
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 1

AdaMD: Adaptive Mapping and DVFS for
Energy-efficient Heterogeneous Multi-cores

Karunakar R. Basireddy, Student Member, IEEE, Amit Kumar Singh, Member, IEEE, Bashir M.
Al-Hashimi, Fellow, IEEE, and Geoff V. Merrett, Member, IEEE

Abstract—Modern heterogeneous multi-core systems, contain-1

ing various types of cores, are increasingly dealing with con-2

current execution of dynamic application workloads. More-3

over, the performance constraints of each application vary,4

and applications enter/exit the system at any time. Existing5

approaches are not efficient in such dynamic scenarios, especially6

if applications are unknown, as they require extensive offline7

application analysis and do not consider the runtime execution8

scenarios (application arrival/completion, and workload and9

performance variations) for runtime management. To address10

this, we present AdaMD, an adaptive mapping and dynamic11

voltage and frequency scaling (DVFS) approach for improving12

energy consumption and performance. The key feature of the13

proposed approach is the elimination of dependency on offline14

profiled results while making runtime decisions. This is achieved15

through a performance prediction model having a maximum16

error of 7.9% lower than the previously reported model and17

a mapping approach that allocates processing cores to appli-18

cations while respecting performance constraints. Furthermore,19

AdaMD adapts to runtime execution scenarios efficiently by20

monitoring the application status, and performance/workload21

variations to adjust the previous DVFS settings and thread-22

to-core mappings. The proposed approach is experimentally23

validated on the Odroid-XU3, with various combinations of24

diverse multi-threaded applications from PARSEC and SPLASH25

benchmarks. Results show energy savings of up to 28% compared26

to the recently proposed approach while meeting performance27

constraints.28

Index Terms—Heterogeneous multi-cores, Multi-threaded ap-29

plications, Run-time management, Energy savings.30

I. INTRODUCTION31

Modern mobile platforms are containing greater number of32

heterogeneous cores to support highly diverse and varying33

workloads (e.g., the Odroid-XU3 [1] and Mediatek X20 [2]).34

Such platforms often execute applications concurrently, which35

simultaneously contend for system resources and typically36

exhibit varying resource demands over time [3]. Each ap-37

plication may have different performance requirements and38

exhibit various workload phases during its execution [4]. To39

adapt to such dynamic scenarios, mobile platforms offer an40

increasing number of resource configurations, such as enabling41

and disabling cores of different types, defining the thread-42

to-core mapping for a multi-threaded application, and setting43

dynamic voltage and frequency (DVFS) operating points.44

B. K. Reddy, B. M. Al-Hashimi, and G. V. Merrett are with the
School of Electronics and Computer Science, University of Southampton,
United Kingdom (e-mail: krb1g15@ecs.soton.ac.uk; bmah@ecs.soton.ac.uk;
gvm@ecs.soton.ac.uk).

A. K. Singh is with the School of Computer Science and Electronic
Engineering, University of Essex, Colchester CO43SQ, United Kingdom
(email:a.k.singh@essex.ac.uk).

Manuscript received Jan xx, 2019; revised xxx xx, 2019.

The process of thread-to-core mapping and setting DVFS 45

levels play a crucial role in exploiting the system properties 46

such that applications can meet their, often diverse, demands 47

on performance and energy consumption [3]. In general, for 48

each application, the management process first finds a thread- 49

to-core mapping, and then core DVFS level by inspecting 50

the workload profile while satisfying the performance re- 51

quirement. This problem becomes much more complex when 52

dynamically mapping concurrently executing applications due 53

to contention for resources, and when the mapping is coupled 54

with DVFS, i.e., energy-efficient allocation of processing cores 55

and selection of DVFS settings [5], [6]. 56

The reported approaches for solving this problem fall 57

into three categories: 1) offline, 2) online, and 3) hybrid 58

approaches. Several offline approaches have been proposed 59

targeting different application domains and hardware architec- 60

tures [7], [8]. These typically use computationally intensive 61

search methods to find the optimal or near-optimal mapping 62

for the applications that may run on the system. Conversely, 63

online approaches [4], [9]–[11] must not be computationally 64

intensive, as they are required to make efficient application 65

mapping/DVFS decisions at runtime. Therefore, these tech- 66

niques generally use heuristics to find a suitable platform 67

configuration. Design time approaches usually find solutions of 68

higher quality compared to online techniques, due to extensive 69

design space exploration of the underlying hardware and 70

applications. To address the drawbacks of pure offline and 71

online approaches, various hybrid approaches [8], [12]–[17] 72

using offline analysis to make runtime decisions based on the 73

current state of the system are proposed. 74

However, a review of the prior arts (see section VI) shows 75

that the existing approaches, targeting heterogeneous multi- 76

cores, have the following shortcomings. They use heavy 77

application-dependent profile data and thus are not efficient 78

in managing dynamic workloads when unknown applications 79

with different performance constraints are executing concur- 80

rently. For example, the number of different frequency and 81

core configurations for the Odroid-XU3 platform [1] (four 82

big and four LITTLE cores that can operate at 13 and 19 83

different frequencies, respectively) is 4080 ((4×13×4×19) + 84

(4×13) + (4×19)). Most importantly, all these approaches do 85

not perform adaptations (changing the mappings and/or DVFS 86

settings) at an application arrival/completion, and performance 87

variations. To this end, this paper presents AdaMD, an adap- 88

tive mapping approach coupled with DVFS for performance- 89

constrained multi-threaded applications, executing on hetero- 90

geneous multi-cores. AdaMD selects an resource combination 91

(number of cores and their type) that meets the application’s 92

performance requirement while minimising energy consump- 93

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 2

tion. This is achieved by employing performance prediction94

models for resource combination enumeration and selection.95

Furthermore, the application workload, performance and its96

status (finished or newly arrived) are monitored for adaptive97

resource allocation and DVFS. The key contributions of this98

paper are:99

1) A performance prediction model that has a maximum100

percentage error of 8.1%, which is 7.9% lower than the101

previously reported model [17].102

2) An online mapping approach that allocates processing103

cores to application(s) based on performance constraints104

without using any application-dependent offline results.105

3) To adapt to application arrival or completion times, and106

workload/performance variations, an adaptive approach107

that adjusts the existing thread-to-core mappings and108

DVFS settings during application execution is presented.109

4) Experimental validation of the proposed approach on the110

Odroid-XU3 [1], using several multi-threaded applica-111

tions from PARSEC [18] and SPLASH [19] benchmarks.112

The remainder of this article is organised as follows. Section113

II presents a motivational example for our work, while section114

III presents the problem definition for this work. A detailed115

description of the proposed AdaMD approach is given in116

Section IV. The experimental setup and validation of our117

approach are explained in Section V. Section VI discusses118

the related work and highlights the difference between the119

proposed approach and exiting works. Finally, Section VII120

concludes the paper.121

II. MOTIVATION122

A heterogeneous computing system with two types of cores,123

executing multiple performance-constrained applications con-124

currently, is illustrated in Fig. 1. Dotted squares colored in125

white/black represent processing cores. For example, such126

scenarios could be observed when a smartphone user simul-127

taneously runs a music player, Facebook, background email128

service, downloading a file, etc. As shown in Fig. 1(a),129

the initial mapping for each application (App1, App2, and130

App3) is decided based on its performance constraints while131

considering the energy as an optimization goal. This requires132

finding an energy-efficient resource combination (number of133

cores and their type). While these applications are executing,134

there are primarily three runtime execution scenarios possible:135

i) any application(s) may finish executing, ii) an application(s)136

may experience performance degradation due to contention137

for shared resources, and iii) a new application(s) may arrive138

into the system. In the first case, if application App1 finishes139

execution, its resources can be allocated to App2 and App3,140

which may help them execute faster (and hence put them into141

a low-power mode sooner), as shown in Fig. 1 (b). This may142

result in increased performance and lower energy consump-143

tion, because power is dissipated for a shorter duration.144

For case ii), as reported by previous work [5], [20], ap-145

plications go through different workload phases during their146

execution. For example, some workload phases could be more147

compute-intensive than others or vice versa. Furthermore, in148

case of concurrent execution, an application may experience149

Core Type-1

Core Type-2

App1 used cores

App2 used cores

App3 used cores

App4 used cores

App1
finished

App2 under-
performing

(a) (b)

(c) (d)

Fig. 1. A motivational example showing three possible runtime execution
scenarios (b, c & d) when a system, having two types of cores - Type-1 and
Type-2, starts with executing three performance-constrained applications (a).
Cores running the same application are encircled with a line of the same color.
App1, App2, App3, and App4 represent user applications.

