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Abstract 

The widely consumed neuroactive compound caffeine has generated much interest 

due to its ability to override the DNA damage and replication checkpoints. Previously Rad3 

and its homologues was thought to be the target of caffeine’s inhibitory activity. Later 

findings indicate that the Target of Rapamycin Complex 1 (TORC1) is the preferred target of 

caffeine. Effective Cdc2 inhibition requires both the activation of the Wee1 kinase and 

inhibition of the Cdc25 phosphatase. The TORC1, DNA damage, and environmental stress 

response pathways all converge on Cdc25 and Wee1. We previously demonstrated that 

caffeine overrides DNA damage checkpoints by modulating Cdc25 stability. The effect of 

caffeine on cell cycle progression resembles that of TORC1 inhibition. Furthermore, caffeine 

activates the Sty1 regulated environmental stress response. Caffeine may thus modulate 

multiple signalling pathways that regulate Cdc25 and Wee1 levels, localisation and activity. 

Here we show that the activity of caffeine stabilises both Cdc25 and Wee1. The stabilising 

effect of caffeine and genotoxic agents on Wee1 was dependent on the Rad24 chaperone. 

Interestingly, caffeine inhibited the accumulation of Wee1 in response to DNA damage. 

Caffeine therefore modulates cell cycle progression contextually through increased Cdc25 

activity and Wee1 repression following DNA damage via TORC1 inhibition.  
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Introduction 

Cell cycle progression through mitosis is under the opposing control of the Cdc25 

phosphatase and the Wee1 kinase. Cdc25 removes inhibitory phosphorylation moieties on 

Cdc2, which in turn enhances Cdc25 activity in a positive feedback loop. In contrast, Wee1 

phosphorylates Cdc2 on tyrosine residue 15 to inhibit its activity. Cdc2 in turn negatively 

regulates Wee1 by phosphorylation leading to its nuclear exclusion or degradation (Caspari & 

Hilditch, 2015, Moseley, 2017, de Gooijer et al., 2017). Cells must delay progress through S-

phase and mitosis in response to stalled replication, DNA double strand breaks and other 

forms of damage, in order to effect DNA repair and maintain viability (Karlsson-Rosenthal & 

Millar, 2006, Alao & Sunnerhagen, 2008). Effective activation and maintenance of DNA 

damage checkpoints thus involves the dual regulation of both Cdc25 and Wee1 via a “double 

lock” mechanism (Raleigh & O'Connell, 2000). Activation of the DNA damage response 

pathway induces inhibitory Cdc25 phosphorylation, Rad24 binding, nuclear export and 

stockpiling within the cytoplasm. In contrast, increased Wee1 activation occurs via 

phosphorylation, and this kinase accumulates within the nucleus (Karlsson-Rosenthal & 

Millar, 2006, Alao & Sunnerhagen, 2008). Caffeine has generated much controversy by its 

ability to override checkpoint signalling but the underlying mechanisms remain unclear. 

Caffeine inhibits members of the members of the phosphatidylinositol 3 kinase-like kinase 

(PIKK) family including ataxia telangiectasia mutated (ATM) and ataxia – and rad related 

(ATR) kinase homologue Rad3 and Target of Rapamycin Complex 1 (TORC1) in vitro 

(Humphrey, 2000, Bode & Dong, 2007, Lovejoy & Cortez, 2009, Gibbs et al., 2015). Initial 

reports suggested that caffeine overrides DNA damage checkpoint signalling by inhibiting 

Schizosaccharomyces pombe Rad3 and its orthologues but this view remains controversial 

(Moser et al., 2000, Wanke et al., 2008, Cortez, 2003). Studies that are more recent indicate 

that TORC1 is the major cellular target of caffeine in vivo (Kuranda et al., 2006, Reinke et 

al., 2006, Wanke et al., 2008, Rallis et al., 2013). TORC1 is a major regulator of cell cycle 

progression acting on both Cdc25 and Wee1. The inhibition of TORC1 activity suppresses 

Wee1 expression, results in increased Cdc25 activation and drives cells into mitosis. In 

addition, the effect of caffeine on cell cycle progression resembles that of TORC1 inhibition 

(Petersen, 2009, Alao et al., 2014, Atkin et al., 2014). We previously demonstrated that 

caffeine overrides checkpoint signalling in part, by stabilising Cdc25 expression. 

Interestingly, deletion of the rad3+ gene and its downstream target Cds1 similarly resulted in 

Cdc25 stabilisation. These findings suggested a role of Rad3 signalling in regulating Cdc25 
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stability during the normal cell cycle. Similarly, the Sty1-regulated Environmental Stress 

Response (ESR) pathway also plays a role in regulating both Cdc25 and Wee1 expression 

levels and is activated by caffeine (Alao & Sunnerhagen, 2008, Paul et al., 2018). The 

integration of Cdc25 and Wee1 phosphorylation, localisation, stability and activity thus play 

a key role in modulating the timing of mitosis. TORC1, Rad3 and Sty1 regulate the major 

signalling pathways that converge on the Cdc25 and Wee1 axis (Alao & Sunnerhagen, 2008, 

Petersen, 2009, de Gooijer et al., 2017). Herein we further explored the mechanism(s) by 

which caffeine stabilises Cdc25 and overrides checkpoint signalling, and have investigated 

the impact of subcellular localisation under these conditions. Here we report that in addition 

to modulating Cdc25 activity, caffeine also suppressed the DNA damage-induced 

stabilisation of Wee1 in S. pombe. In contrast, caffeine stabilised Wee1 in a Rad24 dependent 

manner under normal cell cycle conditions. These findings demonstrate that caffeine 

overrides the DNA damage checkpoints by positively regulating Cdc25 and negatively 

regulating Wee1. They also provide further evidence for the assertion that caffeine modulates 

TORC1 (and other pathways) and not Rad3 signalling to overcome the DNA damage 

checkpoint “double lock” mechanism.  
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Results 

Caffeine stabilises Cdc25 by inhibiting its nuclear degradation  

We previously demonstrated that caffeine stabilises both wild type (wt) Cdc25-GFPint 

and the Cdc25(9A)-GFPint mutant that lacks 9 major inhibitory phosphorylation sites and is 

normally degraded following exposure to genotoxic agents (Frazer & Young, 2011, Frazer & 

Young, 2012, Alao et al., 2014). In this study, exposure to 10 mM caffeine also stabilised the 

Cdc25(12A) mutant protein that lacks all 12 inhibitory phosphorylation sites (Fig. 1 A). 

