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Neural oscillations originate predominantly from interacting cortical neurons and

consequently reflect aspects of cortical information processing. However, their functional

role is not yet fully understood and their interpretation is debatable. Amplitude

modulations (AMs) in alpha (8–12 Hz), beta (13–30 Hz), and high gamma (70–150 Hz)

band in invasive electrocorticogram (ECoG) and non-invasive electroencephalogram

(EEG) signals change with behavior. Alpha and beta band AMs are typically suppressed

(desynchronized) during motor behavior, while high gamma AMs highly correlate with the

behavior. These two phenomena are successfully used for functional brain mapping and

brain-computer interface (BCI) applications. Recent research found movement-phase

related AMs (MPA) also in high beta/low gamma (24–40 Hz) EEG rhythms. These MPAs

were found by separating the suppressed AMs into sustained and dynamic components.

Sustained AM components are those with frequencies that are lower than the motor

behavior. Dynamic components those with frequencies higher than the behavior. In

this paper, we study ECoG beta/low gamma band (12–30 Hz/30–42 Hz) AM during

repetitive finger movements addressing the question whether or not MPAs can be found

in ECoG beta band. Indeed, MPA in the 12–18 Hz and 18–24 Hz band were found. This

additional information may lead to further improvements in ECoG-based prediction and

reconstruction of motor behavior by combining high gamma AM and beta band MPA.

Keywords: electrocorticogram, brain-computer interface, beta band, high gamma, movement-phase related

amplitude modulation

1. INTRODUCTION

Functional brain mapping (fBM) and brain-computer interface (BCI) technologies identify
behavior—cognitive and motor—by interpretation of brain signal patterns. For example, invasive
electrocorticogram (ECoG) high gamma band (70–150 Hz) activity (γH) strongly correlates with
motor behavior (Crone et al., 1998; Edwards et al., 2005; Miller et al., 2007, 2014; Schalk et al., 2007;
Scherer et al., 2009; Martin et al., 2016) and was suggested to contain similar information as firing
rates on a intermediate spatial scale (Ray et al., 2008; Manning et al., 2009; Miller et al., 2009b).
The single-trial signal-to-noise ratio (SNR) of γH is high, which is essential for robust and timely
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FIGURE 1 | ECoG and EEG envelopes of known oscillatory phenomena

during single-trial motor behavior (idealized). The top plot shows a typical

times series recorded from data glove sensors during, for example, index

finger extension and flexion movements. Below characteristic γ H (70–150 Hz)

and µ/β (8–12 Hz/13–30 Hz) activities for invasive ECoG and noninvasive

EEG, respectively, are shown. EEG βH-γL (24–40 Hz) MPA is shown in the

dotted box. corr, Pearson Correlation Coefficient; ERD, Event-Related

Desynchronization; MPA, Movement Phase related Amplitude modulation.

online BCI performance. γH can also be found in the noninvasive
electroencephalogram (EEG) (Ball et al., 2008; Darvas et al.,
2010; Grosse-Wentrup et al., 2011; Seeber et al., 2015); However,
the single-trial SNR is low in non-invasive EEG. In contrast,
oscillations over sensorimotor areas in the µ (8–12 Hz) and
β (13–30 Hz) frequency range are much more pronounced
in EEG recordings on a single-trial level. The suppression
of theses rhythms—a phenomenon known as event-related
desynchronization (ERD) (Pfurtscheller and Da Silva, 1999)—
were suggested to represent increased excitability in underlying
neural circuitry (Neuper and Pfurtscheller, 2001) or a release
of inhibition facilitating movement initiation (Hermes et al.,
2012). Sensorimotor µ and β band suppression during motor
behavior is also characteristic for ECoG. A simplified, idealized
representation of event-related µ, β , and γH activity patterns
during movement are summarized in Figure 1. Since these
patterns are well described in the literature, they are commonly
used in BCI. Currently a precise reconstruction of the behavior
from these macroscopic recordings is, however, only possible to a
limited extent. To improve fBM/BCI performance, it is essential
to deepen our understanding of signals recorded as local field
potentials (LFP), ECoG, and EEG.

