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a database of multi-channel 
intramuscular electromyogram 
signals during isometric hand 
muscles contractions
Nebojsa Malesevic  1*, anders Björkman2,3, Gert S. andersson4,5, ana Matran-Fernandez  6, 
Luca Citi6, Christian Cipriani7 & Christian antfolk1

Hand movement is controlled by a large number of muscles acting on multiple joints in the hand 
and forearm. In a forearm amputee the control of a hand prosthesis is traditionally depending on 
electromyography from the remaining forearm muscles. technical improvements have made it possible 
to safely and routinely implant electrodes inside the muscles and record high-quality signals from 
individual muscles. In this study, we present a database of intramuscular EMG signals recorded with 
fine-wire electrodes alongside recordings of hand forces in an isometric setup and with the addition 
of spike-sorted metadata. Six forearm muscles were recorded from twelve able-bodied subjects and 
nine forearm muscles from two subjects. the fully automated recording protocol, based on command 
cues, comprised a variety of hand movements, including some requiring slowly increasing/decreasing 
force. the recorded data can be used to develop and test algorithms for control of a prosthetic hand. 
assessment of the signals was done in both quantitative and qualitative manners.

Background & Summary
Normal control of hand muscles is usually executed with little mental effort through the large number of control 
and feedback signals that bind together the central nervous system and the muscles1,2. Muscles controlling hand 
are located in the proximal parts of the hand and they have long, sometimes multiple tendons crossing several 
joints and sometimes acting on multiple fingers. Thus, control of hand movements requires a complex pattern 
of neural activation and inhibition of several muscles. The complexity of this system become obvious following 
amputation of a hand and forearm where central command and the proximal nerve signal remains operational 
but without end-effectors to complete the desired action.

Powered hand prosthetic devices offer the possibility to produce grasps upon user’s intention which is com-
monly detected by means of surface electromyography (EMG) resulting from the remaining muscles that are 
still interfaced with motoneurons3. This principle is employed by many state-of-the-art EMG-controlled pros-
thetic hands4–6, but when compared with the dexterity of normal hand, prosthetic devices are often restricted to 
producing only basic functions, such as closing/opening7. This limitation arises from the inability of the control 
algorithms to decode elaborate human intentions through EMG recorded on the skin surface. Although various 
computational methods have been suggested8–13, there is still no accurate and robust method for translating sur-
face EMG into proficient proportional multi-degree-of-freedom hand control. This is mainly due to physical lim-
itations of the acquired signal which contains superimposed activity of all the underlying muscle units. Because 
the electrical signals propagate through layers of biological tissue, the superficial muscles have a proportionally 
larger contribution to the EMG signal than the deeper ones14–16 (i.e. supinator). Additionally, when recorded on 
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the skin surface, the EMG signal is prone to large distortions due to relative movement between the electrodes 
and the muscles as the arm moves.

One technique to obtain more informative EMG signals is to place electrodes close to, or even inside, the 
targeted muscles in order to selectively record activation patterns of multiple muscles independently. In this way, 
it is possible to derive relatively simple but intuitive methods that could link the muscle activity to the move-
ment of the artificial hand. With technological advances17–20, surgical implantations of electrodes are becoming 
a reality for widespread use, thus enabling development of novel control strategies based on intramuscular EMG 
(iEMG)21,22. Having in mind that the main requirement of such control algorithm is high reliability related to 
interpreting user intent regardless of circumstances, it is clear that an algorithm should be thoroughly tested on 
various iEMG signals recorded on subjects during execution of common hand movements. The systematic way 
of designing appropriate multi-degree hand prosthesis controller usually relies on a relatively large collection of 
input signals obtained in a protocol similar to the intended use scenario. Therefore, a database of iEMG signals 
would be instrumental for any future development of control algorithms for hand prosthesis and for cross evalu-
ation of different classification approaches. Unfortunately, compared to surface EMG, collecting iEMG requires 
a significantly more elaborate procedure which includes medical specialists and strictly controlled conditions. 
Thus, there are only a few previous studies that have focused on obtaining iEMG for the purpose of controlling a 
hand prosthesis21,23–26.