Caffeine also stabilised Cdc25 in mik1Δ mutants. Mik1 is required for maintenance of the 

replication damage checkpoint signalling in S. pombe mutants expressing Cdc25(12A)-GFPint 

(Frazer & Young, 2011, Frazer & Young, 2012). As observed for rad3Δ and cds1Δ mutants 

(Alao et al., 2014), Cdc25 appeared more stable in a mik1Δ genetic background (Fig. 1 A). 

Caffeine also suppressed the 20 mM hydroxyurea (HU)-induced degradation of the 

Cdc25(12A)-GFPint mutant (Fig. 1 B). The stabilising effect of caffeine was not due to stress-

induced Sty1 activation, as exposure to 0.6 M KCl induced Cdc25(9A)-GFPint  degradation 

(Fig. 1 C). Inhibition of Crm1-dependent nuclear export with 100 ng/ml leptomycin B (LMB) 

slightly suppressed Cdc25 levels in both wt and Cdc25(12A)-GFPint expressing mutants 

(Fig. 1 D). LMB also inhibited the stockpiling of Cdc25-GFPint following exposure to HU but 

failed to stabilise Cdc25(12A)-GFPint under these conditions (Fig. 1 D). Similarly, HU-induced 

stockpiling of Cdc25 was dependent on Rad24 (Fig. 1 E). As previously reported, caffeine is 

more effective at overriding DNA damage checkpoints in strains expressing Cdc25 mutant 

protein that cannot be negatively phosphorylated (Fig. 1 F,G).  

Caffeine stabilises Wee1 in a Rad24 dependent manner 

TORC1 inhibition activates Cdc25 and suppresses Wee1 activity (Atkin et al., 2014). 

As Cdc25 and Wee1 are both partially regulated by ubiquitin-dependent degradation, we next 

investigated the effect of caffeine on Wee1 expression. Exposure to caffeine induced a rapid 

and time-dependent increase in Wee1 levels. Wee1 levels increased with 30 min of exposure 

to caffeine and continued to rise over the course of the 4 h incubation periods (Fig. 2 A, B). 

The caffeine-induced accumulation of Wee1 was dependent on Rad24 expression (Fig. 2 C). 

A role for Rad24 in regulating Wee1 stability has previously been reported (Paul et al., 

2018). Caffeine may also affect the phosphorylation of Wee1 in a manner that is distinct from 

a general effect on protein degradation (Lucena et al., 2017). The deletion of rad24+ resulted 

in a partial reduction of Wee1 expression and induced a “wee” phenotype (Fig. 2 D, E). 
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Additionally, inhibition of nuclear export with 100 ng/ml LMB stabilised Wee1 

independently of Rad24 (Fig. 2 F). Caffeine also stabilised Mik1 under normal cell cycle 

conditions (Fig. 2 G). Caffeine thus interferes with the coordinated regulation of Cdc25 and 

Wee1, possibly via inhibition of TORC1 activity.  

Caffeine suppresses DNA damage-induced Wee1 accumulation  

Exposure to DNA damaging agents has previously been shown to induce the 

accumulation of Wee1 (Raleigh & O'Connell, 2000). We thus studied the effect of caffeine 

on Wee1 expression under these conditions. Incubation with 10 mM caffeine alone induced 

the accumulation of Wee1 but had no impact on the slight suppressive effect of 20 mM HU 

on the protein (Fig. 3 A). Exposure to 10 µg/ml phleomycin induced Wee1 accumulation in a 

manner akin to that of caffeine. Interestingly, caffeine strongly inhibited phleomycin-induced 

Wee1 accumulation such that the levels were even below those observed in untreated cells 

(Fig. 3 A). Caffeine activates both the DNA damage response and environmental stress 

response pathways (Calvo et al., 2009, Alao et al., 2014). The effect of caffeine on Wee1 

stability may thus be context dependent. The loss of Wee1 expression in the presence of 

phleomycin would be expected to override checkpoint signalling under these conditions. 

Caffeine-induced Wee1 accumulation was dependent on Rad24 expression (Fig. 3 B). 

Exposure to HU in rad24Δ mutants did not induce Wee1 accumulation, and co-exposure to 

caffeine completely abolished expression of this kinase. Wee1 accumulation in response to 

phleomycin exposure was not observed in rad24Δ mutants. In marked contrast to wt cells, 

caffeine had no effect on Wee1 expression in rad24Δ mutants exposed to phleomycin 

(Fig. 3 B). In fact, the phleomycin-induced accumulation of Wee1 did not occur in rad24Δ 

mutants, identifying a direct role for Rad24 in regulating DNA damage checkpoints (Fig. 3 

