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ABSTRACT Inspired by the robustness and efficiency of the capped nuclear norm, in this paper, we apply
it to 3D tensor applications and propose a novel low-rank tensor completion method via tensor singular
value decomposition (t-SVD) for image and video recovery. The proposed tensor capped nuclear norm
model (TCNN) handles corrupted low-rank tensors by sparsity enhancement via truncating its partial singular
values dynamically. We also develop a simple and efficient algorithm to solve the proposed nonconvex
and nonsmooth optimization problem using the Majorization-Minimization (MM) framework. Since the
proposed algorithm admits a closed-form solution by optimizing a well-selected approximate version of the
original objective function at each iteration, it is very efficient. Experimental results on both synthetic and
real-world datasets, clearly demonstrate the superior performance of the proposed method.

INDEX TERMS Low-rank tensor completion, tensor singular value decomposition, capped nuclear norm,
visual data completion.

I. INTRODUCTION
The problem of recovering missing elements from partially
observed data has attracted widespread attention in many
applications, such as collaborative filtering [1], image pro-
cessing [2]–[4], and video denoising [5], [6]. In some of these
applications, the data exhibit strong local or nonlocal inherent
similarity and lie in a low-rank structure [7]. Recently, low-
rank minimization has proven to be one of the most powerful
global constraints for image inverse problems [8]–[10]. Thus,
estimating missing values in a partially observed data can be
modeled as a low-rank matrix completion problem [11], [12].
Specifically, for a given matrix data X ∈ RI1×I2 of low rank,

The associate editor coordinating the review of this article and approving
it for publication was Weizhi Meng.

the matrix completion can be formulated as a constrained
rank-minimization problem as follows:

min
X∈RI1×I2

rank(X ), s.t. y = A(X ), (1)

where A : RI1×I2 → Rm is a linear projection operator
with m � I1 I2. Although the rank function is nonconvex
and this problem is NP-hard, the nuclear norm [13], [14]
has proven to be a promising surrogate for the rank func-
tion to relax this nonconvex problem to a convex prob-
lem. Despite the theoretical soundness, the nuclear norm
simultaneously penalizes all of the singular values and may
make the final solution deviate from the original solu-
tion [15], [16]. To more closely approximate the rank func-
tion, some nonconvex approaches, e.g., minimax concave
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penalty [17], [18], tractable Schatten norms [15], trun-
cated nuclear norm regularization (TNNR) [16] and itera-
tive reweighting algorithms [19], [20], have been proposed.
Recently, Sun et al. [21] proposed a capped nuclear norm reg-
ularization which minimizes the singular values lower than
an adaptively learned threshold and yielded a state-of-the-
art performance in the robust principal component analysis
problem.

Existing studies have mainly focused on developing
dynamic matrix completion methods, however, few of them
have concentrated on tensors [22] which can be regarded as
a high-dimensional extension of matrices. Compared with a
matrix, a high-order tensor is a more natural representation of
multidimensional data and it can reveal more latent structure
information underlying multidimensional data. The tensor
completion problem is a natural generalization of the matrix
completion and can be formulated as the following rank
minimization problem:

min
X∈RI1×I2×I3 ...×IN

rank(X ), s.t. y = A(X ), (2)

where X ∈ RI1×I2×I3...×IN represents the incomplete low-
rank tensor and A : RI1×I2×I3...×IN → Rm is a linear
operator with m� I1 I2 I3...IN , the order N is the number of
dimensions of the tensor, also known asmodes or ways. There
is direct evidence suggesting that matrix completion methods
can be extended to the tensor case. However, the task is not
easy because the definitions of the tensor rank and its con-
vex relaxation become complicated for higher-order tensors
[23], [24]. Many previously reported approaches just pro-
cessed them by unfolding the tensor into matrix. Liu et al. [3]
first proposed a tensor completion method which tried to
minimize the sum of nuclear norms (SNN) of all matrices
for an unfolded tensor along each channel. Some studies
have revealed that the SNN can characterize the correlations
among different channel effectively [25], [26]. However,
the computational cost of this approach was high for multiple
SVDs. To address these issues, Xu et al. [27] extended the
matrix factorization method to the tensor case to recover the
low-rank tensor. This approach unfolded the tensor data into
matrices and then applied the matrix factorization method
to each unfolding matrix of the underlying tensor as an
alternative of the tensor nuclear norm. This method based on
matrix factorization avoided the SVD computational burden
of large matrices. However, as noted in [28], unfolding a
tensor directly destroyed the multidimensional structure of
the original data and led to critical information loss and
degraded performance.

Recently, Kilmer and Martin [29] proposed a new tensor
decomposition scheme named tensor singular value decom-
position (t-SVD) which can be implemented by solving
matrix SVDs easily in the Fourier domain. This approach
was based on the new definition of tensor-tensor prod-
uct which enjoyed several properties similar to those of
the matrix-matrix product. Related concepts, e.g., tensor
tubal rank and tensor multi rank, were also associated with

t-SVD [29], [30]. Based on t-SVD and the tensor tubal rank,
Zhang and Aeron [31] defined their tensor nuclear norm
(TNN) to replace the tubal rank and solve the low-rank
tensor completion problem in Eq. (2). Semerci et al. [32]
applied this scheme to multi-energy computed tomography
(CT) images and achieved promising effects of reconstruc-
tion. Lu et al. [24], [33] further elaborated the t-SVD fac-
torization and used it to address the tensor robust principal
component analysis problem. Note that, all of the t-SVD-
based approaches formulated the rank minimization problem
by a convex nuclear norm penalty, which treated each sin-
gular value equally, and led to a loss of optimality in the
representation.