Here we present a database of iEMG signals recorded during the execution of basic hand movements and 
some of the most common hand gestures. The rationale behind this protocol is to enable prediction of a single 
degree of freedom (such as flexion/extension of individual fingers) but also to test the algorithm on synergistic 
hand gestures. The signals were recorded using fine-wire intramuscular electrodes positioned by a clinical neu-
rophysiologist. The protocol included visual and audio cues presented to a subject in order to perform specific 
motor tasks. Simultaneously with the recording of iEMG, forces elicited by the fingers and wrist were recorded 
using a custom-made isometric force measurement device. The fact that multi-joint forces were accurately and 
synchronously recorded with iEMG is the major highlight of this database. Fourteen able-bodied subjects partic-
ipated in the study divided into two protocols; the first focused on the muscles available within a short residual 
forearm; the second focused on fingers and thumb muscles. The database comprises 16 self-containing files that 
include iEMG signals, force signals and protocol descriptors.

Methods
Subjects. Fourteen male able-bodied volunteers aged between 25 and 57 years (mean 39 years) participated 
in the study. All subjects were right-handed and neurologically intact. The recordings were divided into two pro-
tocols and two subjects were included in both protocols, thus the final database contains sixteen files, eight for 
each protocol. All the subjects signed the informed consent, and the study was approved by the Regional Ethical 
Review Board in Lund, Sweden (Dnr 2017-297).

Intramuscular EMG recordings. The intramuscular EMG signals were recorded using the Quattrocento 
(OT Bioelettronica, Torino, Italia) biomedical amplifier system. The system comprises a 400 channel amplifier, 
digitalization unit and preamplifiers with 5x gain for interfacing electrodes with the amplifier. All iEMG signals 
were amplified 150 times and sampled with 16-bit amplitude resolution at 10240 Hz. A hardware high-pass filter 
at 10 Hz and a low-pass filter at 4400 Hz were used during recordings. The intramuscular electrodes used in this 
study were paired fine-wire electrodes from Chalgren, Gilroy, USA. Each wire is 200 mm long and 0.051 mm 
in diameter, made of stainless steel with nylon insulation for improved visibility. Each pair of wires ends with a 
2 mm bare wire (the insulation is offset to avoid short circuits). The positioning of the fine-wire electrodes was 
performed by a MD specialist in clinical neurophysiology using the guidelines from Anatomical guide for the 
electromyographer: the limbs and trunk27. The localization of the inserted wires was done by checking the move-
ment of the guiding cannula while performing designated hand manoeuvre specified for the targeted muscle. The 
second check of the signal quality was done with the cannula still inserted by displaying iEMG signal in real-time 
while performing the hand manoeuvre. The final check of the signal was after the removal of cannula. Upon val-
idation that the fine-wires were inside the targeted muscle, the wire leads and the preamplifier were taped to the 
lower arm to ensure low noise measurement. In addition, to verify the correct position of the electrodes a MD 
specialist in musculoskeletal radiology performed an ultrasound examination in two subjects (subjects 13 and 
14), one per each recording protocol. The aim of ultrasound examination was to confirm that the needle tip was 
located within the targeted muscle after which the needle was retracted. The DICOM and JPEG images of the 
needle positions within the targeted muscles are provided with the rest of the recorded data. It should be noted 
that the ultrasound machine used for this study (EPIQ 7, Phillips, The Netherlands, with linear transducer L18-5 
working on 9 MHz) was not able to detect the fine-wire ends due to their small size, so the position identification 
was done using the needle tip.

In this study we defined two measurement protocols, each targeting specific muscles which correspond to two 
different levels of forearm amputation, thus mimicking potential user scenarios of myoelectric prosthesis control. 
The first protocol, called short residual limb (SRL) protocol targeted the following muscles: flexor carpi radialis 
(FCR) – responsible for wrist flexion, extensor carpi radialis longus (ECR) – responsible for wrist extension, 
pronator teres (PT) – responsible for forearm pronation, flexor digitorum profundus (FDP) – responsible for 
flexion of fingers D2-D5, extensor digitorum communis (EDC) – responsible for extension of fingers D2-D5, and 
abductor pollicis longus (APL) – responsible for thumb abduction. The second protocol, called long residual limb 
(LRL) targeted the following muscles: flexor digitorum profundus (FDP), extensor digitorum communis (EDC), 
abductor pollicis longus (APL), flexor pollicis longus (FPL) – responsible for thumb flexion, extensor pollicis lon-
gus (EPL) – responsible for thumb extension, and extensor indicis proprius (EIP) – responsible for index finger 
(D2) extension. The splitting into two protocols, each focusing on one of the scenarios (SRL or LRL) encountered 
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in amputees also reduced the chance of failed measurements due to, for example a subject experiencing vasovagal 
syncope (fainting) or a high level of pain or discomfort. The twelve subjects had six pairs of fine-wires inserted 
regardless of the protocol, while two subjects were recorded with nine electrodes that were later also divided into 
two subsets (SRL and LRL).