B). We next compared the effect of phleomycin exposure on Cdc2 Tyr 15 phosphorylation in 

wt and rad24Δ mutants. Exposure to 10 µg/ml phleomycin increased the basal level of Cdc2 

phosphorylation (Fig. 3 C). In rad24Δ mutants, basal Cdc2 phosphorylation was not detected 

and exposure to phleomycin resulted in levels of Cdc2 phosphorylation below those of 

untreated wt cells (Fig. 3 C). We previously demonstrated that caffeine stabilises Cdc25 in 

the nucleus of S. pombe cells exposed to genotoxic agents (Alao et al., 2014). Caffeine thus 

both stabilises Cdc25 and suppresses Wee1 expression under genotoxic conditions. This 

activity would effectively lead to the abolition of the “double lock” DNA damage checkpoint 

mechanism.  
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Caffeine mediates checkpoint override by suppressing Wee1 under genotoxic conditions 

We previously observed that the effect of caffeine on cell cycle progression in 

S. pombe is enhanced in wee1Δ and other checkpoint mutants (Alao et al., 2014). Caffeine 

(10 mM) overrode checkpoint signalling in wee1Δ mutants but to a lesser extent than in wt 

cells (Fig. 4 A). As judged by FACS analyses, survival assays, and cell morphology, caffeine 

only slightly increases the sensitivity of wee1Δ mutants to 20 mM HU relative to wt cells 

(Fig. 4 B - D). We did not detect a differential level of sensitivity to HU in rad24Δ and 

wee1Δ mutants relative to wt cells (Fig. 4 E). Unlike wt cells and wee1Δ mutants however, 

rad24Δ mutants did not become elongated following exposure to HU (Fig. 4 E). 

Interestingly, caffeine was far more effective at overriding checkpoint signalling in response 

to HU in rad24Δ mutants (Fig. 4 G,I). We also observed that in contrast to HU, rad24Δ and 

wee1Δ mutants are highly sensitive to phleomycin (Fig. 4 H). 

Inhibition of TORC1 signalling overrides checkpoint signalling  

The TORC1 complex regulates the timing of mitosis and its inhibition by rapamycin 

or torin1 leads to an advanced entry into mitosis (Petersen & Nurse, 2007, Atkin et al., 2014). 

As caffeine inhibits TORC1 and advances entry into mitosis (Rallis et al., 2013, Alao et al., 

2014), we investigated if TORC1 inhibition similarly overrides checkpoint signalling. 

Exposure to 20 mM HU or 7.5 µM torin1 for 4 h did not affect the viability of wt S. pombe 

cells (Fig. 5 A). Unlike caffeine, co-exposure with torin1 did not affect the sensitivity of wt 

cells to HU (Figs. 4 G and 5 A). Cells co-exposed to HU and torin1 were shorter than cells 

exposed to HU alone but no chromosome mis-segregation was observed. In contrast, cells 

exposed to torin1 alone displayed a “wee” phenotype (Fig. 5 B).  

In contrast to its effects on HU sensitivity, torin1 was far more effective at sensitising 

wt cells to phleomycin than caffeine (Fig. 5 C-D). Similar results were obtained with gaf1Δ 

mutants, a transcription factor that partially mediates the effect of torin1 (Laor et al., 2015, 

Rodríguez-López et al., 2019), (Fig. 5 E,I). In addition, gaf1Δ mutants exposed to 

phleomycin and torin1 were shorter than cell exposed to phleomycin alone (Fig. 5 J). Torin1 

thus overrides DNA damage checkpoint signalling independently of Gaf1. Rapamycin failed 

to override checkpoint signalling concentrations as high as 600 ng/ml in wt S. pombe cells 

(Fig. 5 G). Tco89 is a subunit of the TORC1 complex and tco89Δ mutants are hypersensitive 

to caffeine and rapamycin (Reinke et al., 2006, Hayashi et al., 2007). Rapamycin sensitised 

tco89Δ mutants to phleomycin in a manner similar to caffeine (Fig. 5 F). Further studies 
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demonstrated, however, that rapamycin does not enhance sensitivity to phleomycin by 

overriding DNA damage checkpoint signalling (Fig. 5). Active TORC1 delays the timing of 

mitosis, by indirectly inhibiting the PP2A phosphatase catalytic subunit Pab1. Thus, TORC1 

inhibition results in advanced mitosis and a smaller cell size (Martin & Lopez-Aviles, 2018). 

Caffeine and torin1 were still able to enhance sensitivity of pab1Δ mutants to phleomycin 

(Fig. 5 L). As with tco89Δ mutants, this enhanced sensitivity to phleomycin did not result in 

DNA damage checkpoint override (Fig. 5 L). To confirm that torin1 overrides checkpoint 

signalling in a TORC1 resistant manner, we investigated its effect on the torin1-resistant 

tor2-G2040D mutant (Atkin et al., 2014). Unlike caffeine, torin1 failed to override 

phleomycin-induced DNA damage checkpoint signalling in the tor2-G2040D mutant (Fig. 5 

M). Together with previous findings (Reinke et al., 2006, Wanke et al., 2008, Alao et al., 

2014), our study strongly suggests that caffeine overrides DNA damage checkpoint signalling 

by targeting Tor2 and the TORC1 complex. We cannot however, rule out that caffeine can 

enhance sensitivity to DNA damage independently of checkpoint override, as DNA repair 

pathways are required for resistance to the drug (Calvo et al., 2009).  
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Discussion  

The precise mechanisms whereby caffeine overrides DNA damage checkpoint 

signalling remain unclear. In the present study, we investigated further how caffeine 

modulates cell cycle progression through Cdc25 and Wee1. Initial studies suggested that 

caffeine inhibits Rad3 and its related homologues (Moser et al., 2000, Jimenez et al., 1992). 

