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Abstract
Background andobjectives Surgical procedures such as laparoscopic and robotic surgeries are popular since they are invasive
in nature and use miniaturized surgical instruments for small incisions. Tracking of the instruments (graspers, needle drivers)
and field of view from the stereoscopic camera during surgery could further help the surgeons to remain focussed and reduce the
probability of committing any mistakes. Tracking is usually preferred in computerized video surveillance, traffic monitoring,
military surveillance system, and vehicle navigation. Despite the numerous efforts over the last few years, object tracking
still remains an open research problem, mainly due to motion blur, image noise, lack of image texture, and occlusion. Most
of the existing object tracking methods are time-consuming and less accurate when the input video contains high volume of
information and more number of instruments.
Methods This paper presents a variational framework to track the motion of moving objects in surgery videos. The key
contributions are as follows: (1) A denoisingmethod using stochastic resonance inmaximal overlap discrete wavelet transform
is proposed and (2) a robust energy functional based on Bhattacharyya coefficient tomatch the target region in the first frame of
the input sequence with the subsequent frames using a similarity metric is developed. A modified affine transformation-based
registration is used to estimate the motion of the features following an active contour-based segmentation method to converge
the contour resulted from the registration process.
Results and conclusion The proposed method has been implemented on publicly available databases; the results are found
satisfactory. Overlap index (OI) is used to evaluate the tracking performance, and the maximum OI is found to be 76% and
88% on private data and public data sequences.
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Introduction

Looking at the steep rise in cardiac diseases, bona fide
treatment including surgery is necessary to prevent its rise
and avoid sudden cardiac death [1]. Similarly, cerebral

B Sarada Prasad Dakua
sdakua@hamad.qa

1 Department of Surgery, Hamad Medical Corporation, Doha,
Qatar

2 Department of Electrical Engineering, Qatar University,
Doha, Qatar

3 School of Computer Science and Electronic Engineering,
University of Essex, Colchester, UK

4 Faculty of Computing, Engineering and Media De Montfort
University, Leicester, UK

aneurysm (CA) is one of the devastating cerebrovascular
diseases of adult population worldwide that cause sub-
arachnoid hemorrhage, intracerebral hematoma, and other
complications leading to high mortality rate [2]. Surgery
is considered as an efficient modality for the patients with
cardiac complications and ruptured cerebral aneurysms.
Tracking could be considered as a treatment support and
planning in robotic, laparoscopic, and medical education.
During robotic surgery or laparoscopic surgery, the sur-
geons concentrate on the surgery to avoid even slight,
possible mortality and morbidity and usually get stressed.
In this scenario, motion tracking of the tools and viewing
the desired operating field may be considered two support-
ive pillars to augment the treatment and improve success
rate.
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Clinical requirements in surgery

Many factors contribute to successful outcome of a surgery,
specificallyminimally invasive surgery (MIS). These include
technical factors, such as in-depth understanding of the rel-
evant anatomy, clear understanding of the steps involved in
the procedure, well-honed surgical skills and tool manipu-
lation, as well as anthropomorphic factors such as operating
team chemistry and dynamics. To a certain degree, MIS sur-
geons can advance their anatomy knowledge and procedural
understanding through reading and surgical videos; how-
ever, other technical skills such as tool manipulation and
positioning, which are very crucial to the successful out-
come of the surgery [3,4] are more complex, nuanced and
time dependent to develop due to restricted vision, limited
working space, loss of visual cues and tactile feedback [5].
Quality and adequacy of surgical proficiency directly impact
intra-operative and postoperative outcomes [6]. The existing
“apprenticeship” model of training in surgery provides lim-
ited and time-consuming opportunities to gain the required
technical competencies. In its current form, the assessment
of surgical proficiency is heavily reliant on subject-matter
experts/subjective assessments [3]. Thus, surgical training
and planning could benefit greatly from visual support
providedby instrument/motion tracking, byprovidingbench-
marked metrics for continued objective and constructive
assessment of highest standards of surgical skills, and low-
ering the risk of false tool trajectories and orientations [7],
alignment of implants and placement of screws [8], etc.

