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Abstract 

Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and ageing. Inhibition 

of TORC1 leads to a down-regulation of factors that stimulate protein translation, including 

RNA polymerase III, which in turn contributes to longevity. TORC1-mediated post-

transcriptional regulation of protein translation has been well studied, while analogous 

transcriptional regulation is less well understood. Here we screened fission yeast deletion 

mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Mutants lacking the 

GATA transcription factor Gaf1 (gaf1Δ) grew normally even in high doses of Torin1. The 

gaf1Δ mutants shortened the chronological lifespan of non-dividing cells and diminished the 

lifespan extension triggered by Torin1 treatment. Expression profiling and genome-wide 

binding experiments showed that, after TORC1 inhibition, Gaf1 directly up-regulated genes 

for small-molecule metabolic pathways and indirectly repressed genes for protein translation. 

Surprisingly, Gaf1 bound to, and down-regulated the tRNA genes, so also functions as a 

transcription factor for genes transcribed by RNA polymerase III. We conclude that Gaf1 

controls the transcription of both coding and tRNA genes to inhibit translation and growth 

downstream of TORC1.  
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Introduction 

The conserved Target of Rapamycin (TOR) signaling pathway is a key regulator for cellular 

growth and metabolism in response to nutrients and energy (Gonzalez and Rallis, 2017; 

González and Hall, 2017; Valvezan and Manning, 2019; Wei et al., 2013). In most 

organisms, TOR functions via two distinct multi-protein complexes, TORC1 and TORC2, 

which coordinate various aspects of growth and associated cellular processes (Hartmuth 

and Petersen, 2009; Ikai et al., 2011). TORC2 is not required for cell proliferation in fission 

yeast (Schizosaccharomyces pombe) but is involved in sexual differentiation, stress 

response, and actin function (Matsuo et al., 2007; Weisman and Choder, 2001). TORC1 

activates protein synthesis and other anabolic processes and inhibits autophagy and other 

catabolic processes. Active TORC1 functions on lysosomes, or vacuoles in yeast, in 

response to growth or nutritional signals (Binda et al., 2009; Chia et al., 2017; Poüs and 

Codogno, 2011; Valbuena et al., 2012).  

 

In all organisms tested, TORC1 signaling promotes ageing and shortens lifespan (Gonzalez 

and Rallis, 2017; González and Hall, 2017; Kaeberlein, 2010; Wei et al., 2013). Lifespan is 

influenced by multiple TORC1-dependent processes, including mitochondrial activity (Hill 

and Van Remmen, 2014), autophagy (Saxton and Sabatini, 2017), and protein translation 

(Bjedov and Partridge, 2011; Rallis et al., 2013). Global protein translation is controlled post-

transcriptionally by TORC1, via direct phosphorylation of the ribosomal S6 kinases (S6K) 

and the translation factors eIF2α and 4E-BP (Ma and Blenis, 2009). Inhibition of S6K 

function can extend lifespan in fission yeast and other organisms (Bjedov et al., 2010; Rallis 

et al., 2014; Roux et al., 2006; Selman et al., 2009). 

 

Besides post-transcriptional mechanisms, TORC1 promotes global translational capacity 

and ageing via transcriptional regulation (Valvezan and Manning, 2019). It stimulates the 

transcription of all ribosomal RNAs via both RNA polymerases I and III (Pol I and Pol III) 

(Iadevaia et al., 2014), although the mechanisms are poorly understood. Some evidence 

suggests that TORC1 regulates Pol I transcription via general transcription factors (Hannan 

et al., 2003; Mayer et al., 2004). TORC1 also regulates the conserved Maf1 protein which 

directly inhibits Pol III (Cai and Wei, 2015; Graczyk et al., 2018; Michels et al., 2010; Shor et 

al., 2010; Wei and Zheng, 2010; Wei et al., 2009). Pol III transcribes the highly abundant 5S 

ribosomal RNAs and transfer RNAs (tRNAs) which are central for translation, besides some 

other small RNAs (Arimbasseri and Maraia, 2016). Given the focus on protein-coding gene 

transcription, the regulation of Pol III transcription is less well understood. A recent study 

shows that Pol III activity limits lifespan downstream of TORC1 (Filer et al., 2017). Together, 

these findings suggest that TORC1-mediated control of transcription by Pol III is universally 
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important for global translation and ageing. However, no specific transcription factors have 

been identified that bind to Pol III-dependent promoters and thus mediate translational 

control and lifespan. 

 

Here we show that the conserved GATA transcription factor Gaf1 is required for TORC1-

mediated suppression of cell growth in fission yeast. Upon TORC1 inhibition, Gaf1 not only 

binds to promoters of certain protein-coding genes, but also to the Pol III-transcribed tRNA 

genes which leads to their repression. Mutant cells lacking Gaf1 feature a shortened 

chronological lifespan. Our results uncover a transcription factor downstream of TORC1 that 

directly inhibits transcription of the tRNA genes, providing a global mechanism for 

transcriptional control of protein translation that prolongs lifespan.  

 

 

Results and Discussion 

Genes required for TOR-mediated growth inhibition  

TORC1 and TORC2 can be selectively inhibited by Torin1, an ATP-analogue which blocks 

cell proliferation in fission yeast (Atkin et al., 2014; Thoreen et al., 2009). Using a low dose of 

Torin1 (5 µM), fission yeast mutants have recently been screened for resistance and 

sensitivity to reduced TOR signaling (Lie et al., 2018). Here we screened mutants under a 

four-fold higher dose of Torin1 (20 µM). This dose completely blocked cell growth (Fig. 1A) 

and reduced the size of both cells and vacuoles (Fig. 1B). Global protein translation was also 

reduced by Torin1, as reflected by reduced phosphorylation of ribosomal S6 protein and an 

increase in both total and phosphorylated forms of eIF2α (Fig. 1C). Together, these cellular 

phenotypes look like those triggered by combined caffeine and rapamycin treatment, which 

blocks TORC1 function (Rallis et al., 2013). We conclude that Torin1 leads to phenotypes 

that are diagnostic for strong TORC1 inhibition.  

 

We screened for deletion mutants that can suppress the strong growth inhibition by 20 µM 

Torin1. Two independent deletion libraries were screened in two repeats each (Fig. 1D). Fig. 

1E shows examples of resistant mutant colonies. Overall, 19 mutants were resistant to 

Torin1-mediated growth inhibition in all 4 repeats (Table S1), 9 of which have been identified 

in the previous screen (Lie et al., 2018). We independently validated the 19 resistant mutant 

strains, both by PCR and backcrossing to a wild-type strain. The backcrossed mutants were 

spotted on plates with Torin1 to confirm that the drug-resistant phenotype was linked to the 

presence of the deletion cassette. While wild-type cells did not grow at all in Torin1, all 19 

mutants managed to grow at least to some extend in the different concentrations of Torin1 
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(Fig. 1F). Four mutants were completely resistant to Torin1 at all concentrations, showing 

similar growth as on untreated medium (Fig. 1F, red frames).  

 

Some mutants feature multi-drug resistance rather than resistance to specific drugs 

(Dawson et al., 2008). To exclude this possibility for the Torin1-resistant mutants, we 

assayed their growth in the presence of four other drugs (doxycycline, cadmium sulfate, 

bleomycin and cycloheximide). This analysis showed that all mutants were at least as 

sensitive to the other drugs as the wild-type control (Fig. S1A), indicating that their Torin1 

resistance cannot be explained by multi-drug resistance. Could the resistance of some 

mutants simply reflect that they cannot take up Torin1? To exclude this possibility, we tested 

whether the Torin1-resistant mutants still showed any of the other phenotypes caused by 

TORC1 inhibition (Fig. 1B,C). The mutants still showed reduced levels of ribosomal S6 

protein phosphorylation after Torin1 treatment, except aca1Δ (Fig. S1B), and decreased cell 

size, including aca1Δ (Fig. S1C). Together, these results indicate that Torin1 is taken up by 

the mutant cells which reveal different sensitivities to different TORC1 functions. Moreover, 

in all but the aca1Δ mutant, the growth resistance to Torin1 may be independent of 

translational control by ribosomal S6 phosphorylation.  

 

The 19 genes identified in our screen function in a specific set of cellular processes (Fig. 1G; 

Table S1). Vesicular transport and vacuolar functions were associated with 13 genes, six of 

which encoding components of endosomal sorting complexes required for transport 

(ESCRT). Interestingly, many of these proteins are part of the recently discovered Nbr1-

mediated vacuolar targeting (NVT) autophagic system (Liu et al., 2015). The NVT pathway 

does not contain core Atg proteins but depends on ESCRTs and the multi-vesicular body to 

deliver soluble cargoes to the vacuole. How might vesicular transport and the NVT pathway 

relate to TOR signaling? Disruption of the vesicle-mediated transport machinery at the 

endosome triggers a metabolic signature similar to TORC1 inhibition (Mulleder et al., 2016). 

It is possible that the NVT pathway is controlled by TORC1 or some of our resistant mutants 

affect the localization of TORC1 components to the vacuole, thus rendering the system more 

resistant to Torin1 inhibition. The remaining 6 genes identified in the screen encode proteins 

functioning in protein folding, mitochondrial ribosome assembly, the glutathione cycle, and 

arginine biosynthesis, as well as the TORC1-interacting protein Toc1p, and the GATA 

transcription factor Gaf1. In budding yeast, components of Golgi-to-vacuole trafficking are 

required for nitrogen- and TORC1-responsive regulation of GATA factors (Fayyadkazan et 

al., 2014; Puria et al., 2008). The screen results suggest that functional relationships 

between GATA factors and intracellular vesicles are conserved in fission yeast. Given our 
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interest in TORC1-dependent gene regulation and the strong Torin1-resistance of gaf1Δ 

mutants (Fig. 1G), we further analyzed the function of Gaf1. 