The capped nuclear norm reflects the rank function more
accurately than the standard nuclear norm does. In this paper,
we propose a novel nonconvexmodel called the tensor capped
nuclear norm (TCNN) which is supposed to capture the
hidden information from tensors via capped nuclear norm
regularization. The proposed model is defined as the partial
sum of singular values of each frontal slice that is obtained
in the Fourier domain adaptively. This means the model can
characterize the low rankness for each mode. Afterward,
we develop a fast algorithm to solve the optimization of the
proposed model efficiently. The proposed algorithm is based
on the Majorization Minimization (MM) [34], [35] frame-
work and a proximal strategy is applied to guarantee the strict
convergence of each subproblem and improve the robustness
and stability of the algorithm. In addition, we adopt a new
reduced version of t-SVD to address the bottleneck of full
SVD computations. Experimental results on synthetic data
and real-world data show that the proposed method outper-
forms existing competing methods.

II. NOTATIONS AND PRELIMINARIES
In this section, we introduce some notations and definitions
used throughout this paper [29], [33]. For brevity, we summa-
rize the main notations in Table.1. The complex conjugate of
A ∈ Cn1×n2×n3 is denoted as conj(A), which takes the com-
plex conjugate of all entries of A. The conjugate transpose
of a tensor A ∈ Rn1×n2×n3 is defined as A∗ ∈ Rn2×n1×n3 .
The transpose is obtained by conjugate transposing each of
the frontal slices and then reversing the order of transposed
frontal slices 2 through n3. The inner product between A ∈
Cn1×n2 and B ∈ Cn1×n2 is defined as 〈A,B〉 = tr(A∗B),
where A∗ is the conjugate transpose of A and tr(·) denotes
the trace function. 〈A,B〉 =

∑n3
i=1

〈
A(i),B(i)

〉
represents the

inner product of tensor A and B in Cn1×n2×n3 . The identity
tensor I ∈ Rn×n×n3 is a tensor whose first frontal slice A(1)

is the n× n identity matrix and whose other frontal slices are
all zeros.

For A ∈ Cn1×n2×n3 , using the MATLAB command fft,
let Ā = fft(A, [ ], 3) represent the result of the discrete
Fourier transformation (DFT) ofA along the third dimension.
Likewise, we can compute A = ifft(Ā, [ ], 3) through the
inverse DFT. We define Ā ∈ Rn1n3×n2n3 as a block diagonal
matrix, where the i-th block Ā(i) on the diagonal corresponds
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TABLE 1. Summary of main notations in the paper.

to the i-th frontal slice of Ā, i.e.,

Ā = bdiag(Ā) =


Ā(1)

Ā(2)

. . .

Ā(n3)

 . (3)

The block circulant matrix bcirc(A) ∈ Rn1n3×n2n3 of tensor
A is defined as

bcirc(A) =


A(1) A(n3) . . . A(2)

A(2) A(1) . . . A(3)
...

...
. . .

...

A(n3) A(n3−1) . . . A(1)

 . (4)

Here, a pair of mapping operators is defined by

unfold(A) =


A(1)

A(2)
...

A(n3)

 , fold(unfold(A)) = A, (5)

In particular, the block circulant matrix can be block diago-
nalized in the Fourier domain, i.e.,

(Fn3 ⊗ In1 ) · bcirc(A) · (F−1n3 ⊗ In2 ) = Ā, (6)

where Fn3 ∈ Cn3×n3 denotes the discrete Fourier transform
matrix and⊗ denotes the Kronecker product. In addition, the
frontal slices Ā has the following properties:Ā

(1)
∈ Rn1×n2 ,

conj(Ā(i)) = Ā(n3+2−i), i = 2, . . . , b
n3 + 1

2
c.

(7)

‖A‖F =
1
√
n3
‖Ā‖F . (8)

Next some necessary concepts related to this work are as
follows:

Definition 1 (t-Product) [29], [33]: Let A ∈ Rn1×n2×n3

and B ∈ Rn2×n4×n3 , the t-productA∗B is defined as a 3-way
tensor of size n1 × n4 × n3,

C = A ∗ B = fold(bcirc(A) · unfold(B)). (9)

The t-product is analogous to matrix multiplication; the only
difference between them is that the circular convolution
replaces the product operation between elements, which are
now tubes [29]. By using (7), Lu et al. [33] recently proposed
a more efficient method for computing t-product compared
with (9).
Definition 2 (F-Diagonal Tensor): [29] Tensor A is called

f-diagonal if each of its frontal slices is a diagonal matrix.
Definition 3 (Orthogonal Tensor): [29] Tensor Q ∈

Rn×n×n3 is orthogonal if Q∗ ∗Q = Q ∗Q∗ = I.
Theorem 1 (t-SVD) [29], [33]: Let A ∈ Rn1×n2×n3 . The

t-SVD of A is given by

A = U ∗ S ∗ V∗, (10)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are both orthog-
onal tensors. S ∈ Rn1×n2×n3 is a f-diagonal tensor, and ∗
denotes the t-product. Kilmer andMartin [29] first defined the
t-SVD and showed that this decomposition can be obtained
by computing matrix SVDs in the Fourier domain. That is, let
Ā(i) = Ū (i)S̄(i)(V̄ (i))

