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Highlights 

• Clinically-significant asymmetries are not exposed by group-level statistics 

• The majority had clinically-significant asymmetry for the eyes-closed-balance test 

• Many players had clinically-significant asymmetry for the six-metre hop-for-time 

• The unilaterality of hockey does not affect interpretation of absolute-asymmetries 

• Clinically-significant asymmetry is widespread in a community-level adult hockey 
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ABSTRACT 

Objectives: Side-to-side asymmetry of lower-limb motor-performance is associated with 

increased agility-sport noncontact injury-risk. Left leg preferential use (unilaterality) in hockey 

may influence lower-limb motor-performance asymmetry. Symmetry-analyses have not been 

reported for female hockey players. This study performed symmetry-analyses using the eyes-

closed-balance test (ECB), anterior reach test (ART), triple-hop-for-distance (THD), and six-

metre hop-for-time (6MHT).  

Design: Cross-sectional. 

Setting: Community-level club. 

Participants: Thirty players (age 25.6±4.5yr; height 165.6±5.9cm; mass 64.8±5.5kg). 

Main Outcome Measures: Right-left group-level (t-test with Bonferroni adjustment) and 

individual-level (absolute-asymmetry (%)) comparisons. A limb symmetry index (LSI) was 

computed for each player and a clinically-significant absolute-asymmetry defined >10% as per 

previous literature. Clinically-significant absolute-asymmetry prevalence (%) was calculated 

across tests. For unilaterality, prevalence of superior left-side performance was calculated. 

Results: There were no right-left significant differences across tests. Findings for ECB, ART, 

THD, and 6MHT were: absolute-asymmetry, 28.7±26.9%, 3.5±2.8%, 3.5±3.4%, 6.1±4.7%; 

prevalence of clinically-significant absolute-asymmetries, 70.0%, 3.3%, 6.7%, 26.7%; prevalence 

of superior left-side performance, 46.7%, 53.0%, 50.0%, 47.0%. 

Conclusions: Statistical tests fail to expose clinically-significant absolute-asymmetries. Many 

players demonstrated clinically-significant absolute-asymmetries for ECB and 6MHT tests. 

Clinical interpretation of LSIs and absolute-asymmetries need not consider unilaterality. 

Clinically-significant absolute-asymmetries previously linked to injury-risk are common in a 

community-level, adult female hockey players. 

 

KEYWORDS 

Field hockey, knee, ankle, asymmetry 
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INTRODUCTION 

Field hockey (‘hockey’) is an Olympic sport played by men and women in 136 nations (1). In 

2016 there were 92,700 male and female adult players in England (2). Community-level 

participation in England rapidly grew when hockey’s popularity increased after the Great Britain 

women’s team won the Olympic gold medal in 2016 (3) with 143,845 players by the end of 2017 

(4). With increased sports participation comes an increase in injury frequency (5), and female 

hockey injuries have rates of 3.0 injuries/1,000 athlete-exposures (6) and 23.4-44.2 injuries/1,000 

player-match-hours (7). Most hockey injuries occur to the lower-limb (6, 8-10) and are noncontact 

in nature (6, 8). Knee and ankle injuries account for the majority of injuries (6, 9, 11) and are of 

high severity defined by the amount of time-loss from participation (8, 12). Such injuries can 

result in physical and psychoemotional disability (13-15) and substantial socioeconomic 

healthcare burden (13, 16, 17). Because participation in hockey in England is increasing, and 

because of the personal and socioeconomic consequences of knee and ankle injuries, strategies 

are needed to mitigate injury for players, teams, and society, and prolong players’ safe 

participation across the lifespan. 

