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Both canonical and alternative splicing of RNAs are governed by intronic sequence elements and produce transient lariat
structures fastened by branch points within introns. To map precisely the location of branch points on a genomic scale, we
developed LaSSO (Lariat Sequence Site Origin), a data-driven algorithm which utilizes RNA-seq data. Using fission yeast
cells lacking the debranching enzyme Dbr1, LaSSO not only accurately identified canonical splicing events, but also pin-
pointed novel, but rare, exon-skipping events, which may reflect aberrantly spliced transcripts. Compromised intron
turnover perturbed gene regulation at multiple levels, including splicing and protein translation. Notably, Dbr1 function
was also critical for the expression of mitochondrial genes and for the processing of self-spliced mitochondrial introns.
LaSSO showed better sensitivity and accuracy than algorithms used for computational branch-point prediction or for
empirical branch-point determination. Even when applied to a human data set acquired in the presence of debranching
activity, LaSSO identified both canonical and exon-skipping branch points. LaSSO thus provides an effective approach for
defining high-resolution maps of branch-site sequences and intronic elements on a genomic scale. LaSSO should be useful
to validate introns and uncover branch-point sequences in any eukaryote, and it could be integrated into RNA-seq
pipelines.

[Supplemental material is available for this article.]

Introns and exons refer to noncoding and coding sequences, re-

spectively, that constitute protein-coding genes (Gilbert 1978). To

create a functional messenger RNA (mRNA), introns are excised via

a highly conserved and accurate process called splicing that cul-

minates in concatenation of exon sequences into translatable tran-

scripts. Splicing entails two transesterification reactions catalyzed by

the spliceosome, a large RNA-protein complex (Wahl et al. 2009). The

first reaction involves a nucleophilic attack of an adenosine (branch

point) on the 59-splice donor, resulting in a lariat structure fixed by

a 29–59 phosphodiester bond; the intron remains only attached to the

downstream exon (Fig. 1A,B; Padgett et al. 1985). The second reaction

involves an attack of the detached upstream exon on the 39-splice

acceptor, resulting in intron lariat release and exon ligation (Fig. 1C).

The intron is then processed by exonucleolytic cleavage of the 39-

lariat tail and linearization by the debranching enzyme Dbr1 (Fig. 1D;

Kim et al. 2000; Cheng and Menees 2011). The spliceosome is dis-

assembled and recycled (Arenas and Abelson 1997; Martin et al.

2002). Lariat debranching is a rate-limiting step for intron degrada-

tion or further processing (Fig. 1E), and lariats accumulate in cells

with compromised debranching activity (Fig. 1F; Nam et al. 1997;

Kim et al. 2000; Ye et al. 2005).

There is a growing appreciation that introns exert a broad

spectrum of cellular roles (Chorev and Carmel 2012). Functional

RNAs can be transcribed within introns, including small nucleolar

RNAs (snoRNAs) (Ooi et al. 1998), which depend on correct intron

processing. Splicing plays critical roles in gene regulation (Wang

et al. 2008; Cheng and Menees 2011) and augments proteome

diversity via alternative splicing (exon skipping or intron reten-

tion) (Wang et al. 2008). Aberrant splicing is implicated in a wide

range of human diseases (Cooper et al. 2009). Despite their im-

portance, many introns await characterization; thus there is a need

for methods to better define splicing events and intronic branch

points on a genome-wide scale.

Introns contain sequence elements required for correct

splicing, including splice donor and acceptor sites, the branch site

(usually adenine as the branch-point base) (Padgett et al. 1985),

polypyrimidine tracts, and intronic splicing enhancers or silencers

(Yeo et al. 2007; Wang and Burge 2008). The branch-site is essential

for spliceosome assembly and accurate removal of the intron. To

date, only tens of branch-sites have been experimentally charac-

terized (Kol et al. 2005; Gao et al. 2008), reflecting a lack of high-

throughput methods to analyze them. Lariat detection is often

based on RT-PCR that exploits the ability of the reverse transcrip-

tase to read through the branch-site (Ohi et al. 2007). A recent

study used RNA-seq data to identify unique lariat reads (Taggart

et al. 2012), albeit only slightly more than 2000 such reads were

identified among 1.6 billion total reads, allowing validation of

759 human introns. Another study has sequenced 2D-gel-purified

lariats of fission yeast, leading to enhanced intron detection based

on a laborious lariat-isolation protocol (Awan et al. 2013). Com-

putational branch-site predictions, on the other hand, are based on

pattern-search algorithms (Drabenstot et al. 2003) and can con-
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sider comparative genomics data (Kol et al. 2005). Predictions rely

on assumptions about branch-point positions, so require a priori

knowledge while lacking large, experimentally validated data.

Here we present a data-driven method that precisely locates

branch points on a global scale. The algorithm LaSSO (Lariat Se-

quence Site Origin) builds a database of all possible lariat signatures

from all known introns, including those that could be generated

from all possible exon-skipping events. LaSSO considers every base

in a given intron as a potential branch point. RNA-seq data are

then searched against this lariat database to locate branch points

that are supported by sequence reads. We validate our approach

using fission yeast (Schizosaccharomyces pombe), which provides

a powerful system for splicing studies. About 47% of its genes are

spliced via conserved splicing signals and factors, including SR-like

proteins implicated in alternative splicing and the debranching

enzyme Dbr1 (Käufer and Potashkin 2000; Kim et al. 2000). Fission

yeast cells lacking Dbr1 (dbr1D deletion mutant) are slow growing

but viable (Nam et al. 1997), providing a straightforward genetic

approach to enrich for lariats. We also show that LaSSO is effective

in defining branch points in human introns, even in the presence

of debranching activity.

