
Fast Tensor Product Solvers for Optimization Problems with

Fractional Differential Equations as Constraints

Sergey Dolgova,, John W. Pearsonb, Dmitry V. Savostyanovc, Martin Stolla

aNumerical Linear Algebra for Dynamical Systems, Max Planck Institute for Dynamics of Complex
Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany

bSchool of Mathematics, Statistics and Actuarial Science, University of Kent, Cornwallis Building (East),
Canterbury, Kent, CT2 7NZ, United Kingdom

cSchool of Computing, Engineering and Mathematics, University of Brighton, Moulsecoomb, Brighton, BN2
4GJ, United Kingdom

Abstract

Fractional differential equations have recently received much attention within computational
mathematics and applied science, and their numerical treatment is an important research
area as such equations pose substantial challenges to existing algorithms. An optimization
problem with constraints given by fractional differential equations is considered, which in
its discretized form leads to a high-dimensional tensor equation. To reduce the computation
time and storage, the solution is sought in the tensor-train format. We compare three types of
solution strategies that employ sophisticated iterative techniques using either preconditioned
Krylov solvers or tailored alternating schemes. The competitiveness of these approaches is
presented using several examples with constant and variable coefficients.

Keywords: Fractional calculus, Iterative solvers, Sylvester equations, Preconditioning,
Low-rank methods, Tensor equations, Schur complement

1. Introduction

While the study of derivatives of arbitrary order is a long-standing subject area [30], its
use in science and engineering has soared over recent years. Fractional calculus is often used
due to the inadequateness of traditional schemes to describe certain phenomena, such as
anomalous diffusion, anaelasticity [16] and viscoelasticity [44, 88]. The applications include
electrical circuits [39, 73], electro-analytical chemistry [84], biomechanics [27], and image
processing [91].

Over the last decade many researchers have worked on efficient numerical schemes for the
discretization and solution of fractional differential equations (FDEs). Historically, the finite
difference-based discretization techniques are arguably the most popular [50, 51, 71, 72, 73].
Adomian decomposition should be mentioned as a popular semi-analytical approach [1],
although its use is limited. Recently, (discontinuous) finite element schemes for FDEs have
also received considerable attention [17, 58, 90]. Since the fractional differential operators

Email addresses: dolgov@mpi-magdeburg.mpg.de (Sergey Dolgov), J.W.Pearson@kent.ac.uk (John
W. Pearson), d.savostyanov@brighton.ac.uk (Dmitry V. Savostyanov), stollm@mpi-magdeburg.mpg.de
(Martin Stoll)

1Tel.: +49 391 6110 450; fax: +49 391 6110 453

Preprint submitted to Applied Mathematics and Computation 10 September 2015

are, in fact, integral operators, the matrix of the corresponding linear system is usually
dense, and the numerical complexity and storage grow rapidly with the grid size, especially
for the problems posed in higher dimensions (e.g. three spatial plus a temporal dimension).
To perform computations faster, we compress the solution in the low-rank format. This
approach has already been applied to fractional calculus in [13, 75].

Most commonly, the fractional calculus literature focuses on the solution of the equation
itself, the so-called ‘direct problem’. In this paper we consider the ‘inverse problem’, namely
the computation of the forcing term (right-hand side of the FDE), that is best suited to
describing a desired property or measured data. For this we study an optimization problem
with constraints given by FDEs. In the context of partial differential equations (PDEs),
problems of this type are often referred to as PDE-constrained optimization problems and
have been studied extensively over the last decades (see [37, 85] for introductions to the
field). Optimal control problems for FDEs have previously been studied in literature such
as [2, 3, 54, 55, 65, 74]. However, they were mostly considering one-dimensional spatial
domains, since the direct treatment of higher dimensions was too expensive. To overcome
computational challenges, in this paper we rely on the recent advances in the development
of numerical algorithms and solvers, particularly on data-sparse low-rank formats.

The goal of our paper is to present efficient numerical methods that allow the fast and
accurate solution of the large optimization problem at hand. The paper is organized as
follows. In Section 2.1 we recall some of the most important definitions needed for fractional
derivatives. This is followed by Section 2.2 where we introduce the basic optimization problem
subject to fractional differential equations posed in an increasing number of dimensions, along
with the discretization of both the objective function and the differential equation. Section
3 presents three strategies that are well-suited to solving the discretized problem. This
is followed by a discussion of numerical algorithms in Section 4 where we introduce the
tensor-train format and several iterative solvers, either of Krylov subspace type or using an
alternating framework. The effectiveness of our approach is shown in Section 5 where we
compare our solvers using several numerical experiments. We also present results for the
more challenging variable coefficient case and observe satisfying results.

Another approach that has recently been studied by Burrage et al. is to consider a
matrix function approach to solve the discretized system (see [15] for details). Our work here
is motivated by some recent results in [72] where the discretization via finite differences is
considered in a purely algebraic framework.

2. Fractional calculus and Grünwald formulae

In this section we briefly recall the concept of fractional derivatives, and use this to
state the matrix systems that result from discretizing the problems we consider using a
finite difference method. The literature on fractional derivatives is vast and we refer to
[18, 30, 34, 53, 69, 70] for general introductions to this topic.

2.1. The fractional derivative

In fractional calculus there are several definitions of fractional derivatives. The Caputo
and the Riemann-Liouville fractional derivatives [69] are among the most commonly used in
applications and we use this section to briefly recall their definitions.

2

For a function f(t) defined on an interval [a, b], the Caputo derivative of real order α with
n− 1 < α < n, n ∈ N, is defined as the following integral

D
C α
a t f(t) =

1

Γ(n− α)

∫ t

a

dnf(s)

dsn
ds

(t− s)α−n+1
,

assuming that it is convergent (see [19, 30, 50, 69, 78] for more details). Based on the
discussion in [72], the Caputo derivative is frequently used for the derivative with respect to
time. The left-sided Riemann-Liouville derivative of real order α with n − 1 < α < n, is
defined by

D
RL α
a t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(s)ds

(t− s)α−n+1
,

for a < t < b. The right-sided Riemann-Liouville fractional derivative is given by

D
RL α
t b f(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

f(s)ds

(s− t)α−n+1
,

for a < t < b. Finally, the symmetric Riesz derivative of order α is the half-sum of the left
and right-side Riemann-Liouville derivative, i.e.,

D
R α

t f(t) =
1

2

(
D

RL α
a t f(t) + D

RL α
t b f(t)

)
.

In this work we do not advocate a particular method that is most suitable for the description
of a natural phenomenon: we simply want to illustrate that the above formulations of FDEs,
when coupled with certain types of discretization approaches, lead to similar structures on
the discrete level. Our goal is to give guidelines and offer numerical schemes for the efficient
and accurate solution of problems of various forms. For a discussion on the smoothness
assumptions of the function f(·) we refer to [69], i.e., the Riemann-Liouville formulation
requires a weaker differentiability assumption in contrast to the n-times differentiability re-
quired otherwise (cf. [69, Chapter 2.3]).

2.2. Model problems

In this section we introduce some FDE-constrained optimization problems. Consider the
classical misfit problem, where we want to minimize the difference between the state y and
the desired state (or observation) ȳ, with an additional regularization representing the cost
of the control u. The constraint linking the state to the control is given by the following
FDE (

D
C α
0 t − D

R β
x

)
y(x, t) + u(x, t) = f(x, t), (1a)(

D
C α
0 t − D

R β1
x1
− D

R β2
x2

)
y(x1, x2, t) + u(x1, x2, t) = f(x1, x2, t), (1b)(

D
C α
0 t − D

R β1
x1
− D

R β2
x2
− D

R β3
x3

)
y(x1, x2, x3, t) + u(x1, x2, x3, t) = f(x1, x2, x3, t) (1c)

in one, two, and three dimensions, respectively. We consider the FDEs in space-time cylinder
domains Q := Ω × [0, T], with Ω ⊆ Rd̄, d̄ ∈ {1, 2, 3}. We also denote supp (ȳ) = Qȳ and
supp (u) = Qu and assume that both the observation and the control are supported over the
cylinders Qȳ = Ωȳ × [0, T] and Qu = Ωu × [0, T]. Our cost function is, therefore

J(y, u) :=
1

2

∫∫
Qȳ

(y − ȳ)2dxdt+
γ

2

∫∫
Qu

u2dxdt (2)

3

where γ is a regularization parameter indicating at what ratio one prioritizes minimizing u,
and obtaining y that is close in some sense to the desired state ȳ.

We will follow the discretize-then-optimize approach for PDE-constrained optimization
problems [11, 35] (details on the numerical treatment of FDEs can be found in [50, 51, 69,
71, 72]). We consider Ω = [0, 1]d̄ and assume that Ωu and Ωȳ are also cubes.

Each function is discretized by collocation on a uniform tensor product grid in space and
time

xk(ik) = ikhk, ik = 1, . . . , nk, hk =
1

nk + 1
, k = 1, 2, 3,

t(m) = mτ, m = 1, . . . , nt, τ =
T

nt
.

(3)

After discretization, vectors containing values of functions y, ȳ, u, f on the grid are de-
noted also as y, ȳ, u, f , respectively. We assume zero boundary and initial conditions,
y(x1, . . . , xd̄, t) = 0 if xk ≤ 0, xk ≥ 1 or t ≤ 0. Note that it is possible to include inhomo-
geneous boundary and initial conditions [49, 69]. This typically does not affect the matrix
structure and so the methods presented here also apply for this setup. If the grid sizes are
the same in all spatial directions, we denote h = h1 = h2 = h3.

Note that our formulations here are tailored to domains that allow for tensorized grids,
as we aim to separate the variables with respect to all spatial and temporal dimensions.
While this does exclude certain applications, many interesting and relevant models can still
be considered such as fractional phase-field models [12, 14, 15] or the fractional Fokker-
Planck equation [48]. They also appear in many applications such as the anomalous diffusion
[52], pattern formation using fractional derivatives [28], and also the simulation of fractional
phase-field equations such as the Allen-Cahn equation [15]. Additionally, the low-rank ap-
proximation presented in this paper also applies in the case where the spatial domain is more
complicated. In this case one can often still separate spatial and temporal dimensions, or
other parameter dimensions, which are often found for problems with uncertainties and/or
model parameters.