Isometric force recording. Synchronously with the iEMG signal recording, hand forces were assessed using 
a custom-made force measurement device. The main reason for using the force/torque measurement device was 
to gather data of individual joint torques during the execution of predefined movements. The rationale for choos-
ing an isometric setup was to simulate muscle behaviour in a forearm amputee and to limit muscle displacement 
that could impact mechanical stability of the inserted fine-wire electrodes. The device was designed in order 
to constrain the joints in the wrist and hand in a neutral posture approximately in the middle of the range of 
motion of the individual joints. In addition, this biomechanically favourable position enabled the generation of 
relatively large forces for both flexion and extension of individual joints. During the measurement, the device 
was firmly placed on the table with rubber patches preventing the device from slipping or accidental lifting. The 
subject’s forearm was supported by an adjustable bracket, and also, the subject was instructed to remain firmly 
seated throughout the measurement session to prevent compensatory movements. The force sensors’ outputs 
were conditioned to an output of 0–5 V, with the voltage proportional to the exerted force in the range ± 100 N. 
The sensors were factory calibrated by the manufacturer in order to have less than 1% full scale error. The linearity 
error was also validated after integrating force gauge sensors into the device. This was done to determine influence 
of the semi-rigid aluminium frame on the measured force. The resulting transfer function between readings of 
the reference force gauge and the sensor of the instrumented platform was highly linear throughout the operating 
range (R2 = 0.9999, RMSE = 0.010 42 V (0.41 N)). The analog signals from the force sensors were digitalized using 
NI-USB 6218 (National Instruments, Austin, Texas, USA) A/D with 16-bit amplitude resolution and sampling 
frequency of 200 Hz. A custom-made LabView (National Instruments, Austin, Texas, USA) program recorded 
force signals in a _.tdms file. At the onset of recording, the NI-USB 6218 card generated pulses that were routed 
to Quattrocento auxiliary input in order to synchronize the force and EMG data. The synchronization pulses had 
5 V amplitude, 200 ms width and 0.5 Hz frequency and were also recorded with the NI card analog input to ensure 
synchronization in the case of any kind of delay related to the output of the NI device.

The detailed description of the measurement device and its error validation can be found in our previous 
publication28.

recording protocol. As stated before, two measurement protocols were designed for this study, with the 
only difference being the selection of targeted muscles. Thus, besides the recorded muscles, the protocol was 
the same in both cases. At the beginning of the recording session the subject was informed about all the aspects 
including possible risks after which he signed the informed consent. In the next stage, the isometric force meas-
urement device was configured to fit the subject’s hand. This was followed by a familiarization period (lasting 
approximately 30 minutes) during which the subject got accustomed to the required hand movements, software 
and cues. Upon completing the familiarization period, the neurophysiologist placed the electrodes. If a subject 
experienced high level of pain or nausea the measurement was paused and the continuation was evaluated by the 
neurophysiologist. Two of the volunteers fainted during the electrode insertion procedure and did not participate 
in the recordings. Additionally, one subject experienced excessive pain from the electrode positioned in pronator 
teres muscle which had to be removed. Nevertheless, in this case, the recording was performed with the other five 
electrodes. Although occasionally experiencing pain or nausea, other subjects had all the electrodes in designated 
muscles. After securing all wires and preamplifiers with the adhesion tape, the subject was instructed to place his 
hand in the force measurement device and sit comfortably (see Fig. 1).

The whole measurement protocol was controlled and guided automatically (without the need of a manual 
protocol control or an instructor) by the custom-made software developed in LabVIEW. Before each task, a short 
written description was presented on the screen, followed by the onset indicator comprising a large green light 
indicator (visual cue) and a beeping sound (auditory cue). This “go cue” was only relevant for maximal voluntary 
contraction (MVC) and grasping stages of the measurement as the rest of the protocol stages were focusing on 
sine tracking. During the measurement, selected forces were presented to the subjects, e.g. while performing 
index finger movement, only the index finger force was shown. During any movement, a manual override of 
a presented cue was possible upon subject’s request, e.g. decreasing/increasing visual cue force. As the whole 
process was automatic, codes for individual stages were generated and recorded alongside the force signals. The 
automated protocol executed experimental substages in the same order as presented in Table 1. During the meas-
urements, a clinical neurophysiologist was observing the iEMG signals in real-time.