Results

Transcript and intronic expression signatures in dbr1D cells

We sequenced the transcriptomes from both dbr1D and wild-type

fission yeast during cell proliferation. The expression data of

transcripts, exons, and introns were highly reproducible between

biologically repeated experiments (Supplemental Fig. 1). Global

transcript levels were similar in wild-type and dbr1D cells (Fig. 2A).

Relative to wild-type transcript levels, 347 and 233 transcripts were

significantly increased and decreased, respectively, in dbr1D cells

(Fig. 2B; Supplemental Table 1). Notably, ;57% of the increased

transcripts were noncoding RNAs. The remaining increased tran-

scripts were enriched for Gene Ontology (GO) terms related to

mitochondrial translation such as tRNAs (Supplemental Table 2).

Even under the strict cutoff applied, 50% of all mitochondrial

genes were induced (19/38; P < 1.4 3 10�15, hypergeometric test),

including genes embedded within the group-II, self-spliced cox1

and cob1 introns (Merlos-Lange et al. 1987). The corresponding

lariat intermediates increased in dbr1D cells and were validated

by lariat-specific RT-PCR, showing that these self-spliced introns

also depend on Dbr1 in vivo (Supplemental Note 1). The decreased

transcripts were enriched for GO categories related to ribosome

biogenesis (Supplemental Table 2), including most intron-

embedded snoRNAs (6/10; P < 2.4 3 10�7, hypergeometric test).

Intronic snoRNAs are known to depend on Dbr1 for processing

in budding yeast (Ooi et al. 1998). These data raise the possibility

that protein translation is compromised in the absence of Dbr1.

We therefore examined translational profiles in dbr1D cells. The

polysome-to-monosome (P/M) ratio was significantly higher in

dbr1D (1.83) compared to wild type (1.14) (Supplemental Fig. 2).

This difference could reflect more efficient translational initiation

or compromised translational elongation in dbr1D cells, either of

which would lead to increased ribosomal occupancy along tran-

scripts. Differences in translational initiation are expected to be

reflected in different phosphorylation levels of S6 and eIF2a pro-

teins (Lackner and Bähler 2008). However, no such differences

were evident between dbr1D and wild type (Supplemental

Fig. 2). Taken together, these findings suggest that translation is

compromised in the absence of Dbr1, most likely at the level of

elongation.

In contrast to most transcripts, intronic expression in dbr1D

was increased compared to wild type (Fig. 2A). Relative to wild-type

intron levels, ;25% of the introns were significantly increased in

dbr1D under a stringent cutoff (1399/5361) (Supplemental Tables

1, 2), while only 27 introns were decreased (Fig. 2B). While intronic

expression was highly reproducible between the biologically re-

peated dbr1D experiments (Fig. 2C), many introns showed a pro-

nounced shift toward higher expression in dbr1D compared to wild

type (Fig. 2D). Notably, this increased intronic expression was

heavily biased for long introns, with the longest introns showing

the greatest extent of increase (Fig. 2D; Supplemental Fig. 3). This

bias could reflect floating intron lariats, i.e., the detached lariats

that accumulate in the absence of Dbr1 (Fig. 1C), and/or lariat

structures still bound to their downstream exons due to inefficient

splicing (Hilleren and Parker 2003). In either case, the bias origi-

nates mainly from long introns that contribute disproportionately

to intronic signals (Fig. 1F). Lariats from long introns are expected

to be enriched for technical reasons: 93% of the S. pombe introns

are shorter than the average insert size used for sequencing (;200

bases), and ;36% of the introns are even smaller than the 49-bp

read length used. Thus, lariats from short introns were not as ef-

ficiently recovered as those from long introns (Fig. 5D, see below).

To assess differential intronic expression independently of

lariats, we analyzed the splicing efficiency (SE). SE is determined

using diagnostic exon-intron (Fig. 1A) and exon-exon junction

(Fig. 1C) reads that only originate from pre-mRNAs and mRNAs,

respectively. SE was highly reproducible between biological repli-

cates for both dbr1D and wild type (Fig. 3A,B). The overall SE was

notably lower in dbr1D compared to wild type (Fig. 3C). Moreover,

Figure 1. Scheme of intron splicing and diagnostic sequence reads. (A)
Pre-mRNA with diagnostic exon-intron reads (cyan). (B) First trans-
esterification reaction: lariat intermediate with phosphodiester bond be-
tween 59 splice donor (red) and branch-point adenine (A) along with
upstream sequence (green). (C ) Final splicing reaction: exons are ligated
yielding mature mRNA with diagnostic exon-exon junction reads (purple),
while the lariat is excised. (D) Intron 39 tail removal and debranching.
(E ) Rapid degradation or further processing. (F) In dbr1D cells, lariats be-
come stabilized and accumulate, resulting in enhanced intronic sequence
reads (orange). The reverse transcriptase also reads through the 29–59

linkage (hatched blue arrow). (G) This reverse transcription produces
unique lariat reads, where the sequence upstream of the branch point
(green) precedes the 59 segment of the intron (red). The enzyme often
mutates the branch-point adenine to any other nucleotide as illustrated.
The accumulation of lariat structures would inevitably result in the production
of additional intronic reads (orange) that enhance intronic expression level.

1170 Genome Research
www.genome.org

Bitton et al.



there was a pronounced shift for many introns toward lower SE in

dbr1D (Fig. 3D). Unlike intronic expression based on DESeq (Fig.

2D), this lowered SE showed no bias toward long introns (Fig. 3E;

Supplemental Fig. 4). As only the DESeq-based analysis includes

signals from floating lariats and/or from lariats still bound to their

downstream exons, this finding further supports the interpre-

tation above that lariats from long introns led to the bias in

intronic expression. The introns showing increased abundance

based on DESeq strongly overlapped with those showing decreased

SE in dbr1D cells (Fig. 3F,G; Supplemental Table 2). Thus, there was

good agreement between the two methods, despite the DESeq

analysis being ‘‘contaminated’’ with lariat reads. Notably, these

results together indicate that lariat accumulation and compro-

mised intron turnover in the absence of Dbr1 negatively affects the

splicing efficiency of hundreds of introns.