Such augmented visual support for both surgical train-
ing and planning could be provided through object/motion
tracking of the tools (such as scope, scissors, etc.) by pro-
viding objective assessment, benchmarking, and automated
feedback on metrics such as path length/deviation, econ-
omy and smoothness of hand movements, depth perception,
rotational orientation, changes in instrument velocity and
time [9]. Zhao et al. [10] report that intra-operative track-
ing/detection of surgical instruments can provide important
information to monitor instruments for the operational nav-
igation in MIS, especially in the robotic minimally invasive
surgeries (RMIS). Thus, based on the above, the perceived
impact of tool tracking/positioning on surgical training and
intra-operative guidance leads to (a) ensured patient safety
via proficient tool movements and avoidance of critical
tissue structures and (b) facilitation of a smooth and effi-
cient invasive procedure [11]. This is crucial in surgery,
as by continuously charting the location, movement, speed,
and acceleration of the different surgical instruments in the
operating field, the surgeon is continuously aware of the
whereabouts of his instruments in relation to the patient’s
vital organs, blood vessels, and nerves during surgery. For
surgical training, it objectively helps assess surgical perfor-
mance and helps differentiate between an expert and a novice

surgeon, such that optimal training can then be provided to
the novice to ensure the highest levels of patient care [3].
Therefore, precise positioning of the tools remains pivotal in
minimally invasive surgical procedures [12] highlighting the
need of object tracking via its impact on surgical training and
intra-operative guidance.

Kobayashi et al. [13] applied surgical navigation tech-
niques and tool tracking to renal artery dissection within
the robot-assisted partial nephrectomy procedure and found
that inefficient toolmovements involving “insert,” “pull,” and
“rotate” motions, as well as time to visualize and dissect
the artery were significantly improved owing to improved
visualization and control over the tool and anatomy. Pedi-
atric orthopedic surgeons found an increase in accuracy
and a reduction in operating time when using image-guided
surgical robotic systems to overcome the inaccuracies of
hand-controlled tool positioning [14]; these robots achieve
this by providing information about surgical tools or implants
relative to a target organ (bone). In urology, motion track-
ing can greatly assist in outpatient procedures such as MRI
and ultrasound-guided prostate biopsy, allowing the sur-
geon to accurately position and invade suspicious malignant
zones for a tissue sample [15]. In interventional radiology,
motion tracking can help track guide-wires during endovas-
cular interventions and radiation therapy [16]. In addition to
these, applications of surgical navigation systems and tool
tracking/motion analysis are being explored in many other
surgical fields, including ear-nose-and-throat (ENT) surgery
[7], craniomaxillofacial surgery [17], cardiothoracic surgery
[18], and orthopedic surgery [19].

Related work

The literature ofmotion tracking is rich; a few recentmethods
are included in this paper. Kim and Park [20] present a strat-
egy that is based on edge information to assist object-based
video coding, motion estimation, and motion compensation
for MPEG 4 and MPEG 7 utilizing the human visual per-
ception to provide edge information. However, the method
critically depends on its ability to establish correct corre-
spondences between points on the model edges and edge
pixels in an image. Furthermore, this is a non-trivial prob-
lem especially in the presence of large inter-frame motions
and cluttered environments. Subudhi et al. [21] propose a
two-step method: spatio-temporal spatial segmentation and
temporal segmentation that usesMarkov randomfield (MRF)
model and posteriori probability (MAP) estimation tech-
nique. Duffner and Garcia [22] present an algorithm for
real-time single-object tracking, where a detector makes use
of the generalized Hough transform with color and gradient
descriptors; a probabilistic segmentation method is used for
foreground and background color distributions. However, it
is computationally expensive, especially when the number

123



International Journal of Computer Assisted Radiology and Surgery (2019) 14:2165–2176 2167