 

In injury prevention, single-leg balance (SLB) and hop (SLH) tests are used to make side-to-side 

comparisons of motor-performance and inform reasoning about knee and ankle injury 

predisposition and risk (18-20). Use of procedures to profile athletes and identify those 

predisposed to injury is good sports medicine practice (21-23) and decreased SLB, and SLH 

performance is associated with increased first-time agility-sport injury risk (18, 20, 24-27). When 

SLB and SLH tests are used to make side-to-side comparisons that inform reasoning about injury 

predisposition and risk, considerations include whether statistically or clinically significant side-

to-side differences exist. Side-to-side comparison of the size of a variable represents a between-

limb symmetry analysis (28), symmetry existing when the size of a variable is equal in both limbs 

and asymmetry existing when the size of a variable is unequal between limbs (28). For groups of 

athletes, symmetry analyses examine whether statistically significant side-to-side differences 
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exist for measures of central tendency (28-33). A limitation of group-level analyses is that it 

masks clinically-significant asymmetries in individuals because group data is reduced to one 

central value that fails to highlight extreme values either side of that value and, therefore, presents 

a distorted picture of data distribution across all individuals (28-31, 34). For individual athletes, 

symmetry analyses examine whether clinically-significant side-to-side differences exist for an 

individual’s mean or maximum values (28-31, 35). Procedures involve computing some form of 

‘limb symmetry index’ (LSI) where one limb’s value is divided by the other limb’s value, the 

result multiplied by 100 to yield a percentage (28, 29, 35-37). The LSI is valuable because it 

identifies the size of a clinically-significant asymmetry in an individual, where ‘clinically-

significant’ is historically defined as an absolute-asymmetry >10% (38-40). Recently, motor-

performance asymmetries >10% have been prospectively associated with first-time lower-limb 

noncontact injury risk (24, 41). Because lower-limb motor-performance side-to-side comparisons 

and symmetry analyses are clinically valuable for injury predisposition and risk profiling (20, 24-

26, 41) the use of SLB and SLH testing and symmetry analyses is a clinically diligent and prudent 

strategy in hockey.  

 

When using SLB and SLH testing and symmetry analyses, reasoning should include the 

asymmetric and unilateral nature of hockey. The rules of hockey require all players to use a right-

handed stick and strike the ball with its flat (left) side (42). Therefore, players commonly adopt 

stances involving semi-crouched positions with the left foot forward of the right and the left leg 

supporting most body-mass (9, 42, 43). When striking the ball, players frequently rotate the body 

from right-to-left to again have the left leg supporting most body-mass (42, 44, 45). Because the 

left leg is preferentially used, hockey has an “inbuilt asymmetry” (9) and is categorised as a 

unilateral sport (46). The inherent asymmetry/unilaterality of hockey is reflected by higher bone 

mineral density (BMD) and muscle mass in the left versus right leg (47, 48) and, therefore, SLB 

and SLH test symmetry analyses should be interpreted with the asymmetrical/unilateral nature of 

hockey in mind.   
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Several studies have employed lower-limb motor-performance tests with adult hockey players. 

Single-leg balance tests have been performed using force plates/electronic platforms (49-51), the 

Star Excursion Balance Test (52), and the Y-balance Test (53). Double-leg jump tests have been 

performed using the vertical jump (54-56) and broad jump (57-59). Three studies employed 

computers for SLB testing (49-51), none employed SLH testing, and one performed group-level 

symmetry analyses (53). There is, therefore, an absence of literature reporting use of ‘field-based’ 

tests to identify clinically-significant asymmetries and injury predisposition with any adult 

hockey player at any hockey club in any country. Reliable, low-cost, and portable lower-limb 

motor-performance tests able to provide data useful for injury predisposition and risk profiling 

are valuable for informing a community club’s training strategies and changes in practice (28). 

Few studies have recruited players from local communities (50, 56, 57), and none focused on 

community-level adult players in England. Adult players in local communities comprise the 

greatest proportion of players in England (2), and profiling lower-limb motor-performance is 

important to provide data about the frequency of clinically-significant asymmetries and injury 

predisposition in such groups. Finally, no study has performed SLB or SLH testing with 

consideration for the asymmetrical/unilateral nature of hockey and, therefore, it is unknown 

whether this predisposes the left leg to enhanced motor-performance versus the right leg. Such 

knowledge is important for the clinical interpretation of hockey LSIs and absolute-asymmetries. 