 

Gaf1 is required for normal chronological lifespan and for full lifespan extension in 

Torin1-treated cells 

TORC1 inhibition through nutrient limitation or rapamycin prolongs chronological lifespan in 

fission yeast (Rallis et al., 2013, 2014), defined as the time post-mitotic cells remain viable in 

stationary phase. Given that Gaf1 is required to arrest growth upon TOR inhibition, we 

hypothesized that Gaf1 may also play a role in chronological lifespan downstream of 

TORC1. To test this, we performed lifespan assays with gaf1Δ deletion mutant cells. Indeed, 

gaf1Δ cells were shorter-lived, with median and maximum lifespans of 3 and 16 days, 

respectively, compared to 5 and 20 days for wild-type cells (Fig. 2). Thus, Gaf1 is required 

for the normal lifespan of non-dividing cells.  

 

Torin1 increases lifespan in flies (Mason et al., 2018) and suppresses senescence in human 

tissue cultures (Leontieva and Blagosklonny, 2016). To analyze the effect of Torin1 on 

chronological lifespan in fission yeast, and any role of Gaf1 in this condition, we pre-treated 

exponentially growing wild-type and gaf1Δ cells with Torin1 and tested for subsequent 

effects on lifespan during stationary phase. Torin1 substantially prolonged lifespan in wild-

type cells, with median and maximum lifespans of 18 and 33 days, respectively, compared to 

5 and 20 days in untreated cells (Fig. 2A). In gaf1Δ cells, Torin1 also prolonged lifespan, but 

to a lesser extent than in wild-type cells, with median and maximum lifespans of ~13 and 30 

days, respectively (Fig. 2A). To quantify the role of Gaf1 in Torin1-mediated longevity, we 

calculated the areas under the curve (AUC, measured as days x % survival) of the lifespan 

assays. In wild-type cells, the lifespan was prolonged from an average AUC of 1044 to 2689 

(increase of 1645), whereas in gaf1Δ cells, the lifespan was prolonged to a lesser extent, 

from an average AUC of 681 to 1709 (increase of 1027) (Fig. 2B). We conclude that Gaf1 is 

also required for the full lifespan extension resulting from Torin1-mediated TOR inhibition 

during cell proliferation. However, Torin1 still can prolong lifespan to a considerable extent in 

the absence of Gaf1, indicating that other factors contribute to this longevity. Indeed, we 

have previously identified several proteins required for lifespan extension when TORC1 is 

inhibited, including the S6K homologue Sck2 (Rallis et al., 2014). 

 

Gaf1-dependent transcriptome regulation following TOR inhibition 

Given that the Gaf1 transcription factor was essential for growth inhibition by Torin1 (Fig. 

1G), we further analyzed its function in this condition. Gaf1 accumulated in the nucleus 

within a few minutes following Torin1 treatment (Fig. 3A). Consistently, Gaf1 is known to 
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translocate to the nucleus during nitrogen limitation, which also inhibits TORC1 (Laor et al., 

2015). This regulatory pattern for GATA transcription factors is conserved: budding yeast 

Gln3 and Gat1 (Broach, 2012) and mammalian GATA6 (Xie et al., 2015) are also 

sequestered in the cytoplasm by active TORC1 and translocate to the nucleus upon TORC1 

inhibition.  

 

In fission yeast, Gaf1 is known to activate genes functioning in amino-acid transport but 

represses ste11, encoding a master regulator for sexual differentiation (Kim et al., 2012; Ma 

et al., 2015). To systematically identify Gaf1-dependent transcripts before and after TOR 

inhibition, we performed microarray analyses of wild-type and gaf1Δ cells, both before and 

after Torin1 treatment. In the absence of Torin1, the expression signatures of wild-type and 

gaf1Δ cells were similar (Fig. 3B,C). We conclude that in proliferating cells Gaf1 plays no or 

a negligible role in gene regulation, consistent with the absence of Gaf1 nuclear localization 

when TORC1 is active (Fig. 3A; Laor et al., 2015).  

 

Treatment with Torin1, on the other hand, resulted in substantial transcriptome changes in 

both wild-type and gaf1Δ cells (Fig. 3B,C). But in gaf1Δ cells, the expression signature 

triggered by Torin1 markedly differed from the signature in wild-type cells (Fig. 3B,C). 

Overall, 90 and 108 genes consistently showed ≥1.5-fold higher or lower expression, 

respectively, in gaf1Δ relative to wild-type cells after Torin1 treatment (Fig. 3B; Table S2). 

Cells treated with caffeine and rapamycin, which inhibit TORC1 but not TORC2 (Rallis et al., 

2013), showed similar expression signatures as Torin1-treated cells, in both wild-type and 

gaf1Δ (Fig. 3B,C). This result indicates that the Torin1-mediated expression signatures in 

wild-type and gaf1Δ cells reflect TORC1 inhibition. We conclude that after TORC1 inhibition, 

Gaf1 affects the expression of ~200 genes, either positively or negatively.  

 

We performed functional enrichment analyses for these Gaf1-dependent genes using 

AnGeLi (Bitton et al., 2015). The 90 genes that were higher expressed in gaf1Δ than in wild-

type cells (i.e., genes repressed by Gaf1) were typically down-regulated in Torin1-treated 

wild-type cells, but less so in gaf1Δ cells (Fig. 3B). These genes were enriched in anabolic 

processes such as biosynthesis (61 genes, p=9.4x10-10), ribosome biogenesis (19 genes, 

p=1.6x10-3) and cytoplasmic translation (31 genes, p=1.0x10-16), including 25 genes 

encoding ribosomal proteins. Figure S2 provides a visualization of all Gene Ontology (GO) 

Biological Processes enriched among the 90 genes. Many of these genes are also 

repressed as part of the core environmental stress response (43 genes; p=1.4x10-20; Chen 

et al., 2003) and are highly expressed in proliferating cells (mean of 46.9 mRNA copies/cell 

vs 7.5 copies for all mRNAs, p=1,2x10-26; mean of 85,821 protein copies/cell vs 16,166 for all 
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proteins, p=3.7x10-19; Marguerat et al., 2012).We conclude that upon TORC1 inhibition, Gaf1 

contributes to the down-regulation of highly expressed genes functioning in global protein 

synthesis.  

 

The 108 genes that were lower expressed in gaf1Δ than in wild-type cells (i.e., genes 

induced by Gaf1) were typically up-regulated in Torin1-treated wild-type cells, but less so in 

gaf1Δ cells (Fig. 3B). These genes were enriched in several metabolic/catabolic processes 

of small molecules, including organonitrogen compounds (43 genes, p=4.6x10-14) such as 

cellular amino acids (18 genes, p=4.1x10-5), urea (6 genes, p=7.3x10-5), and organic acids 

(20 genes, p=0.001). Figure S2 provides a visualization of all GO Biological Processes 

enriched among the 108 genes. There was also a substantial overlap with genes that are 

induced under nitrogen limitation (43 genes, p=1.3x10-29; Mata et al., 2002) and with genes 

that are periodically expressed during the cell cycle (41 genes, p=1.6x10-12, Marguerat et al., 

2012), including 9 histone genes. These results suggest a Gaf1-dependent transcriptional 

program to adjust the metabolism of amino acids and other metabolites, possibly to recycle 

nutrients under conditions that do not allow rapid proliferation. Together, the expression 

profiling indicates that Gaf1 regulates physiological changes supporting the growth arrest 

triggered by TORC1 inhibition.  

 

Gaf1 binds to both coding and tRNA genes following TOR inhibition 

The microarray analyses identified genes whose expression depends on Gaf1, some of 

which may be directly regulated by Gaf1. To detect genes whose promoters are bound by 

Gaf1, we performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) of 

Gaf1-GFP cells, before and after Torin1 treatment. The number of gene promoters bound by 

Gaf1 increased from 165 before Torin1 treatment to 454 at 60 min after Torin1 treatment, 

with 93 genes in common between the two conditions (Fig. 4A). Gaf1 binding sites upstream 

of close, divergently expressed genes were assigned to both genes. The 454 Gaf1 target 

genes after Torin1 treatment consisted of 245 protein-coding genes and 209 non-coding 

genes. The full lists of genes whose promoters were bound by Gaf1 is provided in Table S3.  

 

AnGeLi analysis of the protein-coding target genes revealed significant enrichment in 

metabolic processes of organonitrogen compounds (55 genes, p=1.4x10-6), including 

nucleotides (24 genes, p=0.0009) and organic acids (34 genes, p=0.0003), among others. 

Figure S3 provides a visualization of all GO Biological Processes enriched among the 245 

coding genes. The Gaf1 target genes were also enriched for genes induced under nitrogen 

limitation (40 genes, p=1.6x10-11) and periodically expressed during the cell cycle (53 genes, 

p=4.5x10-6). Overall, these target genes showed similar functional enrichments to the genes 
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whose expression was induced by Gaf1. Accordingly, Gaf1 binding sites were enriched 

among the genes whose expression was induced by Gaf1 (Fig. 3B, orange bars). Moreover, 

most protein-coding genes bound by Gaf1 after Torin1 treatment were induced by Torin1 or 

by caffeine and rapamycin, but were less induced in gaf1Δ cells, leading to distinct clusters 

for wild-type and mutant conditions (Fig. 4B). We conclude that most coding Gaf1 target 

genes are transcriptionally up-regulated by Gaf1 upon inhibition of TORC1.  

