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Abstract
A significant portion of the total cost of the intermodal transportation is generated from

the inland transportation of containers. In this paper, we design a Mixed Integer Linear
Programming (MILP) model for combining orders in the inland, haulage transportation
of containers. The pickup and delivery process of both 20 and 40 foot containers from the
terminals to the customer locations and vice versa are optimized using heterogeneous fleet
consisting of both 20ft and 40ft trucks/chasses. Important operational constraints such as
the time window at order receivers, the payload weight of containers and the regulation of
the working hours are considered. Based on an assignment problem structure, this MILP
solves efficiently to optimality for problems with up to 120 orders.

To deal with larger instances, a decomposition and aggregation heuristic is designed.
The basic idea of this approach is to decompose order locations geographically into fan-
shaped sub-areas based on the angle of the order location to the port baseline, and solve
the sub problems using the proposed MILP model. To balance the fleet size amongst all
subgroups, column generation is used to iteratively adjust the number of allocated trucks
according to the shadow-price of each truck type. Based on decomposed solutions, orders
that are "fully" combined with others are removed and an aggregation phase follows to
enable wider combination choices across subgroups. The decomposition and aggregation
solution process is tested to be both efficient and cost-saving.
Keywords: Combining Orders, Inland Transportation, MILP Model, Heuristic Decom-
position, Column generation.

1 Introduction
The intermodal freight transportation is defined as the delivery of products from origins to
destinations in containers using multiple modes of transportation. Inland transportation,
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which comprises of rail, trucks and barge transportation modes, is an important part of
the intermodal freight transportation. According to the United Nations Conference on
Trade and Development (UNCTAD (2015)), around 80% of the global trade volume is
transported by sea and handled by ports. Consequently, the demand of transporting con-
tainers between the port terminal and its customers is high and increasing (Crainic and
Kim (2006)). Comparing to the sea transportation, inland delivery (which is also called
drayage) of containers by rail and trucks involves shorter distances but more significant
costs, which was estimated between 40-80% of the total cost (Notteboom and Rodrigue
(2005)). Konings (2005) also reported that 40% of the total cost of the intermodal trans-
portation was generated by road transportation. Considering the large volume of inland
container transportation demand and how costly it is, good management strategies which
are efficient enough to be suitable for large industrial implementations are needed (Morlok
and Spasovic (1994)). The nature of the Road Container Transportation (RCT) makes
it a type of the Pick-up and Delivery Problems (PDP). Parragh et al. (2008a,b) provided
an extensive classification and explanation of the PDP types. However, the RCT is an
extension from these types since it comprises the pick-up and delivery of different types of
containers (loaded and empty) between customers, the port and inland depots (Lun and
Cheng (2010)).

In this paper, we design a Mixed Integer Linear Programming (MILP) model for the
combination of orders in the truck transportation of containers. In this model, the pick-up
and delivery of both 20 and 40 foot containers between the port terminal and customer
locations are considered. The model is an extension of Hajem et al. (2017), which considers
only 20ft, fully loaded shipments. We expand the previous work by considering heteroge-
neous truck types and container sizes (20ft and 40ft), and by allowing the simultaneous
transportation of two 20ft containers on a 40ft truck chassis. All other practical restrictions
remain, such as the time window at the port and customer locations, the weight restrictions
for single and double chassis types, the penalty cost for the potential overtime working of
truck drivers, etc. Based on the same assignment structure of Hajem et al. (2017), this
model solves efficiently the problem in question; examples with up to 120 orders can be
solved by CPLEX, which generates the optimal delivery plan satisfying all constraints in
just a few minutes. Note that empty containers are not explicitly considered in this model,
however many of them can also be covered by the model and the proposed approach, given
they have at least one end of the (origin, destination) at the port (the other end can
be either an inland depot or a customer location). In other words, street-turn of empty
containers is not allowed. This restricts the proposed model from considering more than
four containers per route. However, this work is still useful in case: (a) All loaded imports
return their container to the port, after delivery at the customer; (b) All loaded exports are
serviced by driving an empty container from the port, before collection at the customer.
These are standard operational rules implemented by many shipping lines in the market.

In order to deal with larger instances, a decomposition and aggregation heuristic is
designed. The basic idea of this approach is to decompose the locations of orders ge-
ographically into small subgroups and solve the subgroups problems by the formulated
MILP, to obtain the optimal order-combination plan within each subgroup. Decomposi-
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tion is proposed based on the angles of the customer location to the port baseline, which
creates fan-shaped subareas which allows all routes to start from/finish at the port without
leaving the subarea. To balance fleet sizes amongst all subgroups, column generation is
used to iteratively adjust the number of allocated trucks according to the shadow-price of
each truck type. The decomposed model is smaller in size and solves efficiently, but the
result is not optimal since we prevent some combination choices through decomposition.
Therefore in the second phase, we do aggregation by removing the “well-combined” orders,
i.e. the order combinations that have already used the full truck load, so as to reduce the
problem size. A new MILP is constructed for the aggregated data with remaining orders,
and solved as usual. This decomposition and aggregation approach is justified efficient and
cost-saving through intensive numerical experiments on real data.

The paper is structured as follows. A literature review is carried out in Section 2.
In Section 3 the problem description and the optimisation model are described. The
heuristic approach is demonstrated with an example in Section 4. Numerical experiments
are presented in Section 5. Section 6 draws conclusions.

2 Literature Review
Many studies have been established to consider the transportation of containers and the ma-
jority of them are focusing on the usage of Operational Research techniques. A wide range
of descriptions and classifications were introduced in a survey by Steenken et al (2004),
which was later expanded and updated by Stahlbock and VoB (2008). More specifically,
Braekers et al. (2011) presented an overview of empty container management by examining
into three different planning levels (strategic, tactical and operational). In the following,
we review the literature on the combination of heterogeneous container types in road trans-
portations and position our work.

The haulage transportation of containers normally refers to the delivery of both of 20ft
and 40ft containers using homogenous or heterogeneous fleets, where 40ft trucks can carry
up to two 20ft containers or one 40ft container at a time. This type of problem suffers from
very limited capacity (at most two containers per truck) and long travel distances. Under
this broad category, some literature aim to minimize the transportation cost/travelling
distance (Table 1) while some others consider the fleet management aiming to minimize
the number of required fleet or to maximize fleet utilization (Table 2).

Likewise to our problem settings focusing on cost-minimization, literature can further
be split into delivery management of homogenous and heterogeneous sized containers,
and/or according to the type of loading/unloading strategies, i.e. strip and discharge. In
the strip case, container, together with its cargo (if not empty), is put onto/removed
from the carrying truck at customer locations. The customer then deals with the con-
tainer by loading/removing its cargo and makes another request for the pick-up/removal
of empty/loaded containers. While in the discharge case, only the cargo will be loaded
onto/unloaded from the delivery truck; containers and trucks are not separated after ser-
vices. Our study, like most of the works in Table 1, consider strip of containers. While
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Literature Strip Discharge Type of Containers Methodology
Chung et al. (2007) X x heterogeneous Exact
Zhang et al. (2015) X x heterogeneous Exact & Heuristic
Vidović et al. (2011) X x heterogeneous Exact & Heuristic
Vidović (2012) X x heterogeneous Exact
Lai (2013) x X heterogeneous Exact & Heuristic
Lai et al. (2013) x X heterogeneous Exact & Heuristic
Wen and Zhou (2007) X x heterogeneous Exact & Heuristic
Popović et al. (2014) X x heterogeneous Exact & Heuristic
Reinhardt and Pisinger (2012) x X homogenous Exact
Reinhardt et al. (2016) x X homogenous Exact
Funke and Kopfer (2015, 2016) X X heterogeneous Exact & Heuristic
Hajem et al. (2017) x X homogenous Exact
Nordsieck and Schönberger (line) X x heterogeneous Exact & Heuristic
This article X x heterogeneous Exact & Heuristic