The system setup for the basic movements’ protocol (Single DoF Tasks) included a MVC of individual joints 
(codes x.1 and x.2 for x in [1,8]) and a torque tracking task (code x.3 for x in [1,8]). For the MVC task, the subjects 
were instructed to perform one strong contraction using only the specified joints. The onset and duration (5 s) 
were guided by the onscreen indicator and a beeping sound. These periods are labelled in the recorded files with 
increments of 0.01 on the base movement codes. For example, code 3.11 denotes actual MVC contraction cue of 
the ring finger while 3.10 is rest/preparation period within the ring finger MVC sub stage. The MVC test was per-
formed to assess maximal joint force/torque (used in cue test as the reference) and to record muscle contraction 
with the maximal number of active fibres. In the tracking tasks, the subject was asked to produce force/torque 
that matched the cue presented on the screen. Sinusoidal waveforms were provided as visual cues to estimate 
gradual force increase. The rationale behind the sinusoidal tracking task was to provide iEMG data and force data 
for proportional control of a hand prosthesis. The repetition frequency was set to 0.1 Hz to enable a gradual and 
controllable force increase. In addition to the basic movements (individual fingers and wrist flexion-extension, 
abduction-adduction and pronation-supination) a set of single joint 2DoF (code x.1 for x in [9,10]), multi-joint 
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2DoF (code x.1 for x in [11,14]) and synergistic (code x.1 for x in [15,22]) hand and wrist movements were 
included in the protocol. Both single and multi-joint 2DoF movements were based on trajectory tracking cues. In 
the case of single joint movements, the subject was tracking a 2D trajectory (circle) on the screen, where the circle 
radius was calculated as the lesser of two values from the corresponding single DoF sub stages. For example, for 
thumb joystick sub stage (9.1) the circle radius was calculated using the smaller of the two amplitudes used for sub 
stages 5.3 and 6.3. The synergistic movements were defined as 4 repetitions of movements with self-chosen force 
and timings governed by both a visual and an audio cue. The subjects were instructed to execute the synergistic 
multi-joint movements synchronously (all at once) except for the two movements that included the word “fol-
lowed” in the movement description (see movements 18 and 22 in Table 1). In these two cases, the subjects were 
instructed to first complete the first movement (i.e. for stage 18: pronation) and then start the second movement 
(i.e. for stage 18: palmar grasp). To make it clear, we included this explanation within the text. The labeling of syn-
ergistic movement cues was done similarly to the labeling of the movement cue implemented for single DoF MVC 
sub stages. For example, 3-digit pinch movement cue was labeled with 0.01 increment on the base movement 
code resulting in 20.11, while the rest between repetitions was labeled with 20.10. The chosen movements were 

Fig. 1 Experimental setup. (a) Targeted muscles for the short residual limb (SRL) and long residual limb (LRL) 
protocols. Upper rows of both protocols show manoeuvres preceding needle insertion and the insertion points. 
Bottom rows show locations of targeted muscles (T), ulna (U) and radius (R) in the forearm cross sections 
at the needles insertion points. Modified from Perotto et al.27. Courtesy of Charles C Thomas Publisher, Ltd., 
Springfield, Illinois. (b) Signal measurement chain showing two separate systems for acquisition of EMG and 
joint forces. The hardware synchronization was implemented as a digital line between the NI card and the 
Quattrocento device. (c) Measurement setup: Force/torque measurement apparatus, preamplifiers, visual cue 
and measurement flow control, Quattrocento amplifier and OT BioLab software for real-time monitoring of the 
iEMG signals. (d) Screenshot of the LabVIEW GUI during the sine-tracking task. (e) Fine-wire electrode tips. 
(f) Position of the hand within the force measurement device.

https://doi.org/10.1038/s41597-019-0335-8


5Scientific Data |            (2020) 7:10  | https://doi.org/10.1038/s41597-019-0335-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

foreseen as the most common gestures and grasps that a user will frequently perform with a hand prosthesis29–31.  
The recording lasted for 30 minutes. A mock-up video (iEMG_movements.mp4) demonstrating the hand ges-
tures in free-movement conditions is provided within the same repository as the recorded data.