interference from other applications due to shared resources 150

such as Last Level Cache, Memory, etc. All the factors 151

above culminate into variation in an application’s workload, 152

subsequently leading to variation in application performance. 153

Therefore, the application’s performance has to be moni- 154

tored periodically, and appropriate action (changing the DVFS 155

setting or remapping) taken to avoid/minimize performance 156

violations. Fig. 1 (c) demonstrates such a case, where more 157

resources are allocated to App2 to mitigate the performance 158

degradation experienced during runtime. If there are no free 159

cores available, as in our case, the cores are taken from the 160

over-performing App3. 161

For case iii), considering the processing capabilities of the 162

underlying hardware, the user may launch a new application 163

while other applications are running. If all the processing 164

cores have been allocated to the already running applications, 165

the runtime management software should check if there are 166

possibilities to re-adjust the current mapping and allocate 167

resources to the newly arrived application without violating 168

performance constraints. This is shown in Fig. 1 (d), where 169

App4 is added to the system while App1, App2, and App3 170

are executing. The resources of over-performing applications 171

App1 and App3 are allocated to App4 while keeping the same 172

number of cores for App2. 173

As discussed before, existing approaches do not consider 174

the above execution scenarios (case i, ii and iii) for adaptation 175

and moreover, they also depend on extensive offline charac- 176

terisation and/or instrumentation of the chosen applications. 177

As experimentally demonstrated in Section V, adaptation at 178

application arrival and completion, and workload/performance 179

variations would lead to better utilisation of the system re- 180

sources, and higher energy savings and performance. 181

III. PROBLEM FORMULATION 182

Earlier studies have shown that the thread-to-core mapping 183

problem alone is NP-complete [3]. Therefore, combining it 184

with DVFS would increase the complexity of mapping prob- 185

lem due to the huge design space, thereby making the runtime 186

management significantly inefficient. Similarly, if the number 187

of cores or heterogeneity or frequency levels increases, the 188

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 3

Performance Predictor
Resource Combination

Enumerator

PerfApp1, PerfApp2, …, PerfAppn

Resource selector
Performance

Monitor

Resource Allocator &
Reallocator

Resource Manager/Runtime Adaptation (Section IV-B)

DVFS governor

Appn

App2

App1
ROI_starts();

Runtime Data Collector
Initial Mapper

Hardware
Platform

Online Identification of Energy-efficient Mapping (Section IV-A)

Fig. 2. Overview of the proposed AdaMD approach, showing the different
steps taken.

design space becomes too large for solving at runtime and189

even for offline analysis [5]. To address this, as per literature,190

we consider thread-to-core mapping and DVFS separately to191

minimize the runtime overheads. The following forms our192

problem definition.193

Given a set of performance constrained applications to be194

executed concurrently or at different moments of time on a195

heterogeneous multi-core platform supporting DVFS.196

Find an initial thread-to-core mapping for each application197

and then apply DVFS and/or adaptive remapping at runtime198

to minimize the energy consumption, if any of the following199

occur:200

• An existing application finishes or a new application201

arrives into the system202

• The performance constraints of any running applications203

are violated204

• The workload of an application varies during execution205

(e.g., from compute-intensive to memory-intensive)206

Subject to meeting the performance requirement of each207

application without violating the resource constraints (number208

of available cores in the platform)209

IV. PROPOSED ADAPTIVE MAPPING AND DVFS210

APPROACH211

This section presents a detailed discussion of the proposed212

AdaMD, an adaptive thread-to-core mapping and DVFS ap-213

proach. An outline of the proposed approach is presented in214

Fig. 2 and corresponding pseudocode in Algorithm 1 and 2.215

The arriving performance-constrained applications are added216

to the queue, called Apps, and the initial mapper allocates a217

processing core to each application in the queue. Meanwhile,218

the Runtime Data Collector periodically gathers necessary219

runtime information through performance monitoring counters220

(PMCs) for the performance predictor, DVFS governor and221

performance monitor. The Performance Predictor estimates222

the application performance, using instructions per cycle (IPC)223

or instructions per second (IPS), on various types of cores224

by using the runtime information collected on a single type225

of core. The estimated performance of an application on226

various types of cores is then utilised for enumerating the227

list of resource combinations (the number of cores and their228

type) that meet the performance constraints of the application229

(Resource Combination Enumerator). Next, the Resource Se-230

lector picks the resource combination that would lead to lower231

energy consumption. Finally, the Resource Manager keeps 232

track of the variation in application performance, workload 233

and completion/arrival time to decide on adjusting the previous 234

mappings and DVFS settings. The following discusses each 235

step of the proposed methodology in detail. 236

A. Online Identification of Mapping 237

Proposed AdaMD approach first identifies thread-to-core 238

mapping that minimises energy consumption for each 239

performance-constrained application in a concurrent execution 240

scenario without using offline profiled results. This process 241

involves the following steps. 242

1) Runtime Data Collector: The proposed approach re- 243

quires various parameters for making runtime decisions while 244

concurrent applications are executing on the platform. These 245

parameters are collected by the Runtime Data Collector. 246

The list of parameters used in this work is given in Ta- 247

ble I. Of these parameters, CPU Cycles, Instructions 248

Retired, and L2 Cache Misses are periodically col- 249

lected to measure Memory Reads Per Instruction (MRPI), per 250

core CPU Utilisation, and IPC or IPS for detecting the work- 251

load and/or performance variations by the DVFS governor 252

and Performance Monitor (details are given in Section IV-B). 253

The performance monitoring unit (PMU) of the processor is 254

initialized to monitor the above parameters through the routine 255

PMU_initialize() (line 1, Algorithm 1). Note that all the 256

parameters are collected only when an application(s) arrives 257

into the system, which are used by the Performance Predictor. 258

When an application arrives, the Initial Mapper adds it to the 259

application queue and allocates a free core to the application 260

to start application execution (lines 3-9, Algorithm 1). As 261

application execution begins with the serial section, the initial 262

mapper tends to allocate a big core to the application. How- 263

ever, if an application’s serial section is memory-intensive, 264

measured by MRPI, the application is migrated to a LITTLE 265

core as it results in a greater power efficiency [21] (line 10, 266

Algorithm 1). Data collection starts in the region of interest 267

(ROI) (indicating the parallel code in the application) as that 268

is when actual computation starts and the benefit of allocating 269

more than one processing core can be seen [18]. This is 270

accomplished by notifying the Runtime Data Collector through 271

the ROI_starts() routine when the ROI of an application 272

starts, which is identified by the hook parsec roi begin() 273

[18] (lines 12-15, Algorithm 1). If an application does not 274

support such hooks, handshaking mechanism can be used that 275

informs runtime manager when threads are spawned (e.g., 276

call to pthread create()). This can be implemented using the 277

existing inter-process communication methods (e.g., shared 278

memory variables, message queues, etc.). 279

The runtime data for ROI region is collected every 50 ms 280

for the first 500 ms and their average values are fed into the 281

performance predictor. 282

2) Performance Predictor: To allocate resources in a 283

heterogeneous multi-core system to meet the performance 284

requirements of an application, it is essential to know how 285

the application performs on various types of cores [21]. This 286

can be achieved either by executing the application on all 287

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 4

TABLE I
PARAMETERS USED IN THE PROPOSED APPROACH

Number of Active Cores
Frequency of the Cores
L1 I-Cache Misses
L1 D-Cache Misses
L2 Cache Misses
Instructions Retired
Branch Misses
CPU Cycles
Per Core CPU Utilisation
Memory Reads Per Instruction

types of cores in a platform or by estimating the perfor-288

mance of application for different types of cores by running289

only on one core type. The former approach requires the290

migration of the application across various core types. As291

observed experimentally in [21], migration cost across clusters292

on a big.LITTLE architecture is relatively high: 2.10 ms to293

move a thread from a LITTLE cluster to a big cluster, and294

3.75 ms to move from a big cluster to a LITTLE cluster.295

This overhead grows with the number of cores and types.296

Considering the runtime overheads and scalability, this is297

not an efficient approach. However, this approach would not298

need offline analysis as everything is measured at runtime.299

On the other hand, a performance prediction-based approach300

avoids thread migration by using the performance models built301

offline or online. Previous approaches have shown that learning302

performance models at runtime would make the approach non-303

scalable and has its overheads in terms of execution time and304

power [5], [15]. Therefore, AdaMD builds the performance305

models at design time through a generalized methodology,306

which can easily be adopted to a new platform/architecture.307

Performance models: Application performance is usually
measured in terms of IPS or IPC, and the relative improvement
in the performance is referred to as speedup. We define
speedup η as