2.3. Grünwald-Letnikov formula

A classical method for the discretization of FDEs is based on the formula of Grünwald
and Letnikov here illustrated for the one-dimensional case. In particular, for the spatial
derivative we use its shifted version

D
RL β

0 x y(x) ≈ 1

hβ

n∑
i=0

gβ,iy(x− (i− 1)h) (4)

which is proven to be of the first order [49, 50, 51], provided that y ∈ W 1+β
1 (R). The

coefficients gβ,i are defined by

gβ,i =
Γ(i− β)

Γ(−β)Γ(i+ 1)
= (−1)i

(
β

i

)
, (5)

and can be computed efficiently using the recurrent formula [69]: gβ,0 = 1, gβ,i =
(
1− β+1

i

)
gβ,i−1

for i = 1, 2, . . . , n.

4

Collecting all degrees of freedom into one matrix, we obtain the discretization of the
spatial Riemann-Liouville derivative as follows

D
RL β

0 x y → h−β

gβ,1 gβ,0 0 0

gβ,2 gβ,1 gβ,0
. . .

...

gβ,3 gβ,2 gβ,1 gβ,0
. . .

...
...

. . . gβ,2 gβ,1
.

...
...

. gβ,0 0
...

. gβ,2 gβ,1 gβ,0
gβ,n gβ,n−1 gβ,3 gβ,2 gβ,1

︸ ︷︷ ︸

Tβ

y1

y2

y3
...
...

yn−1

yn

︸ ︷︷ ︸

y

. (6)

The matrix Tβ is a Toeplitz matrix, which we discuss later in more detail. As in [72] we
approximate the spatial derivative of order 1 ≤ β ≤ 2 using the symmetric Riesz derivative
taken as the half sum of the left- and right-sided Riemann-Liouville fractional derivatives.
The resulting differentiation matrix is given by

Lβ :=
1

2

(
Tβ + T>β

)
.

The discretization in time is done via the non-shifted Grünwald–Letnikov formula [69, 78]

D
C α
0 t y(t) ≈ 1

τα

nt−1∑
m=0

gα,my(t−mτ), (7)

and the Caputo derivative leads to a Toeplitz matrix Cα of the lower triangular form

Cα = τ−α

gα,0 0 0

gα,1 gα,0
. . .

...

gα,2 gα,1 gα,0
. . .

...
...

. . . gα,1 gα,0
. . .

...
...

.
...

...
. gα,1 gα,0 0

gα,nt−1 gα,nt−2 gα,2 gα,1 gα,0

. (8)

2.4. Problem structure

Since the spatial grids introduced on Ω, Ωȳ and Ωu have Cartesian product structure, e.g.
these domains are cubes in Rd̄, the discretized differential operators in (1b) and (1c) can be
written using the tensor-product notation,

D
R β1

x1
+ D

R β2
x2

→ L = Lβ1 ⊗ In2 + In1 ⊗ Lβ2 ,

D
R β1

x1
+ D

R β2
x2

+ D
R β3

x3
→ L = Lβ1 ⊗ In2 ⊗ In3 + In1 ⊗ Lβ2 ⊗ In3 + In1 ⊗ In2 ⊗ Lβ3 ,

(9)

for d̄ = 2 and d̄ = 3, respectively. Here and later In denotes an identity matrix of size n.

5

Assuming that L denotes the discretization of spatial derivatives (9), we obtain the dis-
cretization of the FDEs as follows

Ay +M3u = g, A = Cα ⊗ In − Int ⊗ L, (10)

where n denotes the total number of space mesh points, M3u is the discretization of the
control term, and g represents boundary conditions, initial conditions and additional forcing
terms. Note that vectors y and g are of the size N = nnt, where n = n1n2 for a two-
dimensional problem and n = n1n2n3 for a three-dimensional problem. The vector u is
formally of a smaller size, since we only consider its non-zero elements, which are all on
Qu ⊆ Q. Denoting the numbers of grid points on Ωu as n′, and hence the number of grid
points in Qu is N ′ = n′nt, we conclude that M3 is the N × N ′ matrix. In our case of the
collocation discretization, M3 contains unitary rows at positions, corresponding to the grid
points in Qu.

Using standard integration rules, we discretize the cost function (2) as follows

J(y, u) =
1

2
(y − ȳ)>M1 (y − ȳ) +

γ

2
u>M2u, (11)

where M1 and M2 contain the quadrature weights used to evaluate the norm. We use the
trapezoidal rule, coinciding with the rectangular rule due to zero boundary conditions. We
make the vector ȳ of size N . Since the function ȳ(x1, x2, x3, t) is defined only on Ωȳ, we
populate ȳ by zeros at the remaining points, lying in Ω\Ωȳ. Let us denote by θȳ ∈ RN a
binary vector, containing 1’s at indices belonging to Ωȳ. Then

M1 = τh1 · · ·hd̄ · diag (θȳ) , and M2 = τh1 · · ·hd̄ · IN ′ . (12)

A standard Lagrangian approach results in the following discrete functional for which we
need to compute stationary points:

Λ(y, u, p) = J(y, u) + p>V > (Ay +M3u− g) , (13)

where p corresponds to the discretized adjoint variable p. The matrix V is used to associate
p with a grid function (see [11]), and is written similarly to (12), V = τh1 · · ·hd̄ · IN . To
obtain the required optimality conditions, we differentiate Λ with respect to y, u and p. This
leads to the following first order, Karush-Kuhn-Tucker (KKT), system: M1 0 A>V

0 γM2 M>
3 V

V >A V >M3 0

︸ ︷︷ ︸

A

yu
p

 =

M1ȳ
0

V >g

 =:

f1

f2

f3

 , (14)

For simplicity, we merge V into both A and M3 and proceed with the following system matrix:

A =

M1 0 A>

0 γM2 M>
3

A M3 0

 .
The invertibility of the matrix follows from the constraint block [A M3] having full-rank,
and the fact that the (1, 1)-block is positive definite on the kernel of the constraints, i.e.,[
−u>M>

3 A
−> u>

] [M1 0
0 γM2

] [
−A−1M3u

u

]
= u>M>

3 A
−>M1A

−1M3u+ γu>M2u > 0

(see [10]). There are various ways to solve the saddle point system and in the next section
we discuss several approaches.

6

3. Solution strategies

In this section we discuss possible methods to solve the system (14). The classical mono-
lithic approach is not applicable in our case: a direct solver is prohibitively expensive due
to the problem size. Therefore, we consider three types of iterative methods: a low-rank
Minres method applied to (14) and alternating iterative methods applied to two variants of
Schur complements.

3.1. Krylov solver and preconditioning

For linear systems the use of iterative methods of Krylov type [77] is well established. For
standard saddle point problems in particular this is a method of choice, and is considered
a state of the art when the problem is of very high dimension (see [10, 25]). Such a solver
proceeds by building up a Krylov subspace

Kl(A, r0) = span
{
r0,Ar0, . . . ,Al−1r0

}
,

in terms of the initial residual vector r0. The solution at step l is then computed in some
(quasi-)optimal way within the Krylov subspace Kl(A, r0).

As the convergence can sometimes be very slow the problem is modified using a precon-
ditioning matrix P , i.e.,

Ay = f ⇔ P−1Ay = P−1f.

We again refer to [10, 25] for a detailed overview of preconditioners for saddle point problems.
In this paper, we follow a result presented in [56], where it was shown that for a saddle point
system [

Φ Ψ>

Ψ 0

]
y = f,

a good preconditioner can be chosen in the form

P =

[
Φ̃ 0

0 S̃

]
or P =

[
Φ̃ 0

Ψ −S̃

]
,

where Φ̃ ≈ Φ and S̃ ≈ S := ΨΦ−1Ψ>, the (negative) Schur complement. For our problem,
we commence with the approximation of the following (1, 1)-block:

Φ =

[
M1 0
0 γM2

]
.

In the case of the full observation and control, Ωȳ = Ωu = Ω, all Mi, i = 1, 2, 3, are simply
scaled identity matrices. They can be easily inverted, so Φ can be “approximated” exactly.
For the Schur complement S = ΨΦ−1Ψ> with the constraint matrix Ψ = [A M3] it is
typically much harder to find a robust approximation. For this we study the structure of the
Schur complement further:

S = AM−1
1 A> +

1

γ
M3M

−1
2 M>

3 . (15)

The authors have recently obtained robust Schur complement approximations using a match-
ing approach [66, 67, 83] that in our case leads to

S̃ = ÃM−1
1 Ã>, Ã = A+

1
√
γ
Int ⊗ In. (16)

7

Before discussing the efficient inversion of the matrix Ã, we briefly analyze the effectiveness
of our Schur complement approximation. It is clear that the effectiveness of our solver for
the matrix system depends to a large extent on how well the exact Schur complement as
given in (15) is represented by our approximation (16). Following [68], we measure this by
examining the Rayleigh quotient

R :=
v>Sv

v>S̃v
, v ∈ RN , v 6= 0.

Theorem 1. Consider the FDE-constrained control problem (1)–(2) with Grünwald-Letnikov
discretizations (6), (8) on the same cubic domain Ω = Ωȳ = Ωu for the observation, control
and system state, with the simplifying assumption that M1 = M2 = M3 are scaled mass
matrices. Let 0 < α ≤ 1 and 1 ≤ βi ≤ 2, i = 1, 2, 3. Then it holds 1

2
≤ R < 1.

Proof. Following [66], we write

R =
a>1 a1 + a>2 a2

(a1 + a2)>(a1 + a2)
,

where a1 = 1√
τhd̄

(
C>α ⊗ In − Int ⊗ L>

)
v, a2 =

√
τhd̄

γ
v, using the form of M1, M2, M3. We

first note that a>2 a2 = τhd̄

γ
v>v > 0. This means that we may write

1

2
(a1 − a2)>(a1 − a2) ≥ 0 ⇔ a>1 a1 + a>2 a2 ≥

1

2
(a1 + a2)>(a1 + a2) ⇔ R ≥ 1

2
.

To prove the upper bound for R, we now consider the quantity

a>1 a2 + a>2 a1 =
1
√
γ
v>
(
(Cα + Cα)> ⊗ In − Int ⊗ (L+ L>)

)
v.