Data pre-processing. The iEMG data recorded with OT BioLab was imported to Matlab (MathWorks, 
Natick, Massachusetts, USA). The second data file (_.tdms) containing force measurement, synchronization sig-
nals, tracking cue, the stage label, channel labels and time stamps recorded with the NI-6218 and LabVIEW 
software was also imported in Matlab. The first step of the data processing was to remove 50 Hz noise and its 
harmonics from the iEMG data. Although iEMG was recorded with an amplifier with 50 Hz suppression circuitry, 
the recorded data still contained some pronounced spectral components at 50 Hz and some of the harmonics. To 
reduce the noise, a filter bank comprising narrow notch filters centred at 50 Hz and harmonic values up to 5 kHz 
with 2 Hz width was constructed. The applied filter was customized for each recording to minimize spectral 
distortion. To conserve synchronization between channels, zero phase filters (Matlab command: filtfilt) were 
used. The next step in the data processing was to detect synchronization pulses in both files. This was done by 
numerically differentiating the 1D synchronization signal (Matlab command: diff) to emphasize pulse edges. 
Using the differentiated signal, the detection of the first pulse leading edge and the last pulse trailing edge in both 

Movement Sub stage Code

1. Single degree of freedom (DoF) Tasks

Index finger: flexion-extension

MVC Flexion 1.1x

MVC Extension 1.2x

Track sine cue 1.3

Middle finger: flexion-extension

MVC Flexion 2.1x

MVC Extension 2.2x

Track sine cue 2.3

Ring finger: flexion-extension

MVC Flexion 3.1x

MVC Extension 3.2x

Track sine cue 3.3

Little finger: flexion-extension

MVC Flexion 4.1x

MVC Extension 4.2x

Track sine cue 4.3

Thumb: flexion-extension

MVC Flexion 5.1x

MVC Extension 5.2x

Track sine cue 5.3

Thumb: adduction-abduction

MVC Adduction 6.1x

MVC Abduction 6.2x

Track sine cue 6.3

Wrist: flexion-extension

MVC Flexion 7.1x

MVC Extension 7.2x

Track sine cue 7.3

Wrist: supination-pronation

MVC Supination 8.1x

MVC Pronation 8.2x

Track sine cue 8.3

2. Single joint-multiple DoFs tasks (joysticks)
Thumb: Joystick flexion-extension-adduction-abduction Track circular cue 9.1

Wrist: Joystick flexion-extension-supination-pronation Track circular cue 10.1

3. Double DoF task (Trumpet test)

“Touch index finger with the thumb” Track sine cue 11.1

“Touch middle finger with the thumb” Track sine cue 12.1

“Touch ring finger with the thumb” Track sine cue 13.1

“Touch little finger with the thumb” Track sine cue 14.1

4. Synergistic movements

All fingers flexion (without thumb) 4 repetitions 15.1x

All fingers extension 4 repetitions 16.1x

Palmar grasp 4 repetitions 17.1x

Pronation followed by Palmar grasp 4 repetitions 18.1x

Pointing: index-extend, digits 3–5 flex 4 repetitions 19.1x

3-digit pinch 4 repetitions 20.1x

3-digit pinch with pronation 4 repetitions 21.1x

Key grasp followed with pronation 4 repetitions 22.1x

Table 1. The list of different movements and their codes in the database files. The similar table can be found 
within each database entry (cell “.Movements”). In this table x could be 0 or 1, where 1 denotes duration1.1 of 
the movement cue and 0 rest period within the protocol substage.
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files was performed. As a check-up, the count of all synchronization pulses was compared to verify that both files 
contain the same data. To prepare the data for the joint database, an interpolation of the force data gathered using 
LabVIEW was done to accommodate the Quattrocento iEMG data sampling rate (Matlab command: interp1).

Besides raw data, motor unit action potentials (MUAPs) detected and sorted from the recorded iEMG are 
provided as metadata. MUAP sorting was performed using an algorithm based on prior work by the authors32, 
which assigns MUAPs to the most similar waveform template in a set. To assess similarity between the MUAPs 
and each waveform template, the MUAPs were first aligned to the template using the lag that maximizes the 
cross-correlation between them, and then the following two criteria were evaluated: a) correlation coefficient 
between the MUAP and waveform template greater than 0.9; b) mean square difference between the MUAP and 
the waveform template smaller than half of the power of the waveform template. The spike sorting algorithm was 
executed three times, in which all motor unit action potentials (initially detected via a threshold) were processed 
in chronological order. In the first iteration, if the current MUAP was similar to any template already in the set, 
that template was updated to account for the new MUAP; otherwise, a new template was created. In the second 
iteration, all detected MUAP were re-processed, and existing templates were updated, but no new templates were 
created. In the last iteration, MUAPs were compared with each template and labelled as belonging to their best 
match, provided the above criteria were met, otherwise the MUAP was labelled as unknown. At the end of the 
first two iterations, the templates that had less than 5% of MUAPs with respect to the total number of MUAPs 
were discarded.