Table 1: Literature considering minimization of delivery costs

Literature Strip Discharge Type of Containers Methodology
Wang and Regan (2002) X x homogenous Exact & Heuristic
Gronalt et al. (2003) x X homogenous Exact & Heuristic
Chung et al. (2006) X x homogenous Exact & Heuristic
Smilowitz (2006) x X homogenous Exact
Chung et al. (2008) x X homogenous Exact & Heuristic
Namboothiri and Erera (2008) X x homogenous Exact & Heuristic
Shiri and Huynh (2016, 2018) X x homogenous Exact & Heuristic

Table 2: Literature considering fleet management

distinguished from most of them which are based on multiple Travelling Salesman Problem
(m-TSP) or Vehicle Routing Problems (VRP) models, our work develops an assignment
mixed integer linear programming (MILP) model to deal with the same situation. This
model solves much faster than the VRP by pre-defining all feasible delivery routes, which
improves the current exact methods by solving larger sized examples within reasonable
time and memory consumption, as well as allowing a decomposition based heuristic to
solve large size instances. Comparing to the typical route-construction heuristics as used
by other works, decomposition is more intuitive and widely used in industry as it requires
definitely less efforts to implement.

On the other hand, many literatures studied the inland transportation of containers
from the prospective of fleet management as summarised in Table 2. In this case, the focus
is put on maximizing the truckload usage rather than/on top of travelling distances. Our
article is not directly aiming to maximize fleet utilization, however, fleet management ideas
are implicitly investigated in the decomposition step and a column generation approach is
designed to balance fleet sizes/usages in different subareas.

Another article which is closely related to this one, but in a slightly different context
as it addresses the time windowed railroad engine scheduling problem, is Lübbecke and
Zimmermann (2003). Despite the different application area, the modelling and solution
methodologies of Lübbecke and Zimmermann (2003) share certain similarities with this
article due to the pickup and delivery nature of both problems. In modelling, Lübbecke
and Zimmermann (2003) also classifies the possible delivery sequences (named as “pat-
terns”) beforehand and proposes an MILP to allocate the pattern(s) to engines. However,
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instead of route configurations of the whole route as proposed in our article, Lübbecke
and Zimmermann (2003) uses route segments, treats them as virtual nodes in a standard
VRP-TW and uses the MILP model to join them together while allocating the best engine
to execute the routes. Column generation is also used by Lübbecke and Zimmermann
(2003) to solve the problem, with a RMP deciding which subset of orders are served by
which engine and subproblems informing the optimal routes to fulfil the allocated orders.
Instead of allocating orders (patterns) to trucks as set-partitioning, our column genera-
tion approach is applied jointly with a geographical decomposition which produces RMP
and subproblems with significantly reduced size/difficulty, so as to improve the efficiency
of the solution process. Sub-optimality introduced by the decomposition is cured by an
aggregation phase which enable wider combination choices across subgroups.

All in all, most previous literature has modelled the heterogeneous containers delivery
problem as a VRP and then developed heuristics to find solution. Instead, in this paper
an optimization model is developed based on assignment problem. The aforementioned
literatures are extended by considering more realistic restrictions based on a more efficient
assignment model structure. Although that this assignment MILP model can combine
at most four containers in a single route, it solves much more efficiently than the VRP
model, which allows optimal solution to be found for considerably large problems without
any heuristics. The decomposition and aggregation approach as proposed thereafter, for
practically large instances, relies on the usage of this yet efficient assignment model.

3 Problem Description and Optimization Model
This work deals with the combination of containers on road delivery. An order here is
defined as the request of transporting a 20ft or 40ft container from a known origin to
a known destination. In this sense, both loaded and empty containers can be modelled
in the same fashion; the only difference between them is the payload weight. In this
study we assume that all orders either start from the port or finish at the port. This is a
reasonable assumption for typical loaded import and export orders. For empty container
transportation, however, this assumption means we exclude the usage of inland empty stor-
ages (depots) and all direct empty transportation between customers from consideration.
Nevertheless, the designed model is useful in reality in case when (a) all loaded imports
return their container to the port, after delivery at the customer; (b) all loaded exports are
serviced by driving an empty container from the port, before collection at the customer.
These are standard operational rules implemented by many shipping lines in the market.
Note further that for depot turn of empties, one can exclude such empty requests (from
customer location to inland depots) at the beginning, use this model to find the optimal
solution and then insert the empties into the planned closed-route from and to the port.
This will largely simplify the decision process, but give reasonably good solutions since the
empty transportation is normally un-time-windowed, and allocated to the closest depot so
shorter-distanced than the loaded transportations. The insertion process is not expensive
and integrated well with the decomposition.
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The optimization model is designed from the perspective of a haulage company, who
owns a heterogeneous fleet consisting of both 20ft and 40ft truck heads and chasses, and
receives orders from shipping lines well ahead of the delivery day. It is assumed that
the whole container is ready for collection from its origin and can be left as a whole
at its destination, without worrying about how and when the cargo will be discharged
from/loaded into the container. This assumption is consistent with the strip strategy
used in many literatures of container transportation (see Table 1 and 2), which reflects the
practical situation for a haulage company who is only responsible for sending the containers
in the desired time window using its own fleet rather than managing the overall import
and export plan. The shipping line, on the other hand, is responsible to create the order
requests (includes both loaded and empty) according to their business needs, which consists
of full information about the origin, destination, time window etc. for every container they
would like to move. Under this context, an empty space on the truck is created following
the delivery of an order, and all empty containers on the request can be treated in the
same way as the loaded ones.

Based on these assumptions, a decision should be made on how to construct the delivery
routes to satisfy all demands with the minimum cost, given that a 40ft truck can carry
two 20ft containers at a time. The cost considered are travelling costs of the truck which
reflects the mileage/fuel cost and the potential rental cost for extra trucks and drivers
needed to meet all demands. Figures 1 gives all possible configurations of the routes.

3.1 Parameters
In this Section we summarise the parameters used. Let N be a set of containers which
consists of: P1 as a set of 20ft import orders, P2 as a set of 20ft export orders, P3 as a set of
40ft import orders and P4 as a set of 40ft export orders. Each order has an allocated time
window [T s

i , T e
i ] during which the collection/delivery should be made. The payload weight

of containers is denoted by Wi, i ∈ N , which is zero for empty containers. The weight
of the truck chassis is denoted by V . Weight limit V 2

max is defined as the total maximum
weight a 40ft chassis can carry. Note that following previous discussions, here we represent
the needs of taking a container from the port to a customer location as an import order,
regardless this container is a real import (loaded) order or a request of re-locating an empty
container for the following export services. This means in this study, we ignore the fact
that some containers might be loaded and some others empty, and simply describe an order
as a customer request of delivering a container from its origin to its destination. We are not
concerned about how the empty container will be processed and re-located after fulfilling
the current delivery request. If there is such a need, a new order could be generated to
capture it.