Caffeine however exerts inhibitory activity on several members of the phosphatidylinositol 3 

kinase-like kinase (PIKK) family (Humphrey, 2000, Bode & Dong, 2007, Lovejoy & Cortez, 

2009, Gibbs et al., 2015)). More recent studies suggest that the Tor2-containing TORC1 

complex is the major target of caffeine in vivo (Kuranda et al., 2006, Reinke et al., 2006, 

Wanke et al., 2008, Rallis et al., 2013). TORC1 regulates the timing of mitosis by 

modulating Cdc25 and Wee1 activity. Inhibition of TORC1 activity thus advances cells into 

mitosis, an effect like that observed with caffeine (Atkin et al., 2014, Alao et al., 2014). DNA 

damage checkpoint activation and enforcement require the dual inhibition of Cdc25 activity 

and activation of Wee1 (Raleigh & O'Connell, 2000). We previously demonstrated that 

caffeine induces Cdc25 accumulation independently of Rad3 inhibition (Alao et al., 2014). 

As TORC1 regulates Cdc25 and Wee1 activity and is inhibited by caffeine, this inhibition 

may in fact underlie the effects of the compound on cell cycle progression.  

Effect of caffeine on Cdc25 stability  

Cdc25 undergoes Cdc2-dependent activating phosphorylation as well as inhibitory 

phosphorylation via the Rad3 and Sty1 regulated signalling pathways (Perry & Kornbluth, 

2007). Caffeine stabilises wt and Cdc25 mutant proteins that cannot be phosphorylated in 

response to DNA damage. Caffeine thus clearly stabilises Cdc25 independently of its 

negative phosphorylation. Furthermore, caffeine is more effective at stabilising the Cdc25(9A)-

GFPint and Cdc25(12A)-GFPint isoforms and hence checkpoint override in these genetic 

backgrounds. The stabilising effect of caffeine on Cdc25 is also independent of Sty1 

signalling, as exposure to osmotic stress induced the degradation of Cdc25(9A)-GFPint. The 

Cdc25(9A)-GFPint and Cdc25(12A)-GFPint mutants are also rapidly degraded following exposure 

to genotoxic agents (Frazer & Young, 2011, Frazer & Young, 2012, Alao et al., 2014). These 

conditions must thus cause cellular changes that result in the targeting of these mutants for 

ubiquitin-dependent degradation. Inhibition of nuclear export with LMB resulted in a 

decrease in Cdc25 levels and prevented its stockpiling following exposure to HU. LMB also 

failed to prevent the HU-induced degradation of the Cdc25(12A)-GFPint mutant protein. As 
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expected, caffeine-induced Cdc25 stabilisation was independent of Rad24. Caffeine thus 

appears to partially inhibit the nuclear degradation of Cdc25 in S. pombe. Accordingly, 

Cdc25(12A)-GFPint mutants are more susceptible to caffeine-mediated checkpoint override 

than wt cells. It remains unclear if caffeine-induced Cdc25 accumulation results from TORC1 

inhibition.  

Effect of caffeine on Wee1 stability 

Our previous studies suggested that Wee1 attenuates the effect of caffeine on cell 

cycle progression in S. pombe (Alao et al., 2014). Furthermore, Cdc25 and Wee1 are co-

regulated during the cell cycle and thus determine the timing of mitosis (Atkin et al., 2014, 

Lucena et al., 2017). We thus investigated the effect of caffeine on Wee1 expression. 

Interestingly, caffeine induced rapid Wee1 accumulation under normal growth conditions. 

This accumulation was dependent on Rad24 expression which was also induced by exposure 

to caffeine (Fig. 2 A - C). Sty1 was recently shown to modulate the ratio of Cdc25 to Wee1 in 

a Rad24-dependent manner (Paul et al., 2018). Deletion of rad24+ resulted in reduced Wee1 

expression indicating that unlike Cdc25, Wee1 stability is dependent on Rad24 under normal 

cell cycle conditions (Figs. 1 E, 2 D and refs. (Frazer & Young, 2011, Frazer & Young, 2012, 

Alao et al., 2014)). Deletion of rad24+ resulted in a “semi-wee” phenotype. These findings 

suggest that it is the lack of Wee1 expression rather than constitutively nuclear Cdc25 

expression, that is responsible for the shorter length at division observed in rad24Δ mutants 

(Fig. 2 D and ref. (Ford et al., 1994)). Inhibiting nuclear export with LMB also stabilised 

Wee1 independently of Rad24. Further, caffeine stabilised the Mik1 kinase, an S-phase 

specific inhibitor of Cdc2 (Lundgren et al., 1991). Caffeine thus appears to stabilise Cdc25, 

Mik1 and Wee1 under normal cell cycle conditions. We previously demonstrated that the 

effect of caffeine on cell cycle progression is dampened by Srk1 and Wee1 activity (Alao et 

al., 2014). It remains unclear if Rad24 stabilises Mik1 and how caffeine affects this 

interaction in the presence of stalled replication forks or DNA damage. Remarkably, the 

effect of caffeine on Cdc25 and Wee1 is reversed under genotoxic conditions. Under these 

conditions Cdc25 is normally inactivated and sequestered in the cytoplasm or degraded in the 

nucleus, while Wee1 becomes activated and accumulates in the nucleus (Frazer & Young, 

2011, Frazer & Young, 2012). Exposure to caffeine under these conditions results in the 

stabilisation of Cdc25 within the nucleus (Alao et al., 2014) and degradation of Wee1 

(Fig. 3 A,B). Exposure to phleomycin but not HU induced Wee1 accumulation in a Rad24-

dependent manner. In contrast to caffeine or phleomycin exposure alone, Wee1 did not 
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accumulate when the cells were co-exposed to both compounds. Interestingly, caffeine also 

abolished Wee1 expression in rad24Δ mutants exposed to HU. Total phospho-Cdc2 levels 

are also suppressed in rad24Δ mutants, consistent with a loss of Wee1 expression and a 

“semi-wee” phenotype. The TORC1 complex also regulates the activity of Cdc25 and Wee1 

under normal cell cycle conditions to regulate the timing of mitosis (Atkin et al., 2014). 