η =
IPCCoreType1

IPCCoreType2
(1)

where, IPCCoreType1, IPCCoreType2 are the IPC of the ap-308

plication achieved on core type-1 and core type-2, respectively.309

The performance model estimates the speedup, which is used310

for computing the application performance on a second core311

type (IPCCoreType2), by running the application on one core312

type and collecting the runtime parameters, and measuring its313

performance (IPCCoreType1) (line 16, Algorithm 1).314

To build the performance models, three steps are followed.315

The first step is identifying the parameters/metrics that cap-316

ture the most performance-limiting factors by analysing the317

correlation between various metrics and speedup. Modern318

processors support monitoring of various architectural events319

which can be used for analysing the performance, power,320

etc. However, not all metrics that contribute to performance321

can be monitored simultaneously due to the limited number322

of hardware PMCs provided by the platform. For example,323

on an Odroid-XU3/XU4, the Cortex-A15 processor allows324

monitoring of seven events, including the cycle counter, at325

a time. Therefore, metrics that contribute more to the speedup326

have to be identified. Based on our analysis and the infor-327

Algorithm 1 AdaMD Mapping and Adaptation
Input: Applications and performance constraints (Apps)
Output: ∀Apps, mappings and DVFS settings

1: PMU_initialize() // initialises PMCs
2: while (1) do
3: if (NewApp) then
4: Update the Application Queue ‘Apps’;
5: NewApp = 0;
6: end if
7: for ∀i ∈ Apps do
8: if (unmapped) then
9: Allocate a free core ‘l’ to ‘i’ and execute;

10: Measure MRPI and move onto an appropriate core (j);
11: /*Data collection for performance model*/ ;
12: Wait until ROI begins;
13: pmcs = pmcs_data_collect(j);
14: f = cpufreq_get_freq_hardware(j);
15: pmcs.push back(f);
16: η = speedup_estimate(pmcs,j);
17: Compute possible resource combinations and resource

combination with minimum energy th (Eq. (4), (5) &
(6));

18: Allocate resources as per th;
19: end if
20: end for
21: /*Distribute the free cores to active applications*/
22: Sort the applications by η (list);
23: while (freecores>0) do
24: Increase the resources of app i ∈ list by y;
25: freecores = freecores - y;
26: i++;
27: end while
28: /*Application performance and workload adaptation*/
29: If application workload changes call DVFS(); //Algorithm 2
30: for i ∈ Apps do
31: if App ‘i’ under-performs then
32: Increase frequency or allocate more cores;
33: end if
34: end for
35: /*Application completion detection and adaptation*/
36: if p ∈ Apps finishes then
37: Distribute freed resources of ‘p’ to under-performing apps;
38: Allocate remaining resources to apps equally by sorting

them based on η;
39: end if
40: /*if stop governor is set, process exits*/
41: if (stop governor) then
42: PMU_terminate(); //Terminates PMC collection
43: exit(0);
44: end if
45: end while

mation given in [21], [22], we have identified that cache 328

misses (L1 I/D-Cache & L2 Cache), branch misses, CPU 329

cycles and instructions retired are the appropriate PMCs for 330

estimating the speedup on our chosen platform (listed in Table 331

I). The second step is the collection of characterisation data 332

for a diverse set of applications. As part of this, we have 333

created a diverse set of workloads, containing single and multi- 334

threaded applications from SPEC CPU2006 [23], LMBench 335

[24], RoyLongbottom [25], PARSEC 3.0 [18], SPLASH [19], 336

and MiBench [26]. The Odroid-XU3 platform has four Cortex- 337

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 5

A7 and four Cortex-A15 cores that can operate at 19 and338

13 different DVFS levels, respectively. For each application,339

data has been collected for every 50 ms at all available340

frequencies on the platform. Furthermore, in the case of341

multi-threaded applications, the number of threads/cores are342

varied from one to four (number of available cores for each343

type). In each case, six PMCs, frequency of the big and344

LITTLE CPUs, execution time of the application on the big345

cluster and LITTLE cluster, and the number of active cores,346

are all used in the modelling. For consistent results, each347

experiment is repeated ten times, and corresponding average348

values are considered while create the model. To create a349

more general approach for deriving performance models, we350

explored several statistical and machine learning techniques.351

Using the open source WEKA workbench [27] to verify the352

relationship between input features/attributes and output/target353

variables. Of all the explored methods, we found that additive354

regression of decision stumps, using boosting for a regression355

problem, resulted in good accuracy as shown in Section V-B.356

The problem of function estimation usually consists of a357

random output variable y and a set of random input features358

X = {x1, x2,, xn}. Given a training sample {yi, Xi}N1 of359

known (y, X) values, the objective is to identify a function360

f̂(X) that relates X to y, such that the expected value (Ey,X)361

of some specified error function ψ(y, f(X)) is minimized.362

f̂(X) = arg min
f(X)

Ey,Xψ(y, f(X)) (2)

In general, boosting approximates f̂(X) by an additive expan-363

sion of the form, i.e., adding a set of base learners [28], as364

shown below:365

f(X) =

M∑
k=0

αkh(X;βk) (3)

Here, the base learner functions h(X;β) are simple functions366

of X with parameters β = {β1, β2, ..., βM} and {αk}M0 are367

expansion coefficients. Owing to simplicity, decision stump368

(one-level decision tree) is used as a base learner in our369

work. In brief, additive regression takes an initial guess for370

the speedup (the average speedup observed by all applications371

in the training set) and estimates the speedup by summing pos-372

itive and negative additive-regression factors to f0(X). Each373

additive-regression factor is associated with an input feature374

the factor depends on. As the base learner is a decision stump,375

the input feature is associated with two regression factors, i.e.,376

each of {h(X;βk)}M0 produces one positive/negative additive-377

regression factor depending on the value of the input feature.378

Additive-regression factors are computed in a forward stage-379

wise manner to minimize the squared error of the predictions380

after M iterations, which decides the number of base learners.381

Readers can refer to [28] for more details on additive regres-382

sion.383

3) Resource Combination Enumerator: For each appli-384

cation, a set of all possible resource combinations (number385

of cores and their type) meeting performance constraints has386

to be computed to choose the one that minimizes the overall387

0

500

1000

1500

2000

0

200

400

600

800

1000

1200

3
L

2
L+

1
B

1
L+

2
B

0
L+

3
B 4
L

3
L+

1
B

2
L+

2
B

1
L+

3
B

0
L+

4
B

4
L+

1
B

3
L+

2
B

2
L+

3
B

1
L+

4
B

3 4 5

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
J)

Ex
ec

u
ti

o
n

 T
im

e
(s

e
c)

Resource combinations

ExecTime Energy

unbalanced execution

Fig. 3. Energy and execution time at different resource combinations of big
(B) and LITTLE (L) for the application Bodytrack from PARSEC [18],
executing on the Odroid-XU3.

energy consumption (line 17, Algorithm 1). Let R be the set of 388

possible resource combinations on a platform, and PerfAppi 389

is the performance constraint for an application Appi, then the 390

performance meeting thread-to-core mappings (Tmapi
) can be 391

defined as follows: 392

Tmapi
= {r ∈ R | perf(r) ≤ PerfAppi} (4)

Here, perf(r) defines the performance of an application when 393

executed on the resource combination r. For simplicity, let us 394

take our chosen platform, the Odroid-XU3, with two types of 395

cores: big (B) and LITTLE (L); Nb and Nl are set of big and 396

LITTLE cores, respectively. Then, perf(r) is computed as: 397

perf(r) = nb × η × IPCl + nl × IPCl + IPCo (5)

where, η = IPCb/IPCl, performance on the big and 398

LITTLE core is denoted by IPCb and IPCl, respectively. 399

Furthermore, nb ∈ Nb, nl ∈ Nl and r = nl ∪ nb. IPCo 400

is the performance overhead incurred when an application is 401

mapped onto cores that do not share a cache. For instance, 402

the big and LITTLE clusters in the Odroid-XU3 do not 403

share caches, which results in an inter-cluster communication 404

overhead when the threads of an application run on both 405

the big and LITTLE clusters. As shown in Equation 5, for 406

our chosen platform with eight cores, near linear speedup is 407

expected with increase in number of cores [29]. Even if there 408

is an error in estimation, this would anyway be compensated 409

by performance monitor (Section IV-B2). 410

4) Resource Selector: The job of resource selector is to 411

minimize the energy consumption by selecting a resource com- 412

bination with minimum energy from the performance meeting 413

thread-to-core mappings Tmapi
= {3L, 4L, 1L + 1B, ...}, 414

where L and B refers to big and LITTLE cores, respectively. 415

This can be achieved by selecting a thread-to-core mapping 416

th ∈ Tmapi
that has the highest performance per watt (PPW) 417

(line 17, Algorithm 1). 418

th = arg max
t∈Tmapi

PPW (t) (6)