∗
(i = 1, . . . , n3) be the full SVD of each

frontal slice of Ā. Or briefly, Ā = Ū S̄ V̄ ∗. Inverse fft func-
tion is then performed along the third dimension, i.e., U =
ifft(Ū, [ ], 3), S = ifft(S̄, [ ], 3), V = ifft(V̄, [ ], 3).
However this decomposition requires the computation of the
full SVD for all frontal slices of the tensor. Using property
(7), Lu et al. [33] avoided this issue and further proposed
a more efficient way of computing t-SVD. Note that the
method reported in [29] must compute n3 matrix SVDs,
while the new skinny t-SVD [33] reduces this number to
b
n3+1
2 c. This reduction significantly decreases the cost of

t-SVD computing when n3 is large.
Definition 4 (Tensor Tubal Rank) [33]: For A ∈

Rn1×n2×n3 , the corresponding t-SVD is A = U ∗ S ∗ V∗.
The inverse DFT gives S(i, i, 1) = 1

n3

∑n3
j=1 S̄(i, i, j), and the

singular values of Ā(:, :, j) are the entries on the diagonal of
S̄(:, :, j). Based on this property, the tensor tubal rank, which
is the number of nonzero singular tubes of S, is defined as,

rankt (A) = #{i,S(i, i, :) 6= 0} = #{i,S(i, i, 1) 6= 0}.

Hence, the number of nonzero entries of first frontal slice
S(i, i, 1) is equivalent to the tensor tubal rank, and the entries
on the diagonal S(i, i, 1) are called the singular values of the
tensor A.
Remark 1: SupposeA ∈ Rn1×n2×n3 with tubal rank r , it has

a further reduced version of t-SVD, i.e.,A = U∗S∗V∗, where
U ∈ Rn1×r×n3 and V ∈ Rn2×r×n3 satisfying U∗ ∗ U = I and
V∗∗V = I, S ∈ Rr×r×n3 is a f-diagonal tensor. The reduced
version of t-SVD is faster and more economical for storage.
We thus use this version throughout this paper.
Definition 5 (Tensor Nuclear Norm) [33]: The tensor

nuclear norm of A ∈ Rn1×n2×n3 is defined as the sum of
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the tensor singular values, i.e., ‖A‖∗ =
∑r

i=1 σi(A) =∑r
i=1 S(i, i, 1), where r = rankt (A), S is from the t-SVD

of A = U ∗ S ∗ V∗ and σi(A) is the i-th singular value
of A. Note that the tensor nuclear norm is only determined
by the first frontal slice S(i, i, 1), which is different from
works [24], [31], [36].
Remark 2: The proposed tensor nuclear norm is based on

t-SVD, Lu et al. [24] also defined the tensor nuclear norm
as 1

n3
‖Ā‖∗. The relationship between the two is indicated as

follows:

‖A‖∗ =
r∑
i=1

S(i, i, 1) = 〈S, I〉 =
1
n3

〈
S̄, Ī

〉
=

1
n3

〈
S̄, Ī

〉
=

1
n3

n3∑
j=1

‖Ā(j)‖∗ =
1
n3
‖Ā‖∗.

where 1
n3
=

1
‖Fn3‖

2
F
and Fn3 denotes the DFT matrix.

III. TENSOR CAPPED NUCLEAR NORM
A. PROBLEM FORMULATION
In the matrix case, given the matrix X ∈ Rm×n, and parameter
θ > 0, the capped nuclear norm can be represented as T (X ) =
‖X‖θ =

∑min(m,n)
i=1 min(σi(X ), θ). The capped nuclear norm

shrinks the singular values that are below a threshold adap-
tively learned in the optimization. Accordingly, the noisy ref-
erence information (corresponds to smallest singular values)
can be filtered out; in this way, the capped nuclear norm reg-
ularization is robust and stable in reality applications. Thus,
it is expected that the capped nuclear norm can be applied
for the tensor completion to achieve better performance. Let
X = U ∗ S ∗ V∗ be the t-SVD of X ∈ Rn1×n2×n3 . Using
Definition 5 and Remark 2, the tensor capped nuclear norm
can be defined as follows:

‖X‖θ =
1
n3
‖X̄‖θ =

1
n3

n3∑
j=1

‖X̄ (j)
‖θ

=
1
n3

n3∑
j=1

p∑
i=1

min(σi(X̄ (j)), θ), (11)

where, p = min(n1, n2) and θ is the truncated threshold
parameter. The above definition holds since S(i, i, 1) =
1
n3

∑n3
j=1 S̄(i, i, j) and the i-th singular value σi(X̄

(j)) is the i-th
entry on the diagonal of S̄(:, :, j) [33]. Thus such a definition
is similar with the matrix capped nuclear norm.

In this paper, we employ the tensor capped nuclear norm
regularization to address the low-rank tensor completion
problem. Given a 3-way tensor X ∈ Rn1×n2×n3 , with the
tensor capped nuclear norm, the minimization model can be
formulated as follows:

min
X
‖X‖θ , s.t. P�(X ) = P�(M). (12)

We then relax the constrained problem (12) as follows:

argmin
X

F(X ) = λL(X )+ Q(X ). (13)

where λ > 0 is a given penalty parameter, Q(X ) =
1
2‖P�(X ) − P�(M)‖2F and L(X ) = ‖X‖θ . Because the
objective function is nonconvex and ‖X‖θ is a concave func-
tion [21], it is not easy to solve (13); therefore, we relax the
problem to a surrogate and adopt the MMmethod to optimize
the above mentioned model.