Every order should be collected from its origin: either from the port (Lo) for import
orders or from a customer location (Li, i ∈ N ) for export orders, after a specific available
time (Ai). The handling time is assumed the same for all locations and is denoted by
O. Let f(Li, Lj) and t(Li, Lj) denotes the travelling cost and time from location Li to
location Lj, respectively. The total working time of drivers, which includes the travelling
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(1) (2)

Terminal        

20ft Importer        

20ft Exporter       

40ft Importer       

40ft Exporter      

(3) (4) (5)

(8)(7)(6)

(9) (10) (11) (12)

(15)(14)(13)

(16) (17) (18) (19)

Figure 1: Route configurations
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Config. (g) Route (ξ) Arcs travelled (Aξ)

1 port → i → j → k → l → port, ∀i ̸= j ∈ P1, ∀k ̸= l ∈ P2 (Lo, Li), (Li, Lj ), (Lj , Lk), (Lk, Ll), (Ll, Lo)

2 port → i → k → j → l → port, ∀i ̸= j ∈ P1, ∀k ̸= l ∈ P2 (Lo, Li), (Li, Lk), (Lk, Lj ), (Lj , Ll), (Ll, Lo)

3 port → i → j → k → port, ∀i ̸= j ∈ P1, ∀k ∈ P2 (Lo, Li), (Li, Lj ), (Lj , Lk), (Lk, Lo)

4 port → i → j → k → port, ∀i ̸= j ∈ P1, ∀k ∈ P4 (Lo, Li), (Li, Lj ), (Lj , Lk), (Lk, Lo)

5 port → i → k → l → port, ∀i ∈ P1, ∀k ̸= l ∈ P2 (Lo, Li), (Li, Lk), (Lk, Ll), (Ll, Lo)

6 port → i → k → l → port, ∀i ∈ P3, ∀k ̸= l ∈ P2 (Lo, Li), (Li, Lk), (Lk, Ll), (Ll, Lo)

7 port → i → k → j → port, ∀i ̸= j ∈ P1, ∀k ∈ P2 (Lo, Li), (Li, Lk), (Lk, Lj ), (Lj , Lo)

8 port → k → j → l → port, ∀j ∈ P1, ∀k ̸= l ∈ P2 (Lo, Lk), (Lk, Lj ), (Lj , Ll), (Ll, Lo)

9 port → i → j → port, ∀i ̸= j ∈ P1 (Lo, Li), (Li, Lj ), (Lj , Lo)

10 port → i → k → port, ∀i ∈ P1, ∀k ∈ P2 (Lo, Li), (Li, Lk), (Lk, Lo)

11 port → i → k → port, ∀i ∈ P1, ∀k ∈ P4 (Lo, Li), (Li, Lk), (Lk, Lo)

12 port → i → k → port, ∀i ∈ P3, ∀k ∈ P2 (Lo, Li), (Li, Lk), (Lk, Lo)

13 port → i → k → port, ∀i ∈ P3, ∀k ∈ P4 (Lo, Li), (Li, Lk), (Lk, Lo)

14 port → k → j → port, ∀k ∈ P2, ∀j ∈ P1 (Lo, Lk), (Lk, Lj ), (Lj , Lo)

15 port → k → l → port, ∀k ∈ P2, ∀l ∈ P2 (Lo, Lk), (Lk, Ll), (Ll, Lo)

16 port → i → port, ∀i ∈ P1 (Lo, Li), (Li, Lo)

17 port → i → port, ∀i ∈ P2 (Lo, Li), (Li, Lo)

18 port → i → port, ∀i ∈ P3 (Lo, Li), (Li, Lo)

19 port → i → port, ∀i ∈ P4 (Lo, Li), (Li, Lo)

Table 3: Configuration list

time, the handling time and potential waiting time to meet the time window requirements,
is restricted by the GB domestic working hour regulation (on-duty hours) for drivers, with
the longest working time per day denoted by Tmax.

Here we ignore the more sophisticated policies such as the total driving time cannot
exceed 10 hours (where Tmax is 11 hours) and the driver has to have a 30-45 minutes break
after every 5.5 hours driving. However we argue that the ignored conditions can be met
implicitly in most cases with the proposed model, as the handling time for containers is
normally two hours which already covers the difference between driving and working, and
the break time for drivers.

Let H1 and H2 denote the number of 20ft and 40ft trucks owned by the haulage com-
pany. In case the available fleet is not enough to send all orders, a per-unit cost Pi, i = 1, 2
is paid for every extra truck needed according to the truck type, which can be interpreted
as the rental of the truck/chassis and the daily payment to the extra driver.

3.2 Decision Variables
Binary variables xξ are created to denote the decision on which route combination should
be selected to serve the orders. All possible route configurations with the arcs they are
travelling are summarised in Table 3. Continuous variables y1 and y2 are defined to capture
the additional number of trucks needed to perform all allocated jobs (which could only take
integer values in the solution as explained later). In addition, vi is defined to capture the
arrival time of order i at its destination, while sξ and eξ are defined to capture the starting
and finishing time of the route ξ.
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Sets

• G: the set of all configurations as shown in Table 3.2.

• Rg, ∀g ∈ G: the set of routes under configuration g.

• R := ∪g∈GRg: the set of all possible routes.

• R(i)(Rg(i)): the set of routes (under configuration g) serving order i.

• Aξ: the set of arcs travelled by route ξ ∈ R.

Binary Variables

• xξ =
{

1, if route ξ is chosen
0, otherwise , ∀ξ ∈ R

Continuous Variables

• vi, ∀i ∈ P : arrival time of order i at its customer location.

• yi, i = 1, 2: extra number of trucks/chasses needed other than H1 (20ft) and H2
(40ft).

• sξ, ∀ξ ∈ R: starting time of route ξ from the port.

• eξ, ∀ξ ∈ R: finishing time of route ξ at the port.

3.3 Mathematical Model
A Mixed Integer Linear Programming (MILP) model is formulated to find the best order
combinations in transportation, subject to practical restrictions such as weight limits, time
windows and working hour regulations.
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min
∑
ξ∈R

fξxξ +
∑

i=1,2
Piyi (3.1)

s.t.
∑

ξ∈R(i)
xξ = 1, ∀i ∈ P (3.2)

V + (Wi + Wj) ≤ V 2
max + M1(1 −

∑
ξ∈R(i)∩R(j)

xξ), ∀i ̸= j ∈ P1 (3.3)

V + (Wj + Wk) ≤ V 2
max + M1(1 −

∑
ξ∈∪g∈{2,7,8,14}(Rg(j)∩Rg(k))

xξ), ∀j ∈ P1, ∀k ∈ P2 (3.4)

V + (Wk + Wl) ≤ V 2
max + M1(1 −

∑
ξ∈R(k)∩R(l))

xξ), ∀k ̸= l ∈ P2 (3.5)

vj ≥ vi + O + ti,j − M2(1 − xξ), ∀ξ ∈ R, (Li, Lj) ∈ Aξ (3.6)
vi ≥ sξ + O + to,i − M2(1 − xξ), ∀ξ ∈ R, (Lo, Li) ∈ Aξ (3.7)
sξ ≥ Ai + O − M2(1 − xξ), ∀i ∈ P1 ∪ P3, ξ ∈ R(i) (3.8)
eξ ≥ vi + O + ti,o − M2(1 − xξ), ∀ξ ∈ R, (Li, Lo) ∈ Aξ (3.9)
eξ − sξ ≤ Tmax + M2(1 − xξ), ∀ξ ∈ R (3.10)
T s

i ≤ vi ≤ T e
i , ∀i ∈ P (3.11)∑

ξ∈∪g∈{10,16,17}Rg

xξ ≤ H1 + y1 (3.12)

∑
ξ∈∪g∈G\{10,16,17}Rg

xξ ≤ H2 + y2 (3.13)

xξ ∈ {0, 1}, ∀ξ ∈ R (3.14)
vi ≥ 0, ∀i ∈ P (3.15)
eξ ≥ 0, sξ ≥ 0, ∀ξ ∈ R (3.16)
y1, y2 ≥ 0 (3.17)

The objective (3.1) is to minimize the total operations cost, which consists of the
travelling cost and the penalty for extra trucks needed. Constraint (3.2) force all orders to
be delivered, combined or individually. Constraints (3.3) - (3.5) are designed to ensure that
the maximum weight allowance is not violated for the combined route on 40ft chasses, which
may carry two 20ft containers at the same time. Note that such constraint for individual
delivery is left out simply because we assume all orders considered can be feasibly carried
by the corresponding type of chassis if it’s transported alone, as otherwise we should use
alternative methods to deliver it.