where, PPW (t) is computed as the ratio between IPC 419

achieved for the resource combination ‘t ∈ Tmapi
’ and its 420

power consumption. This requires measuring the power con- 421

sumption using on-chip power sensors or employing a power 422

model when a platform does not have power sensors [30]. 423

However, the power model would also require the collection 424

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 6

of various PMCs data at regular intervals of time, and its PMCs425

may be different than the ones used by performance models426

[21]. This would need multiplexing PMCs, leading to runtime427

overheads. To address this, the estimated speedup η can be428

used as a proxy for identifying the energy-efficient resource429

combination when power sensors are not available. This is430

achieved by choosing a resource combination with the ratio431

between the minimum number of big cores to the minimum432

number of LITTLE cores (Cr) is higher/close to the speedup.433

As big core can execute η times faster than LITTLE core,434

above resource selection strategy leads to balanced workload435

sharing between big and LITTLE cores by executing η times436

more threads on big than LITTLE. This would lead to efficient437

utilisation of big cores and supports the balanced execution of438

an application. For example, if the speedup of an application439

is 2×, then the algorithm initially tends to allocate 2-big cores440

and 1-LITTLE core. This is also demonstrated in Fig. 3, where441

unbalanced execution resulted in increased execution time and442

energy consumption. This figure also shows that applications443

with a speedup greater than one will benefit in terms of energy444

and performance from allocating more number of cores, as Cr445

reaches one or higher.446

Furthermore, if η is less than 1, all LITTLE cores are447

allocated as the application does not benefit from executing448

on big cores in terms of performance/power. This makes the449

proposed algorithm effective for single-threaded applications450

as well, where it maps memory-intensive applications (η ≤ 1)451

onto LITTLE cores, and compute-intensive (η > 1) onto big452

cores. Finally, the output of the resource selector is a resource453

combination with lower energy consumption and minimum454

resources that are required for meeting the performance con-455

straints. The information about minimum resources is used by456

the resource manager.457

B. Resource Manager/Runtime Adaptation458

The Resource Manager, shown in Fig. 2, is responsi-459

ble for adapting to application arrival/completion, perfor-460

mance/workload variation, and managing resources at runtime.461

It consists of the Resource Allocator/Reallocator, Performance462

Monitor and DVFS governor. These are discussed in detail in463

the following sections.464

1) Resource Allocator/Reallocator: The Resource Alloca-465

tor manages finding free cores and allocating them to the466

application based on its selected resource combination (line467

18, Algorithm 1). This is done by keeping track of allocated468

cores and free cores available in the platform. The allocated469

cores are maintained per application, which are used by the470

performance monitor for measuring application performance471

and for releasing the resources when the application finishes.472

While allocating the resources to an application, the resource473

allocator keeps the knowledge of cores that are leading to474

over-performance of an application, called extra cores. After475

finishing the allocation of resources to the applications in476

application queue (Apps), if there are still free resources477

available, these are allocated to the running applications if478

the energy consumption can be minimized by reducing the479

application execution time. The allocation of extra resources480

is done by first creating a sorted list of active applications in 481

descending order of their speedup. Then, application i at the 482

top of the list is selected, and its allocated cores are increased 483

by one. This process is repeated for remaining applications in 484

the list until no free cores are left (lines 22-27, Algorithm 1). 485

Note that applications with η < 1 in the list are given only 486

LITTLE cores as they do not benefit from big cores in terms 487

of energy efficiency. 488

The Resource Reallocator keeps track of application com- 489

pletion and arrival of new applications into the system. When 490

an application completes execution, it invokes the reallocation 491

routine after releasing the allocated resources (lines 36-39, 492

Algorithm 1). The reallocation routine then distributes the 493

freed resources to the active applications. First, it measures 494

the performance of each application (IPC or IPS) to check 495

if any application is under-performing, i.e., measured per- 496

formance is lower than the given performance constraint. 497

If an application is under-performing, it then computes the 498

amount of performance loss (the difference between achieved 499

performance and given performance constraint), and then 500

estimates the required resources using Eq. 5 to compensate 501

it. If any resources are remaining after allocating the freed 502

resources to under-performing applications, these resources are 503

distributed among the applications as described in the previous 504

paragraph. As discussed in Section IV-B2 and IV-B3, appli- 505

cation performance/workload adaptation is also performed to 506

avoid performance violations as application may experience 507

contention from other applications or workload may change 508

over the time. This may occur at any time during application 509

execution. Therefore, to increase the resource utilisation, free 510

cores are distributed to active applications first. Furthermore, 511

when a new application arrives into the system, the resource 512

reallocator tries to identify and allocate the resources as per 513

th (Eq. 6). This is done by checking if there are enough free 514

resources available in the platform to satisfy the application 515

requirements. In case free resources are not available for 516

meeting performance constraints, the extra cores of over- 517

performing applications are used. After doing this, if the ap- 518

plication requirements are still not met, application execution 519

is continued using the available resources until any running 520

application completes and releases allocated resources. 521

2) Performance Monitor: Applications usually exhibit 522

varying workload profiles (e.g., compute-intensive to memory- 523

intensive and vice versa) during execution. When multiple 524

applications are executing simultaneously, the workload profile 525

of each application gets affected due to contention on shared 526

resources [20]. As a result of this, application performance will 527

vary over time, and may lead to the violation of performance 528

constraints. To address this, each application’s performance 529

is periodically monitored to detect and compensate when 530

performance constraint is violated (line 30-34, Algorithm 531

1). An application performance is measured by collecting 532

PMCs corresponding to instructions retired and CPU cycles 533

on all the cores that the application is currently running 534

on. When an application’s performance constraint is violated, 535

either the operating frequency is increased, or more cores are 536

allocated. Raising the operating frequency is given priority 537

over assigning more cores as the latter incurs a migration 538

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 7

Algorithm 2 DVFS governor (DVFS())
1: MRPIp = 0, utilp = 0, em = 0, eu = 0;
2: /*Per-core DVFS supporting platforms

Input: for each core ‘i’, MRPI[i] and freq[i]
Output: voltage-frequency (V-f[i]) for next epoch

3: pmcs = get_pmc_data(i);
4: compute actual MRPI (MRPIa) = instructions retired

L2 cache misses

5: compute actual utilisation (utila) = active CPU cycles
TotalCPUcycles

6: MRPIp = predict_mrpi(mrpip, mrpia, em);
7: MRPI prediction error (em) = mrpia −mrpip;
8: utilp = predict_utilisation(utilp, utila, eu);
9: utilisation prediction error (eu) = utila − utilp;

10: V-f [i] = bin_classify(utilp, mrpip);
11: if (V-f[i] < freq[i]) then
12: V-f[i] = freq[i];
13: cpufreq_set_frequency(i, V-f[i]);
14: end if
15: /*cluster-wide DVFS supporting platforms*/
16: for each cluster ‘j’ do
17: Measure MRPI and utilisation of each core i ∈ j;
18: Compute the minimum MRPI (mrpia) and utilisation (utila);
19: Repeat steps 6 to 13.
20: end for