It has been shown in [13, Lemma 1] that the matrix Int ⊗ L is negative semi-definite for
1 ≤ βi ≤ 2 – we can therefore write that v>

(
Int ⊗ (L+ L>)

)
v = 2v> (Int ⊗ L) v ≤ 0, using

the symmetry of L.
The matrix Cα + C>α is symmetric positive definite for α < 1, since Cα is diagonally

dominant. It is clear that the coefficient gα,k is positive for k = 0 and negative for all
k = 1, 2, . . . , if α < 1, so we need to show that

∑nt
k=0 gα,k > 0. This follows from the binomial

expansion (1 + z)α =
∑∞

k=0

(
α
k

)
zk, evaluated at z = −1. In our case, Re α > 0 and |z| = 1,

and this series converges absolutely [33, page 397]. Therefore, the following inequality holds,∑nt
k=0 gα,k >

∑∞
k=0 gα,k =

∑∞
k=0

(
α
k

)
(−1)k = 0. Hence, we have that v>

(
(Cα + C>α)⊗ In

)
v >

0, using the standard property of Kronecker product that the eigenvalues of K1 ⊗ K2 are
equal to those of K1 multiplied by those of K2 [47, Chapter 13].

Combining these findings gives us that a>1 a2 + a>2 a1 > 0. We therefore have that

R =
a>1 a1 + a>2 a2

a>1 a1 + a>2 a2 + a>1 a2 + a>2 a1

<
a>1 a1 + a>2 a2

a>1 a1 + a>2 a2

= 1.

The general case of incomplete observation or control is analytically much more challeng-
ing, but there are heuristic techniques [66, 67] for augmenting the matrices M1 and M3 which

define fairly good (from computational experience) approximations Φ̃ and S̃.

8

3.2. First Schur Complement

This approach requires the invertibility of the (1, 1)-block Φ and is mainly concerned with
inverting the (negative) Schur complement matrix

S = AM−1
1 A> +M3 (γM2)−1M>

3 . (17)

It proceeds by solving the following three systems,

−Sp = f3 − AM−1
1 f1 −M3 (γM2)−1 f2,

(γM2)u = f2 −M>
3 p,

M1y = f1 − A>p.
(18)

The disadvantage of this approach is that it requires the invertibility of both observation
and control matrices for the existence of S, which may be restrictive. However, when the
matrices M1 and M2 are invertible, their inversion is usually very cheap, e.g. M1 and M2

are scaled identities. As we observe through numerical experiments, this scheme is superior
when both observation and control are defined on the whole domain.

3.3. Second Schur Complement

Now we consider the case when control and observation domains have different sizes,
so that M3 is a rectangular matrix. In contrast to M1, the matrix M2 can be assumed to
be non-singular, since it corresponds to the regularization term. Therefore, the following
decomposition can be verified straightforwardly:M1 0 A>

0 γM2 M>
3

A M3 0

 =

I −M1A
−1M3 M1

0 γM2 0
0 0 A

0 0 M1A
−1M3 (γM2)−1M>

3 + A>

0 I (γM2)−1M>
3

I A−1M3 0

 .
(19)

The matrix A specifies the underlying FDE model, and is also invertible. Using this factor-
ization the solution of (14) can be computed as follows. First, definef̃1

f̃2

f̃3

 :=

I −M1A
−1M3 M1

0 γM2 0
0 0 A

−1 f1

f2

f3

 .
We compute these intermediate vectors by solving Af̃3 = f3, (γM2) f̃2 = f2, Ag2 = M3f̃2

and computing f̃1 = f1 +M1g2−M1f̃3. Note that if f2 = 0 as in (14), it is trivially observed
that g2 = 0. Now we eliminate the second factor in (19) by solving the following systems:(

M1A
−1M3 (γM2)−1M>

3 + A>
)
p = f̃1, (20a)

(γM2)u = f2 −M>
3 p, (20b)

Ay = f3 −M3u. (20c)

Both M2 and A have Kronecker-product structures by assumption, hence the action of
their inverses by vectors can be computed efficiently using tensor product algorithms.

9

The computation of p is more complicated: we have to assemble the Schur complement
first, which itself requires matrix inversion. We cast this problem as the solution of a larger
linear system: we assemble Â = A⊗ IN and solve

Âq = vec
(
M3 (γM2)−1M>

3

)
, q = vec(Q), (21)

where vec(·) stretches matrix entries to a vector. Now the matrix in (20a) becomes M1Q+A>.

In tensor product form, the storage complexity of Â is not much higher than that of A.
A certain difficulty arises from the storage of Q: while A has a convenient tensor product
structure, its inversion may consume a considerable amount of memory even in a compressed
form. This occurs, for example, if the control is given on the entire domain, and the right-
hand side in (21) is an identity matrix. Fortunately, in practically interesting cases of a small
control domain, the column size of M3 is also small. The right-hand side in (21) is a low-rank
matrix and yields smaller storage requirements for Q to achieve the same accuracy.

4. Numerical algorithms

We will now discuss solvers for the matrix systems (14)–(21). While for the one-dimensional
FDE the problem has similarities to saddle point problems involving matrix equations of
Sylvester type [81], the higher-dimensional setup requires the use of more specialized tensor
solvers. In particular we discuss the tensor-train format introduced in [61].

4.1. The tensor-train decomposition

In a one-dimensional problem, where we separate the spatial and time variable, a suitable
approach for the FDE problem is a matrix based low-rank decomposition of Krylov vectors.
While this is an important case that we discuss in the next section in some more detail, in
higher dimensions even low-rank factors become infeasible. Further data compression can be
achieved with more advanced high-dimensional tensor product decompositions. In this paper
we use the simple, but robust, Tensor Train (TT) format and its extension, the Quantized
Tensor Train (QTT) decomposition.

The TT format is derived by applying the low-rank approximation recurrently [61]. Given
a d-index array y = [y(i1, . . . , id)], with indices varying in ranges ik = 1, . . . , nk, k = 1, . . . , d,
we may reshape a tensor y into a matrix Y1 ∈ Rn1×(n2···nd) by the grouping of indices. To do
this we introduce the notation

i2 . . . id = i2 + (i3 − 1)n2 + · · ·+ (id − 1)n2n3 · · ·nd−1, (22)

and define Y1(i1, i2 . . . id) = y(i1, . . . , id) for all admissible index values. Since Y1 is a matrix,
we may apply the low-rank singular value decomposition (SVD):

Y1 ≈ U1Σ1V
>

1 , where U1 ∈ Rn1×r1 , V1 ∈ Rn2···nd×r1 .

The first factor U1 is of moderate dimension, and can be stored as y
(1)
α1 (i1) = U1(i1, α1), where

α1 = 1, . . . , r1. The remaining matrix Σ1V
>

1 depends on indices α1 and i2 . . . id. Now we
regroup these indices as follows:

Y2(α1i2, i3 . . . id) = Σ1(α1, α1)V >1 (α1, i2 . . . id),

10

and compute the next SVD,

Y2 ≈ U2Σ2V
>

2 , where U2 ∈ Rr1n2×r2 , V2 ∈ Rn3···nd×r2 . (23)

Again, U2 can be reshaped to a moderately-sized 3-dimensional tensor y
(2)
α1,α2(i2) = U2(α1i2, α2),

and the decomposition continued for Σ2V
>

2 . Finally, we arrive at the TT format:

y(i1, . . . , id) ≈
r1,...,rd−1∑

α1,...,αd−1=1

y(1)
α1

(i1)y(2)
α1,α2

(i2) · · ·y(d−1)
αd−2,αd−1

(id−1)y(d)
αd−1

(id), (24)

where rk are called TT ranks. The storage size in the TT format (24) is O(dnr2), where
r & rk and n & nk.

A similar construction is introduced for discretized operators in high dimensions. Given
a matrix A =

[
A(i1 . . . id, j1 . . . jd)

]
∈ R(n1···nd)×(n1···nd), we decompose it as

A(i1 . . . id, j1 . . . jd) =

R1,...,Rd−1∑
β1,...,βd−1=1

A
(1)
β1

(i1, j1)A
(2)
β1,β2

(i2, j2) · · ·A(d)
βd−1

(id, jd), (25)

which is consistent with the Kronecker product A = A(1)⊗A(2) in the case d = 2 and R1 = 1,
and allows a natural multiplication with (24), returning the result in the same form.

In the course of computing the matrix-by-vector product f = Ay, the TT ranks of A
and y are multiplied, i.e. rk(f) = Rk(A)rk(y), k = 1, . . . , d − 1. In many cases they are
unnecessarily large for achieving the required accuracy. However, as soon as f is already
written in the format, its SVD re-compression steps, e.g. (23), can be implemented without
high-dimensional tensors appearing. Only QR and SVD decompositions of nr × r matrices
are involved [61]. The total complexity of this procedure is O(dnr3), which opens up the
possibility of using any standard iterative method, such as Minres, as soon as r remains
moderate during the course of the iterations.

The multi-index concept (22) allows us to compress even “one-dimensional” matrices
and vectors, which lack a method for separating variables at first glance. Let us consider
y = [y(i)] ∈ Rn, with n = 2l. Then we may write i in the binary coding,

i = i1 . . . il = i1 + 2(i2 − 1) + · · ·+ 2l−1(il − 1), is ∈ {1, 2}, s = 1, . . . , l.

As a result, a vector y is reshaped to an l-dimensional tensor y, i.e. y(i1, . . . , il) = y(i),
and the TT approximation can be applied to y. The resulting TT format was called the
Quantized TT (QTT) [42, 59, 60, 86]. If the TT ranks of y are moderate, the total storage
reduces to a logarithmic amount O(lr2) = O(log n).

For many elementary functions and operators, their TT/QTT formats can be written
analytically, for example, the discretized Laplace operator [41], the sine, exponential and
polynomial functions, sampled on uniform grids in one [42, 62] and many dimensions [20, 43].

The discretisation of fractional order derivatives on a uniform grid is given as a convolution
with a vector, which admits a low-rank QTT representation [75]. The corresponding Toeplitz
matrix will also have a low QTT rank as shown in [40]. Therefore, the tensor product format
can be applied to solve the problem (14).

4.2. Tensor product Krylov methods

For expository purposes we start the discussion by considering the case with one spatial
and one temporal dimension, which leads to a matrix valued problem. Following this we
discuss the more general tensor-valued equation and the corresponding solvers.

11

Matrix case

It was recently noted [83] that the vectors y, u, p ∈ Rnnt for space-time saddle point
problems can be written as

y = vec(Y) = vec([y1, . . . , ynt]),

u = vec(U) = vec([u1, . . . , unt]),

p = vec(P) = vec([p1, . . . , pnt]).