The arrival time of all orders to their destinations is calculated by constraints (3.6) -
(3.7) and bounded by constraint (3.11) within the desired time window, while constraints
(3.8) and (3.9) are used to calculate the starting and finishing time of route at the port.
Constraint (3.10) is to ensure that the total time of each route is less than the maximum
allowed working time which means that drivers won’t work longer than the regulation.
Note that we don’t have this constraint for single delivery simply because we assume all
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orders can be transported on its own within one working shift. Constraints (3.12) and
(3.13) calculate how many extra trucks of both types are needed. Finally, constraints
(3.14) - (3.18) define the domain of variables. Note that in theory variable yi, i = 1, 2
should belong to non-negative integers (yi ∈ Z+ ∪ {0}), while in our model it is relaxed to
continuous as the objective will force y to take the smallest feasible integer value.

The big M1 in constraints (3.3) - (3.5) is equal to the maximum of the total weight
of any two 20ft containers plus the chassis and taking away the V 2

max, i.e. M1 = V +
max{Wi + Wj|∀i ̸= j ∈ P1 ∪ P2} − V 2

max, which represents the upper bound of the l.h.s.
of the corresponding constraint. While the big M2 in constraints (3.6) - (3.10) reflects the
maximum value of possible arrival time of every order, which can be defined as the end
of the day since the plan is made for one day only. To cover the potential extreme cases
when one potential route may take even longer than a day, the M2 can be defined as the
length of time covering two days.

4 Heuristic decomposition and aggregation approach
The container combination problem for inland transportation is classified as NP-hard
(Popovic et al, 2014), which means exact optimization approaches can only solve lim-
ited size instances. In Section 3 we have formulated a MILP model which solves problems
with up to 120 orders in acceptable time by CPLEX (see Section 5.2 for details). In prac-
tice, however, a port may operate thousands of containers per day by road. Therefore, an
efficient solution approach, e.g., heuristic method, is needed. A well designed heuristic has
the capability of finding good solutions for large problems in reasonable time, which in this
application is, several hours. In this section a decomposition-and-aggregation heuristic is
developed. The method consists of two stages: 1. decompose orders into small subgroups
and find a solution for each subgroup by using the formulated MILP model, 2. remove the
“well-combined” orders (see Section 4.4 for the definition of “well-combined” orders) and
aggregate the remaining to form the second stage MILP model(s). Column generation is
applied in both stages (if second stage also contains multiple subgroups) to balance fleet
sizes assigned to subgroups.

4.1 Decomposition of orders
Stage 1 aims to reduce the solution time so as to increase the size of the problem that can
be managed. A simple decomposition method based on customer locations is therefore pro-
posed. Considering the aim of combining import and export orders to form a closed delivery
route starting and finishing at the port, in this study we deploy the fan-shaped clustering
approach (Gillett and Miller (1974)) to enable geographical decomposition of customer
locations. This approach gives better opportunity of creating closed routes starting and
ending at the port (Wren and Holliday (1972)) and therefore is believed to be more suit-
able than other decompositions strategies such as rectangle-shaped (Daganzo (1984a,b)),
ring-shaped (Fang et al. (2013)), seed-based (Fisher and Jaikumar (1984)) decompositions
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etc. on this application. However we acknowledge all drawbacks of the approach such as
its unsuitability to non-convex service areas.

To create the decomposition, a polar angle of each order’s location with respect to
the port and the baseline of the seashore is calculated and denoted by Ai, ∀i ∈ N . Then
subgroups are defined by sweeping through the angels from one end to another until a
pre-defined number of orders have been covered by each subgroup (see Algorithm 1). As
in practice the customer locations are not uniformly distributed, this approach ensures
to divide the whole area into subareas with similar number of orders. The number of
subgroups we are aiming to have is represented by S, which is an ad-hoc decision balancing
between the solution speed and combination opportunities it offers to every subgroup. A
brief discussion about how to choose an appropriate S can be found in Section 5.3.

Algorithm 1 - Subgroup definition
Step 0: Let n̄ = [ |Ni|

S
] denote the expected number of orders per subgroup. Let:

Amin = min{Ai, i ∈ N };
Amax = max{Ai, i ∈ N };

s = 1;
d = Amin + 1.

Step 1: while d < Amax, do:
Step 2: Sweep through the angle between Amin and d, count how many orders are

included and denote by n(s).
Step 3: Check the number of orders against expected number:

if n(s) ≥ n̄ or d ≥ Amax then:

A(s) = [Amin, d];
Amin = d;
s = s + 1;

and go to Step 1.
else: d = d + 1 and go to Step 2.

Step 4: Return the defined angle range for subgroups: A(s), s = 1, . . . , S.

Obviously the decomposition stops the combination of orders between different sub-
groups, and introduces a question on how to allocate fleets to serve each subgroup so as to
minimize the total delivery cost. It is not hard to imagine, too small fleet sizes may lead
to large penalty on extra trucks and too large fleet may lead to capacity loss. Especially
in case when capacity is very limited, how to allocate them amongst service areas forms
a vital decision. As an initial attempt, we allocate the number of fleets in each subgroup
s = 1, ..., S simply according to the proportional number of the corresponding container
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sizes. Suppose n
(s)
1 , n

(s)
2 , n

(s)
3 , n

(s)
4 represent the number of 20ft import, 20ft export, 40ft

import 40ft export orders in groups s, the number of 20ft (H(s)
1 ) and 40ft (H(s)

2 ) trucks are
calculated by:

H
(s)
1 = [ n

(s)
1 + n

(s)
2

|P1| + |P2|
× H1], H

(s)
2 = [ n

(s)
3 + n

(s)
4

|P3| + |P4|
× H2] (4.1)

where [·] represents the function of rounding fractional value to its nearest integer. Then
a MILP as presented in Section 3.3 is constructed for each subgroup to find the optimal
combination within it.

4.2 Column Generation
In order to balance the fleet size for all subgroups and to decrease the cost gap between the
heuristic decomposition and the MILP model, a column generation method is developed.
Column generation is an iterative method (Ford Jr and Fulkerson (1958)) which consists of
two parts: subproblem(s) to generate column(s) to enter the basis (potential components
of optimal solution), and a Restricted Master Problem (RMP) to maintain all generated
columns. They are solved iteratively, with the master problem to inform the shadow-price
of global constraints and subproblems to identify whether the master problem should be
enlarged with additional columns or not. Column generation procedure alternates between
the master problem and the subproblem, until the former contains all necessary variables
for an optimal solution.