overhead which is relatively large compared to the DVFS539

transition latency [21]. The operating frequency is increased in540

steps of 200 MHz until the performance constraint is satisfied541

and this frequency (freq) is communicated to DVFS governor542

(discussed in the next section) to make sure it does not scale543

down the frequency below this value. After the above step,544

if any of the applications are still under-performing, as the545

last solution, more cores are allocated from the available546

free cores or extra cores of over-performing applications.547

This allocation is done by computing the performance loss548

and corresponding required cores using Eq. 5. As already549

explained in Section IV-B1, for applications with η < 1,550

LITTLE cores are preferred over big cores.551

3) DVFS governor: Applications go through different552

workload phases (e.g., compute-intensive, memory-intensive,553

etc.) and this necessitates choosing a different frequency for554

each workload phase to reduce the power consumption while555

maintaining application performance within the bounds. For556

example, a memory-intensive workload can be executed at557

a lower frequency than a compute-intensive workload with558

no/negligible performance loss [20]. To this end, AdaMD559

adopts the technique proposed in [31], modified to take freq560

into account. Algorithm 2 presents the pseudocode of the561

DVFS governor.562

This approach employs a binning-based approach with two563

classification layers (line 10). The first layer, consisting of util-564

isation bins, classifies the compute-intensity, and the second565

layer classifies the memory-intensity using MRPI bins. The566

classification bins are computed through an offline analysis567

of 81 diverse workloads, including: 25 from SPEC CPU2006568

[23], 20 from LMBench [24], 11 from RoyLongbottom [25],569

11 from PARSEC 3.0 [18] and 14 from MiBench [26]. For570

each application, offline profiling data consisting of MRPI,571

utilisation and application performance (1
Execution time) are572

collected at different DVFS settings available on the chosen573

platform. The collected utilisation and MRPI for various574

applications are then grouped into utilisation bins and MRPI 575

bins, and a corresponding voltage-frequency setting is assigned 576

to each bin of the second classification layer. At runtime, 577

the DVFS governor measures the MRPI and utilisation and 578

uses workload prediction to set an appropriate DVFS level 579

(lines 3-9). To avoid violation of performance constraints, 580

the frequency is never scaled down below freq (lines 11-14). 581

Workload prediction is based on exponential moving average 582

filter. Prediction error during previous time epoch for MRPI 583

(em) and utilisation (eu) is used as feedback to improve the 584

workload prediction accuracy (lines 7 & 9). Furthermore, 585

it can manage both per-core (lines 2-14), i.e., supporting 586

fine-grained power management [32], and cluster-wide DVFS 587

platforms (lines 15-20). For more details on binning-based 588

DVFS approach, readers can refer to [31], [33]. 589

V. EXPERIMENTAL RESULTS 590

This section presents the details of the experimental setup, 591

covering the platform, benchmark applications and reported 592

approaches considered for the comparison. Furthermore, an 593

evaluation of the performance prediction models and benefits 594

of the AdaMD approach over the previous approaches are 595

discussed, including associated overheads. 596

A. Experimental Setup 597

Platform: We use the Odroid-XU3 [1], containing the ARM 598

big.LITTLE technology based Samsung Exynos 5422 chip. 599

This has four ARM Cortex-A15 (big) cores, four ARM Cortex- 600

A7 (LITTLE) cores. The platform supports per-cluster DVFS, 601

and all cores within a cluster can only run at the same DVFS 602

level. The big cores have a range of frequencies between 0.2 603

GHz and 2.0 GHz with a 0.1 GHz step, whereas the LITTLE 604

cores can vary their frequencies from 0.2 GHz to 1.4 GHz in 605

steps of 0.1 GHz. The device firmware automatically adjusts 606

the voltage for a selected frequency. The platform also contains 607

four real-time current sensors that facilitate measurement of 608

power consumption of each CPU cluster, GPU and memory. 609

We used Ubuntu OS with kernel version 3.10.96. Energy 610

consumption is computed as the product of average power con- 611

sumption (dynamic and static) and application execution time. 612

This includes both the core and memory energy consumption 613

of all the software components, including our implementation, 614

OS, applications and other background processes. 615

Implementation: The proposed AdaMD approach is imple- 616

mented as a user space application by using the Perfmon2 617

[34] and cpufrequtils framework. Perfmon2 en- 618

ables the user space access to the performance moni- 619

toring unit (PMU), and cpufrequtils helps in set- 620

ting/getting the operating frequencies. Standard Linux API 621

(sched_setaffinity(2)) is used to control the CPU 622

affinity of processes, i.e., to bind the applications to specific 623

cores. The thread-to-core mapping algorithm operates at a 624

coarser granularity (500 ms) considering its higher migration 625

overhead. As the workload of application changes randomly, 626

to capitalize on these changes for energy savings, the DVFS 627

governor is operated at a finer granularity of 100 ms. 628

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 8

(a) (b)

Fig. 4. Box plot of absolute percentage error in IPC prediction by our performance model for different number of decision stumps used in the additive
regression, showing the median, lower quartile, upper quartile and outliers – (a) Estimating the performance of LITTLE given the information about the big
core (b) Estimating the performance of big given the information about the LITTLE core.

Applications: To evaluate AdaMD, applications – Blacksc-629

holes (bl), Bodytrack (bo), Swaptions (sw), Freqmine (fr), Vips630

(vi), Water-Spatial (wa), Raytrace (ra), fmm (fm)) – from pop-631

ular benchmark suites, such as PARSEC 3.0 [18] and SPLASH632

[19], are taken. These applications exhibit different memory633

behavior, data partitions, and data sharing patterns. Different634

execution scenarios – single application, concurrent execution635

of multiple applications, dynamic addition of application(s) at636

runtime – are also considered to mimic the real-world behav-637

ior. To ensure the deterministic execution of application and638

to meet its performance constraint, no two applications share639

the same cores. However, the threads of the same application640

share the allocated cores to maximize resource utilisation.641

For each application, performance constraints are defined in642

terms IPC. Such performance requirements can be translated643

to throughput requirements for frame based applications like644

audio/video applications, where throughput is expressed as a645

frame rate to guarantee a good user experience.646

Comparison: To show the benefits of our approach AdaMD647

compared to the state-of-the-art, the selected comparison can-648

didates from the relevant reported works are given below.649

1) HMP+x [35]: The state-of-the-art solution for650

big.LITTLE multi-processing, the Heterogeneous Multi-651

Processing (HMP) scheduler, with various default Linux652

power governors x (= Ondemand (O), Conservative (C)653

and Interactive (I)) is considered. For a fair comparison,654

we ran applications with different numbers of threads655

and chose the one meeting the performance constraint.656

2) MIM [14]: This approach maps application threads onto657

only one type of core(s) based on workload memory-658

intensity, called a memory-intensity based mapping659

(MIM). For the single-application execution scenario, a660

memory-intensive application is mapped onto LITTLE661

cores, whereas a compute-intensive one is executed on the662

big cores. In a multiple-application scenario, applications663

are sorted based on their memory-intensity, and the664

one with the highest memory-intensity is mapped onto665

LITTLE cores, and remaining applications are allocated666

onto the big cluster with an equal number of cores.667

3) EAM [15]: An energy-efficient mapping is selected668

through an exhaustive search of voltage-frequency set-669

tings and thread-to-core mappings. For each possible670

thread-to-core mapping, voltage-frequency settings are671

varied from the lowest possible value to the highest and672

the one that meets performance requirement with the 673

lowest energy consumption is chosen. We refer to this 674

approach as energy-aware mapping (EAM). 675

4) ITMD [6]: This approach uses offline analysis of energy 676

and performance for individual applications to decide on 677

an energy-efficient mapping when multiple applications 678

are run concurrently. Furthermore, it also applies work- 679

load classification-based DVFS periodically to minimize 680

the power consumption. 681

B. Evaluation of Performance Predictor 682

The performance prediction model estimates the perfor- 683

mance of the big core given the performance of a LITTLE 684

core (Pbl) and vice versa (Plb). The number of base learners 685

(decision stumps) M in Eq. 3 impacts the model accuracy 686

and runtime overhead. We tested our model over 148 distinct 687

samples to evaluate the model accuracy in IPC estimation and 688

the corresponding box plot of percentage error distribution 689

for Pbl and Plb are given in Figures 4a and 4b respectively. 690

As shown, the error range gets narrower with the number 691

of decision stumps, as it would help in better predicting 692

the speedup. Furthermore, increasing the number of decision 693

stumps also reduces the outliers, shown as cross in Figures 4a 694

and 4b, improving model stability. However, choosing more 695

decision stumps could increase the runtime overhead, and 696

sometimes accuracy of the prediction may not be improved 697

after reaching a certain number of decision stumps. There- 698

fore, to balance this, we built additive regression models for 699

different numbers of decision stumps. It can be seen from 700

Fig. 4a and 4b that the the improvement in model accuracy 701

is negligible after 900 and 1100 decision stumps for Pbl and 702

Plb respectively. Therefore, we have chosen these numbers 703

for our models Pbl (mean absolute percentage error (MAPE) 704

= 1.57%; maximum error (ME) = 8.1%) and Plb (MAPE = 705

3.45%; ME = 8.5%). The maximum error of Pbl and Plb is 706

about 7.9% and 5% lower compared to the previous model 707

[17], respectively. The prediction accuracy of Plb is 1.88% 708

worse than Plb and requires 200 extra decision stumps. This is 709

because the LITTLE cores support accessing only four PMCs 710

simultaneously, compared to six PMCs supported by big cores. 711

C. Comparison of Energy Consumption 712

This section presents the energy consumption results for var- 713

ious approaches to show the benefits of the proposed AdaMD 714

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 9

0
10
20
30
40
50
60
70

%
	E
ne
rg
y	S

av
in
gs

HMP+O HMP+C HMP+I MIM EAM ITMD

Fig. 5. Percentage improvement in energy consumption achieved by the
AdaMD compared to reported approaches for single and concurrent appli-
cations.