 

There were three purposes for this study. First, to establish if there were statistically significant 

side-to-side differences for the single-leg eyes-closed balance (ECB), anterior reach test (ART), 

triple-hop-for-distance (THD), and six-metre hop-for-time (6MHT) in uninjured, adult, female 

players at one English community hockey club. It was hypothesised there would be statistically 

significant side-to-side differences across all tests. Tests were chosen because SLB and SLH tests 

are associated with first-time lower-limb injury in agility-sport athletes (18, 20, 24-27) and 

because they are portable, practically viable at many clubs, and are meaningful to players and 
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coaches regarding athletic performance. Second, to determine the prevalence of clinically-

significant asymmetries for the ECB, ART, THD, and 6MHT. It was hypothesised the majority 

of players would demonstrate clinically-significant asymmetries across tests. Third, to establish 

if the asymmetrical/unilateral nature of hockey results in side-to-side differences that favour the 

left leg. It was hypothesised the majority of players would demonstrate superior scores for the left 

versus right leg across tests. This study is original because no previous work has reported side-

to-side comparisons and symmetry analyses for SLB and SLH field-tests in uninjured, adult, 

female players at one English community hockey club. This study’s findings will be practically 

significant because they will highlight the extent to which clinically-significant lower-limb 

motor-performance asymmetries linked to injury predisposition and risk by previous authors exist 

at a single club and may require consideration for intervention.  

 

MATERIALS AND METHODS 

Study design, sample size calculation 

This study was an in-season cross-sectional study which, relative to the first purpose of the study, 

included multiple (four) right-left comparisons of a measure of central tendency (one per test). 

Determination of sample size should balance both statistical needs relative to the study (e.g. study 

design, study hypothesis) and real-world feasibility and practicality (60-62). To balance statistical 

needs with real-world logistical considerations (e.g. limited number of players in the membership 

of one local community hockey club, limited club training sessions to collect data) we used an 

approach that: 1. estimated the smallest clinically-meaningful effect size for each test and then 

applied the resulting smallest effect size and largest sample size to all tests (60); 2. corrected for 

multiple comparisons with Bonferroni’s adjustment (see Statistical Analyses section) (62). An a 

priori power analysis was performed using G*Power (63). To detect a side-to-side difference with 

medium effect size (ES) of 0.50, 85% power, and significance set at 0.05, 31 participants were 

required. 
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Ethical approval, participant recruitment, informed consent 

Institution ethics approval was obtained. Participants were recruited from an English community 

hockey club using flyers on clubhouse noticeboards. Informed consent and physical activity 

readiness questionnaires were completed by all participants. 

 

Participants 

Inclusion criteria were: females aged ≥18 years, ≥4 years’ hockey experience, and participating 

in ≥2 hours’ training and one match per week. Exclusion criteria were: current lower-quadrant 

pain or time-loss injury in the previous two months (i.e. injury requiring withdrawal from one or 

more training/matches), any diagnosed hip/knee/ankle ligament deficiency or cartilage lesion, any 

history of lower-quadrant fracture or surgery, and any current condition affecting sensorimotor 

processing/balance. Thirty players volunteered (Table 1). The club competed in the Investec 

Women’s Hockey League (Division One South and Conference East). 

 

 

 

Procedures.  

Data collection occurred at the club’s indoor facility (artificial turf) in one session. Players were 

instructed to avoid fatiguing exercise/sports for 48 hours beforehand. Test order was: 

anthropometry (height, body-mass, leg-length), barefoot ECB, barefoot ART, shod (hockey 

shoes) THD, and shod 6MHT. For the ART, THD, and 6MHT, a fibreglass athletics tape-measure 

Table 1. Participant characteristics (n=30)

Age Height Mass Leg-Length Leg-Length Length of Hockey Other

(yr) (cm) (kg) Right Left Hockey Training/ Exercise/

(cm) (cm) Career Playing Sport

(yr) (hrs/wk) (hrs/wk)

Min 18.0 152.0 54.0 77.5 78.0 5.0 3.5 1.0

Max 34.0 176.0 74.0 92.6 93.7 26.0 8.0 14.0

Mean 25.6 165.6 64.8 87.0 87.0 15.5 4.7 4.5

SD 4.5 5.9 5.5 3.6 3.5 5.0 1.1 2.9

yr = years; cm = centimetres; kg = kilograms; hrs/wk = number of hours per week

Min = minimum; Max = maximum; SD = standard deviation
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was secured to the ground perpendicular to a taped start-line. Limb order was randomised (coin-

flip) with players alternating between limbs for each test. After anthropometric measures, players 

completed a standardised warm-up (jogging, dynamic stretching, running). Arm movement was 

permitted for SLH tests to assist balance (64, 65). Practice trials for all tests were followed by 

three measured trials. Trials were terminated if players reported any pain. 