We further introduce several useful tools [37]–[39] that will
be used later. The details of the nonconvex approximation
method are presented in the next subsection.
Definition 6: For a matrix X ∈ Rn1×n2 . Note that

the capped nuclear norm T (X ) of X has no derivative at
σi(X ) = θ ; instead, we define the approximate gradient as
follows:

∂T (X ) =

{
1, if σi(X ) ≤ θ
0, if σi(X ) > θ.

(14)

where i = 1, . . . ,min(n1, n2). Moreover, due to its concave
property, given matrices X and Y , we have

T (X ) ≤ T (Y )+ 〈∂T (Y ), σ (X )− σ (Y )〉. (15)

Theorem 2: For any λ > 0, let X = USV T be the SVD
of X ∈ Rm×n, S = diag({σi})1≤i≤min(m,n) and 0 ≤ w1 ≤

w2 ≤ · · · ≤ wp (p = min (m, n)), the weighted singular value
thresholding (WSVT) operator Dλ,w, is defined as follows:

Dλ,w(X ) = UDλ,w(S)V T , (16)
Dλ,w(S) = diag(max{σi − λwi, 0}). (17)

For Y ∈ Rm×n, we have a global optimal solution of the
following optimization problem:

Dλ,w(Y ) = argmin
X

1
2
‖X − Y‖2F + λ

p∑
i=1

wiσi(X ). (18)

B. OPTIMIZATION WITH MM
In this section, we detail the MM algorithm framework for
solving the problem (13). Simply, in an optimization problem,
a successful MM algorithm substitutes a new simple surro-
gate function for the original intractable objective function.
The key to MM algorithm is to construct an easy to tackle
surrogate function based on the output of each iteration.
Here, we first construct the desired surrogate (upper bound)
function for the problem and then propose an efficient opti-
mization method to iteratively solve the surrogate function.

In each iteration, we impute the current missing tensor data
Xk and then apply proximal minimization to iteratively obtain
the final result.

Given Xk , the surrogate function for the Q(X ) can be
defined as follows:

G(X | Xk ) =
1
2
‖X̂ − X‖2F , (19)

where X̂ = P�(M) + P�c (Xk ) and P�c is a linear operator
that sets the entries in �c (i.e., outside �) to zero. Note that

Q(X ) =
1
2
‖P�(M)− P�(X )‖2F

≤
1
2
‖X̂ − X‖2F = G(X | Xk ). (20)
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For L(X ), one general method is to use the first-order
approximation to substitute its nonconvex function, although
there is no first-order approximation at Xk , we can use its
approximate gradient of each frontal slice based on Defi-
nition 6. Suppose that the t-SVD of Xk is Xk = Uk ∗
Sk ∗ V∗k . For j-th (j = 1, . . . , n3) frontal slice S̄

(j)
k of S̄k

(not Sk ), assume that there are r singular values of S̄(j)k
greater than θ . By using Definition 6, we can conclude
that 〈∂T (X̄ (j)

k ), σ (X̄ )〉 =
∑p

i=r+1 σi(X̄
(j)), where the entries

σ (X̄ (j)) on the diagonal of S̄(j) are the singular values of the
j-th frontal slice X̄ (j); therefore, for each frontal slice of X ,
we have

T (X̄ (j)) ≤ T (X̄ (j)
k )+ 〈∂T (X̄ (j)

k ), σ (X̄ (j))− σ (X̄ (j)
k )〉

=

p∑
i=r+1

σi(X̄ (j))+ Dk . (21)

where Dk = T (X̄ (j)
k ) − 〈∂T (X̄ (j)

k ), σ (X̄ (j)
k )〉 is a constant

givenXk . Thus, the corresponding surrogate function of L(X )
can be approximated as

H (X |Xk ) =
1
n3

n3∑
j=1

T (X̄ (j)) =
1
n3

n3∑
j=1

p∑
i=r+1

σi(X̄ (j))+ Ck .

=

p∑
i=r+1

σi(X )+ Ck . (22)

where Ck = 1
n3

∑n3
j=1Dk is a constant given Xk , and σi(X )

is the i-th singular values of X . Consequently, the surrogate
(upper bound) function of F(X ) takes the form

J (X | Xk ) = λH (X | Xk )+ G(X | Xk ). (23)

Combining (20), (21)and (22), it is clear that we haveF(X ) ≤
J (X | Xk ) such that F(X ) = J (X | Xk ) if and only if X =
Xk , which implies that J (X | Xk ) is a global upper bound
for F(X ) and meets the requirements of MM. This condition
ensures that when we optimize the surrogate function, we are
constantly optimizing the original objective function. Thus
J (X | Xk ) is a suitable surrogate of F(X ). Because the
traditional MM method only ensures non-increment of the
original objective function, there is no convergence guarantee
for F(X ). To address this issue, we further add the proximal
term ‖X − Xk‖

2
F to the surrogate function (23) to ensure

the convergence of the algorithm. Thus, we can reformulate
problem (23) as follows

Xk+1 = argmin
X

J (X | Xk )+
µ

2
‖X − Xk‖

2
F

= argmin
X

1
2
‖X̂ − X‖2F +

µ

2
‖X − Xk‖

2
F

+λ

p∑
i=r+1

σi(X )+ λCk . (24)

where µ is a scalar proximal parameter. Discarding the con-
stant terms, minimizing (24) amounts to solving

Xk+1=argmin
X

1
2
‖X−

1
µ+ 1

(X̂+µXk )‖2F+
λ

µ+ 1
‖X‖r .