 

Notably, Gaf1 bound to promoters of 20 transcription factor genes (Table S3; Fig. S3). 

Typically, these factors were induced in wild-type cells after TORC1 inhibition, but less so in 

gaf1Δ cells. Many of these factors are involved in different stress responses or cell-cycle 

regulation, including Atf1 (Wilkinson et al., 1996), Cbf12 (Chen et al., 2003), Fep1 (Bekker et 

al., 1991), Fil1 (Duncan et al., 2018), Hsr1 (Chen et al., 2008), Klf1 (Shimanuki et al., 2013), 

Loz1 (Corkins et al., 2013), Pap1 (Chen et al., 2008), Php3 (Mercier et al., 2006) and Sep1 

(Rustici et al., 2004). The large number of transcription-factor targets indicates that Gaf1 

may indirectly control some Gaf1-dependent genes by regulating other transcription factors. 

Indeed, Gaf1 inhibited the expression of many genes functioning in translation (Fig. S2), but 

these genes were not among its direct binding targets. Thus, these genes may be indirectly 

regulated by Gaf1 via other transcription factors; for example, the Gaf1 target Atf1 is known 

to repress translation-related genes during stress (Chen et al., 2008), raising the possibility 

that it also represses these genes during TORC1 inhibition in a Gaf1-dependent manner. 

 

The 209 non-coding genes among the Gaf1 target genes included 82 tRNA genes and a 

snoRNA involved in tRNA regulation, besides large non-coding RNAs (Table S3). In fact, 

coverage plotting indicated that Gaf1 binds to all tRNA genes, which are clustered in fission 

yeast (Fig. 4C; Fig. S4). The binding was enriched over the transcription start sites for tRNA 

genes and strongly increased after Torin1 treatment (Fig. 4C). We conclude that Gaf1 binds 

not only to Pol II transcribed genes, but also to tRNA genes that are transcribed by Pol III. 

Does Gaf1 repress or activate the tRNA genes? To address this question, we performed 

northern analyses to determine the expression of three tRNA genes as a function of Gaf1 

and Torin1. The abundant mature tRNAs are rapidly processed from precursor tRNAs, so 

any expression changes of tRNAs requires detection of its precursors (Otsubo et al., 2018). 

The expression of tRNA precursors decreased during Torin1 treatment in wild-type cells, 

while in gaf1Δ cells this expression decrease was delayed and less pronounced (Fig. 4D). 

We conclude that upon TOR inhibition Gaf1 binds to tRNAs and inhibits their expression. 

 

Down-regulation of precursor tRNA expression is required for TORC1 inhibition during 

nitrogen starvation in fission yeast (Otsubo et al., 2018), indicating that tRNAs can act 
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upstream of TORC1. Our experiments, on the other hand, point to a mechanism of tRNA 

regulation downstream of TORC1. Together, these findings indicate a regulatory feedback 

mechanism, involving precursor tRNAs, TORC1 and Gaf1, to ensure that tRNA expression 

matches the physiological requirements. Our results reveal a transcription factor that globally 

inhibits Pol III-mediated expression of tRNAs, along with Pol II-mediated expression of 

protein-coding genes functioning in translation- and metabolism-related processes. It will be 

interesting to test whether this function is conserved for the orthologous GATA transcription 

factors. 

 

Conclusion 

The GATA transcription factor Gaf1 is essential for the block of cell proliferation triggered by 

Torin1; in its absence cell growth is not reduced, even in high doses of Torin1 (Fig. 1G). 

Gaf1 is also required for normal chronological longevity, and it may contribute to, but is not 

absolutely necessary for the extended lifespan we observed in Torin1-treated cells (Fig. 2). 

Upon TORC1 inhibition, Gaf1 inhibits the expression of diverse genes functioning in protein 

translation, including protein-coding genes which seem to be indirectly controlled by Gaf1 as 

well as tRNA genes which are binding targets of Gaf1 (Figs. 3 and 4). Gaf1 also positively 

controls genes functioning in metabolic pathways for nitrogen-containing molecules, which 

support the physiological adaptation to lowered protein synthesis. Thus, Gaf1 can directly 

regulate both Pol II- and Pol III-transcribed genes. It is possible that Gaf1 elicits its repressor 

activity at tRNA genes by recruiting a histone deacetylase: previous work in fission yeast has 

identified potential loading sites for components of a Clr6 histone deacetylase complex at 

tRNAs (Zilio et al., 2014). Down-regulation of global protein translation is beneficial for 

longevity in all organisms studied, including fission yeast (Kaeberlein and Kennedy, 2011; 

Rallis and Bähler, 2013). Given the role played by Gaf1 in inhibiting translation-related 

factors, Gaf1 may inhibit ageing by contributing to the down-regulation of translation upon 

TORC1 inhibition (Fig. 5). Gaf1 thus defines a parallel, transcription-based branch of 

translational and metabolic control downstream of TORC1, in parallel to the post-

translational branch exerted by translational regulators like S6K and others (Fig. 5). This 

branch is essential for the growth inhibition triggered by lowered TORC1 activity.  

 

Inhibiting Pol III, which transcribes the tRNAs, prolongs lifespan in yeast, worms and flies, 

and is required for the lifespan extension mediated by TORC1 inhibition (Filer et al., 2017). 

Besides general transcription factors such as TFIIIB, TFIIIC and TBP, several factors control 

Pol III transcription without directly binding to DNA (Hummel et al., 2019), including the Pol 

III inhibitor Maf1, the coactivator PNRC, and MYC which interacts with the Pol III basal 

apparatus (Campbell and White, 2014; Graczyk et al., 2018; Zhou et al., 2007). To our 
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knowledge, the TORC1 target Gaf1 is the first specific transcription factor shown to globally 

bind to and inhibit the tRNA genes. Thus, Gaf1 could mediate the ageing-associated function 

of Pol III. Recent work in flies shows that GATA transcription factors can mediate the effects 

of dietary restriction on lifespan (Dobson et al., 2018). This finding raises the possibility that 

Gaf1 regulation of ageing-related processes, such as tRNA transcription, is conserved, and 

that GATA factors exert similar functions downstream of TORC1 in other organisms. The 

mouse and human ortholog of Gaf1, GATA6, is involved in differentiation, stem-cell 

maintenance and cancer (Viger et al., 2008; Wamaitha et al., 2015; Zhong et al., 2011). It is 

plausible that GATA6 exerts these important functions by regulating translation-related 

genes, including tRNAs.  

 

 

Materials and Methods 

 

Strains and media 

For wild-type control strains, we used 972 h- or the parental strains for the deletion library, 

ED666 (h+ ade6-M210 ura4-D18 leu1–32) and ED668 (h+ ade6- M216 ura4-D18 leu1–32). 

All Bioneer haploid deletion library strains used were PCR-validated and backcrossed with 

972 h-. The gaf1-GFP strain was generated as described (Bahler et al., 1998). Cell cultures 

were grown in yeast extract plus supplements (YES) as default or in Edinburgh minimal 

medium (EMM2) if indicated (Moreno et al., 1991).Liquid cultures were grown at 32°C with 

shaking at 130 rotations per minute. 

 

Drug sensitivity assays 

Cells were grown in liquid YES to an OD600 of 0.5. Ten-fold serial dilutions of cells were 

spotted onto YES agar plates, using replica platers for 48-well or 96-well plates (Sigma), with 

or without various drugs as indicated in figure legends.  

 

Measurement of cell size and fluorescence microscopy 

To determine cell size, control and drug-treated cells were fixed in 4% formaldehyde for 10 

min at room temperature, washed with 50 mM sodium citrate, 100 mM sodium phosphate, 

and stained with calcofluor (50 mg/ml). Microscopy was performed using a DAPI filter for 

calcofluor detection and a Hamamatsu ORCA-ER C4742-95 digital camera fitted to a Zeiss 

Axioskop microscope with EC plan-NEOFLUAR 63x 1.25 NA oil objective. Images were 

recorded using the Volocity acquisition program (PerkinElmer). At least 100 septated cells 

were counted and analyzed for each condition using the Volocity quantitation package 
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(PerkinElmer). Results were analyzed using the R package. For fluorescence microscopy of 

Gaf1-GFP cells, we used a spinning disk confocal microscope (Yokogawa CSU-X1 head 

mounted on Olympus body; CoolSnap HQ2 camera [Roper Scientific], Plan Apochromat 

100X, 1.4 NA objective [Olympus]). The images correspond to maximum intensity 

projections of 15 image stacks with a Z-step of 0.3 microns. Cells were immobilized with 

soybean lectin (Sigma L1395) in two different compartments of a glass-bottom 15 µ-Slide 8 

well (Ibidi 80821) to add either DMSO as a solvent control or Torin1 (to a final concentration 

of 20 µM, dissolved in DMSO). In vivo chromatin staining was done with Hoechst 33342 (1 

µg/ml). As this dye performs very poorly in YES, cells were immobilized onto glass bottom 

wells and washed three times with liquid EMM2 containing Hoechst 33342 (Sigma-Aldrich 

B2261) at 1 µg/ml plus Torin1 (20 µM). Cells were covered with this media and imaged 10 

min later. Image analysis and editing was performed using Fiji (Image J) open software 

(Schindelin et al., 2012).  