Furthermore, Sty1 can modulate the relative expression levels of Cdc25 and Wee1 in a 

Rad24-dependent manner (Paul et al., 2018). Crosstalk between TORC1, Sty1, and the 

replication checkpoint pathway has also been reported (Hartmuth & Petersen, 2009, Fletcher 

et al., 2018). As caffeine inhibits TORC1 and activates Sty1, its effect on cell cycle 

progression may be context dependent and result from fundamental changes to physiological 

co-regulation of Cdc25 and Wee1. Caffeine-mediated TORC1 inhibition may also influence 

autophagy and 26S proteasomal degradation (Gressner, 2009, Marshall & Vierstra, 2015, 

Zhao et al., 2015). In any case, caffeine clearly abolishes Cdc25 inhibition and degradation 

under genotoxic conditions independently of Rad24. In contrast, Wee1 degradation may 

result from changes to its phosphorylation and ability to interact with Rad24. Caffeine thus 

overrides the DNA damage “double lock” mechanism independently of Rad3 inhibition 

((Alao et al., 2014) and this study).  

Differential effects of caffeine on DNA damage resistance 

The sensitivity of rad24Δ and wee1Δ mutants following a 4-hour exposure to HU was 

not enhanced relative to wt cells (Fig. 4 F). Caffeine was however no more effective at 

driving checkpoint override in wee1Δ mutants exposed to HU than in wt cells. This may 

reflect the differential cell cycle kinetics of wee1Δ mutants which delay progression through 

G1, because of size constrains and the more important role of Mik1 under these conditions 

(Frazer & Young, 2011, Frazer & Young, 2012). Future studies will investigate the effect of 

caffeine on Mik1 expression in cells exposed to HU. Alternatively, the increase in Cdc25 

activity induced by caffeine in a wee1Δ background may delay progression through 

cytokinesis due to high Cdc2 activity. Caffeine was more effective at overriding the 

replication checkpoint in rad24Δ mutants compared to wt cells. Rad24 binding and nuclear 

export are not required for the inhibition of Cdc25 activity. Caffeine overrides checkpoints 

more efficiently in mutants expressing Cdc25 isoforms that cannot be phosphorylated (Alao 

et al., 2014). It remains unclear if Rad24 stabilises Mik1 in a manner like Wee1. Increased 

nuclear levels of Cdc25, following exposure to HU combined with decreased Mik1 

expression, might account for the greater effect of caffeine on rad24Δ mutants. Caffeine may 
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also suppress Mik1 expression similarly to Wee1 (unpublished results). The sensitivity of 

rad24Δ and wee1Δ mutants to phleomycin was identical, probably reflecting the lack of 

Wee1 expression in these genetic backgrounds.  

TORC1 inhibition overrides DNA damage checkpoint signalling 

Recent studies have suggested that TORC1 and not Rad3 and its homologues is the 

preferred target of caffeine in vitro (Reinke et al., 2006, Wanke et al., 2008, Alao et al., 

2014). TORC1 regulates the timing of mitosis by regulating the activity of the PP2A 

phosphatase, which in turn regulates the activity of Cdc25 and Wee1 (Atkin et al., 2014, 

Martin & Lopez-Aviles, 2018). Exposure of S. pombe cells to rapamycin or torin1, activates 

Cdc25 and suppresses the expression of Wee1, resulting in advanced entry into mitosis. 

Furthermore, the effect of caffeine on cell cycle progression mimics that of rapamycin and 

torin1 and is dependent of Cdc25 (Alao et al., 2014, Atkin et al., 2014). We thus 

hypothesised that TORC1 inhibition by rapamycin or torin1 should override DNA damage 

checkpoint signalling in a manner akin to caffeine. In wt, caffeine, rapamycin and torin1 all 

advance the timing of mitosis under normal cell cycle conditions in S. pombe (Alao et al., 

2014, Atkin et al., 2014). In this study, caffeine and torin1 but not rapamycin overrode 

phleomycin-induced DNA damage checkpoint activation. Interestingly torin1 did not enhance 

sensitivity to HU in this context. This may be due to differential effects of caffeine on 

additional signalling pathways (e.g. Mik1 expression and global 26S proteasome-mediated 

protein degradation (Alao et al., unpublished results). The TORC1 downstream transcription 

factor Gaf1 has recently been shown to mediate the effects of Tor2 inhibition on 

chronological lifespan in S. pombe (Laor et al., 2015, Rodríguez-López et al., 2019). Caffeine 

and torin1 clearly increased sensitivity to phleomycin in gaf1Δ mutants, suggesting this effect 

occurs independently of Gaf1. Rapamycin could enhance sensitivity to the tco89Δ mutant 

which displays enhanced sensitivity to the drug and other genotoxins (Nakashima et al., 

2012, Pan et al., 2012). This activity was not associated with DNA damage checkpoint 

override. TORC1 inhibition results in advanced entry into mitosis via indirect inhibition of 

the PP2A phosphatase and its Pab1 activating subunit (Atkin et al., 2014, Martin & Lopez-

Aviles, 2018). Caffeine and torin1 enhanced DNA sensitivity in a pab1Δ genetic background, 

albeit independently of checkpoint override. These observations suggest that caffeine and 

torin1 induce checkpoint override in wt but not pab1Δ mutants. The increased sensitivity to 

DNA damage in these genetic backgrounds suggests that caffeine, and by implication torin1, 

can enhance sensitivity to genotoxins independently of checkpoint override. Indeed, 
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resistance to caffeine requires Rad3 and downstream modulators of DNA damage repair such 

as Rhp51 and Rhp54 (Calvo et al., 2009). Our finding, that caffeine but not torin1 overrides 

checkpoint signalling in the torin1 resistant tor2-G2040D mutant (Atkin et al., 2014) 

confirms that TORC1 inhibition overrides checkpoint signalling in the presence of 

genotoxins. 

