been documented previously (in conditions of normal pre-exercise muscle glycogen concentration) where CHO has been fed before (Mears et al., 2018) and during (Clark et al., 2000) cycling time trials equating to durations of approximately 20 and 60 minutes, respectively. In contrast, no placebo effect of CHO feeding is evident when exercise duration extends beyond 3 hours, likely due to near glycogen depletion and that the metabolic requirement for CHO dominates over central drive (Hulston & Jeukendrup, 2009). Nonetheless, the present data demonstrate that a placebo effect of prior CHO ingestion may also manifest in those conditions where short term-high intensity intermittent exercise is commenced with considerably reduced pre-exercise muscle glycogen concentration.

Whilst we acknowledge that the magnitude of effect with perception was less than that of actual CHO consumption (~5 versus 15 minutes at 80% PPO), the present data are of practical relevance for reasons related to both research design and practical application with athletic populations. Indeed, when considering that previous studies reporting decrements in power output or exercise capacity during acute train-low training sessions (using the twice per day or sleep low models) have not blinded subjects to the “low CHO availability” condition (Hansen et al., 2005; Yeo et al., 2008, 2010; Hulston et al., 2010; Hearris et al., 2019), it is possible that such impairments in performance may also be due, in part, to psychological reasons as opposed to physiological factors per se. Similarly, given that Marquet et al. (2016b) observed that just one week of a sleep-low training intervention (incorporating only 3 train-low sessions) improved 20 km cycling time trial performance by 3.2%, it is possible that such improvements were simply due to subjects beliefs that the sleep low protocol would lead to superior improvements in performance, as opposed to physiological or metabolic adaptations. In relation to practical application, the placebo
effect of prior CHO intake may also extend the effects of caffeine (Lane et al., 2013) and
CHO mouth rinse (Kasper et al., 2016) as potential tools for which to increase exercise
capacity for those athletes who deliberately practice CHO restriction in an attempt to amplify
training adaptations (Impey et al., 2018).

In summary, we provide novel data by demonstrating that perception of CHO
availability augments high-intensity intermittent exercise capacity under sleep-low, train-low
conditions though perception does not restore exercise capacity to that of CHO consumption.
Such data have implications for future sleep-low train-low research designs by clearly
highlighting the requirement for placebo-controlled trials. In addition, our data may also have
practical applications for those athletes who deliberately incorporate periods of CHO
restriction into their training programmes in an attempt to strategically enhance mitochondrial
related adaptations of skeletal muscle.

Acknowledgement, Authorships, Declarations

The study was designed by JPM, SPW, CS and AP. Data were collected and analysed by
SPW, CS, AP. Data interpretation and manuscript preparation were undertaken by JM, SPW,
CS and AP. All authors approved the final version of the paper. JPM is a consultant for
Science in Sport (SiS). His previous research on glycogen metabolism and exercise has been
funded by GlaxoSmithKline (GSK), Lucozade Ribena Suntory (LRS) and SiS.
References

Figure 1 – Overview of the experimental design.

Figure 2 – (A) RER, (B) CHO oxidation, (C) lipid oxidation, (D) blood glucose and (E) blood lactate concentration during the SS exercise protocol (as completed on the morning of Day 2). *denotes significant difference between TRAIN HIGH and PERCEPTION and TRAIN LOW trials, $P<0.05$. a denotes significant difference from 10, b denotes significant difference from 20, c denotes significant difference from 0, d denotes significant difference from 15 and 30, all $P<0.05$. Exh, exhaustion.

Figure 3 – (A) Exercise capacity (means ± SD) and (B) individual subject’s exercise capacity during the TRAIN LOW, PERCEPTION and TRAIN HIGH trials. *denotes significant difference from TRAIN LOW, # denotes significant difference from PERCEPTION, both $P<0.05$.

Table 1 – Heart rate, VO$_2$ (as % of VO$_{2\text{peak}}$) and RPE during the SS exercise protocol (as completed on the morning of Day 2) in the TRAIN LOW, PERCEPTION and TRAIN HIGH trials.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>10</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (b.min$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIN LOW</td>
<td>145 ± 16</td>
<td>147 ± 17</td>
<td>150 ± 19<sup>ab</sup></td>
</tr>
<tr>
<td>PERCEPTION</td>
<td>146 ± 11</td>
<td>149 ± 11</td>
<td>151 ± 14<sup>ab</sup></td>
</tr>
<tr>
<td>TRAIN HIGH</td>
<td>142 ± 14</td>
<td>143 ± 14</td>
<td>146 ± 15<sup>ab</sup></td>
</tr>
<tr>
<td>% VO$_{2\text{peak}}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIN LOW</td>
<td>61 ± 9</td>
<td>63 ± 7</td>
<td>61 ± 6</td>
</tr>
<tr>
<td>PERCEPTION</td>
<td>63 ± 8</td>
<td>64 ± 7</td>
<td>62 ± 6</td>
</tr>
<tr>
<td>TRAIN HIGH</td>
<td>64 ± 9</td>
<td>61 ± 9</td>
<td>63 ± 6</td>
</tr>
<tr>
<td>RPE (AU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAIN LOW</td>
<td>12 ± 2</td>
<td>14 ± 2</td>
<td>16 ± 3<sup>ab</sup></td>
</tr>
<tr>
<td>PERCEPTION</td>
<td>12 ± 2</td>
<td>13 ± 3</td>
<td>15 ± 3<sup>ab</sup></td>
</tr>
<tr>
<td>TRAIN HIGH</td>
<td>12 ± 2</td>
<td>14 ± 2</td>
<td>15 ± 3<sup>ab</sup></td>
</tr>
</tbody>
</table>

a denotes significant difference from 10, b denotes significant difference from 20, both $P<0.05$.
Figure 1 – Overview of the experimental design.

99x56mm (300 x 300 DPI)
Figure 2 – (A) RER, (B) CHO oxidation, (C) lipid oxidation, (D) blood glucose and (E) blood lactate concentration during the SS exercise protocol (as completed on the morning of Day 2). *denotes significant difference between TRAIN HIGH and PERCEPTION and TRAIN LOW trials, P<0.05. a denotes significant difference from 10, b denotes significant difference from 20, c denotes significant difference from 0, d denotes significant difference from 15 and 30, all P<0.05. Exh, exhaustion.
Figure 3 – (A) Exercise capacity (means ± SD) and (B) individual subject’s exercise capacity during the TRAIN LOW, PERCEPTION and TRAIN HIGH trials. *denotes significant difference from TRAIN LOW, # denotes significant difference from PERCEPTION, both P<0.05.

80x194mm (300 x 300 DPI)