(25)

By using property (8) and Remark 2, denote Y = 1
1+µ (X̂ +

µXk ), problem (25) is equivalent to

Xk+1 = argmin
X

1
n3

(
1
2

∥∥X̄ − Ȳ∥∥2F + λ

1+ µ

∥∥X̄∥∥r )
= argmin

X

1
n3

n3∑
j=1

(
1
2

∥∥∥X̄ (j)
− Ȳ (j)

∥∥∥2
F
+

λ

1+ µ

∥∥∥X̄ (j)
∥∥∥
r
).

(26)

where ‖X̄ (j)
‖r =

∑p
i=r+1 σi(X̄

(j)). From Theorem 2, we then
let the weights wi = ∂T (X̄ (j)) (i = 1, . . . , p), and we can
obtain w1 = 0, . . . ,wr = 0,wr+1 = 1, . . . ,wp = 1. It can
be seen that he problem (25) is a special case of (18) and
the j-th subproblem of (26) can be solved by the WSVT.
Now we first introduce our defined tensor capped singular
value thresholding operator and then show that problem (25)
also has a real closed-form solution, similar to the proximal
operator for the matrix case.

Recently, Lu et al. [33] proposed tensor singular value
thresholding(t-SVT), which is a natural extension of the
matrix SVT. Let X = U ∗ S ∗ V∗ be the t-SVD of X ∈
Rn1×n2×n3 , p = min (n1, n2), for each r(0 < r < p) and
a fixed threshold τ > 0. Based on t-SVT. We thus define
the tensor capped Singular Value Thresholding (t-CSVT)
operator as follows

Dτ,r (Y) = U ∗Dτ,r (S) ∗ V∗ (27)

where Dτ,r (S) = ifft(diag(S̄ii), [ ], 3) and S̄ii is

S̄ii =
{
S̄ii, if i ≤ r
(S̄ii − τ )+, if i > r .

(28)

That is, in the Fourier domain, this operator simply applies
the shrinkage operation to the singular values S̄ of the frontal
slices of X̄ . Unlike t-SVT, which shrinks all singular values
to zero, t-CSVT only shrinks the singular values with indices
greater than r . The detail procedure of t-CSVT is shown in
Algorithm 1. Further, we have the following theorem based
on Theorem 2.
Theorem 3: For any τ > 0 and tensor Y ∈ Rn1×n2×n3 ,

p = min(n1, n2), 0 < r < p, the t-CSVT operator (27) obeys:

Dτ,r (Y) = arg min
X∈Rn1×n2×n3

1
2
‖X − Y‖2F + τ‖X‖r . (29)

LetY = U ∗S∗V∗ be the t-SVD ofY . Note that the entries
of S are real. By using property (7) and Lemma 2.1 in [33],
we can conclude that Dτ,r (S) is real and so do the Dτ,r (Y).
Secondly, by using Theorem 2, we know that the j-th frontal
slice of Dτ,r (Y) is a global real closed-form solution of the
j-th subproblem of (29). Hence, problem (29) has a global
solution Dτ,r (Y).

With t-CSVT, at each iteration, problem (25) applies this
shrinkage operation to 1

1+µ X̂+µXk to obtain the update
Xk+1. Because all the processes are carried out in the Fourier
domain, by using the inverse Fourier transform operation
along the 3rd dimension, we can iteratively obtain the opti-
mized solution of the objective function. The main step in the
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Algorithm1Tensor Capped Singular Value Thresholding
(t-CSVT)

Require: X ∈ Rn1×n2×n3 , p = min(n1, n2), truncation
parameter r(0 < r < p), τ > 0.

Ensure: Dτ,r (X ) as defined in (26).
1: Compute X̄ = fft(X , [ ], 3).
2: Perform matrix SVT on each frontal slice of X̄ by
3: for j = 1, . . . ,

⌈
n3+1
2

⌉
do

[U , S,V ] = SVD(X̄ (j));
4: for k = 1, . . . , p do
5: If k > r

Skk = (Skk − τ )+;
6: end for
7: S = diag(Skk );
8: Compute W̄ (j)

= U · S · V ∗;
9: end for

10: for j =
⌈
n3+1
2

⌉
, . . . , n3 do

11: W̄ (j)
= conj(W̄ (n3−j+2));

12: end for
13: return Dτ,r (X ) = ifft(W̄, [ ], 3).

Algorithm 2 Tensor Capped Nuclear Norm for Low-
Rank Tensor Completion
Input: the original incomplete dataM, indices of
known elements � and unknown elements �c,
regularization parameter λ, proximal parameter µ,
threshold parameter θ ;
Initialize: X̂1 = P�(M)+ P�c (0), the zero vector
r = 0, µ =1e-2, ε =1e-5, k = 0.
while not converged do

1. Update Xk+1 with t-CSVT.
Xk+1=argmin

X
1
2‖X−

1
1+µ (X̂+µXk )‖2F+

λ
1+µ‖X‖r ;

2. Update r along with each frontal slices of Xk+1

for j = 1, . . . ,
⌈
n3+1
2

⌉
do

r(j) =
∑min(n1,n2)

i=1 I (σi(X
(j)
k+1) > θ);

end
3. Update X̂k+1 by X̂k+1 = P�(M)+ P�c (Xk+1);
4. Check the convergence conditions:
‖Xk+1 − Xk‖F ≤ ε, ‖X̂k+1 − X̂k‖F ≤ ε;
5. k = k + 1.

end
Output: the recovered tensor.

proposed method is depicted in Algorithm 2. The truncation
parameter r of j-th frontal slice of X̄ corresponding to the
j-th entry r(j) in vector r, which is dynamically updated in
each iteration. Note that step 2 of Algorithm 2, i.e., the
calculation of the truncation parameter r(j), can be obtained
in step1; all that is required is to apply the inverse DFT to S
and we can count the number of each entry r(j) in the origi-
nal domain. Unlike many other studies [3], [28], [31], [40],

the alternating direction method of multipliers (ADMM)
framework is applied to solve the tensor completion prob-
lem. Our new method is formulated via the Majorize-
Minimization approach, in which each iteration has a
closed-form solution and convergence is guaranteed.