 

Height and body-mass were measured using standard methods (66). For leg-length (67), players 

were barefoot and supine-lying. Leg-length was measured from the anterior superior iliac spine 

to the tip of the medial malleolus to the nearest millimetre (mm) using a fibreglass anthropometric 

tape-measure. Reliability (intraclass correlation coefficient (ICC)=0.99) has been reported for this 

procedure (67). 

 

For the ECB test (68), players stood on the test-leg, the opposite leg flexed with the heel level 

with but not touching the approximate mid-point of the test-leg’s calf, arms crossed and hands 

flat on the chest (Figure 1). Players were instructed to look forwards and acquire a steady posture 

before closing the eyes. Balance was measured to the nearest tenth of a second (s) using a digital 

stopwatch from the moment the eyes closed to the moment balance was lost (opening eyes, 

uncrossing arms, touching heel to the calf, shifting the test-leg foot, putting the non-test-leg’s foot 

to the floor). Reliability has been reported for the timed ECB test (ICC=0.83) (68). 
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Figure 1. Eyes-Closed-Balance Test 

 

For the ART (26), players stood on the test-leg, the tip of the first toe aligned with the posterior 

edge of the start-line, hands on the iliac crests, and reached forward as far as possible with the 

opposite foot to touch the ground with the first toe (Figure 2). Loss of balance, taking hands off 

the iliac crests, lifting the stance-leg heel, transferring body-mass onto the reach-leg, and not 

returning to the starting position voided the trial. Reach distance was measured to the nearest 

0.5cm from the posterior aspect of the start-line to the point where the reach-leg touched the 

ground. Reliability has been reported for the ART (ICC=0.91; standard error of measurement 

(SEM)=2.1cm) (69). 
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Figure 2. Anterior Reach Test 

 

For the THD and 6MHT (70), players stood on the test-leg, the distal aspect of the foot aligned 

with the posterior edge of the start-line (Figure 3). For the THD, players hopped forwards on the 

same leg three times to stick the final landing. Hop distance was measured to the nearest 0.5cm 

from the posterior edge of the start-line to the distal aspect of the foot. For the 6MHT, players 

hopped forwards on the same leg to cover six metres in the shortest possible time. A “3, 2, 1, Go” 

countdown was given. Time was measured to the nearest tenth of a second (s) using a digital 

stopwatch from the “Go” to the moment the test-leg’s foot crossed the finish line determined by 

researcher observation. Reliability has been reported for the THD (ICC=0.97; SEM=11.2cm) (71) 

and 6MHT (ICC=0.92; SEM=0.06s) (71). 
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Figure 2. Triple-Hop-for-Distance and Six Metre Hop-for-Time 

 

Statistical Analyses 

For the ART and THD, data were normalised to leg-length (26, 72): percent leg-length (%LL) = 

(distance achieved (cm) ÷ leg-length (cm)) × 100. The mean non-normalised and normalised 

values for each leg were used for analyses. Summary statistics were calculated, including the 

absolute between-limb differences (right mean – left mean). The +/− sign was removed from the 

difference. There were no missing data.  

 

For statistical analyses (group-level), normality of data was assessed with histogram inspection 

and Shapiro-Wilk tests. Alpha was set a priori at 0.05. Paired t-tests were used to compare within-

test right and left values. Bonferroni-corrected alpha was set a priori at 0.01. Also, 95% 
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confidence intervals (CI) were estimated for both sides (73). Cohen’s d was calculated for within-

test right-left ES with 0.20, 0.50, and 0.80 considered small, medium, and large, respectively (62).  