4.2.1 Subproblem

Using Algorithm 1 we can classify all orders into non-overlapping subgroups, which we
call decomposition. Decomposition prevents orders in one subgroup to be combined with
those in another. Therefore, the subproblem, which decides how orders can be combined
for transportation, becomes a separable problem with respect to subgroups. Suppose a
subgroup is formed, how an order is delivered (constraint 3.2), the weight limit (constraints
3.3 - 3.5), the departure/arrival time of the order and the working regulation for the
combined routes (constraints 3.6 - 3.11) are all irrelevant to other subgroups. Nevertheless,
all subgroups request trucks from the same fleet. Although we have presented a formula in
Section 4.1 to split trucks into subgroups, it is actually challenging to forecast how many
each subgroup would need without attempting to solve the routing problem. It follows that
the constraints on fleet size (3.12 - 3.13) become the “global constraints” which prevent
the subproblem to be considered separately. Therefore we define the dual variables for the
fleet constraints and form a relaxed problem:

min f(x) + π1(H1 + y1 −
∑

ξ∈∪g∈{10,16,17}Rg

xξ) + π2(H2 + y2 −
∑

ξ∈∪g∈G\{10,16,17}Rg

xξ) (4.2)

s.t. (3.2) − (3.11), (3.14) − (3.17) (4.3)
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where f(x) represents the x parts in the original objective (3.1), π1, π2 are the dual variables
for constraints (4.5) and (4.6) in the RMP, respectively. As said optimization problem (4.2)
is decomposable for subgroups, solving which will create for every subgroup an delivery
plan satisfying all subproblem constraints. This delivery plan corresponds to a variable in
the RMP of minimum reduced cost. However the fleet every subgroup uses, might not be
consistent with the total number that is available. This is going to be dealt with in the
Restricted Master Problem (RMP).

Every time we obtain a solution of (4.2) for subgroup s, suppose its objective is negative,
we define a column (s, f ∗

c , q1
c , q2

c ) whose first element indicates which subproblem it solves,
the second gives the optimal delivery cost, the third and the fourth show the number of
20ft and 40ft trucks it uses, respectively. We further assemble all columns for the same
subgroup into sets denoted by Cs, s = 1, ..., S. This information is then passed to the RMP
for further iterations. If the solution of all subproblems has non negative objective the
iteration is terminated, otherwise the RMP is enlarged with the newly added columns and
resolved.

4.2.2 Restricted Master Problem (RMP)

As said, the fleet size restrictions have been left out from the subproblems since they
are global constraints which link subgroups together. In the RMP, we retain them and
calculate their shadow prices. The original indicator zi, i = 1, 2 for the number of extra
trucks used for both types and the corresponding penalty, are also brought into the RMP.
Let Cs denote the set of all columns with negative reduced costs that have been generated
from the iterative calling of subproblem s, and C = ∪{Cs, s = 1, . . . , S}. The RMP can be
formulated as follows:

min
∑
c∈C

f ∗
c λc +

∑
i=1,2

Piyi (4.4)

s.t.
∑
c∈C

q1
c λc ≤ H1 + y1; (4.5)∑

c∈C
q2

c λc ≤ H2 + y2; (4.6)∑
c∈Cs

λc = 1, ∀s; (4.7)

λc ∈ [0, 1], ∀c ∈ C; (4.8)
yi ≥ 0, i = 1, 2 (4.9)

Each column is associated with a variable λc, which is restricted between 0 and 1 and
indicates the number of times a column is chosen in the solution. The q1

c and q2
c , represent

the number of 20ft and 40ft trucks used by column c. Solving the RMP we obtain the
optimal dual variables π1 and π2 for fleet constraints, which is needed in subproblems
for further iterations. The whole process continues until no new columns with negative
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reduced costs are generated. The optimal solution in terms of λc, c ∈ C is then rounded to
the nearest integer. Note that in our experiments, although we solve the RMP as ordinary
linear program, the optimal λc values it generates are very close to 0 or 1 in nearly all
cases we’ve tested. This means that there is always a single column for each subarea that
outperforms others in terms of the trade-off between the number of trucks used and the
delivery cost. This might be due to the fact that the delivery cost reduction with additional
fleets is not so significant comparing to the penalty of violating the fleet constraint. Since
the data we’ve used for the test are taken from real-world applications so in this work we
won’t go through the more sophisticated Branch-and-Price (B&P) steps to find the integer
optimal solution, while we note that B&P should be considered to explore the integer
optimal suppose large gaps are observed between the LP objective and the objective value
of the rounded solutions. In this work, instead, improvements will be concentrated on the
reduction of decomposition gaps rather than the integrality gaps in later sections since
decomposition is believed as the main reason for the sub-optimality gaps in this context.

4.3 An example
In this section we show an example to illustrate how the decomposition-column generation
approach works. Geographical locations of the port and 20 randomly generated orders
are shown in Figure 2. Note that here we use artificial data with uniformly distributed
customer locations simply to demonstrate the methodology. More practical tests with real
data will be shown in Section 5.

Figure 2: Geographical location of the port and a set of orders

The order set comprises of: 8 × 20ft import orders, 6 × 20ft export orders, 3 × 40ft
import orders and 3 × 40ft export orders. The available fleet sizes are 8 × 20ft trucks and
6× 40ft trucks. The example is firstly solved as a whole by the MILP model (Figure 3). In
this case, most orders are delivered jointly with others, created two routes combining four
orders, one route combining three orders and four routes combining two orders. Only one
order is delivered individually (the order 7). As shown in Table 3, the minimum cost is
1194 and the number of the used trucks are 2 × 20ft and 6 × 40ft, respectively. We can see
when there is no decomposition, the model tends to use as many 40ft trucks as possible to
reduce empty trips.

Figure 3: Optimal solution from MILP

Now we decompose the example into four subgroups like what is shown in Figure 4,
and solve for each area separately. Comparing to the MILP solution, the decomposition
uses relatively more 20ft (6 × 20ft) trucks and relatively less 40ft (5 × 40ft), although there
are 6 × 40ft available. Since it creates significantly less four combined routes (obviously
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none in this example), the minimum cost obtained from the decomposition is 1505, which
is 26% higher than the cost of the real optimal.

Figure 4: Fan-shaped decomposition and the solution

To automatically balance fleet sizes amongst subgroups, column generation approach as
stated in Section 4.2 is applied and the result is shown in Figure 5. In this case, one more
40ft truck is allocated to the second subgroup, which enables the optimal route combination
of orders 5, 11, 2 and 14 again. While it still prevents the combination of orders 5, 11, 2
and 14 since they are now fall into three different subgroups. This reduces the total cost
by 11.43% to 1333, and used the full truck load of four out of six 40ft trucks. It is clear
from the result that the cost is still 11.64% higher than the MILP. In next section, we
will propose an aggregation step which forms manageable size problems while allows the
cross-group order combinations again.

Figure 5: Fan-shaped decomposition with column generation and the solution

# # Or-
ders

# fleet # # # # Min. Total CPU

Orders group in
group

available used Indiv. 2
com-
bined

3
comb.

4
comb.

index routes routes routes routes cost cost Time(sec)
20ft 40ft 20ft 40ft of

groups
MILP - Optimal solution
20 - - 8 6 2 6 1 4 1 2 - 1194 3.22
Decomposition solution

1 5 2 1 2 1 2 - 1 - 241
2 6 3 1 3 1 2 2 - - 613

20 3 5 2 2 - 2 - 1 1 - 508 1505 1.76
4 4 1 2 1 1 - 2 - - 143

Decomposition with column generation solution
1 5 2 1 2 - 1 - 241
2 6 1 2 2 - - 1 441

20 3 5 8 6 - 2 - 1 1 - 508 1333 3.44
4 4 1 1 - 2 - - 143

Table 4: Results of the MILP, decomposition and decomposition with column generation
for the example

4.4 Aggregation of orders
Looking at the previous example we can see that the decomposition does introduce sig-
nificant gaps from the optimal solution, since it prevents the combination of orders across
subgroups. In this section we will discuss about how to aggregate to create more combined
deliveries so as to further reduce cost. Obviously, in the decomposed optimal solution some
routes have fully used the truck load already, e.g. the routes combining four 20ft orders.
For this type of routes, relaxing the boundary of decomposition may shift part of the route
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combination to its neighbour area but would not significantly reduce the delivery cost since
orders in the same subgroup is believed closer from each other. Nevertheless, orders that
are loosely combined with others or equivalently, orders that are delivered on routes that
still have spare capacity for accommodating one/several more orders, should be the ones
to be considered further. Therefore, in the second stage, we remove orders on the “well-
combine” routes which include (a) 4 × 20ft, (b) 1 × 40ft + 2 × 20ft and (c) 2 × 40ft, then
aggregate all the remaining orders and fleets to form an aggregated problem. Depending
on the size of the aggregated problem, one can solve it as a whole if it is manageable, or
decompose it again suppose it is larger than 120 orders. According to the real data, best
aggregation strategy can be selected by experience considering customer density, driving
time, travelling speed and solution time for the MILP. The new decomposition must lead
to less number of subgroups than before as it considers reduced number of orders, which
creates possibilities for the previously separated orders to be combined in the new decom-
position. This process can continue until no more “well-combined” routes are generated,
or until no improvements on cost is seen. While through our tests using real data, one
iteration of the decomposition-aggregation approach has already reduce the sub-optimality
gap to 5% on average (see Section 5.2 for details).