Note that we can now perform any iterative scheme in matrix form for the unknowns rather
than in vector form. This can best be seen by exploiting the identity

(−Cα ⊗ In + Int ⊗ L) vec(Y) = vec(−InY C>α + LY I>nt),

and then neglecting the vec operator on the right-hand-side. Additionally one can now use a
low-rank decomposition, for instance via the singular value decomposition (SVD), such that
Y = Y1Y

>
2 , U = U1U

>
2 , and P = P1P

>
2 are the solutions obtained using a low-rank Krylov

method. The main ingredients of such a scheme are that the right-hand side and the initial
guess are decomposed into low-rank form, which is then maintained throughout the iteration.
In more detail, assume that the initial residual is given by

RY = WY V
>
Y with WY ∈ Rn×r1 , VY ∈ Rnt×r1 , (26a)

RU = WUV
>
U with WU ∈ Rn×r2 , VU ∈ Rnt×r2 , (26b)

RP = WPV
>
P with WP ∈ Rn×r3 , VP ∈ Rnt×r3 , (26c)

where ri � n. If the residual is not initially of this form, then we assume that it can be well
approximated in this way. Every Krylov scheme now performs matrix-vector multiplications
of A and the initial residual given in (26). In [83] it was shown that the matrix-vector prod-
uct with the matrix (14) can maintain the low-rank structure, only requiring an additional
truncation step that can be performed cheaply compared to the cost of the full method.
The construction of such a truncation function Tε for the matrix case is further described in
[46, 83].

Tensor case

The previously discussed matrix setup is of course a special case of the more general tensor
problem. As we noted, algebraic operations (matrix, scalar products and additions) and the
SVD re-compression procedure in the TT format allow to rewrite any classical iterative
method, keeping all vectors in the tensor format and performing only structured operations
[64, 4, 21, 46]. Let us denote the compression (or truncation) procedure from a vector y to
a vector ỹ ≈ y as

ỹ = Tε(y),

where by ε we denote the relative truncation accuracy in the Frobenius norm. In particular,
the TT-Minres algorithm can be written as shown in Algorithm 1.

Again the convergence behavior of the Minres algorithm depends on the system param-
eters and, in order to achieve robust convergence, we need to construct a suitable precondi-
tioner.

12

Require: Right-hand side f , initial vector y in the TT format, matrix A as a MatVec

procedure g = Tε(Ay), preconditioner P (possibly identity), accuracy ε.
Ensure: Improved solution y.

1: Start: compute v2 = Tε(f −Ay), z1 = Tε(Pv2), γ1 =
√
〈z1, v2〉.

2: Initialize c1 = c2 = γ0 = 1, s1 = s2 = 0, η = γ1, v1 = w1 = w2 = [0, . . . , 0]>.
3: Iterations:
4: for j = 1, 2, . . . ,m do
5: z1 = z1/γ1, v3 = Tε(Az1).

6: δ = 〈z1, v3〉, v3 = Tε
(
v3 − δ

γ1
v2 − γ1

γ0
v1

)
. {Orthogonalize the Krylov vector}

7: z2 = Tε(Pv3), γ2 =
√
〈z2, v3〉.

8: α0 = c1δ − c0s1γ1, α1 =
√
α2

0 + γ2
2 , α2 = s1δ + c0c1γ1, α3 = s0γ1.

9: c0 = c1, c1 = α0/α1, s0 = s1, s1 = γ2/α1.
10: w3 = 1

α1
Tε (z1 − α3w1 − α2w2). {Orthogonalize the preconditioned vector}

11: y = Tε (y + c1ηw3). {Correct the solution}
12: η = −s1η, γ0 = γ1, γ1 = γ2, v1 = v2, v2 = v3, z1 = z2, w1 = w2, w2 = w3.
13: if |η| < ε

√
〈b,Pb〉 then Stop.

14: end for

Algorithm 1: TT-Minres

Preconditioning

We have now established the use of a low-rank or tensor Krylov method and have pre-
viously discussed block-preconditioners. It is now crucial to evaluate the preconditioners P
given by the block-diagonal matrix/tensor in Section 3.1.

In the matrix case, the inverse of S̃ from (16) can be approximated by employing low-rank

methods for Sylvester equations to approximately solve for Ã and Ã>. Note that both of
these operations mean approximately solving Sylvester-type equations, and computing one
matrix multiplication.

The solution of these matrix equations is of crucial importance in many areas of science
and engineering. While direct methods such as the Bartels–Stewart algorithm [29] are suitable
for moderate matrix sizes, larger problems require the use of iterative schemes. Additionally
the storage demand for the solution matrix is often vast, and hence low-rank methods have
become a standard tool to approximate the solution of Sylvester equations [81]. The efficient
use of alternating direction implicit (ADI) methods was established over the last decade
[5, 8, 6, 82]. The ADI scheme often gives very good approximations but requires a set of
shift parameters to guarantee convergence, which can be difficult to obtain. Hackbusch and
Grasedyck suggest the use of a multigrid scheme [31] that maintains the low-rank nature of the
solution throughout the iteration. More reliable is the Krylov-plus-inverted-Krylov (KPIK)
method, first developed in [24, 80] for Lyapunov equations and later adapted for the case of
Sylvester equations [81]. This method approximates the solution of the Sylvester equation in
an extended Krylov subspace that involves two sequences with each of the system matrices
Cα and 1√

γ
In−L in Ã. Additionally, the sequence requires the inverse or approximate inverse

of both Cα and 1√
γ
In −L from (8) and (9). Since they are Toeplitz matrices, we can employ

fast iterative solvers using circulant preconditioners, following [13].

In the tensor case, for the matrix Ã, as well as for Schur complement approaches in Section
3, we require an efficient tensor product solver, which is discussed next.

13

4.3. Alternating solvers

It is often observed that Krylov vectors may require much larger TT ranks than the solu-
tion of the problem, see e.g. [23]. Alternating iterative tensor algorithms avoid this problem
by seeking directly the elements of the tensor format for the solution. The Alternating Least
Squares method (see [45] and references there) was developed to fit given data to a low-rank
model. The Density Matrix Renormalization Group (DMRG) algorithm [89] was initially
proposed for solution of ground state eigenvalue problems in quantum physics, and then
extended to linear systems [63, 36, 38].

Given a TT format (24) for the approximate solution y, we may collect its first, resp.
last, k TT factors into the interface matrices,

Y (1:k)(i1 . . . ik, αk) =

r1,...,rk−1∑
α1,...,αk−1=1

y(1)
α1

(i1)y(2)
α1,α2

(i2) · · ·y(k)
αk−1,αk

(ik), Y (1:k) ∈ Rn1···nk×rk ,

Y (k:d)(αk−1, ik . . . id) =

rk,...,rd−1∑
αk,...,αd−1=1

y(k)
αk−1,αk

(ik) · · ·y(d)
αd−1

(id), Y (k:d) ∈ Rrk−1×nk···nd .

(27)

Then we assemble the frame matrix,

Y6=k = Y (1:k−1) ⊗ Ink ⊗
(
Y (k+1:d)

)> ∈ Rn1···nd×rk−1nkrk , (28)

which includes all TT factors but y(k), hence the notation. Note that the column size of the
frame matrix is exactly equal to the number of elements in the TT block y(k). The TT format
(24) can be seen as a linear map, induced by the frame matrix, i.e. y = Y6=ky

(k), where we

denote by y(k) the vector of elements of the k-th TT block, y(k)(αk−1ikαk) = y
(k)
αk−1,αk(ik).

Now let us consider Ay = f as an overdetermined linear linear system on y(k), provided
the TT format (24) is inserted instead of y, i.e. AY 6=ky

(k) = f . A simple way to solve this
system is to project it onto the frame matrix. We solve

Aky
(k) = fk, Ak = Y >6=kAY 6=k, fk = Y >6=kf. (29)

Using the orthogonalizations of the TT blocks via the QR decompositions of their matrix
reshapings, we can always make the frame matrix orthogonal [79], that is Y >6=kY 6=k = I. This

ensures the stability of the problem, cond(Ak) ≤ cond(A) if A + A> > 0. Iterating for
all dimensions k = 1, . . . , d (hence the name “alternating”), we obtain the simple one-block
DMRG, or Alternating Linear Scheme (ALS) [36] algorithm.

However, in this scheme all frame matrices, and hence all TT blocks, have fixed sizes,
prescribed by the TT ranks of the initial guess. This is very inconvenient: in most cases it
is difficult to predict TT ranks of the solution for a given accuracy, and we would like to
determine them adaptively. Another problem is the local convergence of the ALS method
[76]: the result is highly dependent on the initial guess and may give an unsatisfactory
approximation.

There are two principal ways to solve the first (technical) problem of the TT rank adap-
tivity during the iterative process. Note that the main issue is how to increase the ranks; to
decrease them, it is sufficient to perform the SVD re-compression procedure, as pointed out
in Section 4.1. One way to increase the ranks is given by the DMRG algorithm in its initial,

14

two-block version [89]. Instead of one block y(k), we update both y(k) and y(k+1) at each step
and adapt the TT rank rk. However, for linear systems with non-symmetric matrices, even
the two-block DMRG method may converge to an incorrect solution [23]. A better way to
increase TT ranks is to enrich TT blocks explicitly. On step 1 ≤ k ≤ d, after the solution of
(29), we may expand

y(k)(ik) :=
[
y(k)(ik) z

(k)
k (ik)

]
, y(k+1)(ik+1) :=

[
y(k+1)(ik+1)

0

]
, (30)

where z
(k)
k ∈ Rrk−1×nk×ρk is some auxiliary tensor, and the zero-block in y(k+1) has the

corresponding sizes ρk × nk+1 × rk+1. This step does not impact the whole solution y.
However, when we proceed to the next block y(k+1), the interface Y (1:k) and the frame Y 6=k+1

matrices carry z
(k)
k , so the Galerkin reduction (29) in the step k + 1 is performed to a wider

basis than in the ALS method. This can not only increase the TT rank, but also facilitate
the convergence, if we select the augmentation z

(k)
k properly.