 

Measurement of vacuolar size 

Vacuolar labelling was performed as described (Codlin et al., 2009). Briefly, FM4-64 dye 

(Molecular Probes) was dissolved in DMSO at a concentration of 0.82 mM. Then, 2 μl FM4-

64 stock was added to 1 ml log-phase cells with or without drugs. Following 30 min exposure 

to FM4-64, cells were washed, and chased for 40 min in fresh media to allow all dye to reach 

the vacuole. Fluorescence microscopy was performed using a Rhodamine filter for detection 

of FM4-64 and a Hamamatsu ORCA-ER C4742-95 digital camera fitted to a Zeiss Axioskop 

microscope with EC plan-NEOFLUAR ×63 1.25 NA oil objective. Images were recorded 

using the Volocity acquisition program (PerkinElmer). At least 500 vacuoles were measured 

using the Volocity quantitation package (PerkinElmer). Results were analysed using the R 

package.  

 

Chronological lifespan assay 

Cells were grown in EMM2 media as described (Rallis et al., 2013). When cultures reached 

a stable maximal density, cells were left an additional 24 hrs and then harvested, serially 

diluted, and plated on YES plates. The measurement of colony‐forming units (CFUs) was 

taken as timepoint 0 at the beginning of the lifespan curve (i.e., 100% cell survival). 

Measurements of CFUs were conducted on successive days until cultures dropped to 0.1% 

cell survival. Error bars represent standard deviation calculated from three independent 

cultures, with each culture measured three times at each timepoint. To determine the 

chronological lifespan when TOR is inhibited, 8 μM Torin1 was added to rapidly proliferating 

cell cultures at OD600 = 0.5 which were then grown to stationary phase, and lifespan was 
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recorded as described above. AUCs were measured with ImageJ (Schindelin et al., 2012) 

for all experimental repeats using lifespans curves on the linear scale for % survival.  

 

High-throughput genetic screening 

The haploid deletion libraries were plated onto YES plates containing 100 μg/ml G418 using 

a RoToR HDA robot (Singer). Multiple replicate copies of the library were thus generated. 

Using the RoToR, the libraries were compacted into nine 384-density plates of plates and 

then printed onto plates containing 20 µM Torin1. The plates were incubated at 32°C for 2 

days and then manually scored for resistant colonies. 

 

Growth assay 

Growth in the presence or absence of Torin1 were automatically determined in 48-well 

flowerplates using the Biolector microfermentation system (m2p-biolabs), at 1.5 ml volumes, 

1000 rpm and 32°C. Growth dynamics were modelled using the grofit R package (Kahm et 

al., 2010). In the resulting growth curves, the units of the x-axis are time (hrs) while the y-

axis shows biomass (arbitrary units) normalized to biomass at time 0. 

 

Western blotting and antibodies 

For protein preparations, cells were diluted in 6 mM Na2HPO4, 4mM NaH2PO4.H2O, 1% 

Nonidet P-40, 150 mM NaCl, 2 mM EDTA, 50 mM NaF supplemented with protease (PMSF) 

and phosphatase inhibitors (Sigma cocktails 1 and 2), together with glass beads. Cells were 

lysed in a Fastprep-24 machine (MP Biomedicals). Phospho-(Ser/Thr) Akt Substrate (PAS) 

Antibody (9611, Cell Signaling) for detection of P-S6 (p27) and anti-rps6 (ab40820, Abcam) 

were used at 1/2000 dilution. For detection, we used the anti-rabbit HRP-conjugated 

antibody (1/5000 dilutions) with the ECL Western Blotting Detection System (GE Healthcare) 

according to the manufacturer’s protocol. 

 

Microarrays 

Microarray analysis was performed as previously described (Rallis et al., 2013). Cells were 

grown in YES to OD600 = 0.5 and harvested. Torin1 treatments were done for 1 hr at a 

concentration of 20 µM. Caffeine/rapamycin treatments were also performed for 1 hr at 

concentrations 10mM Caffeine and 100ng/ml rapamycin. Two independent biological 

repeats with a dye swap were performed. For each repeat, a corresponding pool of Torin1 or 

caffeine/rapamycin treated and untreated wild-type and gaf1Δ cells was used as a common 

reference for microarray hybridization. Agilent 8× 15K custom-made S. pombe expression 

microarrays were used, with hybridizations and subsequent washes performed according to 

the manufacturer’s protocols. The microarrays were scanned and extracted using GenePix 
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(Molecular Devices), processed using R scripts for quality control and normalization, and 

analyzed using GeneSpring GX3 (Agilent). We determined genes that were 1.5-fold up-

regulated or down-regulated in both repeats of Torin1-treated and caffeine/rapamycin-

treated gaf1Δ cells relative to Torin1-treated and caffeine/rapamycin-treated wild-type cells 

respectively. 

 

ChIP-seq 

Cells were grown in YES to an OD600 of ~0.4. Untreated and Torin 1-treated (20 µM for 15 

min or 1 hr) cells were fixed in 1% formaldehyde for 30 min and then quenched 10 min with 

125mM glycine. Pellets were washed with ice-cold PBS, snap frozen in liquid nitrogen and 

stored at -80°C. Cell pellets were resuspended in lysis buffer (50 mM HEPES pH 7.6, 1mM 

EDTA pH 8, 150 mM NaCl, 1% Triton X-100, 0.1% sodium doxycolate, 1mM PMSF and 

protease inhibitors). Chromatin was obtained following cell disruption using a Fastprep-24 

(MP Biomedicals) and sheared using a Bioruptor (Diagenode). Dynabeads M-280 sheep 

anti-rabbit IgG were incubated in lysis buffer and 0.5% BSA for 2 hrs with either rabbit anti-

GFP (Abcam) for query IPs or 5 µl of rabbit-anti HA (Abcam) for control IPs. Then, 2 mg of 

Chromatin extract were inmunoprecipitated for 16 hrs using the corresponding antibody-

incubated Dynabeads. Following the washes, DNA was eluted, treated with RNAse and 

proteinase K, and purified using the Qiagen PCR MiniElute kit. Sequencing libraries were 

prepared using the NEBNext® ultra DNA Library Prep kit for Illumina® (E7370L). DNA was 

sequenced using Illumina Mi-seq with a V3 kit, sequencing 75 bp on each end. Sequences 

were aligned to the S. pombe genome build ASM294v2 using Bowtie2. Peak calling was 

done with GEM (Guo et al., 2012) (setting --k_min 4 and --k_max 18), and peak annotation 

was done with the R package ChIPpeakAnno (Zhu et al., 2010). Peaks were annotated to 

the closest TSS; for peaks lying within 500 bp of 2 divergently expressed genes, peaks were 

annotated to both genes. Normalizations for the plots were performed using deeptools 

(Ramírez et al., 2016) (normalizing to RPGC and using the parameters –centerReads –

binsize 10 –smoothLength 2). Further analyses were carried out with R scripts (http://www.r-

project.org/). The ChIP-seq data are available from ENA at the following primary and 

secondary accession numbers: PRJEB32910 and ERP115647. 

 

Northern analyses 

Detection of tRNA precursors was performed as described (Otsubo et al., 2018) using 

Digoxigenin labeled probes (Roche), following the manufacturer’s instructions. As a loading 

control, northerns were stripped by incubating for 60 min at 60°C with 0.1% SDS, changing 

the solution every 10 min, followed by re-hybridizing with a Digoxigenin labeled probe 

specific for cdc2 (cdc2-SRT GGGCAGGGTCATAAACAAGC) as described (Clément-Ziza et 
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al., 2014). Quantification of northern blots has been performed by ImageJ (Schindelin et al., 

2012) as previously described (Rallis et al., 2014). Ratios of each tRNA band signal with the 

corresponding cdc2 loading control have been normalized with the ratio at time point 0 for 

each tRNA and genotype. 
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FIGURE LEGENDS 

 

Figure 1. Genome-wide screen for Torin1-resistant mutants.  A. Torin1 blocks cell 

proliferation. Top: ten-fold serial dilutions of wild-type cells spotted on rich solid medium; 

bottom: growth profiles in rich liquid medium using a microfermentor, in absence (Control) 

and presence of Torin1 as indicated.  B. Torin1 leads to decreased cell and vacuole sizes. 

Cell size of septated wild-type cells (top) and vacuolar size (bottom) during 2hr treatments 

with Torin1.  C. Torin1 alters phosphorylation status of translational regulators. 

Phosphorylated (P) and total amounts (T) of ribosomal S6 and eIF2α proteins in wild-type 

cells following 1hr Torin1 treatments in rich (YES) and minimal (EMM2) media as indicated.  

D. Design of genome-wide screens to identify mutants that are resistant to Torin1-mediated 

growth inhibition. We screened Bioneer versions 2 (3005 mutants) and 5 (3420 mutants) of 

genome-wide deletion libraries (Kim et al., 2010) in two independent repeats each, using 20 

µM Torin1 on rich solid medium (YES).  E. Representative example of deletion library plate 

with Torin1, containing 1536 colonies/plate with each mutant printed in quadruplicate. Red 

boxes indicate three Torin1-resistant mutants.  F. Torin1 sensitivity test using spotting 

assays for a wild-type control (wt) and the 19 resistant mutants identified, applying 

increasing Torin1 concentrations as indicated. Red frames: 4 mutants showing the strongest 

resistance to all Torin1 concentrations tested.  G. Scheme of cellular processes associated 

with the 19 genes identified that are required for Torin1-mediated growth inhibition (indicated 

in red).   