Effective G2 checkpoint activation requires the dual inhibition of Cdc25 and 

activation of Wee1 (Raleigh & O'Connell, 2000). Mutants that fail to express wee1 and rad24 

are especially sensitive to DNA damage as these genes regulate the G2 checkpoint. Both 

rapamycin and torin1 suppress Wee1 expression in S. pombe, although rapamycin is less 

effective in this regard (Atkin et al., 2014). We have demonstrated that caffeine induces 

Wee1 expression under normal cell cycle conditions in a Rad24-dependent manner. 

Curiously, this effect is reversed under genotoxic conditions, where co-exposure to caffeine 

prevents Wee1 accumulation. The failure of rapamycin to override checkpoint signalling may 

thus result from its less effective inhibition of TORC1 and Wee1 suppression relative to 

torin1 and caffeine. Indeed, rapamycin effectively overrode DNA damage checkpoint 

signalling in tco89Δ mutants that display hypersensitivity to the inhibitor (Reinke et al., 

2006, Hayashi et al., 2007). Taken together our finding and those of others, strongly suggest 

that caffeine overrides DNA damage signalling independently of Rad3 by inhibiting TORC1 

activity.  

Experimental procedures 

Strains, media and reagents 

Strains are listed in Table 1. Cells were grown in yeast extract plus supplements 

medium (YES) Stock solutions of caffeine (Sigma Aldrich AB, Stockholm, Sweden) 

(100 mM) were prepared in water stored at -20°C. HU (Sigma Aldrich AB) was dissolved in 

water at a concentration of 1 M and stored at -20°C. Phleomycin (Sigma Aldrich AB) was 

dissolved in water and stock solutions (10 µg/ml) stored at -20°C. Alternatively, phleomycin 

was purchased from Fisher scientific UK as a 20 mg/ mL solution and stored at -20°C.  

Molecular genetics  

Deletion of the open reading frames was done by PCR-based genomic targeting using 

a KanMX6 construct (Bähler et al., 1998). Disruptions were verified by PCR using genomic 

DNA extracted from mutants. 
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Microscopy  

Calcofluor white (Sigma-Aldrich) staining and septation index assays were carried out 

as previously described (Alao et al., 2014, Dunaway & Walworth, 2004, Forsburg & Rhind, 

2006). Images were obtained with a Zeiss AxioCam on a Zeiss Axioplan 2 microscope with a 

100 × objective using a 4,6-diamidino-2-phenylindole (DAPI) filter set.  

Fluorescence-activated cell sorting (FACS)  

Cells were harvested at the desired time points, resuspended in 70 % ethanol and 

stored at 4°C until use. FACS analyses were performed according to the previously described 

protocol (Alao et al., 2014), using propidium iodide (32 µg/ml) as outlined on the Forsburg 

lab page (http://www-rcf.usc.edu/~forsburg/yeast-flow-protocol.html). Flow cytometry was 

performed with a BD FACSAria™ cell sorting system (Becton Dickinson AB, Stockholm, 

Sweden).  

Immunoblotting 

Monoclonal antibodies directed against HA (F-7), Myc (9E10) and pan 14-3-3 (K-19) 

proteins were from Santa Cruz Biotechnology (Heidelberg, Germany). Monoclonal 

antibodies directed against GFP (11814460001) and α-tubulin were from Sigma-Aldrich 

(Sigma Aldrich AB). Polyclonal antibodies directed against phospho-(Tyr15) Cdc2 were 

from Cell Signaling Technology (BioNordika, Stockholm, Sweden).  Monoclonal antibodies 

against Cdc2 were from Abcam (Cambridge, UK). For immunoblotting, protein extracts were 

prepared as previously described (Alao et al., 2014) with addition of 1 × PhosStop 

phosphatase inhibitor cocktail (Roche Diagnostics Scandinavia AB, Bromma, Sweden). 

Proteins were separated by SDS-PAGE. Epitope-tagged proteins were detected with the 

appropriate monoclonal antibodies. 
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Table 1. S. pombe strains 

 

h- L972                             Lab stock 

h+ cdc25-6HA [ura4+] leu1-32 ura4-D18 (FY7031)    YGRC 

h+ cdc25-6HA [ura4+] leu1-32 ura4-D18 rad24::KanMX6   This study 

h- cdc25-12myc::ura4+ ura4-D18 leu1-32     P. Russell 

h- cdc25-GFPint cdc25::ura4+ ura4-D18 leu1-32    P. Young 

h+cdc25(9A)-GFPint cdc25::ura4+ ura4-D18 leu1-32    P. Young 

h- cdc25(12A)-GFPint cdc25::ura4+ ura4-D18 leu1-32   P. Young 

h- cdc25(12A)-GFPint cdc25::ura4+ ura4-D18 leu1-32 mik1::ura4+  P. Young 

h+ cut8::ura4 (FY9535)       YGRC 

h+ leu1 his2 ura4 cut8-8xMyc ura4+      YGRC 

h- wee1::ura4+ leu1-32 ura4-D18 (FY7283)     YGRC 

h- wee1-3HA:6His leu1-32 ura4-D18 (FY16241)     YGRC 

h- wee1-3HA:6His leu1-32 ura4-D18 rad24::KanMX6   This study 

h- rad24::ura4+ leu1 ura4-D18 ade6-M210 (FY13517)    YGRC 

h- mik1::ura4 leu1 ura4 (FY8317)      YGRC 

h+ ade6-M210 ura4-D18 leu1–32 gaf1::KanMX6            Bioneer 

h+ ade6-M210 ura4-D18 leu1–32 tco89::KanMX6            Bioneer 

h+ leu1-32 ura4-D18∆ pab1::kanR      D. R. Kellogg 

h+ tor2-G2040D        J. Petersen 

 

 

 
YGRC, Yeast Genetic Resource Center, Osaka, Japan 
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Figure legends 

 

Figure 1. Caffeine induces the nuclear accumulation of Cdc25 in S. pombe 

A. Strains expressing wt Cdc25-GFP, Cdc25(12A)-GFP, or Cdc25-GFP from a mik1Δ genetic 

background were incubated with 10 mM caffeine and harvested at the indicated time points. 