 

For clinical analyses (individual-level), an LSI (%) was calculated: (right mean ÷ left mean) × 

100 (31, 38, 74). For the ECB, ART, and THD, larger numerator and denominator values 

represent better performance; an LSI of 100% representing side-to-side symmetry, <100% lower 

right-side/higher left-side performance, >100% lower left-side/higher right-side performance. For 

the 6MHT, smaller numerator and denominator values represent better performance; an LSI of 

100% representing side-to-side symmetry, <100% better right-side performance, >100% better 

left-side performance. The LSI, therefore, indicated both the magnitude (size) and direction (side) 

of asymmetry (28). Because the size of asymmetry is the principal matter of clinical interest (36), 

absolute-asymmetry was quantified: 100% − player’s LSI. The +/− sign was removed from the 

difference. Because a clinically-significant absolute-asymmetry is defined as >10% (38-40) and 

asymmetries >10% have been prospectively associated with first-time noncontact lower-limb 

injury risk (24, 41), absolute-asymmetries >10% were used to define a ‘clinically-significant’ 

threshold across tests. Counts were made of players with absolute-asymmetries >10% and overall-

prevalence (%) computed: (number of players with absolute-asymmetry >10% ÷ total number of 

players) × 100 (75). For players with absolute-asymmetry >10%, side-prevalence (%) was 

calculated for those with right-side better performance: (number of players with right-side better 

performance ÷ number of players with absolute-asymmetry >10%) × 100. The remaining 

proportion represented those with left-side better performance. Because an ART side-to-side 

difference ≥4cm has been prospectively identified as a risk factor for first-time noncontact lower-

limb injury (26), counts were also made of players with asymmetries ≥4cm and overall-prevalence 

(%) computed: (number of players with an asymmetry ≥4cm ÷ total number of players) × 100 

(75). For players with a side-to-side difference ≥4cm, side-prevalence (%) was calculated for 

those with right-side better performance (number of players with right-side better performance ÷ 
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number of players with a side-to-side difference ≥4cm) × 100. The remaining proportion 

represented those with left-side better performance. 

 

For the asymmetrical/unilateral nature of hockey, counts were made of players with better left-

side mean values for each test and proportions (%) calculated: (number of players with better left-

side mean values ÷ total number of players) × 100. The remaining proportion represented those 

with better right-side mean values. 

 

RESULTS 

Thirty players volunteered to participate from a club with 100 female players. No player 

experienced pain or adverse event during testing. Summary statistics are presented in Table 2 and 

3. 

 

 

 

 

Table 2. Summary statistics and effect sizes for all tests (n=30)

R L Absolute R L Absolute R L Absolute R L Absolute

Difference Difference Difference Difference

Min 9.5 13.8 0.5 46.4 47.2 0.1 341.3 358.7 0.3 1.6 1.6 0.0

Max 90.0 76.4 33.9 75.6 79.9 7.5 558.3 541.7 44.7 2.4 2.4 0.3

95% CI 34.1, 48.7 35.3, 48.4 6.8, 12.9 59.8, 65.0 59.6, 65.2 1.3, 2.6 447.1, 481.8 445.1, 482.8 10.2, 20.3 1.8, 2.0 1.8, 2.0 0.1, 0.2

Mean 41.4 41.8 9.9 62.4 62.4 2.0 464.4 464.0 15.2 1.9 1.9 0.1

SD 19.5 17.6 8.2 7.0 7.4 1.7 46.5 46.5 13.6 0.2 0.2 0.1

ES

s = seconds; cm = centimetres; R = right; L= left; Absolute Difference = right − left (+/− sign removed)

Min = minimum; Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound); SD = standard deviation; ES = effect size

Eyes Closed Balance (s) Anterior Reach (cm)

0.000.010.000.02

Six Metre Hop (s)Triple Hop (cm)

Table 3. Summary statistics and effect sizes for normalised anterior reach and triple hop values  (n=30)