As the database is primarily recoded for the purpose of deriving and testing of different control algorithms for 
prosthetic hands, an iEMG signal feature was also calculated using raw signals. To provide signals for the bench-
marking of novel algorithms, envelopes of the recorded iEMG signals were extracted and provided as metadata. 
The Root Mean Square (RMS), as one of the most common EMG signal features, was selected to represent the 
signal envelope. In the metadata associated with the main iEMG database, the RMS was calculated using 250 ms 
wide window which was shifted in steps of one sample. The sliding window was centred over the current sample, 
resulting in zero phase shift between the raw signal and its envelope. It should be noted that this processing does 
not satisfy the condition of causality that is present in real-time applications where the value of the current signal 
feature could be calculated using only previous samples. Nevertheless, the zero-phase shifted envelope is pro-
vided with the data as a measure of an “ideal” signal feature, and it could be transposed into a realistic envelope 
by shifting the whole signal by half of the window size (125 ms which equals 1280 samples). The envelope signals 
were not normalized.

Data records
The database associated with this paper can be found at figshare33.

The data associated with each recording was stored in two files: one containing all the recorded signals and the 
experimental setup information (channels labels, movement codes and sampling rate), and another containing 
the spike-sorted metadata.

The pre-processed signals were bundled together and stored as Matlab structure files. The filename of each 
Matlab file consist of the following string: “FW” indicating the fine-wire recording, “SRL” or “LRL” depicting pro-
tocol and “Sxx” indicating subject coded name. The Matlab structure of each file contains the following elements:

•	 .Data
•	 .Channels
•	 .Movements
•	 .fs

The Data element holds all iEMG channels, all force channels, movement code and actual cue level pre-
sented to the subject (for sine tracking task). The iEMG signals are given in mV. The forces are presented in their 
unprocessed form; they are given in V while the transfer function between sensor analog output and the force is 
following:

= ∗ −force analog_voltage 40 100[N]

The Channels element contains channel labels that correspond to columns of the Data element. The Movements 
element of the file structure contains a list of hand movements/gestures alongside their codes that are within Data 
element (similar to Table 1). Finally, the fs element depicts the sampling frequency of the data. The list of files 
within the database is given in Table 2.

One should note that subjects 5 and 6 underwent both protocols at the same time, effectively having nine pairs of 
fine-wires positioned in all targeted muscles involved in both protocols while executing movements only once. This 
gives opportunity to researchers to merge these recordings in order to evaluate synergies and activation patterns of 
all nine muscles. A sample recording of iEMG and force channels from the file FW_SRL_S7.mat is shown in Fig. 2.

In addition to recorded signals, a supplementary set of 16 Matlab files containing spike sorted data (one per 
participant, named spikesort_sXX.mat, where XX is the subject identifier) is available at the same repository. 
These files contain four elements:

•	 .samples: contains as many cells as spike trains that were obtained from that participant. Each of the cells 
represents a spike train. The numbers are the samples at which the MUAPs occur.

•	 .times is a different way of observing the ‘samples’ data. In this instance, the numbers in each cell are the time 
stamps of the MUAPs, instead of the samples. That is, each number is the corresponding value from .samples 
divided by the sampling frequency.
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•	 .template: contains action MUAP waveform templates.
•	 .fs is the sampling frequency.

Another set of 16 Matlab files containing iEMG signal envelopes is also provided in the same repository. These 
files contain six envelope signals each in the same order as in raw iEMG signal files. The lengths of envelopes are 
same as the raw iEMG signals that were used to extract these signal features.

Finally, to facilitate simpler reuse of the iEMG signals database, a table comprising pairs of iEMG channels 
and force channels was derived and also provided as metadata. The table was constructed based on qualitative 
evaluation of signals quality done by the neurophysiologist during which iEMG signal properties (onset and 
modulation) were compared with the forces exerted by the hand joints. The table contains:

•	 List and order of iEMG channels for each subject.
•	 Pairs of iEMG channels and force channels. This sub-table also comprises code of the movement during 

which maximal correlation between these two channels was observed. In example, for subject 7, FDP channel 
(column 3 in the file container) pairs with little finger force channel (column 12 in the file container) during 
little finger movement (movement code 4). In addition, to enable direct comparison between iEMG features 
and forces, this sub-table contains the sign that indicates the force direction that corresponds to the iEMG 
channel activity. In example, for subject 7, the little finger force gets negative (flexion) when FDP channel has 
iEMG activity, thus the sign is −1. The sign parameter is the consequence of the bidirectional force transduc-
ers that were measuring both flexions and extensions (adductions/abductions and pronations/supinations) 
of individual joint.