 

Figure 2. Gaf1 is required for normal chronological lifespan.  A. Chronological lifespan 

assays in wild-type (wt) and gaf1Δ mutant cells grown in EMM2, grown in the absence or 

presence of 8 μM Torin1 as indicated. Error bars represent the standard deviation calculated 

from three independent cell cultures, with each culture measured three times at each 

timepoint. B. AUC for lifespan assays of wt and gaf1Δ mutant cells without or with Torin1 

treatment as indicated. Vertical bars show the Torin1-mediated increase in average AUC 

values for wt (black) and gaf1Δ (red), with p value reflecting that the lifespan increase is 

significantly larger in wt than in gaf1Δ cells.  

 

Figure 3. Gaf1-dependent gene expression.  A. Top panels: Fluorescence microscopy of 

cells expressing GFP-tagged Gaf1 (left) with chromatin stained by Hoechst 33342 (middle) 

after 10 min exposure to 20 µM Torin1.  Bottom panels: Fluorescence microscopy of live 

Gaf1-GFP cells, showing stack projections of 1-min time lapses in YES medium. Cells are 

shown before (0 min) and in 1-min intervals after addition of either DMSO (solvent control; 
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upper panels) or Torin1 solution (20 µM final; lower panels). Gaf1-GFP is visible inside the 

nucleus in all cells within 3 min after Torin1 addition. Scale bars: 5 microns.   

B. Hierarchical clustering of microarray data. Columns represent wild-type (wt) or gaf1 

deletion mutants (gaf1Δ) before (Untreated) and after 1hr treatment with 20 μM Torin1 or 

with 10mM caffeine and 100 ng/ml rapamycin (Caff+Rap). Rows represent the 198 genes 

whose mRNA levels changed ≥1.5‐fold in Torin1-treated gaf1Δ cells relative to wild-type 

cells, consisting of 90 genes showing higher expression in gaf1Δ cells (red bar) and 108 

genes showing lower expression in gaf1Δ cells (blue bar). In untreated cells, only 3 genes 

showed ≥1.5-fold expression changes in gaf1Δ relative to wild-type cells. Average RNA 

expression changes (from 2 independent repeats) in the different genetic and 

pharmacological conditions relative to wt control cells are color-coded as shown in the 

legend at bottom. The orange bars at left indicate 43 genes whose promoters were bound by 

Gaf1 after 60 min with Torin1.  C. Principal component (PC) analysis of all genes measured 

by microarrays. PC1 separates untreated cells from cells treated with Torin1 (T) or caffeine 

and rapamycin (CT), while PC2 separates wild-type (wt, blue) from gaf1 deletion mutants 

(gaf1Δ, red). The percentages of the x- and y-axes show the contribution of the 

corresponding PC to the difference in the data.  

 

Figure 4. Gaf1 regulation of protein-coding and tRNA genes.  A. Gaf1 binding sites 

across the three S. pombe chromosomes, before (0 min, blue) and after treatment with 20 

µM Torin1 (60 min, orange).  B. Hierarchical clustering of microarray expression data for 150 

protein-coding genes bound by Gaf1 after Torin1 treatment and for which expression data 

were available for all conditions. The conditions have been clustered as well (red tree on top) 

and are grouped as follows: untreated wild-type and gaf1Δ cells (Uwt, Ugaf1), 

caffeine+rapamycin- or Torin1-treated gaf1Δ cells (CRgaf1, Tgaf1), and caffeine+rapamycin- 

or Torin1-treated wild-type cells (CRwt, Twt). Expression changes are color-coded as 

described in Fig. 3B.  C. Gaf1 shows increased binding to tRNA genes after Torin1 

treatment. Top, red curves: average Gaf1-binding profiles aligned to the transcription start 

sites (TSS) of all S. pombe tRNA genes before (0 min) and after (60 min) Torin1 treatment 

as indicated, along with corresponding control ChIP-seq experiments (HA). Bottom: 

heatmaps of Gaf1 binding around the TSS of all 196 tRNAs, ordered by normalized ChIP-

seq coverage.  D. Northern blot analyses for leucine, methionine and asparagine precursor 

tRNAs from wild-type and gaf1Δ cells, treated with 20 μM Torin1 over 120 min as indicated. 

Probes to detect the precursor tRNAs are indicated in red at left (Otsubo et al., 2018). 

Probes for cdc2 were used as a loading control. Relative tRNA amounts (normalized to time 

0) have been measured using ImageJ. 
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Figure 5. Model depicting transcriptional control of translation downstream of TORC1, 

mediated by Gaf1.  Following TORC1 inhibition, Gaf1 activates the transcription of genes 

for small-molecule metabolic pathways and represses the transcription of tRNAs and other 

genes functioning in translation (the latter via indirect control, hatched). Together with the 

S6K-mediated translational control (Ma and Blenis, 2009), this transcriptional branch 

downstream of TORC1 contributes to longevity.  
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SUPPLEMENTAL MATERIAL 

 

Fig. S1. Characterization of Torin1-resistant strains.  A. Resistance to Torin1 is not a 

result of multi-drug resistance. Spot assays of wild-type and the 19 resistant mutants in 

presence of different drugs as indicated. Control mutants that show multi-drug sensitivity are 

also spotted (vam6Δ, gtr1Δ, gtr2Δ) to show that the drugs are functional.   

B. Phosphorylation status of ribosomal S6 protein in verified Torin1-resistant mutants in the 

presence or absence of Torin1 as indicated.  C. Cell size upon division of wild-type and 

resistant mutant cells, before (blue) and after (yellow) Torin1 treatment.   

 

Fig. S2.  Visualization of all GO Biological Process categories enriched among the 108 

genes that are repressed (down) and the 90 genes that are induced (up). Gene enrichment 

analysis was done using g:profiler (https://academic.oup.com/nar/advance-

article/doi/10.1093/nar/gkz369/5486750). Results were plotted using a custom R script. 

Colors represent -log10 p values for the GO term enrichments. The size of the bubbles 

represents the ratio between the number of genes in the gene list and the total number of 

genes in the GO category (in percentage); only terms with p values <0.05 are represented. 

 

Fig. S3.  Visualization of all GO Biological Process categories enriched among the 245 

protein-coding genes whose promoters are bound by Gaf1 after 60 min of Torin1 treatment. 

See Fig. S2 for details. 

 

Fig. S4.  Gaf1 binding peaks within Chromosome II region containing clustered tRNA genes 

(marked in red). Binding profiles are shown for cells before (0 min) and 60 min after 

treatment with Torin 1 as indicated. Signals from experimental IPs (GFP) are shown in blue, 

while control IPs (HA) are shown in grey.   

 

Table S1. List of the 19 mutants that show resistance to Torin1. Mutants with black fonts are 

shown previously to be resistant to Torin1. Mutants with red fonts are first reported as 

Torin1-resistant in this study. 

 

Table S2. Lists of genes that are ≥1.5 fold-differentially expressed in gaf1Δ compared to 

wild-type cells following 60 min treatment with 20 μM Torin1 

 

Table S3. List of genes whose promoters are bound by Gaf1 before and 60 min after Torin1 

treatment. 

  

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


20 

 

REFERENCES 

Arimbasseri, A.G., and Maraia, R.J. (2016). RNA Polymerase III Advances: Structural and tRNA 

Functional Views. Trends Biochem. Sci. 41, 546–559. 

Arimbasseri, A.G., Rijal, K., and Maraia, R.J. (2014). Comparative overview of RNA polymerase II and 

III transcription cycles, with focus on RNA polymerase III termination and reinitiation. Transcription 

5, e27639. 

Atkin, J., Halova, L., Ferguson, J., Hitchin, J.R., Lichawska-Cieslar, A., Jordan, A.M., Pines, J., 

Wellbrock, C., and Petersen, J. (2014). Torin1-mediated TOR kinase inhibition reduces Wee1 

levels and advances mitotic commitment in fission yeast and HeLa cells. Journal of Cell Science 

127, 1346–1356. 

Bekker, A., Von Hagen, S., and Yarmush, J. (1991). A Macintosh Hypercard stack to simulate the 

pharmacokinetics of infusion of intravenous anesthetic drugs (NarSim). Comput. Appl. Biosci. 7, 

531–532. 

Binda, M., Péli-Gulli, M.-P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T.W., Loewith, R., and De 

Virgilio, C. (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 

563–573. 

Bitton, D.A., Schubert, F., Dey, S., Okoniewski, M., Smith, G.C., Khadayate, S., Pancaldi, V., Wood, 

V., and Bähler, J. (2015). AnGeLi: A Tool for the Analysis of Gene Lists from Fission Yeast. Front 

Genet 6, 330. 

Bjedov, I., and Partridge, L. (2011). A longer and healthier life with TOR down-regulation: genetics 

and drugs. Biochem. Soc. Trans. 39, 460–465. 

Bjedov, I., Toivonen, J.M., Kerr, F., Slack, C., Jacobson, J., Foley, A., and Partridge, L. (2010). 

Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell 

Metab. 11, 35–46. 

Broach, J.R. (2012). Nutritional control of growth and development in yeast. Genetics 192, 73–105. 