R L Absolute R L Absolute

Difference Difference

Min 56.9 58.7 0.2 440.4 422.7 0.3

Max 82.6 85.3 9.0 634.4 629.7 53.3

95% CI 69.1, 74.3 70.0, 74.2 1.7, 3.2 516.7, 550.5 513.6, 551.9 11.9, 24.0

Mean 71.7 71.6 2.0 533.6 532.7 17.9

SD 6.9 7.0 1.9 45.3 51.3 16.2

ES

%LL = percentage of leg-length; R = right; L= left; Absolute Difference = right − left (+/− sign removed)

Min = minimum; Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound)

SD = standard deviation; ES = effect size

Anterior Reach (%LL)

0.01 0.01

Triple Hop (%LL)
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All data were normally distributed. There were no significant side-to-side differences for the non-

normalised ECB (P=0.84), ART (P=0.96), THD (P=0.90), or 6MHT (P=0.45), or the normalised 

ART (P=0.90) and THD (P=0.84) (Table 2-3). For both normalised and non-normalised variables, 

95% CIs had highly similar upper and lower boundaries, and all within-test right-left ESs were 

negligible (Table 2-3). 

 

Summary statistics for LSIs and absolute-asymmetries are presented in Table 4. The minimum 

and maximum LSIs for the ECB test extended far below and above 100% indicating some players 

had large absolute-asymmetries (Table 4). The overall-prevalence of an absolute-asymmetry 

>10% for the ECB test indicated the vast majority of players had clinically-significant 

asymmetries (Table 4). The overall-prevalence of an absolute-asymmetry >10% for the 6MHT 

indicated over one-quarter of players had clinically-significant asymmetries. For side-prevalence, 

almost half to half of the players had right-side better performance for the ECB test and 6MHT, 

respectively (Table 4). For the ART threshold of ≥4cm, 10% of players had a clinically-significant 

absolute-asymmetry, of which 33% had right-side better performance. Two players had an 

absolute-asymmetry of 3.9cm. 

 

 

 

Table 4. Summary statistics for limb symmetry indices and absolute-asymmetries (n=30)

LSI Absolute LSI Absolute LSI Absolute LSI Absolute

(%) Asymmetry (%) Asymmetry (%) Asymmetry (%) Asymmetry

(%) (%) (%) (%)

Min 31.4 0.9 92.9 0.3 92.0 0.0 85.8 0.0

Max 197.3 97.3 113.3 13.3 112.6 12.6 114.0 14.2

95% CI 89.5, 118.9 18.6, 38.7 98.5, 101.9 2.4, 4.5 98.6, 102.2 2.3, 4.8 96.3, 102.0 4.3, 7.8

Mean 104.2 28.7 100.2 3.5 100.4 3.5 99.2 6.1

SD 39.5 26.9 4.5 2.8 4.9 3.4 7.7 4.7

O-Prevalence (%)

S-Prevalence (%) 

* = calculated using normalised values (percent leg-length values); LSI = limb symmetry index (see text for equation)

Absolute Asymmetry = absolute difference (+/− sign removed) between an LSI of 100% and an actual LSI

Min = minimum; Max = maximum; 95% CI = 95% confidence interval (lower bound, upper bound); SD = standard deviation

O-Prevalence = overall-prevalence for an absolute-asymmetry >10% (see text for defintion and equation)

S-Prevalence = side-prevalence for an absolute-asymmetry >10% (see text for defintion and equation)

Eyes Closed Balance Six Metre HopTriple Hop*Anterior Reach*

47.6

70.0

50.0

26.7

100.0

6.7

100.0

3.3
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For the asymmetrical/unilateral nature of hockey, 46.7%, 53.0%, 50.0%, and 47.0% of players 

had better left-side mean values for the ECB, ART, THD, and 6MHT, respectively. The remaining 

proportions of players had better right-side mean values. 