of parameters is large. It also could be erroneous because the
gradient information usually leads to error when noise level
is high. Li et al. [23] suggest a method within the correla-
tion framework (CF) that models a tracker maximizing the
margin between the target and surrounding background by
exploiting background information effectively. They propose
to train a CF by multilevel scale supervision, which aims to
make CF sensitive to the target scale variation. Then the two
individualmodules are integrated into one framework simpli-
fying the tracking model. However, the computational load
and efficiency are still twomajor concerns.Mahalingam et al.
[24] propose a fuzzymorphological filter and blob detection-
based method for object tracking. However, the performance
gets deteriorated in the presence of noise, lack of illumina-
tion, and occlusion. Zhang et al. [25] propose a correlation
particle filter (CPF) that combines a correlation filter and a
particle filter. However, this tracker is still unable to deal
with scale variation and partial occlusion. Yang et al. [26]
present a method to analyze frames extracted from videos
using kernelized correlation filters (KCF) and background
subtraction (BS) (KCF-BS) to plot the 3D trajectory of cab-
bage butterfly. The KCF-BS algorithm is used to track the
butterfly in video frames and obtain coordinates of the tar-
get centroid in two videos. However, it is noticed that the
target sometimes gets lost and the method is unable to re-
detect or recognize the target when the target motion is fast.
Du et al. [27] propose an object tracking method for satellite
videos by fusing KCF tracker and a three-frame difference
algorithm. Although the method reports interesting results,
it takes long time to perform. Liu et al. [29] propose a corre-
lation filter-based tracker that consists of multiple positions’
detections and alternate templates. The detection position is
repositioned according to the estimated speed of target by an
optical flowmethod, and the alternate template is stored with
a template update mechanism. However, this method fails
to perform if the size of each target is too small compared
with the entire image, and the target and the background are
very similar. Liu et al. [30] propose a method by integrating
histogram of oriented gradient, RGB histogram, and motion
histogram into a novel statistical model to track the target in
unmanned aerial vehicle-captured videos. However, it fails
to perform in occluded scenes.

Du et al. [31] present a method that is based on itera-
tive graph seeking. Usually, the superpixel-based methods
use mid-level visual cues to represent target parts where
local appearance variations are exploited by superpixel rep-
resentation. These methods have three sequential steps: (A)
target part selection, (B) target part matching, and (C) target
state estimation. (A) selects candidate target parts from the
background, (B) a local appearance model associates parts
between consecutive frames (target part matching, center
pixel location and size of the target) is estimated based on
majority voting, and (C) target state is estimated based on

majority voting of matching results. This method integrates
target part selection, part matching, and state estimation
using a unified energy minimization framework. It incorpo-
rates structural information in local parts variations using the
global constraint. Although the results are reported promis-
ing, the target part selection and target part matching when
combinedly merge with the correlation filter, the estimation
of the target takes long time to converge due to scale varia-
tion and partial occlusion that are bound to happen in surgery
scenarios. Furthermore, when the noise level (for instance, in
cardiac cineMRI data) in the input frames is high, themethod
would certainly struggle to perform. We intend to address
these issues through our proposed method. Furthermore, if
the literature above is carefully observed, noise has always
been an issue in most of the methods. Therefore, in our pro-
posed method, we first denoise the input frames. The target
region on the first frame is chosen by a level set (LS) func-
tion, and then, the foreground and background models are
generated. The foreground and background distributions are
determined using the models in subsequent frames, and the
motion of the pixels from the region of interest is estimated
through a registration framework. Additionally, the selected
region contour in the current frame is registered with the
subsequent frame. Finally, segmentation is applied to refine
the contour generated during registration and the contour is
updated.

The paper is organized as follows: Section “Methodology
and data” describes the denoising stage; “Target rendering”
section presents the approach for target rendering (includ-
ing region selection and developing models); “Registration”
section defines a method for motion estimation through reg-
istration; “Segmentation” section presents the segmentation;
“Results and discussion” section provides the results, while
“Conclusions and future work” section concludes the paper.

Methodology and data

The method is illustrated in Fig. 1. First, the input frame is
denoised to minimize the negative impact of noise on sub-
sequent steps. The target region is then selected followed
by the development of background models for motion esti-
mation through a registration framework. Finally, the rough
contour generated in registration step is further refined (by a
proper segmentation method) and the contour is updated on
subsequent frames.

Denoising of image sequences

Over the years, most of the methods address the noisy and
cluttered medical images, mostly, by filtering that result sig-
nificant degradation in image quality. One of the efficient
approaches that counter noise and constructively utilize noise
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Fig. 1 Block diagram
describing the proposed method

Input frame Denoising Target Region Selection
And Initialization of LS

RegistrationSegmentationObject Tracked

is stochastic resonance (SR) [33]. SR occurs if the signal-
to-noise ratio (SNR) and input/output correlation have a
well-marked maximum at a certain noise level. Unlike very
low or high noise intensities, moderate ones allow the signal
to cross the threshold giving maximum SNR at some opti-
mum noise level. In the bistable SR model, upon addition
of zero mean Gaussian noise, the pixel is transferred from
weak signal state to strong signal state, which is modeled by
Brownian motion of a particle (pc) placed in a double-well
potential system. The state at which performance metrics are
found optimum can be considered as the stable state provid-
ing maximum SNR. There have already been many attempts
to use SR in different domains such as Fourier and spatial
domains [34]; however, we have chosen the maximal overlap
discrete wavelet transform (MODWT) [36] because of some
of its key advantages: (1) MODWT can handle any sample
size, (2) the smooth and detail coefficients of MODWTmul-
tiresolution analysis are associatedwith zero phase filters, (3)
it is transform invariant, and (4) it produces a more asymp-
totically efficient wavelet variance estimator than DWT.