Generation of lariat databases by LaSSO

We developed the LaSSO algorithm to identify diagnostic lariat

reads from RNA-seq data. LaSSO considers each base in a given

intronic sequence as a potential branch point and builds all possi-

ble lariat structures accordingly, including all theoretically possi-

ble exon-skipping events within the corresponding transcript (Fig.

4A,B; Supplemental Fig. 5). The algorithm reflects the ability of the

reverse transcriptase to read through the 29–59 phosphodiester bond

(Ohi et al. 2007; Gao et al. 2008), which results in unique cDNA

products that join together two separate intronic segments in re-

verse order (Fig. 1F,G; Gao et al. 2008; Taggart et al. 2012): the 59

region upstream of the branch point, which precedes the 59 end of

the intron. Moreover, the reverse transcriptase often mutates the

branch-point base from adenine to any other nucleotide (Figs. 1G,

4B; Gao et al. 2008; Taggart et al. 2012; Awan et al. 2013).

Figure 4C shows the analysis pipeline based on LaSSO. RNA-

seq reads were first trimmed to remove any adaptor sequences.

Given the small size of fission yeast introns relative to sequence-

library insert size and read length, it is possible that some short

inserts were contaminated by adaptor sequences and hence failed

to align. The trimming may therefore enhance the identification of

short lariats. The trimmed reads were then aligned to the S. pombe

genome and transcriptome using Bowtie (Langmead et al. 2009),

Figure 2. Increased, length-biased intronic expression in dbr1D cells. (A) Box plot showing transcript and intronic expression in dbr1D and wild-type
cells. Intronic expression is significantly higher in dbr1D (P < 2.2 3 10�16, Wilcoxon rank sum test). (B) MA plot showing differentially expressed introns
(red) and transcripts (blue) (DESeq; adjusted P < 0.05 and absolute fold change > 2). (X-axis) Mean of normalized counts. (C ) Reproducibility of intronic
expression between dbr1D biological replicates (each dot represents one of 5361 introns; [r] Pearson’s correlation coefficient). Introns were binned
according to length as indicated in color legend. (D) Comparison of intronic expression between dbr1D and wild type with introns binned as in C. Only one
comparison is shown; the other biological replicates produced the same trends. The higher intronic expression in dbr1D cells shows a strong length bias
(P < 2.2 3 10�16, Wilcoxon rank sum test).

LaSSO for global branch-point mapping by RNA-seq
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allowing three mismatches. The unmapped reads were extracted

(Supplemental Table 3) and aligned to the lariat database; to ac-

count for the likely mutation at the branch point by the reverse

transcriptase, LaSSO allows one mismatch (Figs. 1G, 4B). Reads

aligning to the lariat database were then used for genome-wide

mapping of branch points and lariat analyses.

Characterization of lariats and branch-site sequence

We identified 108,683 diagnostic lariat reads that aligned to the

S. pombe lariat database. As expected, dbr1D cells were highly

enriched for these lariat reads compared to wild type (Fig. 5A).

Despite this enrichment, lariat reads corresponded only to a small

fraction of the mappable reads (Supplemental Table 3). Most lariat

reads (;99.8%) originated from within 1655 single introns, de-

fining 5060 distinct lariats. These data indicate the presence of

multiple branch points per intron. We ranked the branch points

for each intron by the number of mapped lariat reads and defined

the one supported by the highest read number as the primary

branch point. We then aligned all other branch points relative to

the primary branch point, highlighting the corresponding base

(Fig. 5B). This analysis provided the following results: (1) Adenine

was the predominant primary branch-point base; (2) neighboring

branch points were clustered within a few bases of the primary

branch point, suggesting a certain ‘‘fuzziness’’; and (3) together,

the clustered branch points formed a sequence motif similar to

the branch-site consensus, YURAY (Mertins and Gallwitz 1987;

Drabenstot et al. 2003). The fuzziness around the primary branch

point could reflect sequencing or informatics noise, imprecision in

branch-point selection by the spliceosome, or inaccuracies in-

troduced by the reverse transcriptase during transcription of the

29–59 phosphodiester bond. The latter explanation seems most

likely, given the known high mutation rates and base skipping

during reverse transcription of the branch point (Supplemental

Note 1; Supplemental Fig. 6; Gao et al. 2008; Taggart et al. 2012;

Awan et al. 2013). The finding that the clustered branch points

make up branch-site consensus sequences further supports the

interpretation of base skipping by the reverse transcriptase. We

therefore suggest that the clustered branch points primarily reflect

reverse-transcription errors around the main adenine branch

points. However, we cannot rule out some cellular imprecision

during the transesterification reaction.

Figure 3. Splicing efficiency is decreased in dbr1D cells. (A,B) Correlation of splicing efficiency (SE) between biological replicates in dbr1D (A) and wild
type (B). Each dot represents one of 5361 introns; (r) Pearson’s correlation coefficient. (C ) Box plot showing SE in dbr1D and wild-type cells (P < 2.2 3

10�16, Wilcoxon rank sum test). (D) Comparison of SE between dbr1D and wild type. (Red) 638 introns showing significant changes in SE (CMH test; Q <
0.05). (E) As in D but with introns binned according to their size as indicated in color legend. (F,G) Overlap between introns with lower SE and introns with
higher expression (DESeq), both with and without fold-change cutoff. The indicated P-values for overlaps are based on a hypergeometric test.
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Given that our data suggest that few, if any, bases other than

adenine serve as branch points, we ignored all non-adenine

branch-point reads for the further analyses below. Considering

only the 93,845 adenine branch-point reads, we identified 2842

distinct lariats originating from 1584 introns. We adjusted the

LaSSO algorithm to consider only adenine as possible intronic

branch points (Supplemental Fig. 7). Even when considering only

adenine branch points, limited fuzziness by neighboring branch

points remained within ;2 bases. We therefore developed a clus-

tering approach to group neighboring branch points as follows.