 

DISCUSSION 

The first purpose of this study was to establish if there were statistically significant side-to-side 

differences for the ECB, ART, THD, and 6MHT in uninjured, adult, female players at one English 

community hockey club. It was hypothesised there would be statistically significant side-to-side 

differences across tests. Findings demonstrate there were no statistically significant side-to-side 

differences for any test. The second purpose was to establish the prevalence of clinically-

significant asymmetries for the ECB, ART, THD, and 6MHT. It was hypothesised the majority 

of players would demonstrate clinically-significant asymmetries across tests. Findings 

demonstrate the majority of players had clinically-significant asymmetries for the ECB test and 

more than one-quarter of players had clinically-significant asymmetries for the 6MHT. The third 

purpose was to determine if the asymmetrical/unilateral nature of hockey results in side-to-side 

differences that favour the left leg. It was hypothesised the majority of players would demonstrate 

superior scores for the left versus right leg across tests. Findings demonstrate that approximately 

half of the players had better left-side mean values across tests, and the other half of the players 

had better right-side mean values across tests. 

 

Comparison of the present data (Table 2-3) to previous literature is not possible because no other 

work has reported such data for such participants. The alternative is to compare the present data 

(Table 2-3) to values reported for other adult female athletes and mixed-sex adult groups. The 

mean ECB values in this study are higher than those reported for netball players (22.5-29.6s) (28) 

and a mixed-sex group of adults (27.8-28.8s) (76). The present mean normalised ART test values 

are also higher than those reported for collegiate hockey players (62.8-63.1%LL) (53) and lower 

than those reported for mixed-sport collegiate athletes (73.4%LL) (77). The current mean non-
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normalised THD values are equal to those reported for netball players (463.1-464.6cm) (28) and 

lower than those reported for mixed-sport collegiate athletes (470.0cm) (78). The mean 6MHT 

values in this study are shorter (better) than those reported for mixed-sport collegiate athletes 

(2.1s) (78) and fitness enthusiasts (2.4-2.5s) (79). The present mean test values are comparable 

with some previous literature. The present data, therefore, can serve as reference data for 

uninjured, adult, female community-level hockey players and may be used within clinical 

decision-making processes. 

 

This study found no statistically significant side-to-side difference in group mean values for any 

test. Such findings are consistent with ECB and ART right-left comparisons in physically active 

females (28, 53, 76). Such findings are inconsistent with other research that reported statistically 

significant differences for THD right-left comparisons in female basketball players (80). The 

authors have been unable to locate any study that performs right-left statistical comparisons for 

the 6MHT. For both normalised and non-normalised variables (Table 2-3), 95% CIs had highly 

similar upper and lower boundaries and all within-test right-left ESs were negligible, supporting 

trivial right-left differences for group-level analyses across all tests. However, group-level 

analyses by statistical significance tests and ES are limited because they mask individual-level 

clinically-significant asymmetries; this is due to the inherent need to first reduce all individuals’ 

data to a single central value that does not indicate the true extent of data distribution (29-31, 34). 

Consequently, group-level analyses are not useful in injury prevention because they fail to 

identify individuals who possess clinically-significant side-to-side differences and asymmetries 

(28-30). 

 

An absolute-asymmetry >10% was used to define clinically-significant asymmetry because a 

motor-performance absolute-asymmetry >10% is prospectively related to first-time noncontact 

lower-limb injury risk (24, 41). The majority of players demonstrated a clinically-significant 

absolute-asymmetry for the ECB test (Table 4). Such findings are aligned with previous work in 
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agility-sport athletes (28, 30). Two players for the THD and more than one-quarter of players for 

the 6MHT demonstrated a clinically-significant absolute-asymmetry (Table 4). For the ART, an 

absolute-asymmetry ≥4cm was also used to define clinically-significant asymmetry because it is 

specifically related to increased risk of first-time noncontact lower-limb injury (26). Two players 

demonstrated a side-to-side difference of 3.9cm and 10% of players demonstrated a clinically-

significant absolute-asymmetry using the ≥4cm threshold. There were, therefore, individual 

players within the larger group with absolute-asymmetries that may predispose an increased risk 

of first-time noncontact knee and ankle injury. Based on such findings, correction of clinically-

significant absolute-asymmetries using targeted interventions for selected players may need to be 

considered by clinical and coaching personnel (28). Effective interventions can be implemented 

using generic whole-team exercise programmes (81-83) or individualised exercise programmes 

