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Abstract. We present a hitherto unknown polar representation of com-
plexified quaternions (also known as biquaternions), also applicable to
complexified octonions. The complexified quaternion is factored into
the product of two exponentials, one trigonometric or circular, and one
hyperbolic. The trigonometric exponential is a real quaternion, the hy-
perbolic exponential has a real scalar part and imaginary vector part.
This factorisation is shown to be isomorphic to the polar decomposition
of linear algebra.
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1. Introduction

A complex number may be expressed in polar form using the famous formula
eiθ = cos θ+ i sin θ due to Euler. The polar form of a quaternion [13, p 56] is
an important representation because it generalises Euler’s formula to cases
where the square root of −1 is a quaternion. That quaternions could be
expressed in polar form was already clear to Hamilton in 1843 [6, Eqn: (s)]
because he stated that, like complex numbers, they could be written in terms
of a cosine and a sine of a single angle.

The polar form of biquaternions or complexified quaternions1 is a more
recent discovery based on the roots of −1 in the biquaternions [9]. Several
variant polar forms were set out in [11]. However, all of these previously known
polar forms are based on a single exponential with a root of −1. De Leo
and Rodrigues [1] discussed polar forms of biquaternions and described a
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single polar form containing the product of two exponentials. However, the
first of the exponentials was complex, and was therefore just representing
a ‘complex modulus’ for the biquaternion. Both exponentials in their polar
form were based on roots of −1. Dorst and Valkenburg [2] worked out a
polar decomposition of rotors in the conformal geometric algebra Cl(4, 1),
thus showing that polar decompositions can exist in hypercomplex algebras.

In this paper, we show that it is possible to factorise a unit biquater-
nion into a polar form as the product of two exponentials: one a quaternion
exponential containing a root of −1 and a real angle, and the other a bi-
quaternion exponential containing a root of +1 and again a real angle. The
latter is a hyperbolic exponential based on hyperbolic cosine and sine func-
tions, as we show in Lemma 1. The more general case of a biquaternion which
is not of unit norm requires that we consider the complex semi-norm of the
biquaternion, which can of course be done by fairly trivially including a third
(complex) exponential with a real scalar modulus.

The factorisation is developed in this paper using direct algebraic manip-
ulation of the biquaternion. However, it is also shown that this factorisation
is equivalent (in fact isomorphic) to the polar decomposition [4, § 4.2.10] or
[7, § 13.3-4] of linear algebra which factorises a matrix into the product of a
non-negative Hermitian matrix and a unitary matrix. Thus if we represent
the biquaternion using a 4 × 4 complex matrix based on the usual matrix
representation of quaternions [14], then the polar decomposition of the ma-
trix yields the matrix representation of the two factors of the biquaternion, a
result which has been verified computationally using [12]. This is why we call
the decomposition/factorisation presented in this paper the polar decompo-
sition of a complexified quaternion. In section 6 we discuss the existence of
the decomposition for complexified octonions, which follows exactly the same
reasoning and algebra, and therefore does not need to be explicit. We also
discuss the lack of a matrix representation of the polar decomposition in the
octonion case due to the lack of a matrix representation of the full octonion
product.

2. Notation

We use notation consistent with two earlier papers on biquaternions [10, 11]
and also make use of some results and concepts from these papers.

We write full quaternions (i.e., those with non-zero vector part) as ordi-
nary variables, thus q; pure quaternions with zero scalar part as bold Greek
variables, thus α; matrices in uppercase roman font thus: A. A quaternion in
Cartesian form is q = w+xi+yj+zk, where i, j,k are the usual quaternion
basis elements. We use I for the complex root of −1 in order to distin-
guish it from the quaternion i. The notation S(q) = w denotes the scalar
part of a quaternion, and V(q) = xi + yj + zk denotes the vector part.
Quaternion conjugate (negation of the vector part) is denoted by an overbar:
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q = w − xi− yj − zk = S(q)−V(q). Complex conjugation is indicated by a
superscript star: q? = w? + x?i+ y?j + z?k.