Recently, we started to systematically study EEG source
dynamics during upright gait (Wagner et al., 2012; Seeber
et al., 2014). Results confirmed a sustained µ and β band ERD
and γH activity during walking when compared to standing.
Additionally, we found EEG source amplitudes in the high β-
low γ (βH-γL) frequency range (24–40 Hz) that are modulated
in relation to the gait cycle (Wagner et al., 2012, 2016; Seeber
et al., 2014, 2015). These movement-phase related amplitude

modulations (MPA, see Figure 1) showed different spectral
profiles than classical ERD and event-related synchronization
(ERS) phenomena (Pfurtscheller and Da Silva, 1999; Neuper
and Pfurtscheller, 2001). We found βH-γL MPA being present
during rhythmic finger extension and flexion movements using
EEG source reconsturction (Seeber et al., 2016). Because
spectral profiles were suggested to be characteristic for specific
large-scale networks (Donner and Siegel, 2011; Siegel et al.,
2012), we interpreted MPA to represent different frequency-
specific networks than classical ERD/ERS (Seeber et al., 2014,
2016). Moreover, following previous literature (Neuper and
Pfurtscheller, 2001; Hermes et al., 2012) sustained ERD/ERS
phenomena, i.e., different synchrony states in sensorimotor
populations, during repetitive movements indicate the contrast
between non-movement and active movement states. The
functional meaning of MPA is less clear so far. Based on their
time-frequency properties and cortical location we suggested
that they might reflect processes linked to the prediction and
integration of sensorimotor information (Seeber et al., 2016). Yet,
more work is needed to falsify or support this viewpoint.

Since µ, β , and γH are phenomena found during repetitive
finger extension and flexion movements in both ECoG and
EEG, in this work, we investigate whether MPA in βH-γL
range can also be found in ECoG. This would complement
the gap in Figure 1. As outlined above, our hypothesis is that
βH-γL envelopes, i.e., band-pass filtered power signals tat are
commonly used for movement decoding, are composed by
superposition of functionally different frequency-specific cortical
networks. The first class of networks provides information
on the movement state (motor system “active” or “inactive”).
These networks contribute elements of sustained amplitude
modulation during repetitive movements and are linked to
classical ERD/ERS. The second class of networks provide
information on functional aspects of the motor behavior
(movement phases). These networks contribute elements of
dynamic amplitude modulations and are linked to MPAs. Note
that interpretation of MPAs is only meaningful when the motor
system is “active.” To test this perspective, we split up β and γ

envelopes in sustained and dynamic components, and compare
their correlation with behavior, precisely movement trajectories
recorded with a data glove. Sustained and dynamic components
can be decomposed by low and high pass filters, respectively. The
movement pace defines the filter cut-off frequency. Modulation
frequencies close to, but below the movement pace reflect
ERD/ERS. Modulation frequencies close to, but above the
movement pace might show MPAs.

2. METHODS

2.1. Patients, Data Acquisition, and
Experimental Paradigm
The study participants were six neurosurgical patients with
intractable epilepsy (Patient ID: BP, CC, MN, OJ, ES, and DJ).
They underwent temporary placement of a subdural electrode
array (8 × 8 grid, 1 cm horizontal and vertical inter-electrode
distance) to localize the epileptic seizure focus and map brain
function prior to surgical resection. Electrode placement was
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determined by clinical considerations, with the necessity and
location of the electrodes determined by the interdisciplinary
conference of the Regional Epilepsy Center, Harborview Medical
Center, University of Washington. The patients gave informed
consent prior to participation in a manner approved by the
Human Studies Division (Institutional Review Board) of the
University of Washington.