(84-86). Because some players had better performance for the right-side and others for the left-

side (Table 4), individualised interventions designed according to each player’s asymmetry 

profile may be preferable for optimal outcomes (23, 28, 87). Clinical personnel in collaboration 

with coaching staff will need to determine which intervention strategy is best according to their 

team’s logistical needs and the time-of-season. Based on the present data, because clinically-

significant absolute-asymmetries were evident for large proportions of players (Table 4), 

screening for clinically-significant absolute-asymmetries is a clinically diligent and prudent 

strategy in English community-level adult female hockey. Individualised and targeted correction 

of clinically-significant absolute-asymmetries may then contribute to the prevention of knee and 

ankle injuries. An alternative consideration is that because the players in this study were uninjured 

and apparently healthy and available for full training and competition, it may not actually be 

unusual to observe several players in a single sample with relatively large absolute-asymmetries. 

As such, because similar observations have been reported in other studies (28, 30), clinicians 

should conscientiously reason whether a definitive need for intervention exists. 
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Preferential use of the left leg in hockey reflects higher BMD and muscle mass in the left versus 

right leg with hockey classed as a unilateral sport (46-48). Based on this study, morphological 

adaptations that favour the left leg are not paralleled by better left-side motor-performance as 

evidenced by approximately half of the players having better left-side mean values and the other 

half having better right-side mean values. Further support for lack of left-sided superior motor-

performance comes from an absence of statistically significant side-to-side differences across 

tests (Table 2-3). Therefore, the clinical interpretation of LSIs and absolute-asymmetries in 

hockey need not consider preferential use of the left leg. 

 

Potential limitations include not performing dominant-to-nondominant side-to-side comparisons 

(19, 29). Such comparisons were not performed because dominance/preference changes 

according to task demands (e.g. skill, load-bearing) (46, 50, 88) and because in real-world practice 

the size of an absolute-asymmetry is the factor that first draws practitioners’ attention, after which 

the side with inferior performance is identified (28). Potential limitations also include using a 

simple LSI equation compared to other complex equations using right-left designators within 

multiple mathematical operations (89). Such equations were not employed because the equation 

used in this study requires few mathematical operations, is quicker to complete, and yields 

clinically meaningful values. Potential limitations further include not sub-grouping players into 

different team positions (58). Sub-grouping was not performed because individual-level analysis 

and intervention-customisation are of primary clinical importance when considering injury 

control interventions (23). This study is only generalisable to similar samples of hockey players. 

Future research should replicate this study to determine the consistency of findings. Future 

research should also replicate this study with community-level adult males and child/adolescent 

females and males to compare the prevalence of clinically-significant absolute-asymmetries 

across sexes and growth/development. Future research should further employ the motor-

performance tests used here within prospective studies to determine the association between 

absolute-asymmetries of different magnitudes and injury risk as well as the effect of 
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individualised corrective interventions on actual knee and ankle injury incidence. All contexts of 

suggested future research will provide valuable information for the community-level hockey-

specific injury control process. 

 

CONCLUSION 

The tests used in this study were safely employed with a community-level hockey club. There 

were no statistically significant side-to-side differences for the ECB test, ART, THD, or 6MHT. 

Group-level asymmetry analyses using statistical significance tests masked the extent to which 

individuals possessed clinically-significant absolute-asymmetries. The majority of players 

demonstrated clinically-significant asymmetries for the ECB test, and more than one-quarter of 

players demonstrated clinically-significant asymmetries for the 6MHT. Researchers should use 

individual-level as well as group-level data analysis methods when performing asymmetry 

analyses with groups of players. The ECB test and 6MHT may be particularly useful for 

identifying clinically-significant absolute-asymmetries, although the ART and THD should also 

be employed because they are also capable of identifying players with clinically-significant 

absolute-asymmetries. The unilateral nature of hockey does not predispose the left leg to 

enhanced lower-limb motor-performance versus the right leg and, therefore, need not be 

considered when interpreting LSIs and absolute-asymmetries. This study highlights that 

clinically-significant lower-limb motor-performance asymmetries linked to injury predisposition 

and risk exist at a single hockey club and require consideration for intervention.  
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