The inner product of two quaternions is denoted 〈p, q〉 [13, § 2.5] and
can be computed as the sum of the products of corresponding coefficients of
p and q. This is a geometric scalar product in 4-space equivalent to treating
the four coefficients of the quaternion as components of a 4-space vector.
The norm of a quaternion is the sum of the squares of the coefficients: ‖q‖ =
w2 + x2 + y2 + z2, and is also given by 〈q, q〉. The modulus is the square

root of the norm: |q| =
√
‖q‖. When the coefficients are complex (as they are

in biquaternions), the norm may be complex, and is strictly referred to as a
semi-norm[11, § 3].

3. Existence and computation of the polar factorisation

We require the following result, which although straightforward, is not com-
monly listed in mathematical reference works in the full form given here. The
first and third cases, but not the middle case, may be found in [3, Equations
(2.3) and (2.25)]. Although we require here no more than θ ∈ R, the results
are also valid for θ ∈ C.

Lemma 1. Let ν be a hypercomplex 2 root of −1, 0, or +1, that is either:
|ν| = 1 and ν2 = ±1, or ν2 = 0 (in this case |ν| = 0). Then the Euler
formula has the following more general form:

eνθ =


cos θ + ν sin θ, ν2 = −1

1 + νθ, ν2 = 0

cosh θ + ν sinh θ, ν2 = +1

(1)

Proof. All three cases follow easily from the series expansions of the exponen-
tial function and the trigonometric and hyperbolic functions (see, for example
Korn and Korn [7, E-7(1-4)]), and the stated properties of ν2. �

We also require a second result which we have not been able to find in
the literature (a related result is of course very well-known: that the quotient
of two unit pure quaternions is a full quaternion, and if the two unit pure
quaternions are orthogonal, the quotient is a unit pure quaternion). The
result is a special case of the more general rotation in 4-space.

Lemma 2. The quotient of two orthogonal full quaternions is a pure quater-
nion.

Proof. Let m and n be unit full quaternions which are orthogonal. Thus
S(mn) = 〈m,n〉 = 0 by [8, Proposition 10.8]. S(mn) = 0 implies that

mn = V(mn)

2The term hypercomplex means a generalization of the complex numbers based on roots

of ±1, and with dimension 2, 4, 8, etc. It is of course possible for this formula to work for
other types of root than hypercomplex numbers (for example, matrices).
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The quotient of the two quaternions is mn/ ‖n‖. Hence we have shown that
the quotient of m and n is a pure quaternion. �

Remark: it follows from the fact that the quaternions are a division
algebra that if m and n are orthogonal and are both of unit modulus, their
quotient will be a unit pure quaternion.

We consider unit biquaternions in what follows, with unit (and therefore
real) semi-norm [11, § 3.3]. (The semi-norm is a complex generalisation of the
norm of a quaternion, computed by the same method — the square root
of the sum of the squares of the four complex coefficients.) Since the semi-
norm is complex, it can be represented in the usual polar form with a real
modulus and a real angle. In Corollary 1, we deal with the case of a general
biquaternion with non-unit semi-norm, and show that the complex semi-norm
simply scales the result.

Theorem 1. An arbitrary biquaternion q, with unit semi-norm, may be fac-
tored as follows:

q = eαθteIβθh (2)

where α and β are pure real unit quaternions (and therefore α2 = β2 = −1);
Iβ is a pure imaginary unit biquaternion (and therefore (Iβ)2 = +1). The
two angles θt and θh are real, the subscripts standing for trigonometric and
hyperbolic respectively.

In what follows we distinguish between the factors by referring to them
as the trigonometric (eαθt) and hyperbolic (eIβθh) factors. An alternative
factorisation exists with the factors reversed, since they do not commute, in
general. The trigonometric factor is real, since α and θt are real, and it is
invariant to the ordering of the factors. The hyperbolic factor has a rather
special structure: it has a real scalar part, and an imaginary vector part. This
can be seen by inspection of the third case in equation (1). The scalar part of
the hyperbolic factor is the modulus of the real part of q. The imaginary part
of the hyperbolic factor can be obtained by left division of the trigonometric
factor into the imaginary part of q, but it is also possible to divide by the
trigonometric factor on the left of q to obtain the entire hyperbolic factor.