Moving back to the example explained in Section 4.3, based on the Figure 5 solution
orders 1, 3, 5, 6, 7, 8, 9, 12, 16, 18, 19 and 20 are delivered in well-combined routes. The
cost to deliver them is 651 (see Table 4 for more information). This leaves eight orders
for the aggregated problem. As eight is a very manageable size here we simply solve the
aggregated problem as a whole. Solution is illustrated in Table 4 and Figure 6.

# # # # fleet # # # # Min. Cost of Total CPU
Orders groups of

groups
available used Indiv. 2

com-
bined

3
comb.

4
comb.

Removed

20ft 40ft 20ft 40ft routes routes routes routes cost orders cost time(sec.)
Decomposition with column generation solution

1 5 2 1 2 - 1 - 241
2 6 1 2 2 - - 1 441

20 3 5 8 6 - 2 - 1 1 - 508 - 1333 2.44
4 4 1 1 - 2 - - 143

Aggregation solution
8 1 8 8 2 2 2 - 4 - - 594 651 1245 4.65

Table 5: Results for the aggregation of the example

The result in Table 4 shows that the total cost of the decomposition-aggregation ap-
proach is 1245, which is 6.6% smaller than the decomposition with column generation
approach and being very close to the optimal solution value of 1194. Comparing the opti-
mal delivery routes of the MILP and that of the decomposition-aggregation method, many
routes are the same for this small example except the routes for orders 2, 5, 7, 11, 14, 15
and 19. In the optimal solution these orders form a 4-combined route of 20ft orders, a
2-combined route of 40-ft orders and a single 20ft route, whereas in the heuristic solution
they form a 3-combined and two 2-combined routes. However, in all methods, all available
40ft trucks are used to reduce the total cost.
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Figure 6: Aggregated problem for all remaining orders after decomposition

5 Numerical Results
In this section we present the numerical results for the MILP model, the heuristic decom-
position with column generation and the decomposition-aggregation approach. Note that
all methods are coded in MATLAB R2015b and executed via CPLEX 12.6.1, on a CPU
with an Intel(R)Core(TM)i7-4790 processor.

Numerical experiments are carried out on real data obtained from the Port of Felixstowe,
which is the largest container port in the UK. A one-day request list, which consists of 1067
orders (213 20ft-import, 232 20ft-export, 329 40ft-import and 293 40ft-export) from/to 346
customer locations are used as the resource dataset from which our experiment samples
(in various sizes) are generated. The service area considered in the dataset spread over a
pre-defined area that can be covered within 10 hours of driving from the port. The original
dataset consists full information about the order origins/destinations, arrival (ready for
collection) times, payload weights, assigned time windows and angle information from
the port baseline. The explicit location of every customer node is not available due to
disclosure concerns, while road distances between each pair of locations are known. From
this dataset, we randomly pick up the desired total number of orders according to needs.
Therefore the explicit number of 20ft/40ft, import/export, loaded/empty orders are not
controlled throughout the experiments. Fleet sizes are decided by formula (5.1) and (5.2)
for every randomly generated order list. (5.1) aims to allocate adequate number of 40ft
trucks when none of the 40ft containers are jointly deliverable (due to time windows, etc.)
with others. Given this number, (5.2) defines the number of 20ft trucks so as to allow an
overall 1.5 times of demanded truck spaces by all 20ft containers. Penalty charge for using
extra 20ft head/chassis is £600 and for 40ft it’s £800.

H2 = max{|P3|, |P4|}, (5.1)

H1 = max{[ |P1| + |P2| + 2 × |P3| + 2 × |P4| − 4 × H2

2
× 1.5], 0}. (5.2)

5.1 Results for the MILP model
As shown in Table 5, the MILP is tested on instances with 10, 30, 50, 100 and 120 orders, ten
samples for each group. As all instances are randomly generated, different test composes
of different number of orders in each category. The result shows that the model constructs
some routes by combining four orders (2 × 20ft import orders + 2 × 20ft export orders) in
some instances, especially when the number of orders increases and so is the density. It is
also clear from the result that the model always intends to use the full available 40ft fleet
rather than the 20ft trucks, due to the fact that doing pairwise delivery of 20ft containers
on 40ft trucks reduces the number of empty trips so as to reduce the total delivery cost.

18



Even sometimes there are still 20ft trucks free from duty, the optimal solution may still
choose to hire extra 40ft trucks to do the transportation as it is more cost-saving. It is
obvious from the result that the computation time increases with the size of the numerical
instances, although it is fast enough for instances as large as 120 orders to be solved
within 10 minutes using the MILP model without any simplifications. Comparing to the
VRP-SPDTW model considered widely in the literature which tackles with up to 63 orders
(Vidović (2012), the proposed MILP has nearly doubled the problem size on which optimal
solutions can be found. For larger examples, e.g. 150 orders, CPLEX runs out of memory.

5.2 Results for heuristic decomposition and aggregation approach
In this section, the results of the decomposition and aggregation approach on small scale
examples will be presented. We firstly demonstrate the full solution for three instances
with 100 orders in Table 6 to highlight the differences of approaches, and then summarise
the experiment with 10 examples per size group for 50, 100 and 120 orders in Table 7.

Results of applying the decomposition (D), the decomposition-column generation (D+CG)
and the decomposition-and-aggregation (D+CG+Agg) on three 100 orders examples are
summarised in Table 6 and compared with the optimal solution obtained with MILP. In all
test examples, the numbers of subgroups are selected to result in, approximately, 30 orders
in each subgroup. This number is consistent with the conclusion we make in Section 5.3,
where we test through the influences of different decomposition levels. Note that in the de-
composition step (D), we use the same proportional heuristic to split fleet into subgroups,
as stated in formula (4.1). Note further that the aggregation step in this experiment is
solved as a whole as obviously the size of all left-over orders is manageable for 100 orders
example.

Looking at the results, the total cost meet our expectation of having (D) ≥ (D+CG)
≥ (D+CG+Ag) ≥ (MILP), while the time of finding a solution with the corresponding
method also increases with their accuracy. The column generation step (D+CG) actively
reassign fleets amongst subgroups and therefore saves overall penalty for hiring extra trucks
in all testing examples. For example, in Instance 100-2, increasing the number of 20ft
trucks from 8(9) to 10(11) for subgroup 1(2) reduces the penalty paid for extra 40ft trucks
to cover these orders, which results in a cost reduction of 1218. Doing decomposition, even
with column generation to balance fleets, may introduce sub-optimality gap as large as
43.3% as seen in instance 100-1. While this gap is largely reduced by doing the additional
aggregation step, in all three examples as tested. Now let us run more experiments to see
if large cost reductions can always be achieved by aggregation.