ECoG signals were recorded on a Synamp2 amplifier
(Compumedics Neuroscan) at a sampling rate of 2,000 samples
per second (1,000 for patients BP and CC) and band-pass filtered
between 1 and 500 (200 for patients BP and CC) Hz. The position
of each finger was registered through a 5-degrees of freedom data
glove device (Fifth Dimension Technologies, Inc.) with a rate of
25 samples per second.

Participants were asked to perform a cue-guided repetitive
motion task of individual finger movements. Two-second-long
visual cues for thumb, index finger and a pinching motion
(involving thumb and index finger movement as well as middle
finger, ring finger and pinky) were randomly interleaved and
separated by 2-s rest intervals. The cues were delivered visually
on a 10 by 10-cm presentation window at a distance of 70 cm
from the subject, using the BCI2000 software (Schalk et al., 2004).
In total there were 29–31 cue presentations per type of visual cue
(except for one subject which was only presented with 23–26 cues
per type of visual cue). The results in this paper focus on thumb
and index finger movements only.

2.2. Data Analysis
ECoG time series were down-sampled to 1,000 samples
per second and visually inspected for the presence of artifacts.
Noisy segments and malfunctioning channels were removed.
Overall, 92.6% of channels and 91.5% of movement trials were
retained for further analysis. The down-sampled ECoG data was
band pass filtered between 0.1 and 200 Hz (8th order Butterworth
IIR filter) and re-referenced with respect to the common average.
Data glove recordings were up-sampled by zero-order-hold
interpolation to 1000 samples per second. Thumb and index
finger movement onset and movement duration were selected by
visual inspection.

The β-γL frequency range was subdivided into five non-
overlapping sub-bands β1 = 12 − 18 Hz, β2 = 18− 24 Hz,
β3 = 24 − 30 Hz, γ1 = 30 − 36 Hz, γ2 = 36− 42 Hz.
The Hilbert transform was applied to the βi and γi
band pass filtered re-referenced ECoG signals (6th order
Butterworth IIR filter) to compute the time varying analytical
amplitude Âj (j = [thumb, index]), which is a measure of
amplitude modulation (AM). Additionally, the analytical
amplitude Âj in the high γH = 70 − 150 Hz frequency
band was computed. This resulted in six (frequency band
fb = [β1,β2,β3, γ1, γ2, γ

H]) analytical amplitude Âj,ch,fb time
series per channel ch = 1, 2, . . . 64.

Study participants performed between 1 and 6 finger
movement cycles per trial (see Figure 2A for finger movement
trajectories). This corresponds tomovement frequencies from 0.5
to 3 Hz. In order to sufficiently separate sustained (condition
SUS) and dynamic (condition DYN) components, a cut-off
frequency of 0.4 Hz was selected. Hence, each Âj,ch,fb was

further divided into sustained ÂSUS
j,ch,fb

and dynamic ÂDYN
j,ch,fb

AM

components by applying a 0.4 Hz low pass and high pass filter,
respectively. Data glove time series Gj (j = [thumb, index]) was

also subdivided into sustained GSUS
j (≤ 0.4 Hz) and dynamic

GDYN
j (> 0.4 Hz) elements. A 6th order Butterworth IIR low

(high) pass filter was used. From each of the calculated time
series, 4 s segments were extracted from

[

− 1.0 . . . 3.0
]

s
with respect to movement onset t = 0 and concatenated.
Further analyses weremade with these new time series. Figure 2B
summarizes the signal processing pipeline.

Pearson correlation coefficients corr(GSUS
j , ÂSUS

j,ch,fb
), and

corr(GDYN
j , ÂDYN

j,ch,fb
) were computed for each finger j, frequency

band fb and channel ch. As reference, gold standard correlations
corr(Gj, Âj,ch,fb) were calculated, without separating sustained
and dynamic AM.