Maximal overlap discrete wavelet transform

Generally,DWTis definedby:ψ j,k (t) = 2
j
2 ψ

(
2 j t − k

)
j,

k ∈ Z; z = {0, 1, 2, . . .}, where ψ is a real-valued func-
tion compactly supported, and

∫ ∞
−∞ ψ (t) dt = 0. MODWT

is evaluated using dilation equations: φ (t) = √
2

∑
k lkφ

(2t − k) , ψ (t) = √
2

∑
k hkφ (2t − k), where φ (2t − k)

and ψ (t) are father wavelet defining low-pass filter coef-
ficients and mother wavelet defining high-pass filter
coefficients lk : lk = √

2
∫ ∞
−∞ φ (t) φ (2t − k) dt, hk =√

2
∫ ∞
−∞ψ (t) ψ(2t − k)dt .

Denoising by MODWT

In this methodology, 2D MODWT is applied to the M × N
size image I . Applying SR to the approximation and detail
coefficients, the stochastically enhanced (tuned) coefficient
sets in MODWT domain are obtained as Ws

ψ (l, p, q)SR
and W (l0, p, q)SR . The SR in discrete form is defined as:
dx
dt = [

ax − ex3
] + B sinωt + √

Dξ (t), where
√
Dξ (t)

and B sinωt represent noise and input, respectively; these are
replaced by MODWT sub-band coefficients. The noise term
is the factor to produce SR; maximization of SNR occurs at
the double-well parameter a. Implementation of SR on dig-
ital images necessitates the need for solving the stochastic
differential equation using Euler–Maruyama’s method [35]
that gives the iterative discrete equation:

x(n + 1) = x(n) + Δt
[
(ax(n) − ex3(n)) + Input(n)

]

(1)

where a and e are the bistable parameters, whereas n and Δt
represent iteration and sampling time, respectively. I nput
denotes the sequence of input signal and noise, with the ini-
tial condition being x(0) = 0. The final stochastic simulation
is obtained after some predefined number of iterations. Given
the tuned (enhanced and stabilized) set ofwavelet coefficients
(Xφ (l0, p, q) and Xs

ψ (l, p, q)), the denoised image Idenoised
in spatial domain is obtained by inversemaximal overlap dis-
crete wavelet transform (IMODWT) as:

Idenoised = 1√
MN

∑

p

∑

q

Xφ (l0, p, q) φl0,p,q (i, j)

+ 1√
MN

∑

s∈(H ,V ,D)

∑

l=l0

∑

p

∑

q

Xs
ψ (l, p, q) ψ s

l0,p,q (i, j)

The double-well parameters a and e are determined from the
SNR by differentiating SR with respect to a and equating to
zero; in this way, SNR is maximized resulting in a = 2σ 2

0
for maximum SNR, where σ0 is the noise level administered
to the input image. The maximum possible value of restoring
force (R = B sinωt) in terms of gradient of some bistable
potential function U (x), R = − dU

dx = −ax + ex3, dR
dx =

−a + 3ex2 = 0 resulting in x = √
a/3e. R at this value

gives maximum force as
√

4a3
27e and B sinωt <

√
4a3
27e . Max-

imizing the left term (keeping B = 1), e < 4a3
27 . In order

to get the parameter values, we consider a = w × 2σ 2
0 , and

e = z ×
√

4a3
27 ; w and z are weight parameters for a and e.

Initially, w is an experimentally chosen constant that later
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becomes input image standard deviation dependent, while z
is a number less than 1 to ensure sub-threshold condition of
the signal. In this way, the noise in input image is countered
and maximum information from the image is achieved.