The idea of the AMEn algorithm proposed in [23] is to combine the alternating iteration
with the steepest descent method. The latter updates the solution by adding the scaled
residual, y := y + zh, where z ≈ f − Ay and h is a scalar weight. If y and z are defined by
their TT formats, the summation is computed as

y(i1 . . . id) + hz(i1 . . . id) =
[
y(1)(i1) z(1)(i1)

] [y(2)(i2)
z(2)(i2)

]
· · ·
[
y(d)(id)
hz(d)(id)

]
.

Note that the first factor here has the same form as the enrichment of y(k) in (30); therefore,
(30) performs the first step of the TT format addition. This is sufficient, since in the next
step we solve (29) and recover correct z-related entries in y(k+1) that minimize the energy
function if A = A> > 0. Due to this property, the new method was called AMEn (alternating
minimal energy).

To compute z
(k)
k in practice, it is sufficient to provide a very rough approximation of

the residual. We prepare some initial guess for z in the TT format with ranks ρ1, . . . , ρd−1

and update it towards f − Ay by the secondary ALS iteration, minimizing the distance
‖z − (f − Ay)‖2. The entire procedure is summarized in Algorithm 2. Notice that after the
enrichment (30) we need to orthogonalize y(k) explicitly in order to make the frame matrices
orthogonal.

In most cases, the enrichment ranks ρk . ρ . 10 are sufficient. To make the computa-
tional complexity in Lines 4,5,7 independent of d, we reuse some intermediate data during
the subsequent iteration k = 1, . . . , d (see [22, 63, 23] for details).

At this juncture we wish to remark on the utility of the approach presented when nonlinear
problems, such as the previously mentioned phase-field equations, are considered. Our crucial
contribution in this work is the introduction of low-rank solvers for the saddle point problems
that arise for the linear problems. For nonlinear problems one typically applies an outer
solver such as a Picard-type or Newton-type method [57]. At the heart of these methods,
and indeed almost all nonlinear solution strategies, lies the solution of a large-scale system
in saddle point form for which the low-rank strategies we have described can be applied. In
future work we wish to carry out a thorough analysis of this setting: from our experience
with low-rank methods for classical derivative and nonlinear equations the structure of the
saddle point system (14) will be similar, but the particular blocks, e.g. the FDE block A, can
consist of a sum of tensors due it being the linearization of a nonlinear low-rank operator.

15

Require: Matrix A, right-hand side f , initial guesses y and z in the TT formats.
Ensure: Improved solution y in the TT format.

1: while not converged and iteration limit is not hit do
2: Orthogonalize y and z s.t. Y (k:d) and Z(k:d) are orthogonal for k = 2, . . . , d.
3: for k = 1, . . . , d do
4: Build and solve (29) for the TT block y(k).

5: Update the residual block z(k) =
(
Z(1:k−1) ⊗ Ink ⊗

(
Z(k+1:d)

)>)>
(f − Ay).

6: if k < d then

7: Compute the enrichment block z
(k)
k =

(
Y (1:k−1) ⊗ Ink ⊗

(
Z(k+1:d)

)>)>
(f − Ay).

8: Perform the expansion (30).
9: Orthogonalize y(k) and z(k) s.t. Y (1:k) and Z(1:k) are orthogonal.

10: end if
11: end for
12: end while

Algorithm 2: AMEn method

5. Numerical results

We solve the problem (14) in the QTT format for different inputs and parameters, and
compare three procedures:
“SC1” the First Schur Complement scheme (18), where the AMEn Algorithm 2 is applied

to solve linear systems;
“SC2” the Second Schur Complement scheme (20), again with the AMEn solver; and
“MR” the Minres Algorithm 1 with the preconditioner (16).

In the MR approach, the linear systems with the matrices Ã and Ã> are also solved using
the AMEn method. The three components y, u and p and the blocks in the matrix (14) are
kept in separate TT formats. Since the matrix A has considerable TT ranks (up to 20), it is
not efficient to multiply it by vectors exactly and then perform the SVD truncation. Instead,
we approximate the matrix-by-vector product iteratively using a special variant of Algorithm
2, where A = I and f = Ãy. Further implementation details are given in the Appendix.

As a widely used error indicator, we consider the relative discrepancy of the state vector
y in the Frobenius norm. Given some reference vector y?, we denote

E(y?) =
‖y − y?‖2

‖y?‖2

. (31)

The examples2 were implemented using the TT-Toolbox package3 and conducted on one
core of the MPI otto cluster, an Intel Xeon X5650 CPU at 2.67GHz, in Matlab R2012a.

5.1. Complete data, two-dimensional space

In the first test both observation and control are defined on the whole domain [0, 1]2.
Therefore, M1 and M3 are identity matrices, and both Schur complements are well defined.
We investigate their performance and compare with the TT-Minres approach.

2The source codes are available at http://www.mpi-magdeburg.mpg.de/2866211/supplementaries.zip
3http://github.org/oseledets/TT-Toolbox, version Nov 10, 2014

16

http://www.mpi-magdeburg.mpg.de/2866211/supplementaries.zip
http://github.org/oseledets/TT-Toolbox

Table 1: Complete data test. Left: CPU times (sec.), maximal TT ranks and iterations vs. grid level l.
Right: discrepancies between solutions computed by SC2, Minres, Full and SC1 schemes.

l SC1 SC2 MR Full SC2 MR Full
time rank time rank time rank iter time E(ySC1)

3 0.596 10 1.396 9 2.980 13 9 0.552 1.47e-6 2.24e-7 2.51e-7
4 0.489 12 1.532 14 4.823 20 11 7.695 2.45e-6 3.11e-7 2.90e-7
5 1.021 18 4.103 21 11.45 26 15 232.3 7.07e-6 5.97e-7 5.64e-7
6 2.280 22 11.69 27 24.70 36 15 7513 5.06e-5 8.63e-7 8.36e-7
7 5.061 25 27.61 36 83.99 49 15 – 2.00e-4 9.14e-7 –
8 10.46 28 55.45 41 245.7 62 15 – 8.16e-4 1.18e-6 –
9 18.90 29 99.94 45 984.9 78 17 – 2.41e-3 2.04e-6 –
10 28.03 29 175.1 51 3494 100 17 – 1.03e-2 5.27e-6 –
11 47.49 29 257.8 55 33005 255 25 – 2.18e-2 2.52e-5 –

The constraint problem is the equation (1b) in 2 spatial variables plus time, with α = 0.5,
β1 = 1.5, β2 = 1.5 and f = 0. The level-l discretization grid contains 2l × 2l × 22l points,
lying uniformly in space and time, i.e.,

x1(i) = ih, x2(j) = jh, t(k) = kτ,

i, j = 1, . . . , 2l, k = 1, . . . , 22l, h =
1

2l + 1
, τ = h2.

The target function is
ȳ(x1, x2, t) = 10 cos(10x1) sin(x1x2).

Boundary and initial conditions are taken to be homogeneous. We vary the grid level l,
the regularization parameter γ and the tensor approximation tolerance ε. We use the same
threshold ε both for the tensor approximation and also as the stopping tolerance for our
numerical schemes.

Performance with respect to the grid size

We fix γ = 10−6, ε = 10−6, and vary the grid size in the range l = 3, . . . , 11. The results
are shown in Table 1. We can see that the iteration numbers for Minres are quite robust
with respect to the varying mesh-sizes. Nevertheless, the rank increase with each refinement
slows the method down significantly. The SC2 approach also suffers from a rank increase but
less significantly than the Minres. As this is the most benign case with full observation and
control domain, the SC1 method performs outstandingly with almost no increase in the ranks
for the final refinements. We further compare the solutions of the three different approaches
and can see that the Minres and SC1 approach show the best coincidence.

To demonstrate the importance of the QTT compression, we also compare our approaches
with the “Full” scheme, where (14) is solved via classical Minres with the full storage of all
vectors. Toeplitz matrices were multiplied by vectors via the FFT, and the linear systems
with Ã and Ã> from (16) were solved using the bicgstab method. The solution accuracy
is good, but the CPU time grows dramatically and makes the calculations prohibitively
expensive for l > 6.

Performance with respect to the regularization parameter (Table 2)

In the second experiment we examine the behavior of the methods with respect to the
regularization parameter γ. For an application the choice of regularization parameter is often

17

Table 2: Complete data test. Left: CPU times (sec.) and discrepancies with the observation data. Right:
discrepancies with SC1.

γ SC1 SC2 MR SC2 MR
time E(ȳ) time E(ȳ) time E(ȳ) E(ySC1) E(ySC1)

10−2 23.91 9.33e-1 31.56 9.33e-1 4884 9.33e-1 4.53e-5 4.12e-5
10−4 14.47 3.31e-1 26.97 3.31e-1 707.0 3.31e-1 1.39e-4 6.94e-6
10−6 5.226 9.53e-2 27.72 9.53e-2 88.38 9.53e-2 1.76e-4 9.51e-7
10−8 1.354 5.27e-3 29.51 5.29e-3 17.18 5.27e-3 4.23e-4 1.18e-6
10−10 1.217 5.75e-5 31.26 4.28e-4 5.531 5.75e-5 4.24e-4 9.91e-7
10−12 1.189 1.57e-6 29.43 3.78e-4 2.450 5.75e-7 3.78e-4 1.48e-6

Table 3: Complete data test. Left: CPU times (sec.) of three methods vs. tensor approximation tolerance
ε. Right: discrepancies of SC2 and Minres with SC1.

ε SC1 SC2 MR ‖ySC2−ySC1‖
‖ySC1‖

‖yMR−ySC1‖
‖ySC1‖

10−2 0.728 1.471 3.400 2.50e-1 7.06e-3
10−4 1.449 4.899 9.869 1.38e-2 1.01e-4
10−6 4.962 27.53 75.07 1.99e-4 9.11e-7
10−8 17.26 163.6 504.1 1.18e-6 8.57e-9
10−10 37.34 880.2 2846 3.76e-9 6.27e-10

determined by techniques such as L-curve analysis [32] and discrepancy principle [26]. As
we do not focus on a particular application but rather a methodological development we
want to illustrate the robustness of our method regarding for a wide range of regularization
parameters. In our experiments we use the grid level is l = 7, and ε = 10−6. According to
Table 2, we can see that the computed state approaches the desired state further when γ
gets smaller. Due to the Dirichlet boundary conditions, we neither observe nor control the
boundary, and consider only the inner grid points in the discrete model. The error indicator
E(ȳ) involves only the inner points as well. Therefore, it is possible to approach ȳ when
γ → 0. As a by-product, the CPU times of all methods decrease with γ. Since the matrices
M1,M2 and M3 are scaled identities, the Schur complement (17) becomes S = 1

τh2AA
>+ τh2

γ
I,

which tends to an identity when γ → 0, and becomes easier to invert. This is clearly reflected
by the SC1 and MR methods. However, the SC2 is slower: its bottleneck is the inversion of
A, which is performed independently of γ.