Total protein lysates were resolved by SDS-PAGE and Cdc25 detected using antibodies 

directed against GFP. Gel loading was monitored using antibodies directed against tubulin. 

B. Strains expressing Cdc25(12A)-GFPint were pre-treated with 20 mM HU for two hours, 

followed by the addition of 10 mM caffeine. Cultures were incubated for a further 2 hours 

and total protein lysates were resolved by SDS-PAGE. Cdc25, phospho-Cdc2 and Cdc2 were 

detected using antibodies directed against GFP. Gel loading was monitored as in A. 

C. Strains expressing wt Cdc25-GFP or Cdc25(9A)-GFP were cultured in YES containing 

0.6 M KCl and harvested at the indicated time points. Samples were analysed as in A.  

D. Strains expressing wt Cdc25-GFP or Cdc25(12A)-GFPint  were incubated with 100 ng/ml 

LMB and 20 mM HU alone or in combination. Cells were pre-treated with HU for 2 h and 

then incubated with LMB for another 2 h as indicated. Samples were processed as in A.  

E. The Cdc25-HA rad24Δ strain was exposed to 20 mM HU alone or in combination with 

10 mM caffeine. Cells were pre-treated with HU for 2 h and then incubated with caffeine for 

another 2 h as indicated. Cdc25 was detected using antibodies directed against the HA 

epitope. Gel loading was monitored using antibodies directed against tubulin. 

F. Strains expressing wt Cdc25-GFP and Cdc25(12A)-GFPint exposed to 20 mM HU alone or 

in combination with 10 mM caffeine as in E. Samples were adjusted for relative cell 

numbers, serially diluted, plated on YES agar and incubated for 2 - 3 days. 

G. Cdc25(12A)-GFPint and Cdc25-GFP expressing strains from a mik1Δ genetic background 

were treated as in F.  
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Figure 2. Caffeine induces Wee1 accumulation in a Rad24-dependent manner in 

S. pombe. 

A. A Wee1-HA expressing strain was incubated with 10 mM caffeine and harvested at the 

indicated time points. Total protein lysates were resolved by SDS-PAGE. Wee1 was detected 

using antibodies directed against the HA epitope. Rad24 was detected using a pan 14-3-3 

antibody. A rad24Δ mutant was used to monitor antibody specificity. Gel loading was 

monitored using antibodies directed against tubulin. 

B. Cells expressing Wee1-HA were treated as in A. 

C. Wt and rad24Δ mutant cells expressing Wee1-HA were treated as in A. 

D. Wt and rad24Δ cells expressing Wee1-HA were grown to log phase and treated as in A. 

E. Log phase cultures of wt and rad24Δ cells were fixed in ethanol and examined by 

differential contrast microscopy.  

F. Wt and rad24Δ strains expressing Wee1-HA were incubated with 100 ng/ml LMB for 1 h. 

Total protein lysates were resolved by SDS-PAGE and membranes probed with the indicated 

antibodies. 

G. Cells expressing Mik1-HA were exposed to 10 mM caffeine and harvested at the indicated 

time points. Samples were treated as in A.  
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Figure 3. Caffeine suppresses genotoxin-induced Wee1 accumulation in S. pombe. 

A. Cells expressing Wee1-HA were cultured with 10 mM caffeine alone or in combination 

with 20 mM HU or 10 µg/ml phleomycin as indicated. Cultures were pre-treated with HU or 

phleomycin for 2 h and then for a further 2 h in the presence or absence of caffeine.  

B. Wee1-HA rad24Δ cells were treated as in A. 

C. Wt cells expressing Wee1-HA and Wee1-HA rad24Δ cells were exposed to 10 µg/ml 

phleomycin for 1 h. Total protein lysates were resolved by SDS-PAGE and membranes 

probed with antibodies against phospho- and total Cdc2.  
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Figure 4. Differential effects of caffeine on cell cycle progression in S. pombe wee1Δ and 

rad24Δ mutants. 

A. Duplicate cultures of wt and wee1Δ cells were incubated with 10 µg/ml phleomycin for 

2 h. The cultures were then incubated for a further 4 h with or without 10 mM caffeine and 

samples harvested at the indicated time points. Cells were fixed in 70 % ethanol, stained with 

aniline blue and the septation index determined by fluorescent microscopy.  

B. Samples from A were stained with propidium iodide and analysed by FACS. Arrows 

indicate cell with mis-segregated chromosomes.  

C. Wt and wee1Δ cells were incubated with 20 mM HU for 2 h. The cultures were then 

incubated for a further 2 h in the presence of 10 mM caffeine as indicated. Cultures were 

adjusted for relative cell numbers, serially diluted and plated unto YES agar plates. Plates 

were incubated at 30°C for 2 - 3 days.  

D. Wt and wee1Δ cells were treated as in A. Cells were fixed in 70 % ethanol and examined 

by differential contrast microscopy.  

E. Wt and rad24Δ wee1Δ cells were exposed to 20 mM HU for 4 h. Cells were fixed in 70 % 

ethanol and examined by differential contrast microscopy. 

F,G. Wt and rad24Δ wee1Δ cells were treated as in A.  