The entire correlation-analysis was repeated with N = 1, 000
random time-domain permutations of common-average re-
referenced channel data. The obtained correlation values
where then pooled and permutation distribution for the
different conditions and frequency bands was evaluated.
Permutation distribution showed to be normal for all patients
for each frequency band and condition. Nonetheless sub-
band standard deviation showed to be higher compared to
γH and random permutations of corr(Gj, Âj,ch,fb) exhibited the

lowest and corr(GSUS
j , ÂSUS

j,ch,fb
) the highest standard deviations

over-all. To gain comparability between frequency bands and
conditions, Pearson-correlation coefficients were converted into
z-scores zj,ch,fb, z

SUS
j,ch,fb

and zDYN
j,ch,fb

by subtracting the mean and

dividing by the standard deviation of the underlying pooled
permutation distribution. Z-scores give the distance from the
mean and are measured in standard deviations. The 2.5% and
97.5% quantile were selected as subject-specific chance level
for negative and positive z-scores, respectively, conforming
with two times the standard deviation, hence a z-score of
approximately two.

Z-scores that exceed chance level show a significant relation
between ECoG AM envelopes and finger movement trajectories.
We defined these AM envelopes as MPAs. For visual presentation
envelopes of the channel with the highest z-score located
over movement-related areas were averaged after trial-wise
segmentation for each patient and frequency band.

3. RESULTS

ERD/ERS time-frequency maps (Graimann et al., 2002) were
computed for each patient to obtain a reference image of β

and γH activity. ERD/ERS maps are time-frequency plots that
display significant ERD and ERS in predefined frequency bands.
Topographically arranged, they give a clear overview of the
movement-related behavior of the non-phase locked activity over
a broad frequency range. Figure 3A shows example ERD/ERS
maps for patient BP index finger and thumb movement. The
maps show widespread β band ERD during finger flexion and
extension over sensorimotor areas and more focal high γ activity
over cortical index finger and thumb representation areas. This
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FIGURE 2 | (A) Individual thumb and index finger trajectories recorded with the 5-DOF data-glove for one patient in a time window of 120 s. (B) Signal analysis

pipeline.

pattern was visible in all patients. For patient ES the pattern was
widespread and distributed over the whole grid.

For all patients and conditions significant negative z-scores
were calculated for β1, β2, β3, γ1, and γ2 sub-bands. High positive
z-scores were found in γH . zDYN

j,ch,fb
showed to be much more

focal than zSUS
j,ch,fb

and zj,ch,fb; z
SUS
j,ch,fb

values were comparably lower.

Overall z-score magnitude decreases and spatial distribution gets
more focal with increasing frequency. The spatial distribution of

positive and negative z-scores conforms with the spatial location

of ERD and ERS activity. Figure 3B summarizes these findings

in detail for patients BP. For each frequency band and condition
z-scores are topographically arranged in form of bubble plots.

For the remaining subjects only bubble plots for γH and the

sub-band with the highest negative z-score over sensorimotor

areas are presented (Figures 4, 5). Bubble plots for the remaining

frequency bands can be found as Supplementary Information.
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FIGURE 3 | Results for subject BP. (A) ERD/ERS time-frequency maps. The plots show, topographically arranged (8 × 8 grid), significant ERD and ERS activity plots

for index finger (left) and thumb (right). Electrode locations are marked by star symbol on standard brain. (B) Correlation analysis and MPA. Significant z-score

transformed Pearson correlation coefficients, computed between corresponding digit trajectory and ECoG envelope components, are displayed for index finger (left)

and thumb (right) movements. Z-scores are topographically arranged for each condition (columns, sustained, dynamic, and standard) and frequency band (rows,

(Continued)
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FIGURE 3 | β1 = 12− 18 Hz, β2 = 18− 24 Hz, β3 = 24− 30 Hz, γ1 = 30− 36 Hz, γ2 = 36− 42 Hz, and γ H = 70− 150 Hz) independently. Size and color of

bubbles correspond to z-score values. A black “x” symbol marks channels with z-scores below chance level. A black annulus marks channels with the highest

absolute value for each frequency band. Blank spaces in the 8 × 8 electrode grid mark channels excluded from the analysis. Note that negative correlations were

smaller than positive correlations. To enhance readability of the bubble plots negative correlations are doubled in size. For selected sensorimotor channels curves of

averaged amplitude envelopes of filtered ECoG and averaged data-glove trajectory for β1 (bottom) and γ H (top) frequency bands are plotted. The number next to the

line connecting channels and plots are the corresponding z-scores. β1 MPAs are drawn with thicker lines and highlighted in gray background color.