Performance with respect to the accuracy threshold (Table 3)

Finally, we fix l = 7, γ = 10−6, and vary ε from 10−1 to 10−10; we show the results in
Table 3. It is not surprising that all methods require more computing time to obtain the
desired accuracy. The discrepancies demonstrate almost perfect linear dependence on ε.

5.2. Incomplete data, two-dimensional space

We now investigate the following more challenging scenario, reducing the observation and

control domains to Ωȳ = Ωu =
[

3
8
, 5

8

]2
. Consequently, the first Schur Complement scheme is

not applicable, and we test the second approach. Other parameters are the same as in the
previous example.

18

Table 4: Incomplete data test. Left: CPU times (sec.), maximal TT ranks and iterations vs. grid level l.
Right: solution errors.

l SC2 MR Full SC2 MR Full
time rank time rank iter time E(y?) E(ȳ) E(y?) E(y?)

3 1.081 23 5.247 44 11 5.521 4.25e-7 2.42e-3 2.27e-4 8.31e-9
4 2.426 26 27.88 138 15 124.1 1.69e-6 9.12e-3 1.49e-4 8.93e-9
5 7.039 42 1018 752 17 3542 3.34e-6 1.82e-2 3.68e-4 3.53e-5
6 20.96 56 – – 1.33e-5 2.98e-2 – –
7 54.19 64 – – 4.29e-5 3.62e-2 – –
8 120.0 72 – – 3.21e-4 3.76e-2 – –
9 223.7 75 – – 1.28e-3 3.76e-2 – –
10 414.4 76 – – 4.25e-3 3.78e-2 – –
11 743.7 81 – – 1.05e-2 3.94e-2 – –

Performance with respect to the grid size (Table 4)

The first parameter that we vary is the grid level l. The regularization parameter is
γ = 10−6, the approximation tolerance ε = 10−6, and the fractional orders are α = 0.5,
β1 = β2 = 1.5. The results are shown in Table 4.

In this example, the number of Minres iterations is moderate, but the TT ranks grow
quickly, making the computations prohibitively expensive for grids larger than l = 5.

To estimate the error in the solution, we compute the reference solution y? using the
second Schur Complement scheme with a smaller threshold ε? = 10−8. As an important
indicator for the incomplete observation and control, we also demonstrate the deviation of
the solution y from the prescribed data ȳ on the observation domain.

A drawback of the Schur Complement scheme which we observe is the growth of the
error, by a factor 3 on average from level to level. This is because the condition number of
the system matrix grows like (2l)β = (21.5)l ≈ 3l, and so does the error when we compute
the approximate inverse matrix in (21). To verify that the error comes from approximation
of Q, not from other steps of the scheme, we solve (21) with a higher accuracy (say, 10−8),
while all other steps in (20) are performed with the same ε = 10−6. For l = 9, it gives
‖ySC2−y?‖
‖y?‖ ≈ 1.58× 10−5 in about 11 minutes.

Performance with respect to the regularization parameter (Table 5)

When the solution is controlled on a part of the domain, the influence of the regularization
parameter γ becomes more interesting numerically. As previously, we fix the grid level to
l = 7 and set ε = 10−6. The reference solution is computed with the threshold ε? = 10−8.
We omit the experiment with Minres, since it would require very large TT ranks.

In this test, the part M1A
−1M3 (γM2)−1M>

3 of the Schur complement matrix in (20) is
indefinite. For small γ the whole Schur complement may become indefinite, which makes the
calculations difficult. Therefore, we are limited by the range of γ we can experiment with.
However, the scheme is quite reliable for γ ≥ 10−7. The solution error is almost stable, and
the complexity grows moderately. The discrepancy is proportional to

√
γ, as expected.

Performance with respect to α and β (Fig. 1)

Since the order of a fractional derivative is a continuous quantity, it is interesting to test
the algorithms for a range of orders. In particular, in the first test we vary α ∈ [0.1, 1] and

19

Table 5: Incomplete data test. CPU times (sec.) and accuracy of the SC2 method vs. regularization
parameter γ

γ time rank E(y?) E(ȳ)
10−1 37.66 44 1.65e-6 9.95e-1
10−2 41.62 47 1.01e-5 9.61e-1
10−4 47.02 52 3.67e-5 3.48e-1
10−6 54.65 64 4.40e-5 3.62e-2
10−7 74.23 68 6.42e-5 9.66e-3

β1 = β2 ∈ [1.1, 2]. We show two-dimensional plots of computation times, TT ranks and
errors in Fig 1.

The TT ranks and CPU times grow towards lines α = 1 and β = 1. To explain this, recall
that the matrix Cα approaches identity for α → 0 and turns into the standard first-order
difference at α = 1, and the condition number cond (Cα) grows monotonously for α ∈ (0, 1].
However, the Riemann-Liouville matrix Lβ behaves differently: at β = 1, the matrix is equal
to the scaled second-order difference, L1 = h

2
L2. When β > 1, the matrix Lβ depends

continuously on β, so the condition number should have an extremum on [1, 2], which is
apparently a minimum near β = 1.2. Large conditioning makes the problem harder to solve
when β approaches 1. Even more difficult are the cases β < 1 and α > 1: the matrices Cα
and Lβ become indefinite, and the tensor product solver struggles.

Nevertheless, for parabolic cases α ∈ (0, 1] and β ∈ (1, 2], our scheme is fairly robust.
The bottom left plot in Fig. 1 shows that the relative error sits at the level 10−4–10−5 for
the entire range of orders of differentiation. The deviation from the target vector (Fig. 1,
bottom right) is also reasonable: the closer the orders are to zero, the closer the operators
are to identities, and hence they impose a less severe constraint to the optimization of the
distance ‖y − ȳ‖.

Performance with respect to β1 and β2 (Fig. 2)

We now fix α = 0.5, and vary β1, β2 within the range [1.1, 2]. The layout of Fig. 2 is
the same as in Fig. 1, only the CPU times are now presented without the logarithmic scale,
since they do not vary as strongly. Again, both CPU times and TT ranks increase towards
1. As opposed to the picture w.r.t. α and β, there is an anisotropy w.r.t. β1 and β2, since
the target function ȳ(x1, x2) is not symmetric w.r.t. x1 and x2. Both error indicators behave
similarly to those in the previous figure.

Experiment with variable coefficients (Table 6)

A more general FDE involves variable coefficients. In particular, a two-dimensional ex-
ample from [87] reads(

D
C α
0 t −p+ D

RL β1

0 x1
−p− D

RL β1

x1 1 −q+ D
RL β2

0 x2
−q− D

RL β2

x2 1

)
y(x1, x2, t) + u(x1, x2, t) = 0,

where p+ = Γ(1.2)xβ1

1 , p− = Γ(1.2)(2− x1)β1 , q+ = Γ(1.2)xβ2

2 , q− = Γ(1.2)(2− x2)β2 are the
coefficient functions, and the orders are α = 0.5, β1 = β2 = 1.8. Notice that the left and
right Riemann-Louiville derivatives enter the equation with different coefficients. After the
Grünwald-Letnikov discretization, the matrix A reads

A = Cα ⊗ In1n2 − Int ⊗
(
P+Tβ1 + P−T

>
β1

)
⊗ In2 − Int ⊗ In1 ⊗

(
Q+Tβ2 +Q−T

>
β2

)
,

20

Figure 1: Incomplete data test. CPU times, TT ranks and errors vs. α (x axis) and β (y axis).

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

log10 (CPU time, sec.)

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2
maximal TT rank

40

60

80

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

log10 E(y?)

−5.5

−5

−4.5

−4

0.2 0.4 0.6 0.8 1

1.2

1.4

1.6

1.8

2

log10 E(ȳ)

−2.5

−2

−1.5

−1

where Tβ is from (6), P+, P−, Q+, Q− are diagonal matrices with the grid values of p+, p−, q+, q−,
respectively. We also consider a time-dependent desired state

ȳ(x1, x2, t) = 10 cos(10x1) sin(x1x2)(1− exp(−5t)).

All other parameters are the same as in the previous test.
The results are shown in Table 6. Since the coefficient admits a low-rank structure, the

behavior of the methods is qualitatively the same as in the constant coefficient case. The
CPU times are larger due to larger condition numbers of the matrices involved.

5.3. Three-dimensional problem, incomplete data

To verify the applicability of our technique to a significantly larger problem, we solve the
problem (1c) in a three-dimensional space domain plus time. We set Ω = [0, 1]3, α = 0.5,
β1 = β2 = β3 = 1.5, and f = 0. The target function is given by

ȳ(x1, x2, x3, t) = e−64r2

, r2 = (x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2.

Boundary and initial conditions are zeros. On discretization level l we use the uniform

2l × 2l × 2l × 22l grid. The observation and control domains are Ωȳ = Ωu =
[

3
8
, 5

8

]3
, which

is about 1.5% of the whole volume. The regularization and stopping tolerances are set to
γ = ε = 10−6.

21

Figure 2: Incomplete data test. CPU times, TT ranks and errors vs. β1 (x axis) and β2 (y axis).

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

CPU time, sec.

40

60

80

100

120

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2
maximal TT rank

50

60

70

80

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

log10 E(y?)

−5

−4.8

−4.6

−4.4

−4.2

−4

1.2 1.4 1.6 1.8 2

1.2

1.4

1.6

1.8

2

log10 E(ȳ)

−2.5

−2

−1.5

−1

In this example, the Minres method would be prohibitive computationally due to the
large TT ranks, so we investigate only the SC2 approach. In Table 7 we show the performance
w.r.t. the grid size. Again, the reference solution y? is obtained by the SC2 method with
accuracy ε? = 10−8. We observe that the behavior is qualitatively the same as for the 2D
problem with incomplete data. We see that the TT ranks stabilize, and the CPU time tends
to a linear growth with l, but the accuracy of the solution deteriorates proportionally to the
condition number of the system matrix, because so does the accuracy of the matrix inversion
in the Schur complement. Nevertheless, at moderate grids (e.g. 7) the results are satisfactory,
considering the fact that the full problem of size 235 with a dense matrix is intractable.