Table 7 and Figure 7 show the result of testing all approaches on 10 randomly generated
examples for each size category. Average values of absolute cost and the proportional
weakness compared to the optimal solution (MILP solution) are presented in Table 7. The
best and worst case weakness and the median of each methodology are shown in the box
plot Figure 7. Looking at the result we can see, the aggregation step does largely improve
the performance of the proposed methodology, which results in an overall 7.92-13.26%
weakness than the true optimum, on average. However, the time it takes to perform
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# Number and Type of Containers # fleet # # 2 # 3 # 4 Total Penalty CPU

Orders #
20ft

#
20ft

#
40ft

#
40ft

available used Indiv. combined combined combined cost

Import Export Import Export routes routes routes routes cost for time(sec.)

20ft 40ft 20ft 40ft extra
trucks

10 2 5 1 2 4 2 5 2 4 3 - - 1853 600 0.13

2 1 5 2 - 5 2 5 4 3 - - 2725 1200 0.01

1 3 5 1 - 5 1 5 3 2 1 - 1620 600 0.11

1 2 2 5 - 5 - 6 3 2 1 - 1953 800 0.01

1 4 3 2 2 3 2 3 1 3 1 - 868 - 0.01

4 1 2 3 2 3 2 3 1 3 1 - 1132 - 0.01

2 2 1 5 - 5 - 6 2 4 - - 2025 800 0.01

2 4 1 3 2 3 2 4 3 2 1 - 1883 800 0.07

3 1 3 3 3 3 3 3 2 4 - - 1227 - 0.14

5 1 2 2 5 2 5 2 4 3 - - 1468 - 0.01

30 5 4 14 7 - 14 1 16 6 10 - 1 5296 2200 0.08

6 6 9 9 9 9 6 9 - 15 - - 3375 - 0.07

6 7 9 8 8 9 6 9 - 15 - - 3325 - 0.09

7 9 8 6 9 8 7 8 1 13 1 - 3618 - 0.35

7 6 6 11 2 11 2 13 4 8 2 1 4913 1600 0.19

7 8 8 7 10 8 7 8 1 13 1 - 3227 - 0.18

9 8 6 7 11 7 8 7 1 13 1 - 3272 - 0.13

7 10 1 12 - 12 - 17 7 7 3 - 7409 4000 0.25

5 5 10 10 8 10 5 10 - 15 - - 3320 - 0.03

3 6 8 13 - 13 - 16 5 8 3 - 5290 2400 0.03

50 11 14 15 10 11 15 11 15 5 18 3 - 6300 - 1:06

9 15 11 15 12 15 13 16 9 19 1 - 6860 1400 0.31

12 8 21 9 - 21 - 27 12 8 6 1 10383 4800 0.47

10 14 10 16 9 16 10 18 12 11 4 1 7456 2200 0.95

9 15 10 16 9 16 9 19 11 12 5 - 8160 2400 0.75

11 11 15 13 14 15 11 15 3 22 1 - 5432 - 0.38

8 10 17 15 11 17 8 17 2 21 2 - 4994 - 0.35

8 12 18 12 6 18 6 19 5 16 3 1 6025 800 0.28

8 16 9 17 6 17 6 22 11 13 3 1 9456 4000 0.56

10 14 13 13 18 13 14 13 4 23 - - 5854 - 0.11

100 23 25 27 25 33 27 23 27 2 46 2 - 10031 - 280.41

20 29 19 32 17 32 17 38 23 21 9 2 15013 4800 279.19

17 21 24 38 8 38 9 44 16 28 8 1 15855 5400 106.01

16 24 32 28 24 32 20 32 4 48 - - 10832 - 201.45

29 14 26 31 25 31 19 31 5 40 5 - 10089 - 102.36

18 21 25 36 13 36 21 36 18 35 4 - 15670 4800 101.31

12 27 26 35 16 35 15 41 22 25 8 1 15550 4800 205.49

14 23 28 35 17 35 17 38 18 29 8 - 12862 2400 102.45

20 22 28 30 29 30 22 30 6 44 2 - 10462 - 222.45

15 27 25 33 20 33 19 37 20 29 6 1 13917 3200 212.37

120 15 31 31 43 17 43 31 43 32 38 4 - 22768 8400 423.18

19 29 42 30 18 42 17 43 9 42 9 - 13492 800 503.17

19 36 25 40 19 40 20 48 31 23 13 1 19259 7000 419.13

23 26 32 39 26 39 26 39 14 47 4 - 13672 - 540.53

24 26 30 40 23 40 22 42 18 36 10 - 14040 1600 446.89

23 28 28 41 19 41 20 45 24 30 8 3 16209 3800 566.19

25 27 34 34 39 34 27 34 2 59 - - 13300 - 587.21

19 34 29 38 26 38 26 42 26 33 8 1 16078 3200 576.32

23 28 41 28 19 41 19 43 6 54 2 - 13945 1600 511.14

15 31 31 43 17 43 31 43 32 38 4 - 22768 8400 357.88

Table 6: Results for testing the MILP model on different scale of instances.
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# # fleet # # # # Fuel Penalty Total (%) CPU
Instance group orders

in
group

available used Indiv. 2
comb.

3
comb.

4
comb.

of weakness

index routes routes routes routes cost extra cost than time
20ft 40ft 20ft 40ft trucks MILP (sec.)

100-1
MILP - - 23 33 15 33 - 44 4 - 9967 - 9967 - 216.64

1 33 6 12 5 12 1 16 - - 3662 -
D 2 38 12 10 11 11 7 14 1 - 4637 800 14283 43.3 7.86

3 29 5 11 2 14 6 7 3 - 2784 2400
1 22 5 12 1 16 - - 3662

D+CG 2 21 23 33 11 11 7 14 1 - 4637 3200 14283 43.3 14.75
3 28 2 14 6 7 3 - 2784

D+CG+Agg removed 62 - - - 29 - 25 4 - 6311 -
1 38 23 4 13 5 - 16 2 - 3737 800 10848 8.8 29.17

100-2
MILP - - 25 31 18 31 2 43 4 - 9959 - 9959 - 109.52

1 35 6 14 4 15 4 14 1 - 3661 800
D 2 34 10 9 8 9 2 13 2 - 3775 800 21.3

3 31 9 8 9 9 7 9 2 - 3043 - 12079 3.96
1 35 4 15 4 14 1 - 3661

D+CG 2 34 25 31 10 8 2 16 - - 4002 - 10861 9.0
3 31 11 8 7 12 - - 3198 7.88

D+CG+Agg removed 55 - - - 27 - 26 1 - 5836 -
1 45 25 4 18 4 2 17 3 - 4214 - 10050 0.9 15.86

100-3
MILP - - 10 39 18 39 16 39 2 - 10895 4800 15695 - 248.93

1 36 3 16 5 16 6 15 - - 4738 1200
D 2 36 5 12 7 12 2 17 - - 4036 1200 17244 9.9

3 28 2 11 3 14 8 7 2 - 3070 3000 51.59
1 36 5 16 6 15 - - 4738

D+CG 2 36 10 39 7 12 2 17 - - 4036 5000 16700 6.4
3 28 1 15 7 6 3 - 2926 78.01

D+CG+Agg removed 61 - - - 29 - 26 3 - 6638 -
1 39 10 10 16 11 15 12 - - 5160 4400 16198 3.2 139.35

Table 7: Comparison of full solutions of all approaches on 100 orders instances

the decomposition-and-aggregation approach is 87% less than solving the MILP for larger
examples such as those with 120 orders. This advantage will be more significant once the
size of the problem prevents it to be tractable directly by CPLEX.