0

10

20

30

40

50

%
	E
ne
rg
y	
Sa
vi
ng
s

HMP+O HMP+C HMP+I MIM EAM ITMD

Fig. 6. Energy savings achieved by the AdaMD with respect to different
approaches for one and two applications added dynamically to the system
while an application is executing.

approach. Fig. 5 shows the energy savings achieved by the715

AdaMD with respect to reported approaches for different716

single and concurrently executing applications (launched at the717

same time). We observed substantial energy savings compared718

to the reported approaches for all the application execution719

scenarios. For single application execution (bl, bo, sw, fr, wa,720

and ra), with our approach AdaMD, average energy savings of721

30.7%, 25.8%, 27.3%, 37.4%, 21.8% and 7.8% are observed722

compared to HMP+O, HMP+C, HMP+I, MIM, EAM, and723

ITMD, respectively. Furthermore, for concurrent execution of724

two and three applications, AdaMD shows 25.5%, 22.4%,725

26.5%, 37.5%, 24.8%, and 14.2% lower energy consumption726

than HMP+O, HMP+C, HMP+I, MIM, EAM, and ITMD,727

respectively. In the single application scenario, we observed728

that ITMD, EAM, and AdaMD chooses a similar thread-729

to-core mapping, however, the energy savings observed are730

mainly because of the proposed DVFS technique. Unlike,731

ITMD and EAM, AdaMD takes the thread synchronisation732

overhead into account while selecting a voltage-frequency733

setting. In concurrent execution scenarios, the energy savings734

are due to both DVFS and the utilisation of freed resources of735

a finished application for active applications.736

Furthermore, to demonstrate the adaptiveness of AdaMD737

to application arrival, the following experimental evaluation is738

performed. The execution starts with one application and later,739

one (+ 1×DA_Apps) or two (+ 2×DA_Apps) applications740

are added at runtime. The dynamically added applications,741

0 30 60 90 120 150 180 210 240 270 300 330 360 390

Execution Time

0L+0B

2L+2B

4L+3B

3L+0B

1L+4B

Blackscholes

Bodytrak

t=10s

t=160s

t=293s

R
es

o
u

rc
e

C
o

m
b

in
at

io
n

Fig. 7. Resource combination (number of big (B) and LITTLE (L) cores)
allocated to Blackscholes and Bodytrack by the proposed AdaMD
approach to adapt to application arrival/completion and performance variation.

0
2
4
6
8

10
12
14
16
18

%
	En

er
gy
	S
av
in
gs
	w
.r.
t.	
IT
M
D

4L+4b 8L+8b 16L+16b

Fig. 8. Scalability of AdaMD for different core configurations of big (b)
and LITTLE (L) cores: energy savings achieved by AdaMD with respect to
ITMD.

abbreviated as DA Apps in Fig. 6, are from those mentioned 742

in Section V-A. The advantages of the AdaMD with respect 743

to other approaches in terms of energy consumption are 744

shown in Fig. 6. On an average, AdaMD reduces the energy 745

consumption by 23.8%, 20.6%, 24.8%, 35.8%, 12.2%, and 746

23.0% compared to HMP+O, HMP+C, HMP+I, MIM, EAM, 747

and ITMD, respectively. To illustrate AdaMD’s ability to 748

adapt to different runtime scenarios, we plotted the resource 749

combination (number of active core and their type) versus 750

execution time for Blackscholes and Bodytrack in Fig. 7. 751

While Blackscholes is executing with four LITTLE and three 752

big cores (4L+3B), Bodytrack is added to the system at t=10s. 753

Considering the performance constraints of Bodytrack, 2B+2L 754

are allocated to Bodytrack by freeing the cores from over- 755

performance of Blackscholes. Due to the workload variations, 756

Bodytrack experiences performance loss at t=160s, thereby 757

triggering the Resource Reallocator to readjust the mappings 758

of both Blackscholes and Bodytrack. Upon Bodytrack’s com- 759

pletion at t=293s, the freed cores are again allocated to 760

Blackscholes as it can benefit from faster execution to lower 761

the energy consumption. 762

Fig. 8 demonstrates the scalability of AdaMD, showing 763

energy savings with respect to ITMD for two different core 764

configurations (8L+8b, 16L+16b). The reported values in 765

the figure have been obtained through analytical analysis of 766

experimental results (performance and energy) collected on 767

the Odroid-XU3 (4L+4b) and extrapolating for the considered 768

application execution scenarios. We used linear extrapolation 769

that takes runtime overheads associated with each application 770

as it varies depending upon workload characteristics (e.g., 771

frequent workload variations may incur DVFS transition la- 772

tencies/thread migration overheads). As can be seen, AdaMD 773

is able to adapt to increased design space and achieve energy 774

savings. The increase in energy savings is mainly due to 775

proposed DVFS which exploits the synchronisation overheads 776

and workload variations to lower power consumption of more 777

number of active cores. 778

D. Performance 779

The proposed approach outperforms all reported approaches 780

in meeting application performance constraints, as shown in 781

Fig. 9. We evaluated the percentage of performance constraint 782

misses for all the application scenarios presented in Fig. 5 783

(Without Application Addition) and Fig. 6 (With Application 784

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 10

0

10

20

30

40

50

60

Without Application Addition With Application AdditionP
er

fo
rm

an
ce

 C
o

n
st

ra
in

t
M

is
se

s
(%

) HMP+O HMP+C HMP+I MIM
EAM ITMD AdaMD

Fig. 9. Evaluation of various approaches in meeting application performance
constraints.

Addition). For the without application addition case, AdaMD785

meets application performance constraint for 95% of the con-786

sidered application scenarios, i.e., 17 out of 18 cases, shown787

on the horizontal axis in Fig. 5. The only scenario where788

the AdaMD fails to satisfy the performance requirements is789

bl+sw+fr. Even in this case, except for sw, the performance790

constraints of bl and fr are met. This is mainly because791

of the diverse workload profiles of the three applications792

and relatively higher performance requirements chosen for793

sw (approximately 2× compared to bl and fr). In case794

of application addition at runtime, AdaMD is able to satisfy795

performance constraints for 92% of the evaluated scenarios,796

i.e., out of 12 scenarios shown in the Fig. 6, except for sw +797

2×DA_Apps, the performance constraints are met.798

Compared to the recently reported approach ITMD [6],799

AdaMD achieves energy savings of up to 28% (for800

bl+bo+fr). Further, AdaMD satisfies performance con-801

straints for up to 95% of the application scenarios (80% better802

than ITMD).803

E. Runtime Overheads804

To compute the runtime overheads of the AdaMD, we805

measured the amount of time that the algorithm takes to806

complete various steps (A to E) explained in Section IV. Steps807

A (Runtime Data Collector), B (Performance Predictor), C808

(Resource Combination Enumerator) and D (Resource Selec-809

tor) are triggered when an application arrives into the system,810

whereas step E (Resource Manager) operates periodically. The811

runtime overheads can be analytically represented as follows812

for each time epoch (500 ms):813

To = TAdaMap + η × TDV FS (7)

where,814

TAdaMap = Tpmcm + Tpm + Tth + Trar (8)

TDV FS = Tpmcvf
+ Tmetrics + Twp + Tclassify + Tvfs (9)