The primary branch point was defined by the highest read number;

if read numbers between neighboring branch points differed by

<10, however, the one closer to the intronic 39 end was selected as

the primary branch point (when neighboring branch points dif-

fered by >10 reads, the one closer to the 39 end typically showed

the higher read number). If branch points were >1 base apart,

multiple branch points were reported. To err on the conservative

side, we only used the branch points supported by $3 lariat reads,

which originated from 1236 nuclear introns and one mitochon-

drial, self-spliced intron (cob1). Based on these data, we generated

a consensus branch-site sequence for nuclear-encoded genes (Fig.

5C; Supplemental Table 5).

We selected 18 lariats of different lengths and numbers of

diagnostic lariat reads for independent validation. We confirmed

17 of these 18 lariats by lariat-specific RT-PCR, followed by Sanger

sequencing (Supplemental Fig. 8; Supplemental Table 6). One of

the validated lariats was from the self-spliced cox1 intron, for

which uracil appears to be the primary branch point (Supple-

mental Note 1).

The numbers of lariat and exon-exon junction reads showed

only a poor correlation (Supplemental Fig. 9). This finding suggests

that the number of lariat reads does not quantitatively reflect the

number of splicing events. As indicated by the expression data,

short lariats were not recovered as efficiently as long ones. Al-

though we trimmed the reads prior to alignment to enhance

identification of short inserts, we could not identify branch points

for most introns shorter than ;75 bases, even when no three-read

threshold was applied (Fig. 5D).

Figure 4. LaSSO (Lariat Sequence Site Origin), an algorithm to build a lariat database along with workflow to identify lariat reads from RNA-seq data.
(A) The algorithm pseudocode. LaSSO takes a given intron sequence of length ‘‘L’’ and uses the first ‘‘read length-1’’ bases of this intron as the 39-lariat
segment (if shorter, the whole sequence is used). To generate the 59-lariat segments, accounting for all possible combinations of lariat structures, LaSSO
iteratively produces all possible segments by selecting each base at a time as the putative branch point. LaSSO works from the 39 end of the intronic
sequence toward the 59 end, until it reaches the first intronic base. LaSSO takes only the last read length-1 bases of the 59-lariat segment (if shorter, the
whole sequence is used again). LaSSO then concatenates the 59 segment, the branch point, and the 39 segment of the lariat sequence, yielding a di-
agnostic lariat signature. To generate all possible exon-skipping lariat sequences for a given transcript, the input sequence and algorithm were slightly
altered. Briefly, considering a gene with two introns and three exons, only a single skipping event can occur. Therefore, the input sequence is the upstream
intron with the downstream intron attached to its 39 end. To avoid database redundancy, the algorithm iterates L times, where L only refers to the length of
the downstream intron, not the combined introns. Thus, the 59 segment of the skipping lariat sequence is generated from the downstream intron, while
the 39 segment of the skipping lariat always corresponds to the 59 end of the upstream intron. For more than two introns, all possible skipping events are
considered, i.e., Sn = (I�1) 3 I/2 (I: number of introns, Sn: number of skipping events). (B) Scheme for all possible lariat signatures accounted for by LaSSO.
Intron excision results in diagnostic cDNA products upon reverse transcription, where the sequence upstream of the branch point precedes the 59 end of
the intron (resulting in 59- and 39-lariat segments, respectively). (Green) 59-lariat segment from upstream intron; (red) 39-lariat segment from upstream
intron; (orange) 59-lariat segment from downstream intron; (blue) 39-lariat segment from downstream intron. (C ) Lariat detection workflow (see main text
for details).
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The median distance between the branch point to the 39 end

of the intron was 12 bases. More than one branch point was only

evident for 89 introns using the criteria above. Compared to pri-

mary branch points, alternate branch points were covered with

a significantly lower number of reads and were also located closer

to the 59 end of the intron (P < 2.2 3 10�16 and P < 5.5 3 10�9,

respectively; Wilcoxon rank sum test). Intron lengths and num-

bers of branch points did not correlate. We conclude that a single,

primary branch point is used for most splicing reactions under the

standard condition analyzed.

LaSSO outperforms other algorithms

The consensus branch-site sequence derived by LaSSO was nearly

identical to the one predicted by FELINES (Fig. 5C; Drabenstot et al.

2003), corresponding to the reported ‘‘YURAY’’ motif (Supplemental

Figure 5. Characterization of lariat branch points and branch-site sequence. (A) Proportion of lariat reads relative to total number of reads not mapped
to genome or transcriptome. Absolute numbers in each sample are indicated, along with P-values (Fisher’s exact test). (B) The base (color-coded as
indicated) and position (x-axis) of each branch point identified as a function of read number supporting it (y-axis). The primary branch point is placed at
position zero on the x-axis. The numbers of lariats and supporting reads are indicated on top. Only branch points located within 10 bases up- (negative
values) or downstream (positive values) from a primary branch point are shown. (C ) Consensus branch-site sequences around the primary branch point as
probability (left) and bits (right), plotted using WebLogo (Crooks et al. 2004) (default settings except for compositional adjustment, with GC content set to
30%). (Top panels) Using LaSSO based on 1236 introns from our data; (middle panels) using LaSSO based on 930 introns from 2D-Lariat-seq data (Awan
et al. 2013) that were supported by $3 lariat reads; (bottom panels) using FELINES for the same set of 1236 introns detected in this study. (D) Number of
introns of different sizes for which lariat reads were detected by LaSSO when no read-number threshold was applied: 1584 lariats for our data, 1268 lariats
for 2D-Lariat-seq data by Awan et al. (2013). Introns were binned according to their size as indicated (5361 introns in total).