In Fig. 3 we show volumetric plots of the solution, control and Lagrange multiplier
vectors at the final time T = 1, computed at the grid level l = 5. We see a good agreement
with the target solution. An interesting feature is the anisotropic structure of the control.
The 1.5-order fractional derivative possesses some properties of the convection first-order
operator. In particular, a positive force is exerted on the left side of the center (the peak of
the Gaussian function): the (inverse) fractional operator moves it to the right, towards the
centered Gaussian function.

6. Conclusions and outlook

We have presented numerical algorithms for the optimization of an objective function sub-
ject to a fractional differential equation constraint. For this we discussed the discretization of

22

Table 6: Variable coefficient test. CPU times (sec.), TT ranks, iterations and errors vs. the grid level l.

l SC2 MR Full SC2 MR
time rank time rank iter time E(y?)

3 0.6107 13 5.534 47 13 13.68 5.77e-7 9.12e-5
4 1.5428 20 37.49 235 15 248.8 2.07e-6 5.05e-4
5 6.2072 29 2610 954 20 16537 9.54e-7 7.27e-4
6 32.363 39 – – 2.53e-6 –
7 118.62 44 – – 3.60e-5 –
8 311.82 45 – – 1.62e-4 –
9 730.94 47 – – 2.11e-4 –
10 1670 48 – – 1.44e-3 –
11 4309 48 – – 6.75e-3 –

Table 7: 3D test. Left: CPU times (sec.) and maximal TT ranks of the SC2 method vs. grid level l. Right:
solution errors.

l time rank E(y?) E(ȳ)
3 1.253 21 4.58e-7 1.05e-2
4 5.425 43 2.22e-6 8.02e-3
5 19.96 71 9.43e-6 6.60e-3
6 61.11 83 7.62e-5 8.11e-3
7 135.5 85 4.84e-4 9.05e-3
8 302.8 86 2.27e-3 9.38e-3
9 583.6 86 9.92e-3 1.20e-2
10 941.6 86 5.54e-2 4.58e-2
11 1132 85 2.11e-1 1.73e-1

the differential equation via the well-known Grünwald-Letnikov finite difference method. Us-
ing a classical Lagrangian approach we obtained a saddle point system of vast dimensionality
representing the first order optimality conditions. We showed that these systems have an in-
herent tensor product structure. For the efficient solution of these systems we discussed three
possible approaches. Two of these methods are variations of a Schur complement approach,
and the third is a preconditioned Krylov subspace solver. As the storage requirements are
too large for all practically relevant scenarios when using a more fundamental approach, we
then introduced algorithms working with a compressed storage format. Namely we utilized
a tensor train method, which was also amendable for a tensorized Minres solver as well as
alternating tensor solvers. We then illustrated the performance of these solvers on various
setups and showed their competitiveness for vast system dimensions.

For future research in this field, we believe the study of nonlinear problems such as
the phase-field equations described above will be of great value. Furthermore, the study
of FDEs with uncertain parameters is a challenging and interesting topic. In this setting
one can again separate the problem into low-rank objects, as the presented techniques can
additionally achieve low-rank solutions even if the spatial dimension is not in tensor form,
e.g. discretization via finite elements on possibly irregular domains. We aim to base our
approaches for these applications on recent results presented in [9, 7].

23

Figure 3: 3D test. y (top left), ȳ (top right), u (bottom left) and p (bottom right) at the final time.

Appendix. Implementation of the TT solvers

The AMEn Algorithm 2 for solution of linear systems is provided by the procedure
amen solve2.m in the TT-Toolbox, and for the fast approximation of products Ay and A>y
within Minres we used the procedure amen mv.m.

Despite the progress of the tensor methods, they still require some parameter tuning for
better performance. We used the Frobenius norm of the error between two consecutive itera-
tions as an error measure. This is specified by passing the parameters ‘trunc norm’,‘fro’

24

to amen solve2. To address the ill conditioning of S in (18), for the SC1 method we take
local restart = 100, max full size = 2500 and tol exit = 5ε. The first two parameters
increase the accuracy of the solver for (29), and the third parameter removes unnecessary iter-
ations near a tolerance of ε by stopping at 5ε. Since the TT ranks of A−1 are rather large, we
set kickrank = 10 for (21). This allows to increase the ranks faster and have fewer iterations.
The Schur complement S in (20) is also ill-conditioned, and we set local restart = 100 for
this stage. Finally, in the preconditioning stage of the Minres method, we start the AMEn
algorithm using the given right-hand side as the initial guess, as Ã is reasonably close to the
identity matrix.

References

References

[1] G. Adomian. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer
Academic Publishers, 1994.

[2] O. P. Agrawal. A general formulation and solution scheme for fractional optimal control
problems. Nonlinear Dynam., 38:323–337, 2004.

[3] T. Akbarian and M. Keyanpour. A new approach to the numerical solution of fractional
order optimal control problems. Appl. Appl. Math., 8(2):523–534, 2013.

[4] J. Ballani and L. Grasedyck. A projection method to solve linear systems in tensor
format. Numerical Linear Algebra with Applications, 20(1):27–43, 2013.

[5] U. Baur and P. Benner. Factorized solution of Lyapunov equations based on hierarchical
matrix arithmetic. Computing, 78(3), 2006.

[6] P. Benner, R.-C. Li, and N. Truhar. On the ADI method for Sylvester equations. J.
Computat. Appl. Math., 233(4):1035–1045, 2009.

[7] Peter Benner, Sergey Dolgov, Akwum Onwunta, and Martin Stoll. Low-rank solvers
for unsteady Stokes-Brinkman optimal control problem with random data. Submitted,
2015.

[8] Peter Benner and Patrick Kürschner. Computing real low-rank solutions of Sylvester
equations by the factored ADI method. MPI Magdeburg Preprint MPIMD/13-05, May
2013.

[9] Peter Benner, Akwum Onwunta, and Martin Stoll. Block-diagonal preconditioning for
optimal control problems constrained by PDEs with uncertain inputs. Submitted, 2015.

[10] M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numer., 14:1–137, 2005.

[11] M. Benzi, E. Haber, and L. Taralli. A preconditioning technique for a class of PDE-
constrained optimization problems. Adv. Comput. Math., 35:149–173, 2011.

[12] Jessica Bosch and Martin Stoll. A fractional inpainting model based on the vector-valued
Cahn–Hilliard equation. Submitted to SIAM Journal on Imaging Sciences, 2015.

25

[13] Tobias Breiten, Valeria Simoncini, and Martin Stoll. Fast iterative solvers for fractional
differential equations. Submitted, 2014.

[14] Alfonso Bueno-Orovio, David Kay, and Kevin Burrage. Fourier spectral methods for
fractional-in-space reaction-diffusion equations. BIT Numerical Mathematics, 54(4):937–
954, 2014.

[15] Kevin Burrage, Nicholas Hale, and David Kay. An efficient implicit FEM scheme for
fractional-in-space reaction-diffusion equations. SIAM Journal on Scientific Computing,
34(4):A2145–A2172, 2012.

[16] M. Caputo and F. Mainardi. Linear models of dissipation in anelastic solids. Rivista del
Nuovo Cimento, 1:161–198, 1971.

[17] WH Deng and Jan S Hesthaven. Local discontinuous galerkin methods for fractional
diffusion equations. ESAIM: Math. Model. Num., 47(06):1845–1864, 2013.

[18] K. Diethelm. The analysis of fractional differential equations: an application-oriented
exposition using differential operators of Caputo type. Lecture Notes in Mathematics.
Springer, 2004.

[19] Kai Diethelm, Neville J Ford, Alan D Freed, and Yu Luchko. Algorithms for the frac-
tional calculus: a selection of numerical methods. Comput. Method Appl. M., 194(6):743–
773, 2005.

[20] S. Dolgov and B. Khoromskij. Two-level QTT-Tucker format for optimized tensor cal-
culus. SIAM J. on Matrix An. Appl., 34(2):593–623, 2013.

[21] S. V. Dolgov. TT-GMRES: solution to a linear system in the structured tensor format.
Russ. J. Numer. Anal. Math. Model., 28(2):149–172, 2013.

[22] S. V. Dolgov. Tensor product methods in numerical simulation of high-dimensional
dynamical problems. notpreprint, University of Leipzig, 2014.

[23] S. V. Dolgov and D. V. Savostyanov. Alternating minimal energy methods for linear
systems in higher dimensions. SIAM J. Sci. Comput., 36(5):A2248–A2271, 2014.

[24] V. Druskin and L. Knizhnerman. Extended Krylov subspaces: approximation of the
matrix square root and related functions. SIAM J. Matrix Anal. Appl., 19(3):755–771,
1998.

[25] H.C. Elman, D.J. Silvester, and A.J. Wathen. Finite Elements and Fast Iterative Solvers:
with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Sci-
entific Computation. Oxford University Press, New York, 2005.

[26] HW Engl. Discrepancy principles for tikhonov regularization of ill-posed problems
leading to optimal convergence rates. Journal of optimization theory and applications,
52(2):209–215, 1987.

[27] A. D. Freed and K. Diethelm. Fractional calculus in biomechanics: a 3D viscoelas-
tic model using regularized fractional-derivative kernels with application to the human
calcaneal fat pad. Biomech. Model. Mechanobiol., 5:203–215, 2006.

26

[28] V Gafiychuk, B Datsko, and V Meleshko. Mathematical modeling of time frac-
tional reaction–diffusion systems. Journal of Computational and Applied Mathematics,
220(1):215–225, 2008.

[29] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third
edition, 1996.

[30] R. Gorenflo and F. Mainardi. Fractional calculus: integral and differential equations
of fractional order. In A. Carpinteri and F. Mainardi, editors, Fractals and Fractional
Calculus in Continuum Mechanics, pages 223–276. Springer, 1997.

[31] L. Grasedyck and W. Hackbusch. A multigrid method to solve large scale Sylvester
equations. SIAM J. Matrix Anal. Appl., 29(3):870–894, 2007.

[32] Per Christian Hansen and Dianne Prost O’Leary. The use of the l-curve in the regulariza-
tion of discrete ill-posed problems. SIAM Journal on Scientific Computing, 14(6):1487–
1503, 1993.