where, Tpmcm , Tpm, Tth , Trar, Tpmcvf
, Tmetrics, Twp,815

Tclassify, and Tvfs represent time taken for PMC data col-816

lection for mapping; performance prediction; identification of817

resource combination; resource allocation/reallocation; PMC818

data collection for DVFS; computation of MRPI and util-819

isation; workload prediction; finding DVFS setting through820

classification bins; and DVFS transition latency, respectively. 821

Note that performance prediction happens only when a new 822

application is launched, therefore the overhead Tpm may 823

not be present in every time epoch. Moreover, the runtime 824

overhead TDV FS is multiplied by a factor of 2.5 (η), as it 825

operates at a finer granularity of 100 ms compared to the 826

mapping time interval of 500 ms. 827

We observed an average runtime overhead of 600 µs and 828

1.4 ms for A to D when executed at 2 GHz and 1 GHz 829

on a big core of Odroid-XU3, respectively. The DVFS part 830

of step E incurs 320 µs and others parts take up to 15 µs 831

when the overhead is measured at the maximum frequency 832

(2 GHz). The DVFS algorithm operates at a granularity of 833

100 ms, so the overhead is less than 0.5%. Performance and 834

Resource manager part of E is invoked for every 500 ms. The 835

overhead associated with this part depends on the number of 836

times the application misses its performance constraint and 837

thread migrations across the cores. Here, we observed an 838

overhead between 0.15% to 0.75%. Our results show that the 839

total runtime overhead is very minimal and moreover, they 840

have been included when computing energy consumption and 841

performance. 842

VI. RELATED WORK 843

To achieve energy savings and/or to meet performance 844

constraints in multi-core platforms, various approaches for 845

DVFS and/or task mapping have been proposed [3]–[17], [20], 846

[31], [36]–[41]. These works perform offline, online or hybrid 847

(offline & online) optimization for resource management. 848

Approaches based on offline optimization utilize extensive 849

design space exploration of the underlying hardware and 850

target application(s). The techniques proposed in [7], [40] 851

are used for DVFS and/or task mapping. However, they 852

consider execution of a single application at a time, and thus 853

are not suitable for the concurrent execution of applications. 854

The approach presented in [40] generates multiple mappings 855

for each application offering a tradeoff between resource 856

requirements and throughput, while Quan and Pimentel [8] 857

proposed scenario-based online mapping approaches targeting 858

homogeneous multi-core platforms in which mappings derived 859

from design-time DSE are stored for runtime mapping deci- 860

sions. Evidently, these techniques consume more time, and 861

cannot cope with dynamic application behavior, especially 862

when multiple applications are run concurrently. 863

To adapt to dynamic application workloads, pure online 864

optimization based approaches, performing all processing at 865

runtime, have also been investigated [4], [9]–[11]. In [4], an 866

online reinforcement learning based adaptive DVFS approach 867

targeting frame-based applications is presented to improve 868

energy efficiency. In [9], an online spatial mapping technique 869

to map streaming applications onto a multi-core system is 870

discussed. Brião et al. [10] present dynamic task allocation 871

strategies based on bin-packing algorithms for soft real-time 872

applications. An online task allocator using the adaptive task 873

allocation algorithm and clustering approach for minimizing 874

the communication load is described in [11]. All of these 875

approaches perform well for unknown applications to be exe- 876

cuted at runtime, but lead to inefficient results as optimization 877

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 11

decisions need to be taken quickly without offline analysis878

results [3].879

Hybrid approaches using results of offline analysis in880

making online decisions have been widely proposed to im-881

prove energy efficiency/performance in homogeneous multi-882

core platforms [8], [12]–[17]. Such approaches usually achieve883

better performance/energy savings compared to pure online884

optimizations as they take advantage of both offline and online885

computation. In [12], task mapping and DVFS under power886

constraints are discussed. Similarly, in [13], first thread-to-core887

mapping is obtained based on utilization, and then DVFS is888

applied depending upon the power budget. When considering889

the power-performance tradeoffs, recent research focus has890

shifted to heterogeneous architectures [3], [6], [14]–[17]. For891

multi-threaded applications, most approaches tend to map an892

application completely onto one type of processing core(s)893

[14], [16], [17]. This simplifies the thread-to-core mapping894

problem, but cannot benefit from the power-performance trade-895

offs offered by simultaneously mapping application threads896

onto multiple types of cores. Van Craeynest et al. [14] pre-897

sented a performance impact estimation technique to predict898

which application-to-core mapping is likely to provide the best899

performance to map the application onto the most appropriate900

core type. In a similar direction, some proposals have used901

workload memory-intensity as an indicator to guide task902

mapping [38], [39]. A domain-specific hybrid task mapping is903

presented in [3], which relies heavily on offline DSE. However,904

approaches reported in [3], [14] do not consider DVFS which905

can help to improve energy savings.906

On the other hand, techniques proposed in [5], [6], [15]–[17]907

use DVFS, but they have several shortcomings. For example,908

in [16], the design space is explored for a single application,909

which increases exponentially for concurrent execution of ap-910

plications. Donyanavard et al. [17] consider applications with911

only one thread and thus use only one type of core for each ap-912

plication. The approach presented in [15] considers concurrent913

execution and mapping of application threads onto more than914

one type of cores. However, it requires extensive offline and/or915

online exploration for building regression models for perfor-916

mance and energy for all possible thread-to-core mappings and917

voltage-frequency settings, which is non-scalable. Moreover,918

online periodic adjustment of V-f setting is not explored, which919

is essential for adapting to workload variations and achieving920

better energy savings. This has been addressed in [5], [6],921

however, they also require extensive offline characterisation,922

and in particular, [5] requires application instrumentation to923

guide the runtime selection. Moreover, all these approaches924

do not perform adaptive mapping at application arrival/exit,925

and thus they are not efficient if a new/unknown application926

arrives/existing application finishes. The approach (AdaMD)927

presented in this paper addresses the above limitations by928

removing dependency on the application-dependent offline929

results, and adapting to application arrival/completion times.930

VII. CONCLUSIONS931

The increasing demand for performance and energy effi-932

ciency has forced mobile systems to employ heterogeneous933

multiprocessor system-on-chips. These systems offer a diverse 934

set of core and frequency configurations to runtime manage- 935

ment systems for online tuning. This paper has presented an 936

adaptive thread-to-core mapping and DVFS technique, called 937

AdaMD, for choosing a configuration for each performance- 938

constrained application that minimises energy consumption. 939

By using runtime information while applications are executing 940

and eliminating the need for application-dependent offline 941

results, AdaMD is capable of managing even unknown appli- 942

cations efficiently. Proposed algorithm first selects a resource 943

combination (number of cores and their type) that meets the 944

application performance requirement using an accurate perfor- 945

mance prediction model and resource enumerator/selector. It 946

then monitors application performance, workload and its status 947

(finished or newly arrived) for tuning voltage-frequency set- 948

tings and adjusting thread-to-core mappings. Our experiments 949

show an improvement of up to 28% in energy consumption 950

compared to the most promising existing approaches. The 951

proposed approach also outperforms previous approaches in 952

meeting application performance constraints. Our future work 953

includes validation with more number of cores and types 954

having different ISA (e.g., CPU, GPU, etc.) to show the 955

scalability and adaptability of the approach. 956

ACKNOWLEDGEMENT 957

This work was supported in parts by the EPSRC 958

Grant EP/L000563/1 and the PRiME Programme Grant 959

EP/K034448/1 (www.prime-project.org). Experimental data 960

used in this paper can be found at https://doi.org/10.5258/ 961

SOTON/D1041. 962

REFERENCES 963

[1] “Odroid-XU3,” www.hardkernel.com/main/products. 964

[2] “Mediatek X20,” http://www.96boards.org/product/mediatek-x20/. 965

[3] W. Quan and A. D. Pimentel, “A hybrid task mapping algorithm for 966

heterogeneous MPSoCs,” ACM Transactions on Embedded Computing 967

Systems, vol. 14, no. 1, p. 14, 2015. 968

[4] R. A. Shafik, A. K. Das, L. A. Maeda-Nunez, S. Yang, G. V. Merrett, and 969

B. Al-Hashimi, “Learning transfer-based adaptive energy minimization 970

in embedded systems,” IEEE Transactions on Computer-Aided Design 971

of Integrated Circuits and Systems, vol. 35, no. 6, pp. 877–890, 2016. 972

[5] U. Gupta, C. A. Patil, G. Bhat, P. Mishra, and U. Y. Ogras, “DyPO: 973

Dynamic pareto-optimal configuration selection for heterogeneous MP- 974

SoCs,” ACM Transactions on Embedded Computing Systems, vol. 16, 975

no. 5s, p. 123, 2017. 976

[6] B. K. Reddy, A. K. Singh, D. Biswas, G. V. Merrett, and B. M. 977

Al-Hashimi, “Inter-cluster thread-to-core mapping and dvfs on hetero- 978