H. Wt and rad24Δ wee1Δ cells were exposed to 10 µg/ml phleomycin for 2 h. Cultures were 

adjusted for relative cell numbers, serially diluted and plated unto YES agar plates. Plates 

were incubated at 30° C for 2 - 3 days.  
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Figure 5. Inhibition of TORC1 overrides checkpoint signalling similarly to caffeine 

A. Wt cells were incubated with 20 mM HU for 2 h. The cultures were then incubated for a 

further 2 h in the presence of 10 mM caffeine as indicated. Cultures were adjusted for relative 

cell numbers, serially diluted and plated unto YES agar plates. Plates were incubated at 30° C 

for 2 - 3 days.  

B. Cells in A were fixed in 70 % ethanol, stained with DAPI and examined by differential 

contrast microscopy. 

C. Wt cells were incubated with 10 µg/m phleomycin for 2 h. The cultures were then 

incubated for a further 2 h in the presence of 10 mM caffeine or 7.5 µM torin1 as indicated. 

Cultures were adjusted for relative cell numbers, serially diluted and plated on YES agar 

plates. Plates were incubated at 30° C for 2- 3 days.  

D. Wt cells expressing Wee1-HA, were incubated with 5 µg/ml of phleomycin for 2 h. The 

cultures were then incubated for a further 2 h in the presence of 10 mM caffeine, 200 ng/ml 

rapamycin or 5 µM torin1 as indicated. Cultures were adjusted for relative cell numbers, 

serially diluted and plated on YES agar plates. Plates were incubated at 30° C for 2 - 3 days.  

E. gaf1Δ mutant cells were incubated with 5 µg/ml of phleomycin for 2 h. The cultures were 

then incubated for a further 2 h in the presence of 10 mM caffeine, 200 ng/ml rapamycin or 

5 µM torin1 as indicated. Cultures were adjusted for relative cell numbers, serially diluted 

and plated on YES agar plates. Plates were incubated at 30°C for 2 - 3 days.  

F. tco89Δ mutant cells were incubated with 5 µg/ml of phleomycin for 2 h. The cultures were 

then incubated for a further 2 h in the presence of 10 mM caffeine, 200 ng/ml rapamycin or 

5 µM torin1 as indicated. Cultures were adjusted for relative cell numbers, serially diluted 

and plated onto YES agar plates. Plates were incubated at 30°C for 2 - 3 days.  

G. Wt cells were exposed to 5 µg/ml of phleomycin for 2 h. The cultures were then incubated 

for a further 2 h in the presence of 200 ng/ml or 600 ng/ml rapamycin as indicated. Cells 

exposed to 600 ng/ml rapamycin served as a control. Cultures were adjusted for relative cell 

numbers, serially diluted and plated on YES agar plates. Plates were incubated at 30° C for 

2 - 3 days.  
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H. Wt cells were incubated with 5 µg/ml of phleomycin for 2 h. The cultures were then 

incubated for a further 2 h in the presence of 200 ng/ml rapamycin or 5 µM torin1. Samples 

were harvested at the indicated time points. Cells were fixed in 70 % ethanol, stained with 

calcofluor white and the septation index determined by fluorescent microscopy.  

 

I. gaf1Δ mutants were incubated with 5 µg/ml of phleomycin for 2 h. The cultures were then 

incubated for a further 2 h in the presence of 10 mM caffeine or 5 µM torin1. Cells were 

fixed in 70 % ethanol, stained with aniline blue or calcofluor white and the septation index 

determined by fluorescent microscopy.  

 

J.  gaf1Δ mutants were incubated with 5 µg/ml of phleomycin for 2 h. The cultures were then 

incubated for a further 2 h in the presence of 10 mM caffeine or 5 µM torin1. Cells were 

fixed in 70 % ethanol, stained with DAPI and examined by differential contrast microscopy. 

K. tco89Δ mutants were incubated with 5 µg/ml of phleomycin for 2 h. The cultures were 

then incubated for a further 2 h in the presence of 10 mM caffeine or 200 ng/ml rapamycin. 

Cultures were adjusted for relative cell numbers, serially diluted and plated on YES agar 

plates. Plates were incubated at 30° C for 2 - 3 days. Alternatively, cells were treated with 

10 mM caffeine or 200 ng/ mL of rapamycin alone. Samples were harvested at the indicated 

time points. Cells were fixed in 70 % ethanol, stained with aniline blue or calcofluor white 

and the septation index determined by fluorescent or the relative cell lengths with differential 

contrast microscopy.  

 

L. pab1Δ mutants were incubated with 5 µg/ml of phleomycin for 2 h. The cultures were then 

incubated for a further 2 h in the presence of 10 mM caffeine or 5 µM torin1. Alternatively, 

cells were treated with 10 mM caffeine or 5 µM torin1 alone. Cultures were adjusted for 

relative cell numbers, serially diluted and plated on YES agar plates. Plates were incubated at 

30° C for 2 - 3 days. Alternatively, samples were harvested at the indicated time points. Cells 

were fixed in 70 % ethanol, stained with aniline blue or calcofluor white and the septation 

index determined by fluorescent microscopy.  

 

M. The tor2(G2040D) strain was incubated with 5 µg/ml of phleomycin for 2 h. The cultures 

were then incubated for a further 2 h in the presence of 10 mM caffeine or 5 µM torin1. 

Cultures were adjusted for relative cell numbers, serially diluted and plated on YES agar 

plates. Plates were incubated at 30° C for 2 - 3 days. Alternatively, samples were harvested at 
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the indicated time points. Cells were fixed in 70 % ethanol, stained with aniline blue or 

calcofluor white and the septation index determined by fluorescent or the relative cell lengths 

with differential contrast microscopy.  
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