[33] M. Hazewinkel. Encyclopaedia of Mathematics: A-Integral – Coordinates. Springer,
1995.

[34] Rudolf Hilfer, PL Butzer, U Westphal, J Douglas, WR Schneider, G Zaslavsky, T Non-
nemacher, A Blumen, and B West. Applications of fractional calculus in physics, vol-
ume 5. World Scientific, 2000.

[35] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE Constraints.
Mathematical Modelling: Theory and Applications. Springer-Verlag, New York, 2009.

[36] S. Holtz, T. Rohwedder, and R. Schneider. The alternating linear scheme for tensor
optimization in the tensor train format. SIAM J. Sci. Comput., 34(2):A683–A713, 2012.

[37] Kazufumi Ito and Karl Kunisch. Lagrange multiplier approach to variational problems
and applications, volume 15 of Advances in Design and Control. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2008.

[38] E. Jeckelmann. Dynamical density–matrix renormalization–group method. Phys. Rev.
B, 66:045114, 2002.

[39] I.S. Jesus, J.A.T. Machado, and J.B. Cunha. Fractional electrical impedances in botan-
ical elements. J. Vib. Control, 14(9-10):1389–1402, 2008.

[40] V. Kazeev, B. Khoromskij, and E. Tyrtyshnikov. Multilevel Toeplitz matrices generated
by tensor-structured vectors and convolution with logarithmic complexity. SIAM J. Sci.
Comput., 35(3):A1511–A1536, 2013.

[41] V. A. Kazeev and B. N. Khoromskij. Low-rank explicit QTT representation of the
Laplace operator and its inverse. SIAM J. Matrix Anal. Appl., 33(3):742–758, 2012.

[42] B. N. Khoromskij. O(d log n)–Quantics approximation of N–d tensors in high-
dimensional numerical modeling. Constr. Approx., 34(2):257–280, 2011.

27

[43] B. N. Khoromskij and I. V. Oseledets. DMRG+QTT approach to computation of the
ground state for the molecular Schrödinger operator. Preprint 69, MPI MIS, Leipzig,
2010.

[44] R.C. Koeller. Applications of fractional calculus to the theory of viscoelasticity. J. Appl.
Mech., 51(2):299–307, 1984.

[45] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Rev.,
51(3):455–500, 2009.

[46] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with tensor
product structure. SIAM J. Matrix Anal. Appl., 31(4):1688–1714, 2010.

[47] A. J. Laub. Matrix Analysis for Scientists and Engineers. Society for Industrial and
Applied Mathematics (SIAM), 2005.

[48] Fawang Liu, V. Anh, and I. Turner. Numerical solution of the space fractional Fokker–
Planck equation. Journal of Computational and Applied Mathematics, 166(1):209–219,
2004.

[49] Mark M Meerschaert, Hans-Peter Scheffler, and Charles Tadjeran. Finite difference
methods for two-dimensional fractional dispersion equation. Journal of Computational
Physics, 211(1):249–261, 2006.

[50] M.M. Meerschaert and C. Tadjeran. Finite difference approximations for fractional
advection–dispersion flow equations. J. Comput. Appl. Math., 172(1):65–77, 2004.

[51] M.M. Meerschaert and C. Tadjeran. Finite difference approximations for two-sided
space-fractional partial differential equations. Appl. Numer. Math., 56(1):80–90, 2006.

[52] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional
dynamics approach. Physics reports, 339(1):1–77, 2000.

[53] Kenneth S Miller and Bertram Ross. An Introduction to the Fractional Calculus and
Fractional Differential Equations. John Wiley & Sons, 1993.

[54] G. M. Mophou. Optimal control of fractional diffusion equation. Comput. Math. Appl.,
61:68–78, 2011.

[55] G. M. Mophou and G. M. N’Guérékata. Optimal control of a fractional diffusion equation
with state constraints. Comput. Math. Appl., 62:1413–1426, 2011.

[56] Malcolm F. Murphy, Gene H. Golub, and Andrew J. Wathen. A note on preconditioning
for indefinite linear systems. SIAM J. Sci. Comput., 21(6):1969–1972, 2000.

[57] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Series in Op-
erations Research and Financial Engineering. Springer, New York, second edition, 2006.

[58] Ricardo H Nochetto, Enrique Otárola, and Abner J Salgado. A pde approach
to fractional diffusion in general domains: a priori error analysis. arXiv preprint
arXiv:1302.0698, 2013.

28

[59] I. V. Oseledets. Approximation of matrices with logarithmic number of parameters.
Doklady Math., 428(1):23–24, 2009.

[60] I. V. Oseledets. Approximation of 2d × 2d matrices using tensor decomposition. SIAM
J. Matrix Anal. Appl., 31(4):2130–2145, 2010.

[61] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317,
2011.

[62] I. V. Oseledets. Constructive representation of functions in low-rank tensor formats.
Constr. Approx., 37(1):1–18, 2013.

[63] I. V. Oseledets and S. V. Dolgov. Solution of linear systems and matrix inversion in the
TT-format. SIAM J. Sci. Comput., 34(5):A2718–A2739, 2012.

[64] I. V. Oseledets, D. V. Savostyanov, and E. E. Tyrtyshnikov. Linear algebra for tensor
problems. Computing, 85(3):169–188, 2009.

[65] N. Özdemir and D. Avci. Optimal control of a linear time-invariant space-time fractional
diffusion process. J. Vib. Control, 20, 2014.

[66] John W. Pearson, Martin Stoll, and Andrew J. Wathen. Regularization-robust precon-
ditioners for time-dependent PDE-constrained optimization problems. SIAM J. Matrix
Anal. Appl., 33(4):1126–1152, 2012.

[67] John W. Pearson and Andrew J. Wathen. A new approximation of the Schur complement
in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl.,
19:816–829, 2012.

[68] John W. Pearson and Andrew J. Wathen. Fast iterative solvers for convection-diffusion
control problems. Electron. Trans. Numer. Anal., 40:294–310, 2013.

[69] I. Podlubny. Fractional Differential Equations: an Introduction to Fractional Deriva-
tives, Fractional Differential Equations, to Methods of their Solution and some of their
Applications, volume 198. Access Online via Elsevier, 1998.

[70] I. Podlubny. Fractional Differential Equations. Academic Press, 1999.

[71] I. Podlubny. Matrix approach to discrete fractional calculus. Fract. Calc. Appl. Anal.,
3(4):359–386, 2000.

[72] I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, and B.M. Vinagre Jara. Matrix
approach to discrete fractional calculus II: partial fractional differential equations. J.
Comput. Phys., 228(8):3137–3153, 2009.

[73] I. Podlubny, I. Petraš, B.M. Vinagre, P. O’leary, and L’ Dorčák. Analogue realizations
of fractional-order controllers. Nonlinear Dynam., 29(1-4):281–296, 2002.

[74] M. R. Rapaić and Z. D. Jeličić. Optimal control of a class of fractional heat diffusion
systems. Nonlinear Dynam., 62(1–2):39–51, 2010.

29

[75] J. A. Roberts, D. V. Savostyanov, and E. E. Tyrtyshnikov. Superfast solution of linear
convolutional Volterra equations using QTT approximation. J. Comput. Appl. Math.,
260:434–448, 2014.

[76] T. Rohwedder and A. Uschmajew. On local convergence of alternating schemes for
optimization of convex problems in the tensor train format. SIAM J. Num. Anal.,
51(2):1134–1162, 2013.

[77] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2003.

[78] S.G. Samko, A.A. Kilbas, and O.O.I. Marichev. Fractional Integrals and Derivatives.
Gordon and Breach Science Publishers Yverdon, 1993.

[79] U. Schollwöck. The density-matrix renormalization group in the age of matrix product
states. Annals of Physics, 326(1):96–192, 2011.

[80] V. Simoncini. A new iterative method for solving large-scale Lyapunov matrix equations.
SIAM J. Sci. Comput., 29(3):1268–1288, 2007.

[81] V. Simoncini. Computational methods for linear matrix equations. Technical report,
Università di Bologna, March 2013.

[82] D. C. Sorensen and A. C. Antoulas. The Sylvester equation and approximate balanced
reduction. Linear Algebra Appl., 351–352:671–700, 2002.

[83] M. Stoll and T. Breiten. A low-rank in time approach to PDE-constrained optimization.
to appear in SIAM J. Sci. Comp.

[84] C.R.T. Tarley, G. Silveira, W.N.L. dos Santos, G.D. Matos, E.G.P. da Silva, M.A.
Bezerra, M. Miró, and S.L.C. Ferreira. Chemometric tools in electroanalytical chemistry:
methods for optimization based on factorial design and response surface methodology.
Microchemical Journal, 92(1):58–67, 2009.

[85] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and
Applications. American Mathematical Society, 2010.

[86] E. E. Tyrtyshnikov. Tensor approximations of matrices generated by asymptotically
smooth functions. Sbornik: Mathematics, 194(6):941–954, 2003.

[87] H. Wang and N. Du. Fast alternating-direction finite difference methods for three-
dimensional space-fractional diffusion equations. J. Comput. Phys., 258:305 – 318, 2014.

[88] C. Wex, A. Stoll, M. Fröhlich, S. Arndt, and H. Lippert. How preservation time changes
the linear viscoelastic properties of porcine liver. Biorheology, 50(3):115–131, 2013.

[89] Steven R. White. Density-matrix algorithms for quantum renormalization groups. Phys.
Rev. B, 48(14):10345–10356, 1993.

[90] Qinwu Xu and Jan S Hesthaven. Stable multi-domain spectral penalty methods for
fractional partial differential equations. J. Comput. Phys., 257:241–258, 2014.

[91] P. Yi-Fei. Application of fractional differential approach to digital image processing.
Journal of Sichuan University (Engineering Science Edition), 39(3):124–132, 2007.

30

	Introduction
	Fractional calculus and Grünwald formulae
	The fractional derivative
	Model problems
	Grünwald-Letnikov formula
	Problem structure

	Solution strategies
	Krylov solver and preconditioning
	First Schur Complement
	Second Schur Complement

	Numerical algorithms
	The tensor-train decomposition
	Tensor product Krylov methods
	Alternating solvers

	Numerical results
	Complete data, two-dimensional space
	Incomplete data, two-dimensional space
	Three-dimensional problem, incomplete data

	Conclusions and outlook