IV. CONVERGENCE ANALYSIS
In this section, the convergence of the proposed method
is analyzed. We first demonstrate that the objective func-
tion (25) decreases sufficiently and then prove, accordingly,
that any limit point of Algorithm 2 is a stationary point of
problem (25). We first recall certain definitions [34] adopted
in later proofs.
Definition 7: Let f : D→ R be a function where D ∈ Rm

is an open set. The directional derivative of f at point x in the
feasible direction 1 is defined by

f ′(x;1) 1= lim inf
α↓0

f (x + α1)− f (x)
α

. (30)

A point x is a (minimizing) stationary point of f if
f ′(x;1) ≥ 0 for all 1 such that x +1 ∈ D .
Definition 8: A function f is said to decrease sufficiently

on the sequence {xk} if there exists a constant α > 0 such that

f (xk )− f (xk+1) ≥ α||xk − xk+1||2, ∀k (31)

According to the above mentioned definitions, we have the
following theorems.
Theorem 4: Denote D as the set of solutions generated

by Algorithm 2, and the sequence {Xk} ⊆ D satisfies the
following properties:

1) F(X ) has a sufficient decrease in the sequence {Xk}.
Indeed,

F (Xk)− F (Xk+1) ≥
µ

2
‖Xk+1 − Xk‖

2
F . (32)

2) limk→∞(Xk+1 − Xk ) = 0.
3) The sequence {Xk} is bounded.
Proof: Since Xk+1 is optimal to (23), we have

J (X |Xk+1)+
µ

2
‖Xk+1 − Xk‖

2
F ≤ J (X |Xk)

+
µ

2
‖Xk − Xk‖

2
F . (33)

This implies that J (Xk |Xk )−J (Xk+1|Xk )≥
µ
2 ‖Xk+1−Xk‖

2
F .

Combining with F(Xk ) = J (Xk |Xk ) and F(X ) ≤ J (X |Xk ),
we have

F(Xk )− F(Xk+1) ≥ J (Xk |Xk )− J (Xk+1|Xk )

≥
µ

2
‖Xk+1 − Xk‖

2
F . (34)

Thus F(X ) shows a sufficient decrease.
Summing the above mentioned inequalities in (34) for

k ≥ 1, we have

F(X1) ≥
∞∑
k=1

µ

2
‖Xk+1 − Xk‖

2
F . (35)
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Based on the positive definiteness of ‖Xk+1 − Xk‖
2
F , we can

infer that limk→∞(Xk+1 − Xk ) = 0.
Furthermore, as F (X ) → ∞ if and only if X → ∞,

we can conclude that the sequence {Xk} is bounded.
Theorem 5: Denote D as the set of solutions generated

by Algorithm 2, the sequence {Xk} ⊆ D. Assume that
Q(X |Xk ) = J (X |Xk ) +

µ
2 ||X − Xk ||

2
F ; the approximation

function Q(X |Xk ) satisfies the following:

Q′(X |Xk ;3)|X=Xk = F ′(Xk ;3) ∀3 with Xk +3 ∈ D.
(36)

Proof: Together with F(Xk ) = J (Xk |Xk ) and F(X ) ≤
J (X |Xk ), for any point X ∈ D, we can easily obtain

F(Xk ) = Q(Xk |Xk ).

F(X ) ≤ Q(X |Xk ). (37)

Not that for any fixed Xk ∈ D, the function G(X ) =
Q(X |Xk ) − F(X ) ≥ 0 achieves its global minimum at the
point X = Xk . Hence, it is easy to determine that the first
order optimality condition implies

Q′(X |Xk ;3)|X=Xk − F
′(Xk ;3) = 0 ∀3, (38)

which completes the proof.
Theorem 6: Denote D as the set of solutions generated by

Algorithm 2, and the sequence {Xk} ⊆ D. Then any limit
point of {Xk} is a stationary point to (13).

Proof: From Theorem 4, we know that F (X ) is
bounded; therefore, the sequence {Xk} generated by
Algorithm 2 has limit pointXt and there exists a subsequence
{Xkj} converging to limit point Xt , i.e., Xkj → Xt . Let

Q(X |Xkj ) = J (X |Xkj )+
µ

2
||X − Xkj ||

2
F ,

Note that Xkj+1 = argmin
X

Q(X |Xkj ). Thus, together with

Theorem 4 and (37), we have

Q(Xkj+1|Xkj+1) = F(Xkj+1) ≤ Q(Xkj+1|Xkj )

≤ Q(X |Xkj ) ∀X ∈ D. (39)

A more straightforward consequence of (39) is that the
sequence of the surrogate function values is non-increasing,
and we also have

Q(Xt |Xt ) ≤ Q(X |Xt ) ∀X ∈ D, (40)

which implies

Q′(X |Xk ;3)|X=Xt ≥ 0 ∀3 with Xt +3 ∈ D. (41)

Combining this result with Theorem 5, we obtain

F ′(Xt ;3) ≥ 0 ∀3 with Xt +3 ∈ D. (42)

implying that Xt is a stationary point of F (X ).