Target rendering

Target region selection or target rendering [28,37] is the ini-
tial step in this motion tracking. Then the features (such
as intensity, color, edge, texture, etc.) are selected that
can appropriately describe the target. The notations used
in target rendering are: f s—feature space, r—number of
features, fd—foreground distribution (by the features), and
bd—background distribution. The region is initialized on
the first frame and represented by a level set function φ

because of its flexibility in choosing the contour. The dis-
tributions of foreground (φ ≥ 0) and background (−th <

φ < 0, th is the threshold to restrict the region of inter-
est into small area) regions are represented by f g (φ) and
bg (φ), respectively, and match with fd and bd. Next, the
foreground and background models are generated. Suppose
the pixels

{
x f ,i

}
i=1,...,n f

and
{
xb,i

}
i=1,...,nb

fall in fore-

ground and background regions; the function z : �2 →
{1, . . . , r} can be used to map the pixels (xi ) into the
bin b(xi ) in feature space. The probability of the feature
space in the models is: f d f s = 1

n f

∑n f
i=1 δ

[(
xi, f

) − f s
]

and bd f s = 1
nb

∑nb
i=1 δ

[(
xi, f

) − f s
]
, where δ is the

Kronecker delta function and n f and nb are the num-
ber of pixels in foreground and background, respectively.
The foreground and background distributions in the cur-
rent frame candidate region (−th < φ < 0) are
obtained as:

f g (φ) = 1

Ff

n∑

i=1

H (φ (xi )) δ [b (xi ) − f s] and bg (φ)

= 1

Fb

n∑

i=1

(1 − H (φ (xi ))) δ [b (xi ) − f s] (2)

H(.) is the Heaviside function to select foreground region;
Ff and Fb are the normalization factors.

Registration

Registration of the target in the first frame with the next sub-
sequent frame is performed to estimate the affine deformation
of the target. We determine the foreground and background
distributions in the frames and match them with respective
foreground and background models. We use Bhattacharyya
metric [38] because it is computationally fast and is already
being used in face recognition for years. Additionally, it
has straightforward geometric interpretation. Since it is the

cosine angle between fd and f g(φ) or between bd and
bg(φ), higher value of the coefficient indicates better match-
ing between candidate and targetmodels. Thus, our similarity
distance measure:

En1 (φ) =
r∑

f s=1

(√
f g f s (φ) f d f s + γ

√
bg f s (φ) bd f s

)

(3)

where γ is the weight to balance the contribution from both
foreground and background in the matching.

For deformation estimation, we have proposed a sim-
ple and efficient framework as follows. Suppose in the
current frame, φ0 is the target initial position and the con-
tour is obtained by φ = 0. The probabilities f g (φ0) ={
f g f s (φ0)

}
f s=1,...,r and bg (φ0) = {

bg f s (φ0)
}
f s=1,...,r

are computed. Applying Taylor’s expansion:

En1 (φ) = 1

2

⎛

⎝
r∑

f s=1

√
f g f s (φ0) f d f s +

r∑

f s=1

f g f s (φ)

√
f d f s

f g f s (φ0)

⎞

⎠

+ 1

2
γ

⎛

⎝
r∑

f s=1

√
bg f s (φ0) bd f s +

r∑

f s=1

bg f s (φ)

√
bd f s

bg f s (φ0)

⎞

⎠

(4)

By putting Eq. (2) in (4), we get:

En1 (φ) = 1

2

⎛

⎝
r∑

f s=1

√
f g f s (φ0) f d f s + 1

Ff

n∑

f s=1

h f ,i H (φ (xi ))

⎞

⎠

+ 1

2
γ

⎛

⎝
r∑

f s=1

√
bg f s (φ0) bd f s + 1

Fb

n∑

f s=1

hb,i (1 − H (φ (xi )))

⎞

⎠

(5)

where the weights that play a pivotal role in detect-
ing the new centroid of the target are: h f ,i = ∑r

f s=1√
f d f s

f g f s (φ0)
δ [z (xi ) − f s] and h f ,i = ∑r

f s=1
√

bd f s
bg f s (φ0)

δ [z (xi ) − f s]. Higher value of Bhattacharyya

coefficient can be obtained by maximizing (5) that is a func-
tion of location x and contour.