Any biquaternion (with the exception of divisors of zero), may be nor-
malised to unit form by dividing by its semi-norm. We deal with the special
case of a divisor of zero later in the paper: the factorisation works even in
this case, but one of the factors will be a divisor of zero.

Proof. The proof assumes a general biquaternion with unit semi-norm, from
which by a series of algebraic steps, we obtain the right-hand side of equa-
tion 2 .

Represent an arbitrary biquaternion q with unit semi-norm in the com-
plex form II of [11, Table 2], that is, in the form of a complex number with
real quaternion coefficients:

q = qr + Iqi (3)
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where qr and qi are real quaternions. Then write the real and imaginary parts
in the usual quaternion polar form:

q = |qr| eµrθr + I |qi| eµiθi (4)

where µr and µi are unit pure quaternion roots of −1, and θr and θi are real.
We now use two consequences of the fact that ‖q‖ is real (because ‖q‖ =

1). These are given in [10, Lemma 1]. Firstly, we have that ‖qr‖ − ‖qi‖ = 1,

or equivalently, |qr|2 − |qi|2 = 1, which requires that |qr| = coshψ and |qi| =
sinhψ for some ψ to be determined. Secondly, 〈qr, qi〉 = 0 which implies that
eµrθr ⊥ eµiθi . Two orthogonal unit quaternions have a quotient that is a unit
pure quaternion. This follows from Lemma 2. Therefore we can introduce a
unit pure quaternion ν, with ν2 = −1, and write eµiθi = eµrθrν. Making use
of both these consequences, we can write:

q = coshψ eµrθr + I sinhψ eµrθrν (5)

which can be factored as follows:

q = eµrθr (coshψ + Iν sinhψ) (6)

or, by Lemma 1

q = eµrθreIνψ (7)

which matches the theorem as stated with the obvious identifications between
variables. �

A simple algorithm to compute the factorisation follows directly from
Equation 6 — the trigonometric factor is obtainable from the real part of the
biquaternion, since qr = eαθt cosh θh (using the variables in Theorem 1). Nor-
malising this removes the hyperbolic cosine to give a unit quaternion which
is the trigonometric factor. The hyperbolic factor can then be obtained by
division (using multiplication by the inverse of the trigonometric factor, the
inverse being the quaternion conjugate, since the trigonometric factor is a unit
quaternion). This is the algorithm implemented in the Quaternion Toolbox
for matlab™ [12, function: polar], for both biquaternions and complexified
octonions, which has been used to verify the results in this paper.

Corollary 1. The result in Theorem 1 generalizes to the case of a biquater-
nion p which does not have unit modulus (square root of the semi-norm), as
follows:

p = |p| q = |p| eαθteIβθh , where |p| ∈ C, assuming |p| 6= 0,

that is, |p| scales the result (and commutes with the unit biquaternion q, since
|p| is complex). (We consider the case where |p| = 0 in § 4.)

Proof. The semi-norm of a biquaternion p may be expressed by ‖p‖ = pp,
and the modulus by the square root of this result [11, § 3.3]. Dividing p by its
modulus gives a biquaternion of unit modulus, q = p/

√
pp which factorises

as in Theorem 1. That q has unit modulus may be shown by computing its
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norm using the same formula as just stated, noting that
√
pp is complex and

therefore unaffected by taking a quaternion conjugate:

‖q‖ = qq =
p√
pp

p√
pp

=
pp

pp
= 1

from which it follows that |q| = 1. �

To conclude this section we present a worked numerical example. We
take q = 1 + (1 + 1I)i + (1 − 1I)j, which has ‖q‖ = 1. The real part is
qr = 1 + 1i + 1j which has ‖qr‖ = 3. The orthogonal imaginary part is
qi = i− j, which has ‖qi‖ = 2, so ‖q‖ = ‖qr‖ − ‖qi‖ = 3− 2 = 1. Hence, the

trigonometric factor is eαθt = (1 + 1i+ 1j) /
√

3 from which α = (i+ j) /
√

2

and tan θt =
√

2 may be obtained by the usual quaternion formulae.
To obtain the hyperbolic factor we need to divide q on the left (or right

if we desire the alternative factorisation) by the trigonometric factor. Taking
the conjugate of the trigonometric factor we have:

eIβθh = e−αθtq =
1√
3

(1− 1i− 1j) (1 + (1 + 1I)i+ (1− 1I)j) (8)