geneous multi-cores,” IEEE Transactions on Multi-Scale Computing 979

Systems, vol. 4, no. 3, pp. 369–382, 2018. 980

[7] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, 981

and F. Zhao, “Energy-optimal software partitioning in heterogeneous 982

multiprocessor embedded systems,” in Proc. of the Design Automation 983

Conference. ACM, 2008, pp. 191–196. 984

[8] W. Quan and A. D. Pimentel, “A scenario-based run-time task mapping 985

algorithm for MPSoCs,” in Proc. of the Design Automation Conference. 986

ACM, 2013, p. 131. 987

[9] P. K. Hölzenspies, J. L. Hurink, J. Kuper, and G. J. Smit, “Run-time 988

spatial mapping of streaming applications to a heterogeneous multi- 989

processor system-on-chip (MPSoC),” in Design, Automation and Test 990

in Europe. ACM, 2008, pp. 212–217. 991

[10] E. W. Brião, D. Barcelos, and F. R. Wagner, “Dynamic task allocation 992

strategies in MPSoC for soft real-time applications,” in Design, Automa- 993

tion and Test in Europe. ACM, 2008, pp. 1386–1389. 994

[11] J. Huang, A. Raabe, C. Buckl, and A. Knoll, “A workflow for run- 995

time adaptive task allocation on heterogeneous MPSoCs,” in Design, 996

Automation and Test in Europe, 2011. 997

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, JAN 2019 12

[12] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:998

adaptive DVFS and thread packing under power caps,” in Proc. of the999

IEEE/ACM Intl. symposium on microarchitecture, 2011, pp. 175–185.1000

[13] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-performance1001

optimization in manycores,” in Proc. of the Intl. Conf. on Parallel1002

architectures and compilation techniques. IEEE, 2013, pp. 51–61.1003

[14] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,1004

“Scheduling heterogeneous multi-cores through performance impact1005

estimation (PIE),” in ACM SIGARCH Computer Architecture News,1006

vol. 40, no. 3, 2012, pp. 213–224.1007

[15] A. Aalsaud, R. Shafik, A. Rafiev, F. Xia, S. Yang, and A. Yakovlev,1008

“Power-aware performance adaptation of concurrent applications in1009

heterogeneous many-core systems,” in Intl. Symp. on Low Power Elec-1010

tronics and Design. ACM, 2016, pp. 368–373.1011

[16] E. D. Sozzo, G. C. Durelli, E. Trainiti, A. Miele, M. D. Santambrogio,1012

and C. Bolchini, “Workload-aware power optimization strategy for1013

asymmetric multiprocessors,” in Design, Automation & Test in Europe1014

Conference & Exhibition. IEEE, 2016, pp. 531–534.1015

[17] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, “SPARTA: runtime1016

task allocation for energy efficient heterogeneous many-cores,” in Proc.1017

of the Intl. Conf. on Hardware/Software Codesign and System Synthesis.1018

ACM, 2016, p. 27.1019

[18] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,1020

Princeton University, January 2011.1021

[19] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The1022

SPLASH-2 programs: Characterization and methodological considera-1023

tions,” in ACM SIGARCH Computer Architecture News, vol. 23, no. 2,1024

1995, pp. 24–36.1025

[20] B. K. Reddy, G. V. Merrett, B. M. Al-Hashimi, and A. K. Singh, “Online1026

concurrent workload classification for multi-core energy management,”1027

in Design, Automation Test in Europe Conference & Exhibition, March1028

2018, pp. 621–624.1029

[21] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and1030

S. Vishin, “Power-performance modeling on asymmetric multi-cores,”1031

in Intl. Conf. on Compilers, Architecture and Synthesis for Embedded1032

Systems. IEEE, 2013, pp. 1–10.1033

[22] J. C. Saez, A. Fedorova, D. Koufaty, and M. Prieto, “Leveraging core1034

specialization via OS scheduling to improve performance on asymmetric1035

multicore systems,” ACM Transactions on Computer Systems, vol. 30,1036

no. 2, p. 6, 2012.1037

[23] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH1038

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.1039

[24] L. McVoy and C. Staelin, “Lmbench: Portable tools for performance1040

analysis,” in USENIX Annual Technical Conference, 1996, pp. 23–23.1041

[25] “Roy Longbottom’s PC Benchmark Collection,” http://www.1042

roylongbottom.org.uk, [Online; accessed 10-Oct-2018].1043

[26] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,1044

and R. B. Brown, “MiBench: A free, commercially representative1045

embedded benchmark suite,” in IEEE Intl. Workshop on Workload1046

Characterization. IEEE, 2001, pp. 3–14.1047

[27] F. Eibe, M. Hall, and I. Witten, “The WEKA workbench. online1048

appendix for” data mining: Practical machine learning tools and tech-1049

niques,” Morgan Kaufmann, 2016.1050

[28] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics1051

& Data Analysis, vol. 38, no. 4, pp. 367–378, 2002.1052

[29] G. Southern and J. Renau, “Analysis of parsec workload scalability,”1053

in 2016 IEEE International Symposium on Performance Analysis of1054

Systems and Software (ISPASS). IEEE, 2016, pp. 133–142.1055

[30] B. K. Reddy, M. J. Walker, D. Balsamo, S. Diestelhorst, B. M. Al-1056

Hashimi, and G. V. Merrett, “Empirical CPU power modelling and1057

estimation in the gem5 simulator,” in IEEE Intl. Symp. on Power and1058

Timing Modeling, Optimization and Simulation, 2017, pp. 1–8.1059

[31] K. R. Basireddy, E. W. Wachter, B. M. Al-Hashimi, and G. V. Merrett,1060

“Workload-aware runtime energy management for HPC systems,” in Intl.1061

Conf. on High Performance Computing & Simulation, 2018, p. 8.1062

[32] U. Y. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung, “Design and1063

management of voltage-frequency island partitioned networks-on-chip,”1064

IEEE Transactions on Very Large Scale Integration (VLSI) Systems,1065

vol. 17, no. 3, pp. 330–341, 2009.1066

[33] G. Liu, J. Park, and D. Marculescu, “Dynamic thread mapping for high-1067

performance, power-efficient heterogeneous many-core systems,” in Intl.1068

Conf. on Computer Design. IEEE, 2013, pp. 54–61.1069

[34] S. Eranian, “Perfmon2: a flexible performance monitoring interface for1070

linux,” in Proc. of Ottawa Linux Symp., 2006, pp. 269–288.1071

[35] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee, “Power-aware task1072

scheduling for big.LITTLE mobile processor,” in Intl. SoC Design Conf.1073

IEEE, 2013, pp. 208–212.1074

[36] A. K. Singh, C. Leech, B. K. Reddy, B. M. Al-Hashimi, and G. V. 1075

Merrett, “Learning-based run-time power and energy management of 1076

multi/many-core systems: current and future trends,” Journal of Low 1077

Power Electronics, vol. 13, no. 3, pp. 310–325, 2017. 1078

[37] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and B. M. 1079

Al-Hashimi, “Energy-efficient run-time mapping and thread partitioning 1080

of concurrent opencl applications on CPU-GPU MPSoCs,” ACM Trans- 1081

actions on Embedded Computing Systems, vol. 16, no. 5s, p. 147, 2017. 1082

[38] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and S. Hahn, 1083

“Operating system support for overlapping-isa heterogeneous multi- 1084

core architectures,” in Intl. Symp. on High Performance Computer 1085

Architecture. IEEE, 2010, pp. 1–12. 1086

[39] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, and S. Gob- 1087

riel, “Energy-efficient thread assignment optimization for heterogeneous 1088

multicore systems,” ACM Transactions on Embedded Computing Sys- 1089

tems, vol. 14, no. 1, p. 15, 2015. 1090

[40] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Dynamic power-aware 1091

mapping of applications onto heterogeneous MPSoC platforms,” IEEE 1092

Transactions on Industrial Informatics, vol. 6, no. 4, pp. 692–707, 2010. 1093

[41] D. Stamoulis and D. Marculescu, “Can we guarantee performance 1094

requirements under workload and process variations?” in Intl. Symp. 1095

on Low Power Electronics and Design. ACM, 2016, pp. 308–313. 1096

Karunakar R. Basireddy received his M.Tech. 1097

degree in Microelectronics and VLSI from Indian 1098

Institute of Technology (IIT), Hyderabad, India in 1099

2015. He is a Ph.D. student in Electronic and Elec- 1100

trical Engineering at the University of Southampton, 1101

UK. His current research interests include design- 1102

time and run-time optimization of performance and 1103

energy in multi-core heterogeneous systems. 1104

1105

Amit Kumar Singh (M’09) is a lecturer at Univer- 1106

sity of Essex, UK. He received the B.Tech. degree 1107

in Electronics Engineering from Indian School of 1108

Mines (IIT)), Dhanbad, India, in 2006, and the Ph.D. 1109

degree from the School of Computer Engineering, 1110

Nanyang Technological University (NTU), Singa- 1111

pore, in 2013. He was with HCL Technologies, India 1112

for a year and half until 2008. He has a post-doctoral 1113

research experience for over five years at several re- 1114

puted universities. His current research interests are 1115

system level design-time and run-time optimization 1116

of 2D/3D multi-core systems for performance, energy, temperature, reliability 1117

and security. He has published over 70 papers in reputed journals/conferences, 1118

and received several best paper awards. 1119

Bashir M. Al-Hashimi (M’99-SM’01-F’09) is an 1120

ARM Professor of Computer Engineering, Dean of 1121

the Faculty of Physical Sciences and Engineering, 1122

and the Co-Director of the ARM-ECS Research 1123

Centre, University of Southampton, Southampton, 1124

U.K. He has published over 380 technical papers. 1125

His current research interests include methods, algo- 1126

rithms, and design automation tools for low-power 1127

design and test of embedded computing systems. 1128

He has authored or co-authored five books and has 1129

graduated 35 Ph.D. students. 1130

Geoff Merrett (GSM’06-M’09) is an Associate 1131

Professor in the School of Electronics and Computer 1132

Science at the University of Southampton, UK, and 1133

Head of its Centre for IoT and Pervasive systems. 1134

He received the B.Eng. and Ph.D. degrees from 1135

Southampton in 2004 and 2009, respectively. His re- 1136

search interests are in energy management of mobile 1137

and embedded systems, and has published over 175 1138

articles in journals/conferences in these areas. 1139

1140