Furthermore, we consider the foreground and background
intensity as additional feature. Suppose the first frame,
u0(x, y), consists of two concentric regions (ui0, u

o
0) mean-

ing the input image contains more than one intensity label.
This is certainly challenging in determining a smooth contour
initialization and deformation because of varying intensities.
Therefore, we integrate both local and global image informa-
tion in the energy term in order tomake it perform as a perfect
step detector with respect to the initialization of contour. The
energy term is defined as:

En2 = λ1E
G + λ2E

L + ER (6)

where λ1 and λ2 are fixed constants; EG , EL , and ER are
the global term, local term, and regularized term, respectively
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(containing respective image information). ER controls the
boundary smoothness. The local term is defined as,

EL =
∫

φ<0

(gku0 (x, y) − u0 (x, y) − d1 (x, y))2

d1(x, y)2
dxdy

+
∫

φ>0

(gku0 (x, y) − u0 (x, y) − d2 (x, y))2

d2(x, y)2
dxdy

(7)

where gk is an averaging filter with k × k size, d1 and d2
are intensity averages of the difference image gku0 (x, y) −
u0 (x, y) inside and outside the variable curve C , respec-
tively. The global term:

EG =
∫

φ<0

(u0 (x, y) − c1 (x, y))2

c1(x, y)2
dxdy+ ∫

φ>0

(u0(x,y)−c2(x,y))2

c2(x,y)2
dxdy

(8)

where the constants c1, c2 represent the average inten-
sity of u0(x, y) inside C and outside C , respectively.
c1 and c2 are approximated by a weighted average of
image intensity u0 (p, q), where (p, q) is the neighbor-
hood of (x, y). It means c1 (x, y) and c2 (x, y) are spa-
tially varying; we formulate c1 (x, y) and c2 (x, y) as,

c1 (x, y) =
∫

Ω

gk ((x,y)−(p,q))u0(p,q)H(φ(p,q))dpdq

gk ((x,y)−(p,q))H(φ(p,q))dpdq and c2 (x, y)

=
∫

Ω

gk ((x,y)−(p,q))u0(p,q)(1−H(φ(p,q)))dpdq

gk ((x,y)−(p,q))(1−H(φ(p,q)))dpdq . We use the con-
ventional regularizing term ER that includes a penalty term
on the total length of the edge contour for a given segmenta-
tion. Also it contains another penalty term on the total area of
the foreground region found by the segmentation. The energy
term therefore becomes:

En2(φ) = μ

∫

Ω

δ (φ) +v

∫

Ω

H (φ (x, y)) dxdy + |∇φ|dxdy

+λ1

∫

Ω

(u0 (x, y) − c1 (x, y))2H (φ (x, y))

c1(x, y)2
dxdy

+λ1

∫

Ω

(u0 (x, y) − c1 (x, y))2 (1 − H (φ (x, y)))

c2(x, y)2
dxdy

+λ2
(gku0 (x, y) − d1 (x, y))2H (φ (x, y))

d1(x, y)2
dxdy

+λ2
(gku0 (x, y) − d2 (x, y))2 (1 − H (φ (x, y)))

d2(x, y)2
dxdy

(9)

This Eq. (9) has to be maximized to obtain higher Bhat-
tacharyya coefficient. The similarity distance measure now
becomes:

En (φ) = En1 (φ) + En2 (φ) (10)

We model the motion of the target as affine transformation
by introducing a wrap in (10):

x = h (x,ΔT ) =
(
1 + f g1 f g3 f g5

f g2 1 + f g4 f g6

)⎛

⎝
x
y
1

⎞

⎠

(11)

The column vector characterizes the change in poses. Sub-
stituting (11) in (10) and omitting the terms that are not a
function ofΔT -incrementalwarp (representedφ), we obtain:

En (φ) = 1

2Ff

n∑

i=1

H (φ (h (x,ΔT ))) w f ,i

+ 1

2Fb
γ

n∑

i=1

(1 − H (φ (h (x,ΔT ))))wb,i (12)

ΔT tends to 0, and the estimation gets converged. In this way,
the registration step iteratively estimates the shape change
until it gets converged.

Segmentation

Since the tracker in the registration stage is still not able
to extract the target contour properly, the registration result
needs to be refined through segmentation. In order to do this,
we optimize φ in Eq. (10) because the equation is a function
of φ; in other words, ∂En(φ(xi ))

∂φ(xi )
= 0. This is solved by well-

known steepest-ascent method: ∂En(φ(xi ),t)
∂t = ∂En(φ(xi ))

∂φ(xi )
.

We obtain:

δφ (x, y, t)

δt
= δ∈ (φ)

[
μ∇.