Averaged amplitude envelope curves for selected channels and
the conditions standard and dynamic are shown in Figures 3B,
4, 5. Channel selection was based on location (only channels
located over sensorimotor areas were considered) and maximum
absolute z-score magnitude. As reference the averaged original
data glove trajectories are visualized. The curves for the standard
condition show a sustained decrease during movement. The
curves for the dynamic condition show β1 MPA and β2

MPA. Corresponding z-score values for zDYN
j,ch,fb

are summarized

in Table 1.

4. DISCUSSION

The aim of this study is to investigate whether βH − γL MPA,
previously observed in EEG (Seeber et al., 2016), are similarly
present in ECoG recordings during finger extension and flexion.
To tackle this question, ECoG activity and data glove trajectories
were split into sustained and dynamic components. The latter
was expected to show MPA. Correlations between ECoG and
corresponding data glove components were computed. In
addition to prominent ERD/ERS phenomena, we indeed found
significant correlation between the dynamic ECoG and the
dynamic glove data component as shown in Figures 3–5 for
index finger and thumb movement, respectively.

ERD/S time-frequency maps (Figure 3A) show the well
established patterns of β ERD and high γ ERS (Crone et al.,
1998; Pfurtscheller et al., 2003; Scherer et al., 2003; Miller et al.,
2007). High gamma activity showsmovement relatedmodulation
patterns in agreement with previous literature (Schalk et al., 2007;
Miller et al., 2009a; Scherer et al., 2009; Hermes et al., 2012).

The position of channels showing significant correlation with
behavior were determined based on Talairach coordinates and
are located over sensorimotor areas. Using the classical approach
of using solely band pass filtered envelope ECoG AMs Âch,fb,
represented by our standard condition, results in higher z-scores
compared to sustained ÂSUS

ch,fb
and dynamic ÂDYN

ch,fb
AMs. For the

interpretation of the reported z-scores it is relevant to take
into account which component (condition) of the data glove
signal is compared to which frequency-specific brain feature. For
instance, one can find that the high positive correlation for γH

standard condition mostly stem from the dynamic movement
components. High z-scores in the sub bands standard condition
are mainly caused by the rather strong sustained suppression.
For the latter high z-scores represent the similarity of the
ERD/ERS feature and glove data in general. This distinctions
are only possible by decomposing AMs in different components
(conditions). There is considerable variability between subjects,

but as shown in Figures 3–5 dynamic condition, not only
in γH , but also in β range sub-bands are modulated by
movement. This is in agreement with findings from EEG studies
investigating walking (Wagner et al., 2012) and finger tapping
(Seeber et al., 2016).

All z-score normalized correlation values reported above
were computed at zero-lag between amplitude envelopes and
glove data. The impact of time lags on the robustness of the
results was analyzed by computing cross-correlation at varying
lags. For sustained and standard condition 0s lag showed to
result in the highest z-scores whereas for dynamic condition no
clear relation could be obtained for all frequency bands. Thus
temporal dynamics were analyzed by averaging with 0 s lag.
Because of the variability in task execution (high variability in
timing and number of finger movements per trial, as can be
seen in Figure 2A and in the averaged data glove trajectories
¯̂Gj in Figures 4, 5 for patients CC and DJ) we shall focus our
interpretation of results to the period from 0.5 s before start
of movement and during the first finger movement cycle. As
excepted γH AMs show clear modulation with the movement
pace and are thereby highly positively correlated with the finger
trajectories. Interestingly for every subject individual electrodes
were found with high negative z-values. Corresponding γH AM
curves peak directly before movement onset and resemble a
rather flat line during the rest of the movement period. An
example of an averaged amplitude envelope curve illustrating
this phenomena for subject BP thumb movement is presented
in Figure 3B. This activity seems to coincide with movement
planning. β1 AMs in subjects BP, MN and OJ and β2 AMs
in subjects CC and ES anticipate the motor behavior and are
negatively correlated to the first cycle of thumb and index finger
movement. These results suggest that β rhythms not only show
sustained decrease in amplitude, but that they are superimposed
with dynamic modulations that are somewhat correlated with
behavior and thus indeed show MPA.