V. EXPERIMENTAL RESULTS
In this section, we conduct experiments to evaluate our pro-
posed algorithm. We first verify the effectiveness of the
algorithm under certain parameters on several synthetic data
sets and then compare it with other methods on real-world
data including natural images and video data sequences.
The competing approaches include matrix and tensor com-
pletion algorithms: truncated nuclear norm regularization
(TNNR) [16], low rank tensor completion (LRTC) [3], tensor
nuclear norm method (TNN) [31], low tubal rank tensor
completion (Tubal-NN) [40] and tensor completion by tensor
factorization (TCTF) [28]. The codes of TNNR,1 LRTC,2

TNN,3 Tubal-NN4 and TCTF5 are provided by the corre-
sponding authors. The parameters of the compared meth-
ods are adjusted to be optimal and the optimal results are
reported. Each algorithm stops when the maximum number
of iterations is reached or ||Xk+1 − Xk ||F is sufficiently
small. Supposing we denote M as the original tensor data
and Xrec as the final recovered output. In general, the relative
square error (RSE) and peak signal-to-noise ratio (PSNR) are
commonly used criteria to evaluate the recovery performance
of different algorithms and are defined as follows:

RSE = ‖Xrec −M‖F/‖M‖F (43)

MSE = ‖P�c (Xrec −M)‖2F /T (44)

PSNR = 10× log10(
2552

MSE
) (45)

where T is the total number of missing entries in a tensor.
We suppose that the maximum pixel value on real-world data
is 255. All experiments are executed on a PC with an Intel
Core i7 CPU @2.70 GHz and 8 GB Memory.

A. SYNTHETIC EXPERIMENTS
First, we validate the exact tensor completion effectiveness
of our proposed method; we simply consider the tensors
M ∈ Rn×n×n with varying dimensions n = 50, 100 and
300. The corresponding tubal rank r is determined by M =

P ∗ Q, where the entries of Q ∈ Rr×n×n and P ∈ Rn×r×n

are independently sampled from an N (0, 1/n) distribution.
We uniformly select the pn3 positions of M to construct
the support set �, where the sampling ratio p is defined
as the percentage of the observed entries. For the choice of
the parameters, we can set a series of lambdas λ ∈ 1000
and thresholds θ ∈ [10, 3000] to find the best parameters.
Our experimental results show that fixing the regularization
parameter λ and only adjusting the truncated threshold θ are
sufficient to achieve the optimal results. In the experiments,
we empirically set the parameters λ = 80, 100 and 500 and
test θ from [1000, 3000] to choose an optimal value for each
case manually. As shown in Table.2, our method yields very

1https://sites.google.com/site/zjuyaohu/
2http://www.cs.rochester.edu/ jliu/publications.html
3http://www.ece.tufts.edu/ shuchin/software.html
4https://canyilu.github.io/publications/
5https://panzhous.github.io/
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FIGURE 1. Frequency of success comparison of TNN and TCNN (ours) on synthetic data. The tubal rank r is equivalent to 1, 3, 5, · · · , 35, respectively.

TABLE 2. Exact low-rank tensor completion on random data for varying
tensor dimensions with different parameter values.

small relative errors, less than 10−5, and the correct tubal
rank estimation of M in all cases. These results verifies the
effectiveness of our parameter selection strategy.

Second, both TNN and our TCNN are based on the tensor
tubal rank definitions, which reflects the intrinsic low-rank
structure of a tensor by portraying the low-rank property in
the corresponding Fourier space. Because the two approaches
use the similar tensor rank definitions, we conduct experi-
ments to compare the methods in detail based on synthetic
data. We also consider the associated parameters, i.e., the
tensor size n, sampling rate p and parameter λ, as indicated
in Table.2. Then, we vary the tubal rank r from 1 to 35 in
increment of 2. For fair comparison, we run each method
30 times and regard the recovered Xrec to be successful if
‖Xrec −M‖F

/
‖M‖F ≤ 10−3. Fig.1 plots the experimental

results of these twomethods. Although the size of the tensors,

the sampling ratio and the parameter λ are different, we can
observe a visible improvement of our method over TNN.
All these results are consistent with those in Table.2. Thus,
it is further verified that the newly developedmethod is robust
to the parameters.

FIGURE 2. Illustration of the low tubal rank property in the video
sequence. (a) First 50 Frames of the sequence Stefan. (b) Singular values
of the first 50 frames in the sequence Stefan.

B. TENSOR COMPLETION FOR VIDEO RECOVERY
In the task of video recovery, we compare our method
to the four tensor based methods LRTC [3], TNN [31],
TCTF [28] and Tubal-NN [40]. Essentially, a grayscale video
is a 3-way tensor. In this section, we evaluate the perfor-
mance of the proposed TCNN on grayscale video sequences
from http://trace.eas.asu.edu/yuv/. Because the given video
sequences are color videos, we convert them to grayscale to
form the 3-way tensor. We plot the singular values of a test
video of size 288 × 352 and 50 frames in Fig.2. It can be
observed that there are many singular values whose magni-
tudes are very close to zero, indicating that the video has
much redundant information and its low tubal rank structure
is notable. Thus, these videos can be approximated by the
tensors of the low tubal rank very well.
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FIGURE 3. The 25th frame of the five sequences reconstructed by five
methods. The first three rows are the results with the sampling ratio
p = 0.5 and the last three rows are the results with sampling ratio
p = 0.3.