( ∇φ

|∇φ|
)

− v

+λ1

(
(u0 (x, y) − c2 (x, y))2

c2(x, y)
2

− (u0 (x, y) − c1 (x, y))2

c1(x, y)
2

)]

+λ2

( (
gku0 (x, y) − d2 (x, y)

)2

d2(x, y)
2

−
(
gku0 (x, y) − d1 (x, y)

)2

d1(x, y)
2

)

+ 1

2
Δtδ∈ (φ)

(
1

F f
h f ,i − γ

1

Fb
hb,i

)

(13)

∂ε (φ)

|∇φ|
∂φ

∂
−→n = 0 on ∂Ω (14)

where H and δ∈ represent the Heaviside function and Dirac
measure, respectively; ∂φ

∂
−→n and −→n denote the normal deriva-

tive of φ at the boundary and the exterior normal to the
boundary, respectively. Finally, the target is updated on sub-
sequent frames.
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Fig. 2 a–d Input frames in a video sequence to be denoised. e,f Results of denoising

Data

The datasets used in this work are obtained from pri-
vate sources such as Hamad Medical Corporation (30 data
sequences) and public sources such as Sunnybrook [32] (45
data sequences) andVOT 2015 [40] (60 data sequences). The
Sunnybrook Cardiac Data (SCD) consist of cine MRI data
from a mixed set of patients and pathologies:healthy,hyper-
trophy, heart failure with infarction,and heart failure without
infarction. Subset of this data set was first used in the auto-
mated myocardium segmentation challenge from short-axis
MRI.The VOT 2015 sequences are chosen from a large pool
of sequences including ALOV, OTB, non-tracking, Com-
puter Vision Online, Professor Bob Fisher’s ImageDatabase,
Videezy, Center for Research inComputerVision, University
of Central Florida,USA, NYUCenter for Genomics and Sys-
tems Biology,Data Wrangling, Open Access Directory and
Learning and Recognition in Vision Group, INRIA.The ini-
tial pool of sequences is created by combining the sequences
from all the sources. After removal of duplicate sequences,
grayscale sequences and sequences that contained objects
with area smaller than 400 pixels, the final sequences are
obtained;more details can be obtained from theWeb site [45].

Results and discussion

Results

The proposed method is implemented on both private and
public databases as described earlier. The qualitative results

of denoising are provided in Fig. 2. We have quantitatively
compared the proposeddenoisingmethodwith that of Fourier
because of its huge popularity [34]. The perceptual quality
measurement (PQM) [41] is provided in Fig. 3, which shows
greater value in case of MODWT suggesting higher efficacy
of MODWT; in this figure, m denotes the mass of the parti-
cle that moves under stochastic condition. For denoising of
the input images, the initial values of Δt and z are taken as
0.007 and 0.000027, respectively. To determine the quality of
the denoised image, we have calculated distribution separa-
tion measure that estimates the degree of image quality. The
DSM is defined as [34]: DSM = ∣∣μE

T − μE
B

∣∣ − ∣∣μO
T − μO

B

∣∣,
whereμE

T andμO
T are the mean of the selected target regions

of the denoised and original images, respectively; μE
B and

μO
B are the mean of the selected background region of the

denoised and original image, respectively. The higher the
value of DSM, the better is the quality. It is observed that
the value of DSM is maximum at iteration 200 and then it
starts decreasing; therefore, this iteration is considered as
the optimal.

These denoised frames are further used in the subsequent
steps in the proposed method. As mentioned earlier, we have
included the image sequences of cardiac surgery and clip-
ping for ruptured cerebral aneurysms in this work. We have
also tested our method on cardiac cine MRI datasets, high
contrast and low contrast levels, to highlight the performing
capability of the method in varying intensities. The perfor-
mance results on these datasets are provided in Figs. 4 and
5. We have chosen different scenarios for cerebral aneurysm
surgical procedure (clipping): One is to track the scissors’
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Fig. 3 Perceptual quality measures by Fourier (Method 2) and MODWT (Method 1); m in x-axis denotes the mass of the particle that moves under
stochastic condition. b Energy convergence comparison of three methods
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Fig. 4 a–d Ground truth frames. e–h Tracking of left ventricle in low-contrast cine magnetic resonance imaging (low-contrast CMRI) during
cardiac surgery