•	 Quality of iEMG signals. This sub-table is also shown in Table 3. It should be noted that the pairing was done 
regardless of the signal quality.

technical Validation
The technical validation of the recorded data was performed in two ways: qualitative and quantitative. In the qual-
itative analysis, the neurophysiologist reviewed the individual iEMG signals. This evaluation process comprised 
the following examinations:

•	 iEMG in time domain. This part of the evaluation focused on muscle unit action potentials (MUAP) shape 
and frequency. The iEMG was marked as proper if the signal contained clearly differentiated inactive and 
active segments (with and without muscle activity), and active segments with MUAPs of the physiological 
amplitude, duration and frequency.

•	 iEMG with respect to the performed movements and exerted forces. This evaluation aimed at comparing 
activity of the recorded muscle and the forces associated with that specific muscle. The iEMG signal was 
marked as proper if the activation of the muscle corresponded to the recorded force measured on the hand 
joint actuated by the examined muscle.

•	 iEMG channel with respect to other iEMG channels. This evaluation checked if there was significant overlap 
of activation between two or more recording sites, indicating that one or both fine-wires of the channel had 
migrated to a neighbouring muscle. The iEMG signal was marked as proper if the activations were not syn-
chronous over the whole recording.

Subject Protocol File name Age

1 SRL FW_ SRL _S1.mat 33

2 SRL FW_ SRL _S2.mat 47

3 SRL FW_ SRL _S3.mat 34

4 LRL FW_ LRL _S4.mat 42

5 SRL FW_ SRL _S5.mat 42

5 LRL FW_ LRL _S6.mat 42

6 SRL FW_ SRL _S7.mat 35

6 LRL FW_ LRL _S8.mat 35

7 LRL FW_ LRL _S9.mat 57

8 SRL FW_ SRL _S10.mat 41

9 LRL FW_ LRL _S11.mat 40

10 SRL FW_ SRL _S12.mat 33

11 LRL FW_ LRL _S13.mat 42

12 LRL FW_ LRL _S14.mat 35

13 SRL FW_ SRL _S15.mat 25

14 LRL FW_ SRL _S16.mat 43

Table 2. Data files and age of the subjects.
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Only if the neurophysiologist marked all three indicators as proper the signal was considered as “good”. If 
there was no clear decision in any of the examinations the signal was considered as “questionable”, finally, if there 
was clear negative decision in any of the examinations the signal was considered as “bad”. The results from the 
qualitative assessment of the database signals are shown in Fig. 3.

When added together, the qualitative evaluation of the recorded iEMG signals show that 76% of channels 
were “good”, 17% “questionable” and 7% “bad”. To further identify errors during the experiment protocol, the 
qualitative evaluation was done also on individual channel/muscle basis. This analysis revealed that most of the 
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Fig. 2 Sample of recorded data, subject 7. (a) Recorded signals in one full session: 1–6. iEMG channels 
(pronator teres – PT, flexor carpi radialis – FCR, flexor digitorum profundus – FDP, extensor carpi radialis 
– ECR, extensor digitorum communis – EDC, abductor pollicis longus – APL), 7–14 Strain gauges’ outputs. 
Additionally, activity of 7 muscle units (Unit 1–7) were joined with the recorded signals. The movement 
groups are separated with dashed lines. To provide more information regarding the recorded signals 4 cases are 
extracted from this recording and shown in the smaller time window. (b1) This subfigure highlights a single 
DoF movement. The ring finger force is notably correlated with the FDP and the EDC activities. It could be 
also noted that during force modulation both firing rate and recruitment of these muscles are changing. (b2) 
This subfigure illustrates estimation of ring finger force using RMS features of FDP and EDC channels. From 
the shapes of the time domain signals it could be noted that activity of two antagonistic muscles is reflected 
in finger force. This correlation is prominent in global trends (increasing/decreasing) of the finger force 
(increase/decrease), but also in small disturbances of the finger force that are present in iEMG RMS features 
(c) This subfigure focuses also on a single DoF movement but, besides raw muscle activity the figure also shows 
extracted spike trains. In the case of activity in the PT, it is interesting that for small forces only single muscle 
unit was picked-up by the fine-wires so the force modulation is reflected in the firing rate of that MU. The 
lower part of the subfigure shows three spike templates. (d) This subfigure depicts a synergistic movement that 
comprises the strong contraction of the majority of the targeted muscles. The aim of this subfigure is to show 
differences between channels in terms of iEMG content. While in some channels there is only one (or several) 
MU active, other channels are recording an abundance of MU-s resulting in a signal shape that resembles 
superficial EMG.
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“bad” channels were associated with thumb muscles (primarily APL), as shown in Fig. 3. It is important to note 
that for the two subjects (labeled as FW_SRL_S15 and FW_LRL_S16) who had their electrode positions verified 
using ultrasound, the number of questionable channels had the same ratio as for other recordings that were done 
without the ultrasound guidance.