Cai, Y., and Wei, Y.-H. (2015). Distinct regulation of Maf1 for lifespan extension by Protein kinase A 

and Sch9. Aging (Albany NY) 7, 133–143. 

Campbell, K.J., and White, R.J. (2014). MYC regulation of cell growth through control of transcription 

by RNA polymerases I and III. Cold Spring Harb Perspect Med 4. 

Chen, D., Toone, W.M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., and Bähler, 

J. (2003). Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell 

14, 214–229. 

Chen, D., Wilkinson, C.R.M., Watt, S., Penkett, C.J., Toone, W.M., Jones, N., and Bähler, J. (2008). 

Multiple pathways differentially regulate global oxidative stress responses in fission yeast. Mol. 

Biol. Cell 19, 308–317. 

Chia, K.H., Fukuda, T., Sofyantoro, F., Matsuda, T., Amai, T., and Shiozaki, K. (2017). Ragulator and 

GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag 

GTPases. Elife 6. 

Clément-Ziza, M., Marsellach, F.X., Codlin, S., Papadakis, M.A., Reinhardt, S., Rodríguez-López, M., 

Martin, S., Marguerat, S., Schmidt, A., Lee, E., et al. (2014). Natural genetic variation impacts 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


21 

 

expression levels of coding, non-coding, and antisense transcripts in fission yeast. Mol. Syst. Biol. 

10, 764. 

Corkins, M.E., May, M., Ehrensberger, K.M., Hu, Y.-M., Liu, Y.-H., Bloor, S.D., Jenkins, B., Runge, 

K.W., and Bird, A.J. (2013). Zinc finger protein Loz1 is required for zinc-responsive regulation of 

gene expression in fission yeast. Proc. Natl. Acad. Sci. U.S.A. 110, 15371–15376. 

Dawson, K., Toone, W.M., Jones, N., and Wilkinson, C.R.M. (2008). Loss of regulators of vacuolar 

ATPase function and ceramide synthesis results in multidrug sensitivity in Schizosaccharomyces 

pombe. Eukaryotic Cell 7, 926–937. 

Dobson, A.J., He, X., Blanc, E., Bolukbasi, E., Feseha, Y., Yang, M., and Piper, M.D.W. (2018). 

Tissue-specific transcriptome profiling of Drosophila reveals roles for GATA transcription factors in 

longevity by dietary restriction. NPJ Aging Mech Dis 4, 5. 

Duncan, C.D.S., Rodríguez-López, M., Ruis, P., Bähler, J., and Mata, J. (2018). General amino acid 

control in fission yeast is regulated by a nonconserved transcription factor, with functions 

analogous to Gcn4/Atf4. Proc. Natl. Acad. Sci. U.S.A. 115, E1829–E1838. 

Fayyadkazan, M., Tate, J.J., Vierendeels, F., Cooper, T.G., Dubois, E., and Georis, I. (2014). 

Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive 

regulation of the yeast GATA factors. Microbiologyopen 3, 271–287. 

Filer, D., Thompson, M.A., Takhaveev, V., Dobson, A.J., Kotronaki, I., Green, J.W.M., Heinemann, M., 

Tullet, J.M.A., and Alic, N. (2017). RNA polymerase III limits longevity downstream of TORC1. 

Nature 552, 263–267. 

González, A., and Hall, M.N. (2017). Nutrient sensing and TOR signaling in yeast and mammals. 

EMBO J. 36, 397–408. 

Gonzalez, S., and Rallis, C. (2017). The TOR Signaling Pathway in Spatial and Temporal Control of 

Cell Size and Growth. Frontiers in Cell and Developmental Biology 5. 

Graczyk, D., Cieśla, M., and Boguta, M. (2018). Regulation of tRNA synthesis by the general 

transcription factors of RNA polymerase III - TFIIIB and TFIIIC, and by the MAF1 protein. Biochim 

Biophys Acta Gene Regul Mech 1861, 320–329. 

Guo, Y., Mahony, S., and Gifford, D.K. (2012). High Resolution Genome Wide Binding Event Finding 

and Motif Discovery Reveals Transcription Factor Spatial Binding Constraints. PLoS 

Computational Biology 8, e1002638. 

Hannan, K.M., Brandenburger, Y., Jenkins, A., Sharkey, K., Cavanaugh, A., Rothblum, L., Moss, T., 

Poortinga, G., McArthur, G.A., Pearson, R.B., et al. (2003). mTOR-dependent regulation of 

ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-

terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 23, 8862–8877. 

Hansen, M., Chandra, A., Mitic, L.L., Onken, B., Driscoll, M., and Kenyon, C. (2008). A role for 

autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet. 4, e24. 

Hartmuth, S., and Petersen, J. (2009). Fission yeast Tor1 functions as part of TORC1 to control 

mitotic entry through the stress MAPK pathway following nutrient stress. J. Cell. Sci. 122, 1737–

1746. 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


22 

 

Hill, S., and Van Remmen, H. (2014). Mitochondrial stress signaling in longevity: a new role for 

mitochondrial function in aging. Redox Biol 2, 936–944. 

Hummel, G., Warren, J., and Drouard, L. (2019). The multi-faceted regulation of nuclear tRNA gene 

transcription. IUBMB Life. 

Iadevaia, V., Liu, R., and Proud, C.G. (2014). mTORC1 signaling controls multiple steps in ribosome 

biogenesis. Semin. Cell Dev. Biol. 36, 113–120. 

Ikai, N., Nakazawa, N., Hayashi, T., and Yanagida, M. (2011). The reverse, but coordinated, roles of 

Tor2 (TORC1) and Tor1 (TORC2) kinases for growth, cell cycle and separase-mediated mitosis in 

Schizosaccharomyces pombe. Open Biol 1, 110007. 

Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513–519. 

Kaeberlein, M., and Kennedy, B.K. (2011). Hot topics in aging research: protein translation and TOR 

signaling, 2010. Aging Cell 10, 185–190. 

Kim, L., Hoe, K.-L., Yu, Y.M., Yeon, J.-H., and Maeng, P.J. (2012). The fission yeast GATA factor, 

Gaf1, modulates sexual development via direct down-regulation of ste11+ expression in response 

to nitrogen starvation. PLoS ONE 7, e42409. 

Laor, D., Cohen, A., Kupiec, M., and Weisman, R. (2015). TORC1 Regulates Developmental 

Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1. MBio 6, 

e00959. 

Leontieva, O.V., and Blagosklonny, M.V. (2016). Gerosuppression by pan-mTOR inhibitors. Aging 

(Albany NY) 8, 3535–3551. 

Lie, S., Banks, P., Lawless, C., Lydall, D., and Petersen, J. (2018). The contribution of non-essential 

Schizosaccharomyces pombe genes to fitness in response to altered nutrient supply and target of 

rapamycin activity. Open Biol 8. 

Liu, X.-M., Sun, L.-L., Hu, W., Ding, Y.-H., Dong, M.-Q., and Du, L.-L. (2015). ESCRTs Cooperate 

with a Selective Autophagy Receptor to Mediate Vacuolar Targeting of Soluble Cargos. Mol. Cell 

59, 1035–1042. 

Ma, X.M., and Blenis, J. (2009). Molecular mechanisms of mTOR-mediated translational control. Nat. 

Rev. Mol. Cell Biol. 10, 307–318. 

Ma, Y., Ma, N., Liu, Q., Qi, Y., Manabe, R., and Furuyashiki, T. (2015). Tor Signaling Regulates 

Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission 

Yeast. PLoS ONE 10, e0144677. 

Marguerat, S., Schmidt, A., Codlin, S., Chen, W., Aebersold, R., and Bähler, J. (2012). Quantitative 

analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell 

151, 671–683. 

Martina, J.A., Chen, Y., Gucek, M., and Puertollano, R. (2012). MTORC1 functions as a 

transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–

914. 

Mason, J.S., Wileman, T., and Chapman, T. (2018). Lifespan extension without fertility reduction 

following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster. PLOS 

ONE 13, e0190105. 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


23 

 

Mata, J., Lyne, R., Burns, G., and Bähler, J. (2002). The transcriptional program of meiosis and 

sporulation in fission yeast. Nat. Genet. 32, 143–147. 

Matsuo, T., Otsubo, Y., Urano, J., Tamanoi, F., and Yamamoto, M. (2007). Loss of the TOR Kinase 

Tor2 Mimics Nitrogen Starvation and Activates the Sexual Development Pathway in Fission Yeast. 

Molecular and Cellular Biology 27, 3154–3164. 

Mayer, C., Zhao, J., Yuan, X., and Grummt, I. (2004). mTOR-dependent activation of the transcription 

factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. 18, 423–434. 

Mercier, A., Pelletier, B., and Labbé, S. (2006). A transcription factor cascade involving Fep1 and the 

CCAAT-binding factor Php4 regulates gene expression in response to iron deficiency in the fission 

yeast Schizosaccharomyces pombe. Eukaryotic Cell 5, 1866–1881. 

Michels, A.A., Robitaille, A.M., Buczynski-Ruchonnet, D., Hodroj, W., Reina, J.H., Hall, M.N., and 

Hernandez, N. (2010). mTORC1 directly phosphorylates and regulates human MAF1. Mol. Cell. 

Biol. 30, 3749–3757. 

Moreno, S., Klar, A., and Nurse, P. (1991). Molecular genetic analysis of fission yeast 

Schizosaccharomyces pombe. Meth. Enzymol. 194, 795–823. 