Bitton et al.
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Note 2). Overall, there was ;91% agreement between LaSSO and

FELINES across data sets (Supplemental Note 2), suggesting that

computational prediction of branch sites in yeast is quite robust. As

LaSSO analyzes empirical data, however, it could uncover branch

sites more accurately (Supplemental Note 2).

A recent study utilized a 2D-gel lariat purification approach

(2D-Lariat-seq) in S. pombe dbr1D cells to map branch points (Awan

et al. 2013). Using a read-split algorithm based on a previous study

(Taggart et al. 2012), they recovered 37,008 lariat reads that were

mapped to 817 annotated and novel introns (Awan et al. 2013).

When applying LaSSO to their data set, we recovered 97,072 lariat

reads, providing a >2.5-fold increase in sensitivity. This improved

detection was achieved despite only interrogating annotated in-

trons, not the whole genome as in the original study (Awan et al.

2013). Applying our clustering approach, we mapped branch

points for 1268 introns, of which only 813 were identified in the

original study. On the other hand, we missed only four branch

points detected originally (Awan et al. 2013), because the corre-

sponding five reads had >1 mismatch and did not meet our map-

ping criteria (Supplemental Table 7). The consensus branch-site

sequence was highly similar again when applying LaSSO on the

2D-Lariat-seq data (Fig. 5C). Note that the underrepresentation of

short lariats was also apparent, and even more pronounced, in the

2D-Lariat-seq data set (Fig. 5D). We conclude that LaSSO is more

accurate than the theoretical prediction algorithm and can recover

more lariats than an alternative approach using sequence data

(Awan et al. 2013).

Exon-skipping events

We also looked for lariats diagnostic for exon-skipping events. In

fission yeast, there is little evidence for alternative splicing via in-

tron retention or exon skipping (Habara et al. 1998; Moldon et al.

2008; Wilhelm et al. 2008; Rhind et al. 2011; Awan et al. 2013).

Only 271 of 108,683 lariat reads represented putative skipping

events (0.25%). Of these, only 82 reads marked adenine as the

branch point, representing 48 distinct exon-skipping events, in-

cluding seven instances where two exons were skipped in a single

event. Only 18 of these 48 skipping events were independently

supported by a small number (median = 1) of exon-exon junction

reads that bridged non-neighboring exons. The independent evi-

dence based on lariat and junction reads indicates that these

skipping events represent real cellular splicing events. We in-

dependently confirmed five out of five representative exon-skip-

ping lariats by lariat-specific RT-PCR, and four out of these five

were also confirmed by Sanger sequencing (Supplemental Fig. 8;

Supplemental Table 6). For ;69% of cases (33/48) (Supplemental

Table 8), the branch points identified for the skipping events were

identical to the one identified for the canonical splicing event,

which links neighboring exons. We conclude that skipping events

usually utilize the primary branch point of the downstream intron.

Further analysis of all exon-skipping events revealed that the

number of supporting lariat reads was generally low (median = 1),

with only six events exceeding our three-read threshold. In all

cases, the canonical splicing events were supported by much higher

read numbers compared to the corresponding skipping event

(median = 30.5; P < 6.9 3 10�14) (Supplemental Table 8). Only 14

of 48 skipped sequences were divisible by three, as expected by

chance, and the remaining events are predicted to change the

reading frame (Magen and Ast 2005). The branch-site sequence of

the upstream intron determines the likelihood for exon-skipping

events (Haraguchi et al. 2007). We therefore examined the branch-

site sequences for all upstream and downstream introns implicated

in exon skipping, but no sequence differences compared to the

consensus were apparent (Supplemental Fig. 10). Together, these

data suggest that most exon-skipping events have no biological role

under the standard condition analyzed but might reflect splicing

errors.

The only evidence for exon skipping in fission yeast has been

documented recently in the 2D-Lariat-seq study (Awan et al. 2013).

They reported 23 cases of exon-skipping events, only eight of

which were supported by 12 lariat reads in total; although five of

these events were validated by RT-PCR, the remaining events were

only detected by a peak-calling algorithm. Applying LaSSO on the

2D-Lariat-seq data, we recovered 174 reads that marked 94 po-

tential skipping events. In the 2D-Lariat-seq data, the skipping

events displayed similar characteristics as in our data: Only 14

skipping events were supported by $3 lariat reads, 20 were sup-

ported by junction reads in our data, and only 32 of 94 skipped

sequences were divisible by three. Just one of the four events

reported to be conserved in human (Awan et al. 2013) was iden-

tified by LaSSO (alp41) (Supplemental Table 10). Given the low

diagnostic read numbers, further experiments will be required

to test whether these exon-skipping events have cellular functions

or represent splicing errors destined to degradation (Magen and

Ast 2005). In budding yeast, some exon-skipping RNAs are targeted

by quality-control pathways (Egecioglu et al. 2012). Regardless

of their potential to form functional transcripts in fission yeast, our

data demonstrate that LaSSO is effective for the identification

of exon-skipping lariats.

Lariats and exon skipping in human

We also applied LaSSO to the more complex human genome,

where introns are typically much longer and branch sites are de-

generate (Kol et al. 2005). To this end, we generated a compre-

hensive human lariat database, based on adenine as the branch

point, against which we aligned more than 592 million unmapped

reads derived from 16 human tissues; this data set is known to

contain lariat reads (Taggart et al. 2012). To err on the side of

caution, we applied stringent filtering criteria (see Methods),

resulting in the identification of 586 adenine-based lariat reads.