=
1√
3

(3 + 1Ii− 1Ij + 2Ik) (9)

from which it is possible to find β = 1√
3

(
(i− j) /

√
2 +
√

2k
)
, and cosh θh =

√
3. That these results are correct may be verified numerically using [12] by

substitution into (2). Note that in this case, α and β are orthogonal3, but
this is not a general property, as can be verified easily by factoring a random
example numerically.

4. Degenerate cases and divisors of zero

In the previous section we dealt with biquaternions of unit norm/semi-norm,
and biquaternions with a complex but non-zero semi-norm. In fact the fac-
torization can be defined even in the case of divisors of zero (with some
provisos as we see below), and for degenerate cases. By degenerate we mean
cases where some part of the biquaternion is zero, for example the scalar
part, or the imaginary part. Although these were covered implicitly above,
the ramifications were not, and that is what we present next.

4.1. Degenerate cases

As we have seen in Corollary 1, the factorisation of a biquaternion p with
non-unit norm was written as:

p = |p| q = |p| eαθteIβθh

where |p| may be complex. Degenerate cases occur where p is wholly real or
wholly imaginary:

3We thank one of the referees for pointing out the orthogonality of α and β in the example.
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• If p is a real quaternion, the decomposition is trivial: |p| is real, the
trigonometric factor eαθt is a unit version of p, and the hyperbolic factor
eIβθh must be unity. The polar decomposition therefore reduces to the
well-known polar form of a real quaternion.
• If p is an imaginary quaternion (a biquaternion with zero real part),

the decomposition is again trivial: |p| is imaginary, and after normalis-
ing the biquaternion, p/|p| is real and of unit modulus. Therefore the
trigonometric factor eαθt = p/|p|, and again the hyperbolic factor must
be unity.

4.2. Divisors of zero

If p is a divisor of zero, there must be non-zero real and imaginary parts. We
cannot extract the semi-norm or modulus (since the semi-norm of a divisor of
zero is zero) [10, § 3]. However, we can extract the real part of p and normalise
it. This gives us a trigonometric factor of unit modulus, and of course a real
modulus which we may choose to keep as a separate factor or to combine
with the hyperbolic factor. Dividing p by the trigonometric factor yields the
hyperbolic factor which will be a divisor of zero.

A numerical example will make this clearer. Let

p =
1

2
(1 + 1i+ 1Ij − 1Ik) .

This is an idempotent, meaning that p2 = p, and it has a vanishing semi-
norm: ‖p‖ = 0. The real part of p is pr = 1

2 (1 + 1i), with |pr| = 1√
2
.

Normalising this gives eαθt = 1√
2

(1 + 1i) from which α = i and θt =

π/4. We now choose to divide out of p the real part, including its mod-
ulus, to obtain the hyperbolic factor. Therefore eIβθh = 1√

2
(1− 1i) q =

1√
2

(1− 1Ik) which is a divisor of zero. Dividing this result by
√

2 gives

the idempotent value 1
2 (1− 1Ik). Examination of the hyperbolic factor re-

veals that it is not possible to find θh since there is no value of θh for which
cosh θh = sinh θh other than at infinity. However, it is easy to verify that

p =
√

2
(

1√
2

(1 + 1i)
) (

1
2 (1− 1Ik)

)
, the three factors being, from left to

right, a real scale factor, the real trigonometric factor (which may also be
written as eiπ/4), and the hyperbolic (idempotent) factor.