Otsubo, Y., Matsuo, T., Nishimura, A., Yamamoto, M., and Yamashita, A. (2018). tRNA production 

links nutrient conditions to the onset of sexual differentiation through the TORC1 pathway. EMBO 

Reports 19, e44867. 

Poüs, C., and Codogno, P. (2011). Lysosome positioning coordinates mTORC1 activity and 

autophagy. Nat. Cell Biol. 13, 342–344. 

Puria, R., Zurita-Martinez, S.A., and Cardenas, M.E. (2008). Nuclear translocation of Gln3 in 

response to nutrient signals requires Golgi-to-endosome trafficking in Saccharomyces cerevisiae. 

Proc. Natl. Acad. Sci. U.S.A. 105, 7194–7199. 

Rallis, C., and Bähler, J. (2013). Inhibition of TORC1 signaling and increased lifespan: gained in 

translation? Aging 5, 335–336. 

Rallis, C., Codlin, S., and Bähler, J. (2013). TORC1 signaling inhibition by rapamycin and caffeine 

affect lifespan, global gene expression, and cell proliferation of fission yeast. Aging Cell 12, 563–

573. 

Rallis, C., Lopez-Maury, L., Georgescu, T., Pancaldi, V., and Bahler, J. (2014). Systematic screen for 

mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and 

growth. Biology Open 3, 161–171. 

Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., 

and Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data 

analysis. Nucleic Acids Res. 44, W160-165. 

Roux, A.E., Quissac, A., Chartrand, P., Ferbeyre, G., and Rokeach, L.A. (2006). Regulation of 

chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging 

Cell 5, 345–357. 

Rustici, G., Mata, J., Kivinen, K., Lió, P., Penkett, C.J., Burns, G., Hayles, J., Brazma, A., Nurse, P., 

and Bähler, J. (2004). Periodic gene expression program of the fission yeast cell cycle. Nat. Genet. 

36, 809–817. 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


24 

 

Saxton, R.A., and Sabatini, D.M. (2017). mTOR Signaling in Growth, Metabolism, and Disease. Cell 

169, 361–371. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., 

Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-

image analysis. Nature Methods 9, 676–682. 

Selman, C., Tullet, J.M.A., Wieser, D., Irvine, E., Lingard, S.J., Choudhury, A.I., Claret, M., Al-Qassab, 

H., Carmignac, D., Ramadani, F., et al. (2009). Ribosomal protein S6 kinase 1 signaling regulates 

mammalian life span. Science 326, 140–144. 

Shimanuki, M., Uehara, L., Pluskal, T., Yoshida, T., Kokubu, A., Kawasaki, Y., and Yanagida, M. 

(2013). Klf1, a C2H2 zinc finger-transcription factor, is required for cell wall maintenance during 

long-term quiescence in differentiated G0 phase. PLoS ONE 8, e78545. 

Shor, B., Wu, J., Shakey, Q., Toral-Barza, L., Shi, C., Follettie, M., and Yu, K. (2010). Requirement of 

the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-

dependent transcription in cancer cells. J. Biol. Chem. 285, 15380–15392. 

Thoreen, C.C., Kang, S.A., Chang, J.W., Liu, Q., Zhang, J., Gao, Y., Reichling, L.J., Sim, T., Sabatini, 

D.M., and Gray, N.S. (2009). An ATP-competitive Mammalian Target of Rapamycin Inhibitor 

Reveals Rapamycin-resistant Functions of mTORC1. Journal of Biological Chemistry 284, 8023–

8032. 

Valbuena, N., Guan, K.-L., and Moreno, S. (2012). The Vam6 and Gtr1-Gtr2 pathway activates 

TORC1 in response to amino acids in fission yeast. J. Cell. Sci. 125, 1920–1928. 

Valvezan, A.J., and Manning, B.D. (2019). Molecular logic of mTORC1 signalling as a metabolic 

rheostat. Nature Metabolism 1, 321–333. 

Viger, R.S., Guittot, S.M., Anttonen, M., Wilson, D.B., and Heikinheimo, M. (2008). Role of the GATA 

family of transcription factors in endocrine development, function, and disease. Mol. Endocrinol. 

22, 781–798. 

Wamaitha, S.E., del Valle, I., Cho, L.T.Y., Wei, Y., Fogarty, N.M.E., Blakeley, P., Sherwood, R.I., Ji, 

H., and Niakan, K.K. (2015). Gata6 potently initiates reprograming of pluripotent and differentiated 

cells to extraembryonic endoderm stem cells. Genes Dev. 29, 1239–1255. 

Wei, Y., and Zheng, X.S. (2010). Maf1 regulation: a model of signal transduction inside the nucleus. 

Nucleus 1, 162–165. 

Wei, Y., Tsang, C.K., and Zheng, X.F.S. (2009). Mechanisms of regulation of RNA polymerase III-

dependent transcription by TORC1. EMBO J. 28, 2220–2230. 

Wei, Y., Zhang, Y.-J., and Cai, Y. (2013). Growth or longevity: the TOR’s decision on lifespan 

regulation. Biogerontology 14, 353–363. 

Weisman, R., and Choder, M. (2001). The Fission Yeast TOR Homolog, tor1 + , Is Required for the 

Response to Starvation and Other Stresses via a Conserved Serine. Journal of Biological 

Chemistry 276, 7027–7032. 

Wilkinson, M.G., Samuels, M., Takeda, T., Toone, W.M., Shieh, J.C., Toda, T., Millar, J.B., and Jones, 

N. (1996). The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase 

pathway in fission yeast. Genes Dev. 10, 2289–2301. 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


25 

 

Xie, Y., Jin, Y., Merenick, B.L., Ding, M., Fetalvero, K.M., Wagner, R.J., Mai, A., Gleim, S., Tucker, 

D.F., Birnbaum, M.J., et al. (2015). Phosphorylation of GATA-6 is required for vascular smooth 

muscle cell differentiation after mTORC1 inhibition. Sci Signal 8, ra44. 

Zhong, Y., Wang, Z., Fu, B., Pan, F., Yachida, S., Dhara, M., Albesiano, E., Li, L., Naito, Y., Vilardell, 

F., et al. (2011). GATA6 activates Wnt signaling in pancreatic cancer by negatively regulating the 

Wnt antagonist Dickkopf-1. PLoS ONE 6, e22129. 

Zhou, D., Zhong, S., Ye, J.-J., Quach, K.M., Johnson, D.L., and Chen, S. (2007). PNRC is a unique 

nuclear receptor coactivator that stimulates RNA polymerase III-dependent transcription. J Mol 

Signal 2, 5. 

Zhu, L.J., Gazin, C., Lawson, N.D., Pagès, H., Lin, S.M., Lapointe, D.S., and Green, M.R. (2010). 

ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC 

Bioinformatics 11. 

Zilio, N., Codlin, S., Vashisht, A.A., Bitton, D.A., Head, S.R., Wohlschlegel, J.A., Bähler, J., and 

Boddy, M.N. (2014). A novel histone deacetylase complex in the control of transcription and 

genome stability. Mol. Cell. Biol. 34, 3500–3514. 

 

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


wt
20 40 100 

bro1∆
vps8∆
sst2∆

mtg1∆

vps32∆

C25B2.03∆
gim6∆

vps3∆
ubc13∆

C11D3.15∆
nbr1∆
gaf1∆

did2∆
vps28∆

toc1∆
vps20∆
pep7∆
aca1∆
did4∆

D

Figure 1

NUCLEUS

ER
GOLGI

PLASMA MEMBRANE

ENDOSOME

VACUOLE

MITOCHONDRION

Membrane-bound protein

Ubiquitin

MVB

ESCRT

ESCRT 

gaf1

vps8

sst2

C25B2.04c

ubc13

bro1

gim6

pep7

toc1

C25B2.03

nbr1

C11D3.15

vps3

vps32

did4

aca1

vps20
vps28

did2

YES 
Control

  YES
Torin1

Deletion Library

Growth Reference Resistant mutants

E

F G

20 µM Torin1

P-S6

T-S6

P-eIF2α

T-eIF2α

0 30 60 0 30 60Time (min)
YES EMM2Media

Control

Control
20 µM Torin1

0 5 10 15

1

2

3

4

0Re
lat

ive
 ch

an
ge

 in
 ce

ll m
as

s

Time (hours)

A B

Torin1 (µM): 0

ce
ll 

si
ze

 (µ
m

)
va

cu
ol

e 
si

ze
 (µ

m
)

0.5

1.0

1.5

12

14

16

18

Time in 
Torin1 (min)

0 20 40 60 120

C

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


Figure 2

100

10

1

0.1
10 20 30 35

Days

%
 S

ur
vi

va
l

wt

gaf1∆

wt Torin1

gaf1∆ Torin1

5 15 25

A B

wt gaf1∆wt 
Torin1

gaf1∆ 
Torin1

AU
C

600

1200

1800

2400

3000

p=10 -3

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


PC1 (78.2%)

PC
2 

(9
.3

%
)

wt
gaf1∆

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.0 0.2 0.4 0.6 0.8

A

Figure 3

C
on

tro
l

G
af

1-
G

FP

B C
wt gaf1∆ wt gaf1∆
Untreated Torin1

Untreated

Treated

−3 −1 +1 +3
Expression change (log2)

wt
Caff+Rap

G
af

1 
bi

nd
in

g

U
p 

in
 g

af
1∆

D
ow

n 
in

 g
af

1∆

0

gaf1∆
CR

CR

T

T

To
rin

1

0 min             1 min             2 min             3 min             4 min             5 min           