These reads mapped to 287 annotated introns (Supplemental Table

11; Taggart et al. 2012) and 34 exon-skipping events (Supple-

mental Table 12). Owing to the differences in methods, there was

only little overlap between the branch points identified here and

by Taggart et al. (2012) (Supplemental Note 3). LaSSO detected

more accurately the location of branch points (Supplemental Fig.

11; Supplemental Note 3), and it identified branch points impli-

cated in exon skipping (Supplemental Fig. 12C).

Plotting the positions of all branch points as a function of the

corresponding intron length revealed two distinct types: proximal

branch points close to the 39 end of the intron, whose intronic

positions showed no dependency on intron length, and more

distal branch points, whose intronic positions showed dependency

on intron length (Supplemental Fig. 12). Similar distal branch

points were evident in fission yeast which, unlike in the human

data, were supported by high read numbers and consensus branch-

site sequences (Supplemental Fig. 12). In the human data set, but

not in fission yeast, most exon-skipping events seemed to utilize

the more distal type of branch point, although the numbers of di-

agnostic reads was very low (Supplemental Fig. 12C,D).

Since the human data set has been generated in the presence

of debranching activity, the $3 lariat read cutoff inevitably resulted
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in discarding most of the putative branch points. However, re-

gardless of whether a read cutoff was applied or not, the human

branch site was highly degenerate (Supplemental Table 9), in ac-

cordance with previous reports (Kol et al. 2005). A consensus

branch-site sequence was evident only with a subset of proximal

branch sites (Supplemental Fig. 13; Supplemental Table 9), remi-

niscent of the previously reported consensus sequence (Gao et al.

2008). We conclude that LaSSO is also effective for identifying

branch points in more complex genomes, although reducing

debranching activity is important for a high signal-to-noise ratio.

Discussion
We developed a genome-wide approach to capture transient RNA

lariat intermediates that are rapidly degraded by the cell under

normal conditions. This approach enables an experimental defi-

nition of intronic branch points and intron validation, furthering

our view of splicing and intron processing.

RNA-seq of dbr1D cells revealed that lariat accumulation af-

fects gene regulation, most notably global translation. These re-

sults are consistent with the reported high toxicity of lariat accu-

mulation (Nam et al. 1997) and a role for Dbr1 in processing of

snoRNAs (Ooi et al. 1998) and mirtrons (Flynt et al. 2010). These

findings may reflect the tight coordination and integration of gene

regulation at multiple levels, which leads to systemic changes

when intron degradation is perturbed. Furthermore, we show that

lariat accumulation also severely compromised splicing efficiency

of numerous introns. This intriguing finding raises the possibility

of a feedback from floating lariats to the splicing machinery to

prevent further lariat accumulation. A reduction in splicing effi-

ciency was also observed in the ACT1 locus of debranching-

deficient budding yeast cells, and the accumulated ACT1 intron

may slow down later stages of the splicing reaction (Salem et al.

2003). Decreased recycling of spliceosomal RNAs and proteins,

which might not be released from stable lariats, could lead to the

decreased splicing efficiency (Arenas and Abelson 1997; Martin

et al. 2002; Hilleren and Parker 2003). A Dbr1-dependent RNA

degradation pathway prevents the accumulation of splice-defective

lariat intermediates that are otherwise exported to the cytosol for

degradation, thus functioning as a quality-control mechanism for

splicing (Hilleren and Parker 2003). Most fission yeast proteins in-

volved in splicing do themselves contain introns (100 of the 154

proteins with GO terms related to splicing), which could also con-

tribute to the global decline in splicing efficiency via negative

feedback.

Another intriguing finding was the up-regulation of numer-

ous noncoding RNAs in dbr1D cells. Many of these RNAs do con-

tain introns (data not shown), which therefore may be targeted by

Dbr1. We also observed that the absence of Dbr1 affected mito-

chondrial gene expression and splicing. Both RNA-seq and lariat-

specific RT-PCR provided evidence for the accumulation of the

corresponding lariat intermediates in dbr1D cells, strongly sug-

gesting that group II, self-spliced mitochondrial introns depend on

Dbr1 in vivo. Thus, it is likely that besides nuclei and cytosol

(Hilleren and Parker 2003), Dbr1 also functions in mitochondria.

LaSSO provides a powerful, unbiased approach to identify

lariat intermediates and to precisely map branch points on a ge-

nomic scale. More branch points were identified by LaSSO com-

pared to 2D-Lariat-seq (Awan et al. 2013), both with read cutoff

(1236 and 930, respectively) and without (1584 and 1268, re-

spectively); LaSSO therefore circumvents the need for laborious

2D-PAGE isolation and purification of lariats prior to sequencing.

LaSSO outperformed the FELINES algorithm for theoretical

branch-site prediction (Drabenstot et al. 2003), and it provided

higher sensitivity and improved accuracy than bioinformatics

approaches applied in previous sequencing studies (Taggart et al.

2012; Awan et al. 2013). LaSSO effectively uncovered exon-skip-

ping lariats both in fission yeast and in human. In fission yeast,

some of the skipping events were supported by independent exon-

exon junction reads and could represent true alternative transcript

isoforms. Nevertheless, given the exceedingly low frequency of

most skipping events in two independent studies, involving just

a few instances among the millions of cells sequenced, it seems

likely that the majority of these skipping events are simply a con-

sequence of aberrant splicing, which increase under heat-stress

conditions (Awan et al. 2013). Consistent with this interpretation,

skipping events are greatly increased in mutants defective for RNA

quality-control pathways (DA Bitton and J Bähler, unpubl.). Fur-

ther work will be required to establish whether exon skipping has

any biological function in fission yeast, perhaps limited to spe-

cialized conditions.

Several technical issues affected the performance of LaSSO.

Given the short fission yeast introns, the size selection during se-

quence library preparation, combined with the short RNA-seq

reads, resulted in a bias against recovery of short lariats. It is pos-

sible that adjustments to the sequencing protocol, such as the one

used for small RNA profiling, could improve detection of small

lariats. This bias will be less relevant for organisms like human,

which generally have much larger introns, although the shortest

human introns may still be affected (‘‘minimal’’ introns) (Yu et al.