Data analyzed in this paper were originally recorded to study
temporal dynamics of γH activity during movement (Scherer
et al., 2010) and not to research MPAs. This results in some
limitations. Limitations include the short movement duration
(∼ 2 s), the high variability of motor execution and small
number of movement cycles per finger movement (1–6 cycles
per trial), the small number of movement trials (23–31) and
the short inter-cue interval. We expect that longer trials and
larger number of rhythmic finger movements per trial would
result in visually much clearer and more consistent dynamic
modulations. The use of a general cut-off frequency of 0.4
Hz based on movement speed for low- and high-pass filtering
with such a high variability in movement-speed holds another
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FIGURE 4 | Correlation analysis results and MPA for subjects CC, ES, and MN. Significant z-score transformed Pearson correlation coefficients for each channel,

topographically arranged in bubble plots, for index finger (left) and thumb (right) are displayed. For each subject all conditions (columns, sustained, dynamic, and

standard) of γ H = 70− 150 Hz and the sub-band β1 = 12− 18 Hz or β2 = 18− 24 Hz with the highest significant z-scores are displayed. Bubble size and color is

not directly comparable from subject to subject due to different color-bar ranges. For more detailed description see Figure 3.
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FIGURE 5 | Correlation analysis results and MPA for subjects OJ and DJ. Significant z-score transformed Pearson correlation coefficients for each channel,

topographically arranged in bubble plots, for index finger (left) and thumb (right) are displayed. For each subject all conditions (columns, sustained, dynamic, and

standard) of γ H = 70− 150 Hz and the sub-band β1 = 12− 18 Hz or β2 = 18− 24 Hz with the highest significant z-scores are displayed. Bubble size and color is

not directly comparable from subject to subject due to different color-bar ranges. For more detailed description see Figure 3.
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TABLE 1 | Highest most significant negative z-score for dynamic condition (zDYNj,ch,fb )

and corresponding frequency band (fb) for each subject and finger movement.

Subject Index finger Thumb

(zDYN
j,ch,fb, fb) (zDYN

j,ch,fb, fb)

BP −2.2, β1 −5.3, β1

CC −3.5, β2 −3.8, β2

ES −4.9, β2 −5.1, β2

MN −2.3, β1 −2.3, β1

OJ −2.6, β1 −3.6, β2

DJ −3.1, β1 −2.6, β1

limitation and could further be improved by individualized
selection of filter stop/pass bands likely resulting in higher
correlation values.

Nonetheless we find and report for the first time dynamic
β1 and β2 modulations that are significantly, but rather loosely,
correlated with finger flexion and extension. Yet, their time
course and location suggest that they contain information that is
different and potentially supplementary to the information that
γH modulations provide. Additionally to these novel findings
in ECoG, we replicated activity patterns in β and γH that are
in agreement to previous literature (Schalk et al., 2007; Miller
et al., 2009a; Scherer et al., 2009; Hermes et al., 2012). The
model of interpretation of β activity we suggest in this paper may
pave the way to gaining a more comprehensive understanding of
brain activity in the context of motor behavior. Sound in-depth

knowledge of brain activity will lead to more informative BCI
features, which represents one essential component toward the
improvement of BCI pattern recognition performance in BCI
and fBM applications.
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