or clippers’ movement and the other one is to focus on the
operating field during surgery, where multiple tools are used
by the surgeons. It is important to track the motion of the
scissors in order to minimize the damage caused by their
movement. Besides the tools’ tracking, capturing or tracking
the operating field is also important; it helps the surgeon in
concentrating on the tools used during the surgery and the
impacted tissues of interest. The results are given in Figs.
6 and 7. We have also tested the proposed method on VOT
2015 datasets and found some satisfactory results as can be
observed in Fig. 8. We have included this particular dataset

in this paper to emphasize on the fact that the foreground
is not very significantly different than the background like it
happens inmedical data sequences. Usually, themedical data
are blurry (either reddish or grayish) and lack contrast as can
be observed from the figures. In this scenario, only a contour
surrounding the tools could easily be ignored; therefore, just
for user’s (surgeon) convenience, we have added the blue
line surrounding the red line in the tracking results. While
calculating the accuracy, red line is only taken into consid-
eration. In order to determine the segmentation accuracy, we
have used Dice coefficient (DC), which may be defined as
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Fig. 5 Tracking of left ventricle in high-contrast cine magnetic resonance imaging (high-contrast CMRI) during cardiac surgery

Fig. 6 Tracking of the operating field with multiple objects during cerebral aneurysm clipping

[44]: DC = 2 × |X∩Y |
|X |+|Y | , where X and Y are two point sets.

The average segmentation accuracy on 3-T machine is 94%,
whereas in case of 7 T, it is found to be 96%. The proposed
method has performed as expected, which can be verified
from the results provided in “Results” section. We have opti-
mized the algorithm and code; average time taken to perform
tracking and average number of frames are less than 25–30s
and 24 frames per second, respectively. We have also com-

pared the performance of the proposed method with other
similar methods ([31,42]); the proposed method converges
faster than the other methods 3(b). We have also calculated
overlap index (OI) [43] to determine the overlap between the
resulting target contour and the actual boundary. We have
found it highest in case of the proposed method against oth-
ers as can be observed from Table 1.
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Fig. 7 Tracking of the operating field with multiple objects during cardiac surgery

Fig. 8 a–d Tracked frames in a video sequence (VOT 2015). e–f Corresponding ground truth sequences

Discussion

The values of bistable system parameters play a crucial role
in the process of denoising using SR. The expression for SR
on any data set contains additive terms of multiples of w and
subtractive term of multiples of z. This is observed that the
images that have low contrast and low dynamic range require
larger values ofw, while those that have relatively more con-

trast and cover an appreciable gray level range require smaller
values of w for proper denoising. Values of Δt have been
studied to be similar to that of w. This is also perceived that
w is inversely proportional to overall variance signifying the
contrast of input image. Optimization process leads us to the
optimum value of w; the value of z should be less than 1 so

that condition e <

√
4a3
27 holds assuring that the system is

bistable and signal is sub-threshold so that SR can be appli-
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Table 1 Overlap index comparison of different methods on hospital and VOT 2015 datasets

Method Hospital and SCD datasets

FOV-CA (%) Scissors-CA (%) Low-contrast CMRI (%) High-contrast CMRI (%)

Paragois et al. [42] 64 65 64 65

Du et al. [31] 67 69 68 72

Proposed method 72 74 73 76

Method VOT 2015 Dataset

Rabit (%) Shaking (%) Racing (%) Octopus(%)

Paragois et al. [42] 69 70 68 71

Du et al. [31] 72 75 70 76

Proposed method 83 85 82 88

The results of the proposed methods are shown in bold

cable. We prefer a very small value of this factor to remain
well within the allowable range of e. Finally, we have noticed
that the varying segmentation accuracy depends on the qual-
ity of the input data sequence. The MRI data obtained from
7-T machine give better accuracy than 3-T MRI machine.

Conclusions and future work

A variational framework has been presented to track the
motion of moving objects and field of view in surgery
sequences. We have presented a method that has used SR
to denoise the input frames and a combined registration–
segmentation framework to conduct motion tracking. We
have introduced a robust similarity metric and an efficient
energy functional in this framework. Despite the fact that the
input data contain varying illumination, motion blur, lack of
image texture, occlusion, and fast object movements, the per-
formance of the proposed method is found quite satisfactory.
In future, we intend to extensively evaluate the method quan-
titatively so that it can be well tested before trying in clinical
practice.
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