2002). Another issue was the aggregation of branch points next to

the primary branch point that was most likely introduced by re-

verse-transcriptase errors. Our rigorous clustering approach helped

to deal with this issue. The reduced efficiency of reverse tran-

scription through the 29–59 bond often resulted in an under-

estimation of the lariats. Thus, lariat reads should be used only as

diagnostic reads rather than for quantification of splicing events or

the extent of lariat accumulation.

LaSSO is a versatile algorithm that allows RNA-seq input from

any organism, thus allowing multiple applications. Effectively, it

allows detection of any 29–59 phosphodiester link in a given se-

quence, but the algorithm does depend on the input database

used. For example, to identify additional cryptic or alternative

splice sites, an intronic sequence could be analyzed with its cor-

responding upstream or downstream exon sequence. Alterna-

tively, to seek for naturally occurring 29–59 phosphodiester bonds

in mature RNAs, complete transcriptome sequence could be used

as an input. In addition, LaSSO could readily be applied to detect

novel splicing events by partitioning the genome with a sliding

window while ignoring known annotations.

An advantage of LaSSO is that it can consider all possible bases

in a given intron. This circumvents making assumptions on

branch-site positions and sequences. However, it may result in

exceedingly large lariat databases when numerous, large introns,

such as those of human, are considered. We provide RNA-seq and

RT-PCR evidence for uridine as the branch-point base within the

cox1 intron of the mitochondrial genome. However, the data

provided here indicate that adenine is the predominant branch-

point base in fission yeast, and exceptions might reflect technical

artifacts during reverse transcription.

We generated a human lariat database that only considers

adenine as branch points within introns, but also accounts for all

possible branch points generated by exon skipping. Following

alignment of RNA-seq data against this human lariat database, we
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applied stringent filtering criteria, which inevitably also discarded

some real lariat signals. For a higher signal-to-noise ratio, working

with debranching-deficient cells will be important. An siRNA

knockdown in human cells effectively reduces 80% of DBR1

transcript levels without affecting cell viability (Ye et al. 2005),

which could readily be exploited in future studies. Despite the

presence of debranching activity, LaSSO identified numerous

branch sites, including those diagnostic for exon-skipping events.

Our analysis is consistent with the human branch-site consensus

being highly degenerate; previous consensus sequences were as-

sembled using only a subset of proximal branch sites (Gao et al.

2008), as was recapitulated here. LaSSO suggested putative distal

branch points whose intronic positions depended on intron

length in both fission yeast and human. Intriguingly, in the hu-

man data set, most exon-skipping events seemed to utilize this

distinct type of branch point, but the numbers of diagnostic reads

were very low. It is not clear whether the distal branch points re-

flect an experimental artifact or a novel biological aspect, e.g., an

alternate, closer branch point to facilitate lariat formation for long

introns. It should be interesting to explore whether these distal

branch points have any biological relevance in the cell.

Methods

Strains and yeast techniques
The dbr1D strain was obtained from the Bioneer deletion collection
v.2.0 (Kim et al. 2010). The deletion mutant strain was PCR-verified
and exhibited slow growth in YES media. When back-crossed to
wild type, the slow-growing phenotype cosegregated with the de-
letion marker. Strain ED668 (h+ ade6-M216 ura4-D18 leu1–32)
contains the same genetic background as the dbr1D strain (except
for dbr1D deletion) and was used as a wild-type control in these
studies. Translational profiles (Lackner et al. 2012) and Western
blots (Rallis et al. 2013) were performed as previously described.

RNA isolation and sequencing

Biological replicates were grown and processed separately for all
the following steps. Two biological replicates of wild-type (ED668)
and dbr1D cultures were grown in YES (yeast extracts plus supple-
ments) media at 32°C until they reached a concentration of
5,600,000 cells/mL. Cells were harvested and total RNA was iso-
lated by hot-phenol extraction, and RNA quality was assessed on
a Bioanalyzer instrument (Agilent). Total RNA was treated with
DNase (Turbo DNA-free by Ambion), and thereafter, 4 mg was
treated with a beta version of Ribo-Zero Magnetic Gold Kit (Yeast)
to deplete rRNAs. RNA-seq libraries were prepared from rRNA-free
RNA using a strand-specific library preparation protocol based
on an early version of the Illumina TruSeq Small RNA Sample
Prep Kit. In brief, rRNA-depleted RNA was fragmented to an aver-
age size of ;200 nt. Fragmented RNA was 39-de-phosphorylated
with Antarctic phosphatase and 59-phosphorylated with poly-
nucleotide kinase; this treatment prepares RNA fragments for
subsequent ligation of Illumina RNA adaptors to their 59 and 39

ends using a 39-RNA ligase and a T4 RNA ligase, respectively. First-
strand cDNA was produced using a primer specific for the Illu-
mina 39-adaptor. The library was amplified with 15 PCR cycles
using primers specific for the Illumina adaptors and purified us-
ing SPRI-beads (Agencourt, Beckman Coulter). Library size dis-
tributions and concentrations were determined on a Bioanalyzer
(Agilent). RNA-seq libraries were sequenced on an Illumina HiSeq
2000 instrument at the Core Facility of the Huntsman Cancer
Institute (University of Utah).

Genome level alignments and annotation

Sequence reads of 49-base length originating from each sample
were aligned, using Bowtie 0.12.7 (Langmead et al. 2009), to the
S. pombe genome sequence (Ensembl S. pombe, Build EF1, version
13) (Flicek et al. 2014) and to the corresponding exon-exon junc-
tions database. Up to three base-pair mismatches were allowed.
Reads that matched multiple loci were removed from further
analysis, and the resultant alignment files were processed to gen-
erate ‘‘pile-ups’’ against each chromosome (Supplemental Table 2).
Unmapped reads were used for lariat mapping as described in the
main text.