5.3 Results for different decomposition and aggregation levels
In this section we test through different decomposition and aggregation levels. Obviously
the larger per group is the better overall result one can expect, and the longer calculation
time in general. We are aiming to find the best number of orders per group to balance
the computation time (solution difficulty) and the performance. Here we use 200 orders
examples to run the experiment since too small problem size will prevent the discussion
into larger number of subgroups. In this test we consider the decomposition levels leading
to roughly 25 to 70 orders in every subgroup, which means decompose the entire problem
into 3 to 8 subgroups. Similarly in the aggregation stage, to avoid very long solution time
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# MILP # Decomposition Decomp. + Column Generation D + CG + Agg.

Orders avr.
time

avr.
cost

groups avr.
time

avr.
cost

avr. %
Weak-
ness

avr.
time

avr.
cost

avr. %
Weak-
ness

avr.
time

avr.
cost

avr. %
Weak-
ness

(sec.) (sec.) than
MILP

(sec.) than
MILP

(sec.) than
MILP

50 0.34 6081.5 2 0.04 8376.9 40.45 0.07 8141.2 36.76 0.16 6837.1 13.26

100 231.22 11811.8 3 10.14 14313.5 23.47 36.56 13666.4 17.03 66.85 12703.9 7.92

120 591.73 13892.2 3 13.02 17035.4 22.69 42.53 16418.7 18.57 78.10 15616.5 11.98

Table 8: Results of all approaches on instances with 50, 100 and 120 orders
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Figure 7: Comparison of all approaches on instances with 50, 100 and 120 orders

we choose the aggregation level that yields up to 70 orders per aggregated group, and solve
the resulting MILP to see the influence of different decomposition levels.

Table 8 shows the result of testing different decomposition levels on the same set of
10 randomly generated examples of 200 orders. Since all tests are based on the same
set of examples, the absolute costs generated by these methods/decomposition levels are
comparable. The decomposition and (D+CG) results meet our expectation of that finer
decomposition leads to higher overall costs. Due to this, it is also not hard to understand
that finer decomposition in the first phase (decomposition) leaves larger spaces for the
aggregation step to work to reduce the final cost. This is why decomposition level 8
receives the highest average proportional improvement by doing aggregation, although
with this large improvement the level 8’s absolute cost is still higher than simply doing
decomposition for 3 levels. On the other hand, the finer decomposition leads to more but
smaller MILP problems, which takes much less time than coarser decomposition levels.
This is also true through the experiment taking into the fact that with finer decomposition,
there might be more orders left after removing well-combined orders from the decomposed
solution so as to resulting in larger aggregated problems.
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# # Decomposition Decomp. + Column Generation D + CG + Agg.

Orders groups avr.
time

avr.
cost

avr.
time

avr. cost avr. % im-
provement
from

avr.
time

avr.
cost

avr. % im-
provement
from

(sec.) (sec.) Decomposition (sec.) Decomposition

200 3 201.36 25993.8 364.38 24690.2 4.96 689.66 24459.4 5.83

4 47.23 28288.1 106.90 27184 3.90 167.57 25049.1 11.45

6 6.04 30741.4 22.22 29216.7 4.94 78.29 26110.2 14.80

8 3.416 35457.8 11.95 33128.6 6.49 67.86 27767.1 21.21

Table 9: Results of all Methods for varies number of groups of 200 orders

As seen in Table 8, decomposing into more subgroups definitely increase total cost, in
all three stages of the solution process. Nevertheless, the final (D + CG + Agg) result for
the 4-group decomposition is just 2.4% (6.7%) higher than that is for the 3-group, while the
latter takes four (nine) times longer to achieve. This suggests that, suppose the solution
time is not a matter, decompose the problem into subproblems with the largest manageable
size is the best option. However in large-size, real-world applications where resources are
limited, decomposing into subgroups with 30-50 orders achieves a good balance between
the solution time and optimality. In addition to this, one more interesting point to make
is that the (D+CG+Agg) result for 4-levels is better than doing decomposition only for
3 levels (which is what industry normally do in practice), although it takes shorter time.
This means the proposed decomposition-and-aggregation process does help in achieving
better solutions with less effort, if appropriate decomposition levels are deployed.

5.4 Results for larger instances
Finally, large size instances with 150, 200, 300, 400 and 500 orders are tested. Table 9
summarises the averaged result of solving the large size instances by the three processes on
10 random examples per size category. Note that as optimal solution is not achievable for
these large scale problems, results are compared with the industrial-standard decomposi-
tion approach only. For each size category, orders are decomposed into different number
of subgroups based on the expected number of orders in each subgroup (around 30 to
maintain reasonable solution time). Same expected number of orders in each subgroup is
used to perform both the decomposition step and the decomposition of aggregated prob-
lems with remaining orders. We can see from the result that the average cost saving of
the decomposition-column generation is around 5%, while the average improvement after
doing the aggregation is over 20%. Both figures are not decreasing as problem size gets
larger. Examples with up to 500 orders can be managed efficiently in 45 minutes, on av-
erage. It can be seen that the solution time increases linearly with problem size for the
Decomposition-only approach. Therefore if the solution time is very restricted, one can
also divide the orders together with the fleets completely into parts, and solve each part
using the Decomposition-and-aggregation approach independently one from another.
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# # Decomposition Decomp. + Column Generation Decomp. + Column Gen. + Aggregation

Orders groups avr.
time

avr.
cost

avr.
time

avr. cost avr. % im-
provement
from

avr.
time

avr.
cost

avr. % im-
provement
from

(sec.) (sec.) Decomposition (sec.) Decomposition

150 5 1.68 24774.2 16.34 23578.0 4.72 64.15 20880.5 15.54

200 6 6.04 30741.4 22.22 29216.7 4.94 78.29 26110.2 14.80

300 10 8.05 55368.4 347.81 52020.2 5.32 416.50 44128.2 20.13

400 12 19.80 78169.7 241.28 73333.5 6.27 330.88 60141.3 22.59

500 14 26.70 96512.1 1738.20 91009.4 5.71 2597.09 74996.1 22.25

Table 10: Results for larger instances

6 Conclusions
This paper investigates the transportation of two types of orders: 20ft and 40ft containers
on road with both 20ft and 40ft long trucks. For this purpose a Mixed Integer Programming
(MILP) model is proposed. The aim of this model is to minimize the transportation cost
and the cost of hiring extra trucks when existing fleet is not adequate to cover all demands.
Important practical restrictions are captured in this model such as the ready-for-collection
time of containers at the port/customer locations, the regulation of the working time and
the time windows at customer locations. The MILP model can be implemented to obtain
the decision of how to combine orders to form closed delivery routes starting and ending
at the port terminal, with up to 4 containers per delivery route. The MILP model is
tested for different size of instances drawn from real data in which the result shows that
the model is capable to solve efficiently the problem with up to 120 orders by using the
CPLEX software package.

In order to deal with larger instances, a decomposition and aggregation heuristic ap-
proach is designed in which the locations of orders are decomposed geographically into
small subgroups and solved by the formulated MILP model. In order to balance the fleet
size amongst all subgroups, column generation method is used. Orders are then aggre-
gated and problem size is reduced by removing the best combined orders. The aggregated
problem can then be solved as a whole by constructing a new MILP or decomposed again
using the same strategy. Using the proposed methodology, problems with up to 500 or-
ders can be solved within 1 hour. Testing results on real data shows that the proposed
decomposition-and-aggregation approach introduces a sub-optimality gap between 5.14-
14.61%, but scales well with the size of the problem. For large instances where optimal
solution is not achievable, results are compared with an industrial-standard simple decom-
position approach. The proposed method improves this decomposition cost by over 20%
on average, which is also easily merge-able with the simple decomposition to meet practical
needs on the solution time and accuracy.
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