5. Relation to the polar decomposition of linear algebra

We have used the name polar decomposition in this paper for the result in
Theorem 1 for good reason: it is isomorphic to the polar decomposition of
matrices in linear algebra [4, § 4.2.10] or [7, § 13.3-4(3)]. In order to demon-
strate the isomorphism for the case of biquaternions we need two concepts.
Firstly, quaternions have a 4 × 4 matrix representation, as given, for exam-
ple, by Ward [13, § 2.8]. A quaternion q = w+ xi+ yj + zk is represented in
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matrix form as4: 
w −x −y −z
x w −z y
y z w −x
z −y x w


This means we can represent a biquaternion using a 4×4 complex matrix and
the product of two biquaternions by the matrix product of their equivalent
matrices. Secondly, we need the equivalences between the biquaternion oper-
ations of quaternion conjugate and complex conjugate, and the corresponding
operations on the matrix representation. These are as follows:

• the quaternion conjugate (the negation of the vector part) corresponds
to the matrix transpose as can be seen by inspection of the matrix given
above;
• the complex conjugate (of the four complex coefficients) of the biquater-

nion corresponds to the complex conjugation of all the matrix elements.

The Hermitian transpose of linear algebra, which both transposes the ma-
trix and conjugates the complex elements of the matrix, corresponds to the
application of both types of conjugation: the quaternion conjugate and the
complex conjugate of the coefficients of the biquaternion.

Now we note that in the linear algebra case of the polar decomposition,
the matrix corresponding to our hyperbolic factor is obtained by the following
expression [7, § 13.3-4(3)], where A = QU is the matrix to be factorised5:

Q =
√

A†A, where the square root denotes a matrix square root, and †

denotes a Hermitian transpose. Given the equivalences noted above, in order
to show that the factorisation presented in this paper is isomorphic to the
linear algebra polar decomposition, it is sufficient to show that the hyperbolic
factor (denoted here by qh = eIβθh) can be obtained using the same formula
(with equivalent operations substituted for the matrix operations). We do
this by substitution of the result in Theorem 1 into the formula just stated,
replacing the Hermitian transpose of linear algebra by the double conjugation
of quaternion and complex conjugation. Therefore we need to demonstrate
that:

qh =

√
(eαθteIβθh)

?
eαθteIβθh (10)

The complex conjugate has no effect on the trigonometric factor eαθt because
α and θ are real, but it does change the sign of I in the hyperbolic factor
eIβθh (recall that β is also real, so it does not change β):

qh =

√
(eαθte−Iβθh)eαθteIβθh (11)

The quaternion conjugate applied to a product reverses the order of the
terms and conjugates each6: pq = q p. Further, the quaternion conjugate of

4The transpose of this matrix is also valid, one or other must be chosen by convention.
5An alternative with the Hermitian transpose on the right is also possible, corresponding

to the alternative ordering of the factors in Theorem 1.
6This statement has the following equivalent in matrix form: (PQ)T = QTPT .
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an exponential changes the sign of the exponent. Therefore, applying the
conjugate to the bracketed exponentials, we have:

qh =
√
eIβθhe−αθteαθteIβθh (12)

Finally, the middle pair of trigonometric exponentials cancel, and the pair of
hyperbolic exponentials reduce under the square root to:

qh = eIβθh (13)

which is the hyperbolic factor in Theorem 1. As noted in Section 3, it is sim-
pler and faster to compute the hyperbolic factor by dividing out the trigono-

metric factor rather than by using the expression
√
q?q.

Although the polar decomposition presented in this paper is isomorphic
to the polar decomposition of linear algebra, it is worth pointing out that the
algorithm for computing the polar decomposition in this paper is inevitably
considerably faster than the linear algebra case, as is always the case with
quaternion computations: the matrix representation has 4-fold redundancy,
and requires both more memory, and a greater number of numerical opera-
tions; it is also not guaranteed that the special form of the matrix will be
preserved accurately over a series of computational steps.