Exon-exon junctions

Searches were performed against the genome sequence combined
with a data set of known exon-exon junctions as defined by
Ensembl S. pombe, release 13. To ensure that a 49-base read mapped
to a splice junction, only the last 43 bases of the first exon and the
first 43 bases of the second exon were considered (if the exon
exceeded length 43). In this way, reads that overlapped a junction
by less than 6 nt were excluded. Reads that matched to more than
one junction or elsewhere in the genome were also discarded.

Known annotated transcript set

The known annotated set of S. pombe transcripts (7022; Ensembl
version 13, as before) and all known introns (5361) were in-
terrogated across the four samples (a total of 12,383 loci) (Sup-
plemental Table 2).

Normalization, fold changes, and differential expression

Differential expression between samples was determined using the
DESeq Bioconductor package (Anders and Huber 2010). A cutoff of
62 fold change and corrected P-value < 0.05 were applied to derive
a list of differentially expressed genes and introns.

RNA-seq expression level

Normalized expression levels (E) for individual exons and introns
were calculated using Equation 1 as described (RPKM measure)
(Mortazavi et al. 2008). Briefly, the number of reads (R) detected
across a given region at a given sample (i) was multiplied by a
constant (C = 1 3 109) and divided by the total number of reads
at that sample (Ti) multiplied by the region’s length (L).

E¼ log2 C
Ri

TiL

� �
: ð1Þ

A small constant was added (10�5) to all expression values to avoid
taking logs of zero. Gene level expression values were summarized
using exon data. Sample specific expression levels for all regions
interrogated in this study are provided in Supplemental Table 2.

Splicing efficiency and differential splicing significance

Splicing efficiency (SE) reflects the proportion of spliced mRNA
signal relative to pre-mRNA signal. SE is computed by dividing
exon-exon junction reads (JR) by reads that straddle the exon-in-
tron boundary (only the upstream 59 exon relative to the intron
was considered; EI; Equation 2).

SE¼ log2

JR

EI

� �
: ð2Þ
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A Cochran-Mantel-Haenszel (CMH) x2 test for repeated test of
independence (i.e., biological replicates) was applied to identify
statistically significant introns (i.e., introns that display differ-
ences in SE between samples). The false discovery rate (Q-value)
was computed using the Bioconductor Q-value package (Storey
et al. 2004) and a cutoff of Q < 0.05 was applied (Supplemental
Table 2).

Comparisons between studies

The raw sequence data files of the ‘‘short’’ and ‘‘long’’ data sets
described in Awan et al. (2013) were downloaded from the Gene
Expression Omnibus (GEO) database (accession no. GSE48594).
Sequence Read Archive files (SRA) were converted to FASTQ files
using the SRA toolkit. To perfectly match the read length described
in their study, the reads were preprocessed to trim the first three
bases only (no further trimming of adaptor sequences was ap-
plied). Thereafter, 40-base-long reads were analyzed using our
pipeline as described.

For FELINES comparison, a FASTA file containing 5248 an-
notated introns with canonical splice donor and acceptor sites (GU
and AG, respectively) and of length >20 bp was analyzed using
FELINES with default settings.

Application of LaSSO to a human data set

Using the LaSSO algorithm (Supplemental Fig. 7), we generated
a human lariat database that included all possible adenine-based
lariat signatures generated from a set of 265,870 nuclear introns in
human (Ensembl Homo sapiens, version 70). To generate this set,
we ordered all annotated exons for each gene in 59–39 orientation
and considered the gap between two consecutive exons as a puta-
tive intron. Note that human mitochondrial genes lack annotated
introns. The database also accounted for all possible lariat signa-
tures that could be generated from all possible exon-skipping
events in a given transcript, bringing its total size to ;947.26 GB
that accommodate 4,206,823,861 lariat sequence entries. To allow
comparison to the study conducted by Taggart et al. (2012), we
downloaded the same RNA-seq data set: Illumina Human Body
Map 2.0 total RNA from GEO (accession number GSE30611). SRA
files were converted to FASTQ files using the SRA toolkit. Reads
were preprocessed to trim the adaptor sequences provided in GEO
(GSE30611). Using the pipeline described in Figure 4C, we
extracted 592,367,167 unmapped reads. Thereafter, the reads
were aligned using Bowtie 0.12.7 to the human lariat database
that was split into multiple smaller databases to allow paralle-
lization. By tolerating up to a single mismatch and allowing
a single alignment, we initially identified 51,469 diagnostic
lariat reads. To further reduce the probability of chance match-
ing, we applied a series of stringent filters to remove ambiguous
reads: those that were mapped to multiple locations (due to the
partitioning of the database), those that were mapped in anti-
sense orientation, those whose mismatched base was not lo-
cated exactly at the position of the branch point, and those that
did not overlap at least 10 bases across the lariat junction.
Comparison to lariats identified by Taggart et al. (2012) was
performed using the available lariat coordinates (Taggart et al.
2012).

GO term enrichment

Significant gene lists (increased/decreased) were processed using
the ‘‘GO Term Finder’’ algorithm implemented in Perl (Boyle et al.
2004) (cutoff of P-value < 0.001, with Bonferroni correction)
(Supplemental Table 2).

LaSSO implementation and databases

The LaSSO algorithm was implemented in R (R Development Core
Team 2011) and is freely available at GitHub (https://github.com/
dbitton/LaSSO) and in Supplemental File 1. The fission yeast lariat
database was constructed based on Ensembl S. pombe, Build EF1,
version 13, while the human lariat database was generated using
Ensembl Homo sapiens, version 70.

Data access
The RNA-seq data sets from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE50246.
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