Gaf1-GFP             Chromatin               Merge     

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


Figure 4

A

B
C

-1.0 TSS 1.0-1.0 TSS 1.0-1.0 TSS 1.0-1.0 TSS 1.0

D

| ||||| | || | | | |||| | | | | | |||||||| ||| | | || | ||| || | ||||| | | | | |||| || ||||| || | |

||| |||||||| |||| ||||||| || |||| |||| ||| ||| || |||| || | ||| ||||||||||||||| | | | || | ||| | |||| | | |||| || || | | |||||| | || ||||| | ||| ||||| || | || | | ||

Chr II

0 1 2 3 4

||| | | | | |||| || || | | ||||||| || |||||| | | | || | | || ||||| | | ||| |||| | |||| | | | | | | || | ||||||| |

||||| | |||||| | || |||||| | | || || |||||| || || |||| | || || |||||| |||| |||||||| ||| ||| || ||||||| || | | ||| |||| | | ||||| || | |||| || | |||| |||| || |||| | ||| ||| |||| || | |||||||||| |||||| | | | || |||| | |||||| | || || ||||||||||| |

Chr I

50 1 2 3 4

|| | | | | |

||||||| ||||||||| ||||||||||| |||| | |||| || ||||| |||| | | | |||||||| | || | |||| ||| | |||||||| | || ||| |||||||||||| ||| | |

Chr III

0 1 2

|

|

Gaf1 binding: 
0 min
60 min

Mb

Mb

Mb

Uwt Ugaf1 CRgaf1 Tgaf1 CRwt Twt Distance (kb) 

Gaf1-GFP 
0 min 0 min60 min 60 min

HA control

0 15 30 60 90 120 0 15 30 60 90 120
wt gaf1∆

Torin1 (min) tRNALeu

tRNA tRNAAsnMet

cdc2

Relative amount:

Relative amount: 1 0.3 0.4 0 0 0 1 0.7 0.5 0.2 0.1 0.1

1 0.7 0.4 0.2 0.1 0.1 1 0.9 0.5 0.6 0.4 0.4

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


Figure 5

Nutrients, Growth factors

Vacuolar sensors

TORC1

Gaf1

Metabolism
genes

tRNA
genes 

Translation
genes

Lifespan

Torin1

S6Ks

Translation

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


wt bro
1∆

vp
s8
∆

ss
t2∆ mtg1

∆

vp
s3

2∆

C25
B2.0

3∆

gim
6∆

vp
s3
∆

ub
c1

3∆

C11
D3.1

5∆

nb
r1∆ga

f1∆
did

2∆
vp

s2
8∆

toc
1∆

vp
s2

0∆

pe
p7
∆

ac
a1
∆

did
4∆

Torin 1 - + - + - + - + - + - + - +
P-S6

T-S6

Ponceau

- + - + - + - + - + - + - + - + - + - + - + - + - +

6

8

10

12

14

16

18

20

ce
ll 

si
ze

 (
m

m
)

wt
br

o1
∆

vp
s8
∆

ss
t2∆

mtg1
∆

C25
B2.0

3∆

gim
6∆

vp
s3

2∆
vp

s3
∆

ub
c1

3∆

C11
D3.1

5∆

nb
r1
∆

ga
f1∆

did
4∆

did
2∆

vp
s2

8∆
toc

1∆

vp
s2

0∆

pe
p7
∆

ac
a1
∆

Time (hours) 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

B

C

Figure S1

200 mM 500 mM 3 mg/ml 5 mg/ml 15 mg/ml 25 mg/ml Control 125 mg/ml 300 mg/ml
wt

bro1∆
vps8∆
sst2∆

mtg1∆

vps32∆

C25B2.03∆
gim6∆

vps3∆
ubc13∆

C11D3.15∆
nbr1∆
gaf1∆

did2∆
vps28∆

toc1∆
vps20∆
pep7∆
aca1∆
did4∆

vam6∆
gtr1∆
gtr2∆

wt

Doxycycline CdSO4 Bleomycin CycloheximideA

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●'de novo' protein folding
alpha−amino acid biosynthetic process

alpha−amino acid catabolic process
alpha−amino acid metabolic process

amide biosynthetic process
ammonia assimilation cycle

arginine biosynthetic process
arginine metabolic process

aspartate family amino acid metabolic process
biosynthetic process

carboxylic acid metabolic process
catabolic process

cellular amide metabolic process
cellular amino acid metabolic process

cellular biosynthetic process
cellular macromolecule biosynthetic process

cellular metabolic compound salvage
cellular metabolic process

cellular nitrogen compound biosynthetic process
cytoplasmic translation
drug catabolic process

glutamate metabolic process
glutamine family amino acid biosynthetic process

glutamine family amino acid metabolic process
glycosyl compound metabolic process

heterochromatin assembly involved in chromatin silencing by small RNA
macromolecule biosynthetic process

nitrogen cycle metabolic process
nitrogen utilization

nucleobase metabolic process
nucleobase−containing small molecule biosynthetic process

nucleobase−containing small molecule metabolic process
nucleoside biosynthetic process

nucleoside metabolic process
nucleoside monophosphate biosynthetic process

nucleoside monophosphate metabolic process
nucleoside phosphate biosynthetic process

nucleoside phosphate metabolic process
nucleosome assembly

nucleotide biosynthetic process
nucleotide metabolic process

nucleotide salvage
organic acid metabolic process

organic substance biosynthetic process
organic substance metabolic process

organonitrogen compound biosynthetic process
organonitrogen compound catabolic process

organonitrogen compound metabolic process
oxoacid metabolic process

peptide biosynthetic process
peptide metabolic process
primary metabolic process

purine nucleobase metabolic process
purine nucleoside metabolic process

purine−containing compound catabolic process
purine−containing compound metabolic process

pyrimidine nucleobase metabolic process
pyrimidine nucleoside metabolic process

pyrimidine−containing compound metabolic process
ribonucleoprotein complex biogenesis

ribonucleoside monophosphate biosynthetic process
ribonucleoside monophosphate metabolic process

ribosomal small subunit assembly
ribosomal small subunit biogenesis

ribosome assembly
ribosome biogenesis

small molecule biosynthetic process
small molecule catabolic process

small molecule metabolic process
translation
urea cycle

urea metabolic process

up down

G
O

: B
io

lo
gi

ca
l P

ro
ce

ss
 % input/GO ● ● ● ●25 50 75 100

5 10 15
− Log10(p value)

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

Jurg
Text Box
Figure S2

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

ADP metabolic process

ATP generation from ADP

canonical glycolysis

carbohydrate catabolic process

carbohydrate metabolic process

carboxylic acid metabolic process

drug transmembrane transport

drug transport

generation of precursor metabolites and energy

glucose catabolic process

glucose catabolic process to pyruvate

glucose metabolic process

glycolytic process

glycolytic process through fructose−6−phosphate

glycolytic process through glucose−6−phosphate

hexose catabolic process

hexose metabolic process

monocarboxylic acid metabolic process

monosaccharide catabolic process

monosaccharide metabolic process

NAD metabolic process

NADH metabolic process

NADH regeneration

nucleobase−containing small molecule metabolic process

nucleoside diphosphate metabolic process

nucleoside diphosphate phosphorylation

nucleotide metabolic process

nucleotide phosphorylation

organic acid metabolic process

oxidation−reduction process

oxoacid metabolic process

purine nucleoside diphosphate metabolic process

purine ribonucleoside diphosphate metabolic process

purine−containing compound metabolic process

pyruvate metabolic process

regulation of DNA−templated transcription in response to stress

regulation of transcription from RNA polymerase II promoter in response to stress

response to drug

ribonucleoside diphosphate metabolic process

small molecule biosynthetic process

small molecule catabolic process

small molecule metabolic process

t0 t60

G
O

: B
io

lo
gi

ca
l P

ro
ce

ss
 % input/GO ● ● ●10 20 30

2 4 6 8
− Log10(p value)

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

Jurg
Text Box
Figure S3

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/


Chromosome II

1.6 mb

1.61 mb

1.62 mb

An
no

ta
tio

ns

hmo1
rpb1

SPBTRNAALA.08.1

SPBTRNAALA.09.1

SPBTRNAARG.06.1

SPBTRNAASN.01.1

SPBTRNAASP.05.1

SPBTRNAGLU.06.1

SPBTRNAGLY.07.1

SPBTRNAILE.05.1

SPBTRNAILE.06.1

SPBTRNALEU.06.1

SPBTRNALYS.07.1

SPBTRNAMET.05.1
SPBTRNATYR.02.1

SPBTRNAVAL.05.1

SPBTRNAVAL.06.1

SPNCRNA.359.1
SPNCRNA.360.1

SPNCRNA.361.1
SPNCRNA.362.1

SPNCRNA.363.1
SPNCRNA.364.1

SPNCRNA.365.1

SPNCRNA.366.1
SPNCRNA.367.1

SPNCRNA.368.1
SPNCRNA.369.1

0
5

10
15
20

G
FP

 0
 m

in
G

FP
 6

0 
m

in
HA

 0
 m

in

15
20

HA
 6

0 
m

in

0
5

10
15
20

0
5

10
15
20

0
5

0
5

10
15
20

Figure S4

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/700286doi: bioRxiv preprint first posted online Jul. 12, 2019; 

http://dx.doi.org/10.1101/700286
http://creativecommons.org/licenses/by/4.0/