We now return to the numerical example with which we concluded § 3,
but this time in its isomorphic matrix form. Recall that we took q = 1 + (1 +
1I)i+ (1− 1I)j. In isomorphic matrix form this biquaternion is:

Q =


1 −1− 1I −1 + 1I 0

1 + 1I 1 0 1− 1I
1− 1I 0 1 −1− 1I

0 −1 + 1I 1 + 1I 1

 (14)

The matrix representation of the trigonometric factor can be found directly
from Q by taking the real part of Q and dividing by its 2-norm7, which gives:

T =
1√
3


1 −1 −1 0
1 1 0 1
1 0 1 −1
0 −1 1 1

 (15)

which is the matrix representation of the trigonometric factor found in § 3.
The matrix representation of the hyperbolic factor can be obtained by

H = T−1Q or by H =
√
Q†Q, either of which gives the following result,

which can be seen on inspection to be isomorphic to the hyperbolic factor
given in § 3:

H =
1√
3


3 −1I 1I −2I
1I 3 −2I −1I
−1I 2I 3 −1I

2I 1I 1I 3

 (16)

7This method is specific to the biquaternion case, and is not applicable to the polar de-
composition of matrices in general.
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Table 1. Octonion multiplication table, as implemented in [12].

1 i j k l m n o
1 1 i j k l m n o
i i -1 k -j m -l -o n
j j -k -1 i n o -l -m
k k j -i -1 o -n m -l
l l -m -n -o -1 i j k
m m l -o n -i -1 -k j
n n o l -m -j k -1 -i
o o -n m l -k -j i -1

These matrix results may be verified using [12]8.

6. Octonion case

Without formal proof, the decomposition presented here works also for oc-
tonions with complex coefficients (complexified octonions). This is because
all of the algebraic steps presented in the proof of Theorem 1 are valid for
octonions, and at no point does a product of more than two octonions occur,
which would cause problems with associativity.

It is well-known that the octonions cannot have a matrix representation
– because the matrix product is associative, the multiplication of octonions
cannot be represented by multiplication of matrices. It is clearly possible to
represent the product of two octonions by a matrix-vector product, represent-
ing the left octonion by a matrix and the right octonion by a column vector.
Therefore, although the polar decomposition as presented in Theorem 1 will
work, the correspondence with the polar decomposition of linear algebra, as
presented in Section 5, cannot, because it is not possible to construct matrices
that will represent the octonion factors.

We present an example, and as in the case of the examples presented
earlier for biquaternions, this example may be verified numerically using [12,
function: polar]. At this point we introduce additional notation for the oc-
tonion basis elements, using i, j,k as before for biquaternions, and l,m,n,o
for the further four needed to complete the 7-dimensional octonion basis9.
Since there are multiple possible multiplication tables for the octonions, we
state in Table 1 the multiplication table being used10.

8The matrix representation of a biquaternion q can be computed using the function call
adjoint(q, ’real’).
9This is a slight but common abuse of notation — the quaternion and octonion i, j,k

should be regarded as distinct.
10This choice follows from the way the octonions are implemented in [12] as a pair of
quaternions using the Cayley-Dickson construction:

(w + xi+ yj + zk) + (a + bi+ cj + dk)l = w + xi+ yj + zk + al+ bm+ cn+ do.
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Let p = (1 + 2i+ 3j + 4k+ 5l+ 6m+ 7n+ 8o) + I(8 + 7i+ 6j + 5k+
4l+ 3m+ 2n+ 1o). The polar factorisation gives the following results (com-
puted numerically, and then converted to the form given using the matlab™
symbolic toolbox):

• Semi-norm: ‖p‖ = 240I and modulus: |p| = 2
√

30(1 + 1I);
• Trigonometric factor: 1

2
√
2
(1 + 1i+ 1j + 1k + 1l+ 1m+ 1n+ 1o);

• Hyperbolic factor: 1
2
√
15

(9− I(4l− 1m− 2o)).

From these values we can obtain:

• α = 1√
7

(1i+ 1j + 1k + 1l+ 1m+ 1n+ 1o),

• tan θt =
√

7,
• β = −1√

21
(4l+ 1m+ 2o)

• tanh θh =
√
7

3
√
3

Substitution of these values into (2) will confirm their correctness using [12].

7. Conclusion

In this paper we have presented a hitherto unknown polar factorisation of
complexified quaternions, and proved its equivalence to the polar decompo-
sition of linear algebra. We have shown how to compute the factorisation.
We have also shown less formally, that the factorisation is also applicable to
complexified octonions, and presented an argument as to why there cannot
be an equivalence with the polar decomposition of linear algebra.
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