TABLE 3. The PSNR values and run times (seconds) for various methods
on test videos at different sampling ratios p.

For each sequence, we use the first 50 frames for the com-
parison due to the computational limitations. Fig.3 displays
the 25th frame of the five test videos. The frame sizes of
the videos in the first row (Stefan) are 288 × 352 pixels,
and the others are all 144 × 176 pixels. In the first three
rows, the sampling ratio is set as p = 0.5. In the last three
rows, the sampling ratio is p = 0.3. Fig.3(a) shows examples
of 25th incomplete frame of the videos. The 25 frame exam-
ples of the recovered video are shown in Fig.3(b)-3(f), respec-
tively. Table.3 shows the corresponding PSNR values and run
times of all the methods for the six test videos at the sampling
rates: 0.8, 0.5 and 0.3. The experimental results show that our
method performs excellent reconstruction compared with the
competing methods, and the run time is tolerable. As can be

FIGURE 4. The images (1-10) used in this section.

FIGURE 5. Illustration of the low tubal rank property of the images that
we used in our experiment. (a) The original image (b) approximation by
its tubal rank r = 30. (c) The singular values of the image (a).

FIGURE 6. Examples for image recovery performance comparison. The
first three rows are the results with sampling ratio p = 0.5 and the last
two rows are the results with sampling ratio p = 0.3.

seen, the LRTC (Fig. 3(b)) is the worst, and when the sam-
pling ratio drops from 0.5 to 0.3, the PSNR value is nearly
halved. Thus, it is verified that the LRTC method is not
robust to video recovery. The TNN (Fig. 3(c)) performs
better PSNR than the LRTC method. However, our method
is superior in PSNR and runs much faster than the TNN in
nearly all cases. TCTF (Fig. 3(d)) runs faster than our benefits
from the tensor factorization, but our method yields a higher
PSNR (greater than 4 dB on average). The only method that
comes within 0.5 dB to ours in some cases, is the Tubal-NN
(Fig.3(e)). This also confirms that the internal low tubal rank
property (exploited by both our algorithm and Tubal-NN) can
provide a strong cue for video reconstruction.

C. TENSOR COMPLETION FOR IMAGE RECOVERY
In the task of image reconstruction, we compare the pro-
posed TCNN method with the other four methods, including
the matrix and tensor completion algorithms: TNNR [16],
LRTC [3], TNN [31] and TCTF [28]. Matrix completion
algorithms, such as TNNR, process each color channel
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FIGURE 7. Comparison of the PSNR values (a) and the running time (b) on all 10 images (Fig.4). The sampling ratio is set as p = 0.2.

TABLE 4. The PSNR values and run times (seconds) for various methods
on test images at different sampling ratios p.

separately and then combine the results to form the final
result. However, by directly applying the matrix completion
method to each channel separately, the recovery performance
may be reduced. We now illustrate the performance of matrix
and tensor completion based on ten images, as shown in Fig.4.
The size of each image is 400×300. Fig.5 also illustrates that
a color image can be well approximated by a low tubal rank
tensor because the information is dominated by the top r sin-
gular values. Thus the incomplete image can be recovered by
the low-rank approximation method. Examples of the recov-
ered visual results are shown in Fig.6 and the corresponding
PSNR values and run times are summarized in Table.4.

Fig. 6(a) presents five example images of Fig.4 with the
sampling ratios: 0.5 and 0.3. Examples of the results recov-
ered by five methods are illustrated in Figs. 6(b)-6(f). In most
cases, the results of TNNR (Fig. 6(b)) still contain some quite

blurry parts and are the worst of the five methods. In tensor
cases, the LRTC converges much faster than the TNNR does,
but the corresponding PSNR is apparently inferior to that of
the other tensor methods in all cases. Moreover, the result
of TNNR is slightly superior to that of LRTC with respect
to PSNR in some cases. The results of TNN (Fig. 6(d))
and TCTF (Fig. 6(e)) are much clearer than those of TNNR
(Fig. 6(b)) and LRTC (Fig. 6(c)). However, the edge details
of these images are not well restored, and a certain amount
of information is still missing. As can be seen, our TCNN
(Fig.6(f)) produce the best visual results. We further compare
the PSNR value and running time of each approach on all ten
images at the sampling ratio of p = 0.2, and the results are
reported in Fig.7. Our method achieves an improvement of at
least 1dB in PSNR for most test images. These results demon-
strate that our TCNN yields the best recovery performance,
and the operation speed also meets the requirement of tensor
completion.

VI. CONCLUSIONS
In this work, we studied the nonconvex optimization regu-
larized by tensor capped nuclear norm for low-rank tensor
completion. Capped nuclear norms regularization is a better
rank minimization approximation than the standard nuclear
norm. The proposed tensor nuclear capped norm is based on
t-SVD and utilizes the low-rankness of all-mode unfoldings
of the tensor. Hence, the performance of our approach is con-
siderably improved.We further developed anMM framework
and a proximal technique to efficiently solve the non-convex
formulation. In addition, the convergence of the objective
function was analyzed. Experimental results show that the
proposed approach performs better in recovering videos and
images than other competing tensor completion methods.
For the run time, the results also demonstrated that the pro-
posed method is accelerated with the advantage of the capped
nuclear norm.
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