The fact that measurement of iEMG on some channels/muscles resulted in several unsuccessful recordings 
could be explained by different reasons such as:

•	 Relatively small muscles. The thumb muscles are quite small in size making it difficult for the wires to remain 
anchored in the muscle. They are also positioned in vicinity of some larger forearm muscles, so any, even 
small, displacement of wire ends after the initial insertion could lead to significant crosstalk between muscles.

•	 Electrode placement protocol. The initial protocol defined the sequence of electrode insertions to start with 
the most distal and end with the most proximal muscle sites. This practically meant that the thumb muscles 
were targeted first. Consequently, as the electrode placements for the proximal muscles required maximal 
pronation/supination manoeuvres, as described in the “Anatomical guide for the electromyographer”27, there 
was a risk that some of these movements could displace a fine-wire from the small and deep muscle.

The one instance of PT muscle recording being “bad” was due to excessive pain experienced by the volunteer 
during the recording, which led to removal of that electrode.

In the quantitative analysis we checked two parameters of the recorded iEMG signals: cross-correlation 
between channels and the signal spectrum. The calculation of cross-correlation coefficients was done after offline 
notch filtering (Matlab function: xcorr()). The results of the cross-correlation calculation are shown in Table 3. 
The aim of Table 3 is to demonstrate the extremely high selectivity that fine-wire electrodes enable. Additionally, a 
low cross-correlation between channels shows that the common noise was successfully removed through ampli-
fier design and offline filtering.

1 1
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2 0.007
(0.005; 0.051)
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Table 3. Cross-correlation of different iEMG channels. The values shown in the table are median among all 
subjects with 5th and 95th quartile in brackets.
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Fig. 3 Qualitative assessment of the database signals. For each database file all signals were analyzed 
individually. iEMG signals/channels considered “good” are represented with green, “questionable” with grey 
and “bad” with red color (left). Qualitative analysis of recorded iEMG channels presented in absolute numbers 
(right). iEMG signals/channels considered “good” are represented with green, questionable (“?”) with grey and 
“bad” with red colour.
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It should be noted that the cross-correlation coefficients between channels are quite low, even though qual-
itative evaluation done by the neurophysiologist concluded that some of the recorded iEMG channels were not 
recording the targeted muscle. This low cross-correlation indicates that, despite some of the electrodes recorded 
from the same muscle, due to their small exposed surface, they captured activity from different muscle portions 
whose activities are not synchronous.

The second quantitative test included evaluation of the iEMG signal spectrums. The cumulative plot of all 
iEMG signals is shown in Fig. 4.

It should be further noted that the median and quartiles of the signals spectrums closely match the shape 
reported in the literature3. The discontinuities within the spectrum are due to offline notch filters that 
removed power line interference. In addition, the dispersion of the signal spectrum amplitudes is relatively 
high which is a consequence of the fine-wire recording methodology. Specifically, there is no routine for 
precisely controlling free wire ends during or after inserting which results in wire ends having a variety of 
distances and orientations between them for different muscles and subjects. Consequently, depending on 
wire ends distances and orientations (along or across the muscle) there was a large variation between iEMG 
amplitudes on different channels.

In addition to the presented measures of the iEMG signal quality, we also utilized some of the well-known 
computational methods based on iEMG for the estimation of muscle force21. But, as the focus of this study was on 
the recording protocol and obtained signals, detailed information regarding the force estimation method and the 
results could be found in the previous publication from the same authors28.

Code availability
The signal recording was performed using two programs in parallel: OT BioLab version 2.0.6254 available at 
www.otbioelecttronica.com for recording iEMG and synchronization signals, and the custom recording software 
developed in LabVIEW 2016 for force signals recording, generating synchronization pulses, visualizing forces 
and generating commands and cues. Data post-processing was done in Matlab. All custom codes are available by 
contacting the corresponding author.
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